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Abstract
Purpose – Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those
brought by global infection events. Automation of all or many processes is seen as the way forward, with robots performing various tasks instead of
people. Meat cutting is one of these tasks. Smart novel solutions, including smart knives, are required, with the smart knife being able to analyse
and predict the meat it cuts. This paper aims to review technologies with the potential to be used as a so-called “smart knife” The criteria for a
smart knife are also defined.

Design/methodology/approach – This paper reviews various technologies that can be used, either alone or in combination, for developing a
future smart knife for robotic meat cutting, with possibilities for their integration into automatic meat processing. Optical methods, Near Infra-Red
spectroscopy, electrical impedance spectroscopy, force sensing and electromagnetic wave-based sensing approaches are assessed against the
defined criteria for a smart knife.

Findings – Optical methods are well established for meat quality and composition characterisation but lack speed and robustness for real-time use
as part of a cutting tool. Combining these methods with artificial intelligence (AI) could improve the performance. Methods, such as electrical
impedance measurements and rapid evaporative ionisation mass spectrometry, are invasive and not suitable in meat processing since they damage
the meat. One attractive option is using athermal electromagnetic waves, although no commercially developed solutions exist that are readily
adaptable to produce a smart knife with proven functionality, robustness or reliability.

Originality/value – This paper critically reviews and assesses a range of sensing technologies with very specific requirements: to be compatible
with robotic assisted cutting in the meat industry. The concept of a smart knife that can benefit from these technologies to provide a real-time
“feeling feedback” to the robot is at the centre of the discussion.

Keywords Meat industry, Automation, Robotics, Smart knife, Sensing principles, Electromagnetic waves, NIR, Optical methods, Spectroscopy

Paper type Literature review

1. Introduction

A butcher uses a combination of both the eye-vision and hand-
feeling to analyse the material being cut, to differentiate
between the layers in the complex medium (e.g. a carcass) and
make instant decisions. When using a knife, a professional
butcher always “feels”what is being cut: a layer of skin, muscle,
fatty tissue or a bone – all will have different effect on the same
knife. Based on this “feedback effect” a person knows what to
do – to proceed the same way, to change the force, to alter the

manner of cutting or to stop. But can a robot do that? And if so,
how?
This paper critically reviews various sensing principles that

can be used to enable real-time “feeling” feedback in
automated meat cutting applications. The applicability of
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approaches used in other areas is analysed, with assessment
made considering the limitations imposed by the meat industry
traditions and regulations. It is noted that the authors are
primarily engaged in automation research and development
associated with abattoirs and therefore this paper often refers to
primary processing; for example, removal of primals such as
limbs from a carcass. Nevertheless, the ideas and concepts
discussed in the paper should have relevance throughout the
primary and secondary processing stages of the meat value
chain, regardless of species.
The cuts made with a knife during any meat cutting process

vary in complexity. It is therefore perceived that smart feedback
should be incorporated in future advanced robot systems, so
that the robot can adapt to any variation (e.g. biological)
presented and provide better yield than if it were to cut blindly
based on some simple “rule of thumb”. Conversely, the
operations with a knife (e.g. limb removal) are considered
complex and therefore information regarding the material in
immediate proximity to the knife is essential to achieve efficient
automation in themeat industry.
Notably, the reality is that the visual part of the cutting

process is a preliminary step, to assess the situation. However,
feeling is the main “in operation” feedback. Based on the
extensive discussions with the professional butchers, vision
plays a very small role after an initial decision of how to proceed
and is often too slow, or even late, to help because the butcher
cannot see the tip of the knife when it is buried within the meat
mid-cut. Aside from this, purely optical methods with
traditional camera systems used for the image analysis are not
adequate for the task in hand. Often camera views are easily
obscured by robots, in-process tools, or a camera lens may be
contaminated with blood and distort the image, resulting in
poor quality data. Furthermore, most general-purpose cameras
(e.g. Intel Realsense) cannot focus on the work object once a
certain minimum distance threshold has been passed, ruling
out up-close visual monitoring of the knife. Therefore,
traditional optical imaging approaches are not themain focus of
this paper, as the meat industry cannot rely solely on these and
new advancements are needed for the smart knife of the future.
The two challenges that so far hinder the process in

