
PARAFAC2 AO-ADMM: Constraints in all modes
Marie Roald

Simula Metropolitan Center
for Digital Engineering

& Oslo Metropolitan Univ.
Oslo, Norway

mariero@simula.no

Carla Schenker
Simula Metropolitan Center

for Digital Engineering
& Oslo Metropolitan Univ.

Oslo, Norway
carla@simula.no

Jeremy E. Cohen
University of Rennes
Inria, CNRS, IRISA

Rennes, France
jeremy.cohen@irisa.fr

Evrim Acar
Simula Metropolitan Center

for Digital Engineering
Oslo, Norway

evrim@simula.no

Abstract—The PARAFAC2 model provides a flexible alterna-
tive to the popular CANDECOMP/PARAFAC (CP) model for
tensor decompositions. Unlike CP, PARAFAC2 allows factor
matrices in one mode (i.e., evolving mode) to change across
tensor slices, which has proven useful for applications in different
domains such as chemometrics, and neuroscience. However, the
evolving mode of the PARAFAC2 model is traditionally modelled
implicitly, which makes it challenging to regularise it. Currently,
the only way to apply regularisation on that mode is with a
flexible coupling approach, which finds the solution through
regularised least squares subproblems. In this work, we instead
propose an alternating direction method of multipliers (ADMM)-
based algorithm for fitting PARAFAC2 and widen the possible
regularisation penalties to any proximable function. Our experi-
ments demonstrate that the proposed ADMM-based approach for
PARAFAC2 can accurately recover the underlying components
from simulated data while being both computationally efficient
and flexible in terms of imposing constraints.

Index Terms—PARAFAC2, Tensor decomposition, AO-ADMM

I. INTRODUCTION

Tensor decompositions, in particular the CANDE-
COMP/PARAFAC (CP) model [1], [2], have successfully
extracted meaningful patterns from complex data in many
disciplines including chemometrics [3] and neuroscience
[4], [5]. However, the CP model has strict assumptions of
multilinearity that can be violated in practice. Another tensor
model, PARAFAC2 [6], relaxes the CP model by allowing
for evolving factors in one mode. This relaxation also enables
decomposing stacks of matrices of varying size.

The ability to describe such evolving or irregular factors has
made the PARAFAC2 model a powerful tool. For instance,
in chemometrics, PARAFAC2 has been applied to chromato-
graphic data with unaligned elution profiles [7]. PARAFAC2
has also been used to analyse unaligned temporal profiles in
electronic health records [8] and for information retrieval using
documents from different languages [9]. Recently, PARAFAC2
has also shown promise for tracing time-evolving patterns of
brain connectivity in neuroscience (illustrated in Fig. 1) [10].

Often, the interpretability of component models, such as CP
and PARAFAC2, can be improved through constraints and reg-
ularisation. However, evolving components of the PARAFAC2
model are usually computed implicitly [11]. Therefore, it is
challenging to impose constraints or regularisation on these

¼ +

Ti
m
e

wind
ow

s

Voxels

Su
bj

ec
ts

Xk ¼ ADk
Bk
>

Xk
8 k1,k2 ∙KBk Bk

=1 1
> Bk Bk 22

>

[dk]11

a1

[bk]1

[dk]22

a2

[bk]2

Fig. 1: Illustration of a two-component PARAFAC2 model for
tracing networks in neuroimaging data.

evolving factors. While previous work has showed that such
constraints can improve interpretability and recovery [8], [12],
there is no known algorithm for flexibly imposing regular-
isation with general penalty functions or hard constraints
on the evolving factors. Helwig imposed smoothness on
these factors by constraining them to follow a low-rank B-
spline interpolation [13]. To achieve smoothness, the data
tensor is projected onto the linear subspace spanned by the
given B-spline interpolation matrix before decomposing with
PARAFAC2. However, this approach requires that the spline
knots are known a-priori, which may be difficult in practice.

Currently, the only way to regularise the evolving mode
of a PARAFAC2 model, without knowing the subspace the
components lie in, is with a flexible coupling approach [12].
This approach relaxes the PARAFAC2 constraint and finds
the components by solving regularised least squares problems.
Another notable approach is by Yin et al. [14] using a
regularisation penalty inspired by PARAFAC2 to improve
the uniqueness properties of regularised coupled non-negative
matrix factorisation for binary data.