automated meat cutting are the gathering of reliable
information and the correct positioning of the cutting tool and

these tasks are by no means trivial. A wide range of techniques,
from low frequency, high frequency electrical impedance
measurement, microwaves, NMR, IR and UV light, to X-rays,
involves a wide range of physical interactions between the
sensing method and the sample. However, not all these
approaches are suitable for real-time haptics-cut feedback
during actual meat cutting. Only those that offer an
instantaneous response and a non-destructive interaction
mechanism, are considered in this paper as potentially feasible
options to advance and customise meat industry automation.
Moreover, these methods should not affect the meat itself
(Egelandsdal et al., 2019) in a way that could change product
properties (Muradov et al., 2020), or even render some parts of
it unsuitable for consumption.
To decide which technologies are potentially feasible for

realisation in a “smart knife” concept, certain criteria should be
met, such as those listed in Table 1. Notably, the focus is
specifically on a knife that is attached to a robotic arm and has a
built-in sensing mechanism that provides the robotic system
with the real-time information on what material (meat, fat,
bone and so forth) is in direct contact or immediate proximity
to that knife, so that the cutting trajectory can be adjusted and
cutting activities coordinated. Figure 1(a) illustrates a custom-
made knife (Uddeholm AB, Sweden) attached to a Universal
Robot (UR10), while Figure 1(b) depicts this knife during the
action of meat cutting.

2. Electrical impedance measurements

Electrical impedance measurement as an indication of meat
properties has been considered previously, an example of which
is shown in Figure 2. The structural organisation and
composition of meat makes it a highly anisotropic dielectric
material, i.e. electrical impedance varies according to whether
the current runs parallel or perpendicular to muscle fibres
(Damez andClerjon, 2013).
As fat is an electrical insulator, it influences the electrical

impedance of the tissue. Attempts to use electrical properties to
estimate fat content in animal carcasses and meat are known
(Slanger and Marchello, 1994). Notably, the latency and
invasiveness of measurements render this approach impractical
for high-value automated meat cutting, as measuring electrical

Table 1 Criteria for sensing approaches for smart knife implementation

Criterium Description

No damage Technology used to assist a smart knife to sense what is being cut should not damage or change the meat sample in any way
Speed The sensing method should be sufficiently fast to provide real-time data regarding the material and/or cutting characteristics
Size The sensor size should be compatible with that of the knife and integrated within the blade, attached to the robotic arm, without

impeding either the knife blade or the robot
Material The blade should be the optimal compromise of hardness, thickness, elasticity and form to be able to perform all necessary cuts. The

material used to fabricate the smart knife should be suitable to comply with strict food hygiene regulations. Moreover, this material
should be cleanable using approved procedures to eliminate the potential for cross-contamination between the meat samples from
various carcasses, from human operators or robotic surfaces

Cost The sensing technology used for a smart knife solution should be cost-effective, so as not to render the intended benefits of
automated cutting invalid, specifically in meat industry, where the profit margins are low

Depth Meat is a non-uniform material. Therefore, the technology should be able to accurately sense particularly characteristics of a cut,
namely that the knife is in contact with the meat and its cutting depth. This will enable in-process adjustment of planned robot paths
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impedance would involve introducing physical damage to the
meat, as it requires the direct contact of probes that pierce deep
within the tissue to allow current to pass. Moreover, it was
reported that there is no relationship between electrical
conductivity and shear force values, promoting the argument
that the amount of connective tissue inducing meat toughness
cannot be assessed by a straightforward electrical measurement
(Byrne et al., 2000).
While capacitive or conductivity sensing are often used to

detect proximity or touch, these methods may be challenging to
apply because it is difficult to ensure reliable grounding
conditions for food applications.