In this paper, we propose an alternating optimisation scheme
with the alternating direction method of multipliers (AO-
ADMM) to fit PARAFAC2 models with regularisation on all
modes. The AO-ADMM scheme has recently been introduced
for constrained CP models [15], and later also extended
to regularised linearly coupled matrix-tensor factorisations
[16]. Afshar et al. proposed using AO-ADMM to impose
proximable constraints on the non-evolving factor matrices
of the PARAFAC2 model [8]. Here, unlike previous work,
we introduce ADMM updates for the evolving mode as well,
widening the possible regularisation penalties on this mode
to any proximable function. With numerical experiments on

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works. DOI: https://doi.org/10.23919/EUSIPCO54536.2021.9615927

https://doi.org/10.23919/EUSIPCO54536.2021.9615927

simulated data, we show that our approach can accurately
recover underlying components while being both flexible in
terms of imposing constraints and computationally efficient.

II. TENSOR DECOMPOSITION WITH PARAFAC2

Tensors can be seen as multi-way arrays that generalise the
concept of matrices to higher order data [17]. As such, a vector
is a first-order tensor, a matrix is a second-order tensor, a
“cube” of numbers is a third-order tensor and so forth. A
tensor with more than two modes is often called a higher-
order tensor. We denote higher-order tensors as X, matrices
as X, vectors as x, and the Frobenius norm of X as ∥X ∥F .

PARAFAC2 can be seen as a relaxed version of the CP
model. CP assumes multilinearity, and for a third-order ten-
sor, using an R-component CP model, each frontal slice is
modelled as:

Xk ≈ ADkB
T, (1)

where Dk is an R×R diagonal matrix. Note that each slice,
Xk ∈ RI×J , has the same A and B matrices. PARAFAC2, on
the other hand, allows each slice to have a different B matrix:

Xk ≈ ADkB
T
k , (2)

where Bks follow the PARAFAC2 constraint, i.e., BT
k1
Bk1 =

BT
k2
Bk2

for all k1, k2 ≤ K, Dk ∈ RR×R is a diagonal matrix.

III. OPTIMISATION

A. PARAFAC2 & ALS

To solve the unconstrained PARAFAC2 problem, [11] re-
formulated the model to the following equivalent form:

Xk ≈ ADk∆B
TPT

k , (3)

where ∆B is a square matrix and PT
kPk = I. This problem

can be solved efficiently using an alternating least squares
(ALS) procedure, where the Pk updates are performed by
solving an orthogonal procrustes problem.

B. PARAFAC2 & AO-ADMM

We wish to solve the regularised PARAFAC2 problem

arg min
A, {Bk,Dk}k≤K


f
(
A, {Bk}k≤K , {Dk}k≤K

)
+ gA (A) +

K∑
k=1

gB (Bk) + gD (Dk)

 ,

subject to BT
k1
Bk1 = BT

k2
Bk2 ∀k1, k2 ≤ K

(4)

where f
(
A, {Bk}k≤K , {Dk}k≤K

)
=
∑K

k=1

∥∥ADkB
T
k−Xk

∥∥2
F

is the sum of squared errors (SSE) data fidelity term, and
gA, gB, gD are regularisation functions. However, imposing
regularisation is difficult within the traditional ALS algorithm,
as it estimates the Bk matrices implicitly as the product of
orthogonal Pk matrices and a ∆B matrix.

An alternative to directly solving regularised problems is to
use splitting methods. In particular, we use ADMM [18] to
solve split problems of the form

arg min
x, zx

f(x) + g(zx)

subject to x = zx
(5)

Here, f and g represent the data-fidelity term and regularisa-
tion penalty, respectively.

To use ADMM, we have to solve subproblems on the form

arg min
x ∈ Rn

h(x) +
ρ

2
∥Mx− y ∥2F , (6)

with some problem dependent matrix, M. When M is an
identity matrix, then the above optimisation problem defines
the scaled proximal operator, proxh

ρ
(y), with scale parameter

ρ [19] (see Section III-G for automatic selection of ρ). To use
ADMM for the PARAFAC2 decomposition, we need a natural
splitting scheme where all subproblems are easily evaluated.
Such a scheme is known for the static modes of PARAFAC2
[8]. However, no ADMM splitting scheme has been presented
for the evolving mode yet.