3. Force sensing

A knife with embedded force sensors is another viable approach
to help determine the actual type of material being cut. In
medicine, these sensorised tools are already used for
performing robot-assisted surgeries. The novel technology for
two degree-of-freedom (DOF) lateral force sensing reported by
Shahzada et al. (2016) uses a novel layout of four fibre Bragg
grating (FBG) sensors attached to the shaft of a da VinciVR
surgical instrument.
In the meat industry, the application of force sensing

assumes that fat, meat and cartilage all require different force to
cut through and measuring this force will in turn inform on the

type of the tissue in contact with the knife. A graphical concept
of this approach is given in Figure 3.
The idea was mainly for the “assistive kitchen” application,

still operated by a human (Beetz et al., 2008), but robot-
assisted automatic cutting is also an attractive option in this
scenario. There are numerous developments in force sensing
for robotic arm application, with some recent examples being
(Bimbo et al., 2017; Bouteraa and Ben Abdallah, 2017; Jawale
et al., 2019; Tae Mun et al., 2016). However, the force sensing
approach has no potential for prediction or foresight of the
material to be cut. The reason for this is due to material type
variation along the blade length being difficult to distinguish
and therefore separate. Other possible issues when using smart
knife based on built-in force sensing approach for automatic
fast-speed cutting are with the response time of the system plus
the cost of the sensors. Indicative prices for some commercially
available force sensors suitable for this task are given in Table 2.
In addition, variations in carcass temperature, density and
other important traits (e.g. water holding capacity) of meat (or
fat) between different pigs are factors affecting automation. As
a result, each time the sensors are used a calibration is required
and that could hinder the automation process. Force
measurements could also be misinterpreted, as the force
applied at the tip of a knife is not the same as along the rest of
the blade. When attached to a robotic arm with multiple
degrees of freedom (DoF), the orientation of the cut could
potentially affect the interpretation of measurements (Chen
et al., 2021). Thus, no absolute force value can be used for a
certain type of meat tissue and for each type the sensor system
must be recalibrated, precluding efficient automation.
Combination with intelligent data processing and specifically

trained neural networks can significantly increase the accuracy
and reliability of force measurements for automated meat
cutting. The two assistive strategies, namely, a force
amplification strategy and an intent prediction strategy using an
unrolled Recurrent Neural Network were illustrated in
Maithani et al. (2021). They enable a KUKA LWR robot to
provide assistive forces to a professional butcher while
simultaneously allowing motion of the knife in all degrees of
freedom. This prototype was specifically designed for a
collaborative robot in meat cutting tasks to reduce the
likelihood of musculoskeletal disorders in the wrist of human
operators working in the meat industry. It is yet to be seen if the
same approach can be further developed to a level suitable for a
smart knife in completely robotisedmeat processing.

4. Optical methods

4.1 Infrared spectroscopy
Short wavelengths in the NIR (700 to 1100 nm) range can
penetrate deeply into the skin, offering a potential spectral
window for the analysis of animal and human tissues (Roberts
et al., 2017). Various optical detection methods are broadly
used to assess tissue type – in these cases the specific goal is to
determine the quality of the meat. Infrared (IR) spectroscopy is
based on the principle that the chemical bonds in organic
molecules absorb or emit infrared light when their vibrational
state changes. Large changes in vibrational state are observed in
the near IR part of the spectrum (NIR) and sometimes up to
the visible region, while primary vibrations are produced in the

Figure 1 Custom-made knife attached to Universal Robot (UR10) (a)
and cutting a sample of meat (b)