C. ADMM for the B mode

To specify an ADMM scheme for the problem

arg min
{Bk}k≤K

K∑
k=1

fBk (Bk) + gB (Bk) ,

subject to BT
k1
Bk1 = BT

k2
Bk2 ∀k1, k2 ≤ K

(7)

where fBk (Bk) =
∥∥ADkB

T
k −Xk

∥∥2
F

, we introduce two sets
of auxiliary variables, ZBk

and YBk
, which respectively split

the regularisation by gB and the PARAFAC2 constraints,
forming the problem:

arg min
{Bk,ZBk ,YBk}k≤K

K∑
k=1

[fBk (Bk)+gB (ZBk)]+ ιPF2

(
{YBk}k≤K

)
,

subject to Bk = ZBk , Bk = YBk ∀k
(8)

where ιPF2

(
{YBk}k≤K

)
= 0 if YT

Bk
YBk

is constant over k

and ∞ otherwise. This problem can be tentatively solved using
the ADMM algorithm specified in Algorithm 2.

The ADMM updates for the evolving modes require the ef-
ficient solution of three subproblems. The update with respect
to the data fidelity function, (fBk (Bk) =

∥∥ADkB
T
k −Xk

∥∥2
F

),
and the proximal operators of the regularisation function
(gB) and the characteristic function for sets of matrices with
constant cross product (ιPF2). The update step for the data
fidelity function is the solution to the least squares problem:

arg min
Bk


2

ρBk

∥∥∥Xk−ADkB
T
k

∥∥∥2
F
+
∥∥∥Bk−ZBk+ µZBk

∥∥∥2
F

+
∥∥∥Bk−YBk+µ∆Bk

∥∥∥2
F

 .

(9)
The proximal operator for the regularisation functions can

be efficiently computed for a large family of functions.
On the other hand, the proximal operator for ιPF2,

proxιPF2

(
{Wk}k≤K

)
= arg min
{YBk}k≤K


ιPF2

(
{YBk}k≤K

)
+

K∑
k=1

ρBk

2
∥YBk−Wk ∥2F

 ,

(10)
where {Wk}k≤K is an arbitrary collection of matrices, is not
trivial to compute. Nevertheless, it can be approximated with

the method of Kiers et al. [11]. If we use this method, setting
YBk

= Pk∆B with PT
kPk = I, we obtain Algorithm 1 for

the proximal operator. In our experiments, we found that one
iteration of this algorithm was sufficient.

Algorithm 1: Approximate projection onto set of collec-
tions of matrices with constant cross product

Result: {Pk}k≤K ,∆B

while convergence criteria are not met do
for k ← 1 to K do

Compute “economy style” SVD:(
Bk + µ∆Bk

)
∆B

T = U(k)Σ(k)V(k)T

Pk ← U(k)V(k)T

end
∆B ← 1∑K

k=1
ρBk

∑K
k=1 ρBk

PT
k

(
Bk + µ∆Bk

)
end

Algorithm 2: ADMM for the B mode
Result:

{
Bk,ZBk

,YBk
= Pk∆B

}
k≤K

while convergence criteria are not met do
for k ← 1 to K do

Bk ← Solve (9)
ZBk

← prox gB
ρBk

(
Bk + µZBk

)
end{
YBk

}
k≤K

Alg. 1←−−−− proxιPF2

({
Bk + µ∆Bk

}
k≤K

)
for k ← 1 to K do

µZBk
← µZBk

+Bk − ZBk

µ∆Bk
← µ∆Bk

+Bk −YBk

end
end

D. ADMM for the A mode

To update the A-mode, we use ADMM to solve the problem

arg min
A

K∑
k=1

∥∥∥ADkB
T
k −Xk

∥∥∥2
F
+ gA (A) . (11)

This requires us to evaluate both the proximal operator of the
data-fidelity term, fA (A) =

∑K
k=1 ∥ADkBk −Xk ∥2F :

prox fA
ρA

(M) =

(
K∑

k=1

XkΓk +
ρA
2

M

)(
K∑

k=1

ΓT
kΓk +

ρA
2

I

)−1

,

(12)
with Γk = BkDk, and the proximal operator of the regularisa-
tion function, gA. With these operators, we obtain the update
steps given in Algorithm 3.