Figure 2 Electrical impedance measurement concept: muscle fibres in
meat can be represented as a resistor and its response to the current
depends on orientation and properties of these fibres
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mid IR region. A major challenge in applying IR spectroscopy
to animal production is sample presentation, as transmission is
inappropriate for opaque solids. Several IR spectroscopy
techniques exist. The main differences are the bandwidth and
the optically measured parameters (transmission, reflection,
diffusion, scattering, etc.).
Application of visible or near-infrared (Vis-NIR)

spectroscopy for meat analysis was, for example, reviewed in
Prieto et al. (2009), where the opinion was expressed that over
the past three decades, near infrared reflectance spectroscopy
(e.g. 700–1100nm) has been proven to be one of the most
efficient and advanced tools for the estimation of quality
attributes in meat and meat products. There is substantial
progress in using NIR techniques to predict chemical
composition (crude protein, intramuscular fat, moisture/dry
matter, ash, gross energy, myoglobin and collagen),
technological parameters (pH value, colour values, water
holding capacity, Warner–Bratzler and slice shear force) and
sensory attributes (colour, shape, marbling, odour, flavour,
juiciness, tenderness or firmness). The main industrial use of
NIR today is for categorising meat into quality classes (Berri
et al., 2019; Teixeira et al., 2019). The right of consumers to get
exactly the quality they pay for and not an inferior quality meat,
drives research in this area.
Recent applications of NIR spectroscopy to predict traits (e.g.

protein, fat, fatty acids and shear force) associated with meat
quality in both live animals and carcass samples were examined
(Chapman et al., 2020). The conclusion was made that,
presently, there is a lack of knowledge regarding the capability of
rapid and non-invasive methods based on NIR spectroscopy to
assess and measure traits associated with meat quality (Prieto
et al., 2018). Changes in meat in the time immediately post
slaughter are also known to affect the accuracy of the NIRS
measurements (Alvarenga et al., 2020).
There is a reduction in accuracy of the NIRS equipment over

time, which is a concern for industry needing reliable and
consistent standards (Hitchman et al., 2020). However,
integrating machine learning techniques could improve the
meat quality prediction accuracy. Thus, according to Parastar

et al. (2020), handheld spectroscopy was used for monitoring
authenticity of packaged chicken fillets and single scans could
provide more than 95% classification accuracy with ensemble
learning.
Feasibility assessment of using a commercially available

portable pen-sized NIR spectrophotometer and custom made
NIR probe with variable distance between light sources
specifically for meat type determination was recently reported
(Mathew et al., 2021). Attempts to use the commercial
instrument to reliably differentiate between various tissues was
unsatisfactory and the response accuracy was below the level
acceptable for the robotics application in automated meat
processing at industrial scale. However, an approach where the
distance between the light source and detector can be modified
to achieve specific depth of signal penetration seems feasible
and needs further development.
Contamination of optical based systems can result in

detrimental outputs. The knife blade could be contaminated
with blood, muscle, protein and also fat, as it is quite common
that some biofilm-like layer forms on the knife after a relatively
short period (Giaouris et al., 2014; Keskinen et al., 2008;
Wang, 2018). Even immersing a knife blade into hot water
(�82°C for 5 s) practice does not eliminate microbial
contamination of carcasses completely (Durmus�o�glu et al.,
2020). Thus, a purely optical solution is not seen as suitable for
efficient robotics meat cutting. A combination with other
methods may improve this situation, with integration of self-
learning AI algorithms being an attractive development
(Zhenjie et al., 2019; Swain et al., 2021).

4.2Metal embedded optics
An attempt to develop a smart knife with embedded fibre optics
in its blade was an interesting idea (Zoran et al., 2015), the
concept is depicted in Figure 4. In this novel technique, the
optical fibre embedded blade is used to sense the presence of
the objects to be cut. Between the edge of the blade and a knife
handle a skin colour sensor operating at the visible-light range
of the electromagnetic spectrum was built-in. It aimed to
prevent the most common injuries sustained in the kitchen by
activating a simple finger-protection mechanism in the form of
a retracting blade. This concept, despite being called “a smart
knife”, so far has not translated into real-world use for a variety
of reasons, including complexity and cost of the proposed
system. It works by sensing difference in colour between the
person’s skin and the environment. Attaching cameras to the
knife while maintaining a desirable field of view may
significantly impact its form factor, therefore it proposed use of
an imaging sensor embedded inside themetal of the blade itself.