Within the framework of [16], this approach can be consid-
ered as hard coupling for all matrices, Xk, through A, and
the Bk updates would correspond to discovering the structure
of the coupling for the Bk matrices.
E. ADMM for the D mode

The D-mode components are updated independently, finding
diagonal matrices that solve the problem

arg min
Dk

∥∥∥ADkB
T
k −Xk

∥∥∥2
F
+ gD (Dk) , (13)

for each k. The proximal operator for the data-fidelity term,
fDk (Dk) =

∥∥ADkB
T
k −Xk

∥∥2
F

is the minimiser of a quadratic

Algorithm 3: ADMM for the A mode
Result: A,ZA,µA

while convergence criteria are not met do
A

(12)←−− prox fA
ρA

(ZA − µA)

ZA ← prox gA
ρA

(A+ µA)

µA ← µA +A− ZA

end

function. The minimiser is formulated using the vector con-
taining the diagonal entries of Dk:

prox fDk
ρDk

(v) =
(
ATA ∗BT

kBk +
ρDk

2
I
)−1 (

ξ +
ρDk

2
v
)
, (14)

where ∗ is the Hadamard product and ξ = Diag
(
ATXkBk

)
is

the vector containing the diagonal entries of ATXkBk. This
results in the update steps given in Algorithm 4.

Algorithm 4: ADMM for the D mode
Result: Dk,ZDk ,µDk

while convergence criteria are not met do
for k ← 1 to K do

Dk
(14)←−− prox fDk

ρDk

(
ZDk − µDk

)
ZDk ← prox gD

ρDk

(
Dk + µDk

)
µDk

← µDk
+Dk − ZDk

end
end

F. PARAFAC2 AO-ADMM

By combining the three update algorithms above, we obtain
Algorithm 5 to fit regularised PARAFAC2 models to data.
To measure convergence of the inner loops, we adapted the
stopping criteria in [18] with a maximum of five iterations.
For the outer loop, we followed [16] and stopped when
both the loss and all relative primal feasibility gaps (e.g.
∥A− ZA ∥F / ∥A ∥F) were either below an absolute toler-
ance or their relative change between two subsequent iterations
was below a relative tolerance (with maximum number of
iterations set to 1000).

Algorithm 5: AO-ADMM for PARAFAC2
Result: A, {Bk,Dk}k≤K
Initialise
A,ZA,µA,Bk,ZBk ,µZBk

,∆B,Pk,µ∆Bk
,Dk,ZDk ,

and µDk

while convergence criteria are not met do
Update

{
Bk,ZBk ,Pk,µZBk

,µ∆Bk

}
k≤K

and ∆B

using Algorithm 2
Update A,ZA and µA using Algorithm 3
Update

{
Dk,ZDk ,µDk

}
k≤K

using Algorithm 4
end

G. Selecting ρ

For efficient ADMM updates, we need suitable ρ-
parameters. In this work, we selected ρ adaptively [15]:

ρBk =
∥ADk ∥2F

R
, ρA =

k∑
k=1

∥BkDk ∥2F
R

, (15)

ρDk =
1

R
Tr
(
ATA ∗BT

kBk

)
.

IV. EXPERIMENTS

For all methods, we used our Python implementations linked
in the supplementary1 (a MATLAB implementation is also
available2). As a baseline, we compared the AO-ADMM
algorithm with the traditional unregularised ALS algorithm
[11], and for the experiments with non-negativity constraints,
we also compared with the flexible coupling PARAFAC2 using
hierarchical non-negative least squares algorithm (HALS), im-
plemented following the MATLAB implementation [12]. We
used the same HALS algorithm [20], default parameter values
and initialisation scheme. For the proximal operator of the total
variation (TV) seminorm, we used the C implementation [21]
of the improved direct TV denoising algorithm from [22]. We
set the stopping tolerances equal to 10−5 for the inner loops
(ADMM updates) and 10−10 for the outer loop.