Figure 3 Force sensing element is embedded into a knife to assess the cutting process

Table 2 Indicative prices for some commercially available force sensors
for fitting on robotic arm

Company Sensor Cost US$

ABB Force Sensor Medium �10 830
Hypersen Technologies HPS-FT120 �3 975
ATI and Schunk FTD-Delta SI-660–60 �10 215
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Plastruct FOP-30 Fibre Optics (PMMA acrylic fibres with
0.76mm diameter) were chosen over glass-based fibres for
their flexibility, durability, multi-modal light transference,
thickness and considerably lower price (Zoran et al., 2015).
The optic blade included trenches dug into the metal, which
guide the fibre optics inside the surface and contained a
retracting mechanism. One fibre carried illumination, while the
other collected light reflected from objects near the blade.
The authors voiced their suspicions that uncooked pork or

chicken meat will prove hard to distinguish from skin colour
without a higher-order imaging modality that includes a
broader spectrum or improved sensitivity. The system would
benefit from an embedded microcontroller with stronger
computational power to perform some of the calculations in
real time.
Notably, if the fibre optics colour sensor capabilities are

improved and it can differentiate between various shades of
colours in a meat sample, this approach could be feasible
addition in automated meat cutting environment, even as part
of a robotic tool to assist in “robotic decisionmaking”.
The main purpose of this knife was to minimise cutting-

related injuries in a traditional human operated kitchen. This is
not an issue for the new range of completely robotic kitchens
Moley, revealed at the 2021 digital Consumer Electronics
Show, developed in collaboration with world-leading German
robotic company Schunk. In the Moley kitchen concept it is
robots not humans that operate the cutting utensils. However,
at the time of its inception customers could not accept the idea
of robots wielding knives and so the system adopted a food
processor like, closed knife solution. However, new “smart
knives” can alleviate fears and stereotypes while, advancing
new generations of bothmeat processing and cooking robots.

4.3 Polarisation sensitive optical coherence tomography
The fact that the attenuation coefficient in fat is� 9 times
greater than in muscle was explored to employ Polarisation
Sensitive Optical Coherence Tomography (PS-OCT) (Thampi
et al., 2019) as a tool for assessment of intramuscular fat (IMF)
and tenderness of meat samples. PS-OCT is a new fast, non-
contact and non-destructive technique with a few micrometres
resolution up to a few mm deep in tissues such as opaque as
meat. Also, the phase image relates the changes in the
polarisation of light to the birefringence of muscle, which varies
with tenderness and can be analysed to predict the tenderness
of intact meat samples. The method is made very efficient by
extracting relevant information from the three-dimensional
high-resolution images generated by OCT using principal
component analysis (PCA) (Thampi et al., 2020). The
principal components are then used as regressors into a support
vector regression (SVR) predictionmodel. The SVRmodel was
found to predict IMF content stably and accurately, with an R2

value of 0.94. This approach can be seen as interesting for
automated, contact-less, non-destructive, real-time
classification of the quality of meat samples, but can hardly be
used as part of a knife that makes direct contact and cuts the
meat and the information on the type of the material being cut
is needed immediately, or even better – before the cut is made.