To measure convergence we used the relative SSE:

Rel. SSE =
1

∥X ∥2F

K∑
k=1

∥∥∥ADkB
T
k −Xk

∥∥∥2
F
. (16)

Also, we measured if different methods recovered the true
components with the factor match score (FMS), given by:

FMS =
1

R

R∑
r=1

aT
r ârb

T
r b̂rc

T
r ĉr, (17)

where âr, b̂r, ĉr represent the estimated component, taking
into account the permutation ambiguity. The br and cr-
vectors contain the concatenations of the r-th column of all
Bk matrices and the r-th diagonal entry of all Dk matrices,
respectively. All component vectors are normalised before
computing the FMS.

To evaluate the AO-ADMM approach, we use a simulation
setup inspired by [12]. The elements of A and Dk factor
matrices were respectively drawn from a truncated normal
distribution and a uniform distribution between 0.1 and 1.1 (to
avoid near zero elements in the Dk matrices, which can hinder
recovery of the Bk matrices [11]). The Bk factor matrices
were obtained by first generating a “blueprint matrix”, B̂
tailored to the constraint we wished to impose. The rows of
B̂ were subsequently cyclically shifted to obtain Bk matrices,
setting [Bk]jr = B̂jkr, with jk = ((j + k) mod J).

For each experiment, we created 50 random datasets. We
constructed tensor slices, Xk, based on (2) using known factor

1https://github.com/MarieRoald/PARAFAC2-AOADMM-EUSIPCO21
2https://github.com/AOADMM-DataFusionFramework/

AOADMM-PARAFAC2

0 75 150 .
Iteration

0
.2

0
.4

R
el

.
S

S
E

0 20

0
.2

0 7.5 15
Time [s]

0
.2

0
.4

R
el

.
S

S
E

ADMM
HALS
ALS

0 7.5 15
Time [s]

0
0
.9

F
M

S

Fig. 2: Diagnostic plots for datasets with noise level η = 0.5.
The lines show the median values.

matrices. We let X be the tensor with frontal slices given by
our data matrices, and added random noise according to

Xnoisy = X+ η ∥X ∥F
E

∥E ∥F
, (18)

where η is the noise level and Eijk ∼ N (0, 1).
For each dataset, we fit models with five random initiali-

sations, and kept the components that achieved lowest final
cost value. Non-negativity constraints were always imposed
on the Dk-matrices, to resolve the sign-indeterminacy of the
PARAFAC2 model [6], [23].

A. Non-negativity constraints

To assess the performance of the AO-ADMM based algo-
rithm for fitting a PARAFAC2 model with non-negativity con-
straints, we compared speed and accuracy with the baselines.
We generated B̂ matrices with three components and elements
drawn from a truncated normal distribution (setup 1). Noise
levels were set to 0.33 and 0.5, and the tensor had dimensions
20×30×20. For AO-ADMM and HALS, non-negativity was
imposed on all modes, whereas for ALS, non-negativity was
only imposed on the A and {Dk}k≤K matrices. Diagnostic
plots for η = 0.5 are shown in Fig. 2 demonstrating that
both non-negative PARAFAC2 algorithms outperform ALS
with respect to FMS. Moreover, the AO-ADMM algorithm
is as fast as the traditional ALS algorithm and faster than the
flexible coupling approach. We observed the same behaviour
for η = 0.33 (see supplementary material).

B. Structure imposing regularisation

The AO-ADMM algorithm also allows for structure im-
posing regularisation such as graph Laplacian regularisa-
tion (γLTr(BT

kLBk)) [24] and total variation regularisation
(γTV ∥Bk∥TV). To assess the effectiveness of graph Laplacian
regularisation, we set the three components of B̂ equal to
emission spectra from a fluorescence spectroscopy dataset
[3] (setup 2). These spectra are smooth, i.e. neighbouring
wavelengths have similar values, which makes graph Laplacian
regularisation sensible. To impose smoothness, we set the
penalty function to gB (Bk) = γL

∑
jr([Bk]jr − [Bk]j+1r)