5. Other spectroscopic measuring options

5.1 Rapid evaporative ionisationmass spectrometry
Another approach of an intelligent knife that can distinguish
tissue types is based on rapid evaporative ionisation mass
spectrometry (REIMS) and was successfully demonstrated for
surgical application, to distinguish normal, borderline and
malignant tissues (Phelps et al., 2018). For meat REIMS was
used to determine its origin (species, geographical provenance
and muscle), optimising meat processing (including ageing
type, boar taint detection), predicting meat tenderness,
detecting residues in meat such as growth promoting hormones
and potentially determining meat safety through identifying
metabolites caused by bacteria (Ross et al., 2020). REIMS
measures detailed metabolite fingerprints of meat within a few
seconds; it is a rapid method and has considerable potential for
many on-line applications in the meat industry, as it can
perform multiple tests simultaneously from the same sample
(Allen, 2021). However, this technique involves heating the
tissue to produce aerosol, which is then analysed and heating
themeat to such a degree during the automated cutting process
is not acceptable as it would destroy or reduce the end-product
quality. Thus, this approach is not suitable for a smart knife
integration.

5.2 Thermal detection
Thermal detection in automated meat processing can only be
considered as additional safety feature to detect possible
presence of human fingers near the cutting operation (Xiong
et al., 2017), but not for distinguishing what is being cut by a
knife, as naturally the temperature of the adjacent layers of
meat will be similar. Furthermore, one layer (e.g. skin) will
obscure the view of thermal imaging sensors from underlying
layers (e.g. muscle, bone) (Usamentiaga et al., 2014). A further
challenge is the variability in temperature of meat experienced
during primary and secondary processing.

6. Electromagnetic wave-based sensing

Microwave technology is very safe, posing no threat to
operators (Allen, 2021). This technology takes advantage of the
differing dielectric properties (« � = « 0-js , « 0 = permittivity and
s = conductivity) of biological tissues, where an antenna
transmits pulses into the tissues, resulting in a frequency-

Figure 4 Concept of the knife with fibre optics embedded approach
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dependent diversion and scattering at the interface between
differing tissues (Marimuthu et al., 2021;Mason et al., 2018).
The use of electromagnetic waves in various frequency

ranges has been considered for quantifying and predicting the
quality of meat products (Damez and Clerjon, 2013; Muradov
et al., 2014; Bjarnadottir et al., 2015; Abdullah et al., 2014).
The main meat quality traits that can be assessed using
electromagnetic waves are sensory characteristics, chemical
composition, physicochemical properties, health-protecting
properties, nutritional characteristics and safety. Work by
Marimuthu et al. (2020) documents efforts to evaluate the
ability of portable ultrawide band microwave coupled with a
Vivaldi patch antenna to predict fat and tissue depth in lamb
carcases, with the same authors reporting the efficiency of this
approach for beef (Marimuthu et al., 2021).
There are several values that can be used to describe the

dielectric properties of a material, but the most common is its
permittivity. In human tissue, it is reported to be ca. 11.3
(average fat), 12.5 (cortical bone), 20.6 (cancellous bone) and
54.8 (muscle) (Hasgall et al., 2018). These values are for
materials at room temperature and at the frequency 1GHz –

changing temperature or frequency will result in adjustment of
these permittivity values – this is often a source of variation
when considering reported values fromdifferent authors.
Thus, properties of various pork meat tissues, including fresh

and frozen samples, were tested in 0.2–20GHz frequency
range, with the focus on the effect of temperature on dielectric
constant (Ngadi et al., 2015). This work has confirmed that
dielectric properties could be useful in meat quality and type
classification, although meat chilling and heating was used to

manipulate the meat properties. However, four classes of meat
were reliably distinguished based on their dielectric constant
and dielectric loss values, depending on the temperature, which
was increased up to 85°C.
The design flexibility offered by microwave sensing to suit a

range of applications is another reason why this sensing
approachmay be considered by themeat industry for assistance
in automated cutting to construct an intelligent cutting tool. A
notable attempt to use planar electromagnetic sensors for non-
destructive testing of meat was reported in Mukhopadhyay
et al. (2006). Specifically, a range of meander and mesh type
prototype sensors was tested to quantify fat content in meat
samples. Both the meander and mesh type sensors consist of
two coils: one used for excitation to generate electromagnetic
field and another for sensing. The high frequency alternating
supply is provided to the exciting coil and the voltage across the
sensing coil is measured. The transfer impedance (the ratio of
the sensing voltage to the exciting current) is used as the
characterisation parameter for the meander and mesh type
sensors. In the case of interdigitated sensor, conceptually
depicted in Figure 5, the excitation voltage and the
displacement current through the sensor were measured.
The electrical impedance (the ratio of the applied voltage to the
current) was used as the characterisation parameter for the
interdigitated sensor.
The results indicated that the response of the sensors for the

prediction of fat content in pork belly in a non-invasive way was
good at low frequencies, suggesting that it should be possible to
develop a low cost sensing system based on a Cygnal
microcontroller C8051F020, for example (Mukhopadhyay
et al., 2006).
Experimental results with various pork samples, such as skin,

fat, muscle and mixed tissue, were generally supportive of the
potential of microwave spectroscopy for meat quality analysis.
However, the design of the sensors was not further optimised to
ensure adequate sensitivity for the tool to be able to characterise
tissue types both in real time and with a high degree of
certainty. While the proposed planar sensors in concept could
be viable for food quality testing, they lack specificity and speed
for high-volume robotic meat cutting, as their response relies
on the interaction in the contact area between the sensor plane
and themeat sample, along withmany other variables.
However, the principle of using specific interaction of

athermal electromagnetic waves with meat to assess its type is a
feasible direction to develop smart knifes with built-in sensing
mechanism for real-time analysis and prediction of tissue types
in automated cutting applications, for integration with robotic
industrial solutions.

Figure 5 Concept of testing the quality of meat with a planar EM
sensor with interdigitated electrodes layout

Table 3 Benchmarking various sensing technologies with previously set smart knife criteria

Sensor technology No damage Speed Size Material Cost Depth

Electrical impedance measurements H H H H
Force sensing H H H
Optical methods H H H H
Thermal methods H
Electromagnetic spectroscopy H H H H H H
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7. Critical comparison of technologies for smart
knife

Meat processing is an industry that requires novel automated
solutions to remain sustainable and to mitigate harsh working
conditions, shortage of skilled labour and not least, minimise
impact of the recent pandemic. The latter has caused closure of
many meat factories for hygiene and infection prevention
reasons (Rose et al., 2021). Automation of all or many
processes is seen as the way forward, with robots performing
various tasks instead of people (DeMedeiros Esper et al., 2021;
Alvseike et al., 2020). Meat cutting is one of these tasks and
although many advancements have been made in mechanical
approaches to this, the smart cutting tool, or smart knife, is still
not a commercially available option.
Each technology reviewed in previous sections has a potential

or is already used in the food industry for quality analysis of
meat products. However, for meat automation to enable a
smart knife solution, only two technologies can be considered
for further development, as summarized in Table 3.
Specifically, optical and electromagnetic spectroscopies meet
all or most of the criteria for smart knife integration, as defined
in Table 1.

8. Conclusion

Meat processing is an industry that requires novel automated
solutions to remain sustainable and to mitigate harsh working
conditions, shortage of skilled labour and not least, minimise
the impact of recent pandemic, which caused closure of many
meat factories for hygiene and infection prevention reasons.
Automation of all or many processes is seen as a way forward,
with robots performing various tasks alongside, or in the place
of human labour. Meat cutting is one of these tasks and
although many advancements have been made in mechanical
approaches to this, the smart cutting tool or smart knife, is still
not a commercially available option. This paper reviews various
technologies that can be used for developing the future smart
knife for robotic meat cutting. Along with NIR spectroscopy,
electromagnetic wave-based sensing is a feasible option that
should be developed further to a commercial level. These two
approaches could be combined into an advanced multi-sensor
system to enable the smart knife, which is very much needed by
the robotic solutions in meat cutting. The addition of Artificial
Intelligence to assist in decision making and data analysis is an
attractive development for the smart knife, to further combine
with EMorNIR spectroscopy.
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