2. For
assessing total variation regularisation, we used piece-wise
constant functions with 6 jumps whose derivatives summed
to zero as the three components of B̂ (setup 3). The size
of the smooth and piece-wise constant data tensors were
20 × 201 × 40 and 20 × 200 × 40 respectively. For both
types of experiments, we tested with two different noise levels:

https://github.com/MarieRoald/PARAFAC2-AOADMM-EUSIPCO21
https://github.com/AOADMM-DataFusionFramework/AOADMM-PARAFAC2
https://github.com/AOADMM-DataFusionFramework/AOADMM-PARAFAC2

ALS True Smooth

1 100 201
j

-0
.1

0
.2

[B
1
] j

1

Component 1

1 100 201
j

-0
.1

0
.2

[B
1
] j

2

Component 2

1 100 201
j

-0
.1

0
.2

[B
1
] j

3

Component 3

Fig. 3: True and estimated columns of B1 for one dataset with
η=0.5. Smoothness regularised components were fitted with
γr=0.01 and γL=1000. X1 had a signal to noise ratio of
0.1 dB.

ALS True TV

100 200
j

-0
.0

5
0
.1

5
[B

1
] j

1

Component 1

100 200
j

-0
.0

5
0
.1

5
[B

1
] j

2

Component 2

100 200
j

-0
.0

5
0
.1

5
[B

1
] j

3

Component 3

Fig. 4: True and estimated columns of B1 for one dataset with
η=0.5. TV regularised components were fitted with γr=10
and γTV =10. X1 had a signal to noise ratio of 5.9 dB.

η ∈ {0.33, 0.5} and we imposed ridge regularisation on A and
Dk (γr(∥A ∥F+

∑
k ∥Dk ∥F)). The regularisation parameters

were found through a grid search (details in supplementary).
The structure imposing regularisation helped recovery for

both setup 2 and 3. For most parameter combinations, we
observed an increase in FMS compared to unregularised mod-
els. The performance degraded only with a very high degree of
regularisation. Table I shows the results for the parameters that
obtained the highest mean FMS. In Fig. 3 we see that the graph
Laplacian regularised models led to smooth components and
Fig. 4 shows that the TV regularisation produced piecewise
constant components (see supplementary for animated plots).
For both setups, the ALS algorithm yielded noisy components.

V. CONCLUSION

In this work, we proposed an AO-ADMM-based algorithmic
framework for fitting PARAFAC2 models with regularisation.
Using the proposed approach, we can fit PARAFAC2 mod-
els with any proximable regularisation penalty on all factor
matrices. Our experiments demonstrate that the AO-ADMM
framework is faster than the flexible coupling approach for
non-negative PARAFAC2, and can successfully apply structure

TABLE I: FMS results from experiments with structure im-
posing regularisation.

Setup 2 Setup 3

Method η = 0.33 η = 0.5 η = 0.33 η = 0.5

AO-ADMM 0.99± 0.01 0.98± 0.01 0.98± 0.02 0.96± 0.05
ALS 0.96± 0.01 0.92± 0.01 0.92± 0.06 0.86± 0.08

imposing regularisation, such as TV and graph Laplacian
regularisation, on the evolving mode of a PARAFAC2 model.

REFERENCES

[1] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multi-modal factor analysis,”
UCLA working papers in phonetics, vol. 16, pp. 1–84, 1970.

[2] J. D. Carroll and J. J. Chang, “Analysis of individual differences
in multidimensional scaling via an N-way generalization of “Eckart-
Young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319,
1970.

[3] R. Bro, “PARAFAC. tutorial and applications,” Chemom. and Intel.
Lab. Systems, vol. 38, no. 2, pp. 149–172, 1997.

[4] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M. Arnfred,
“Parallel factor analysis as an exploratory tool for wavelet transformed
event-related EEG,” NeuroImage, vol. 29, no. 3, pp. 938–947, 2006.

[5] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway
analysis of epilepsy tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–
i18, 2007.

[6] R. A. Harshman, “PARAFAC2: Mathematical and technical notes,”
UCLA working papers in phonetics, vol. 22, pp. 30–44, 1972.

[7] R. Bro, C. A. Andersson, and H. A. L. Kiers, “PARAFAC2 - Part
II. Modeling chromatographic data with retention time shifts,” J.
Chemom., vol. 13, no. 3-4, pp. 295–309, 1999.

[8] A. Afshar, I. Perros, E. E. Papalexakis, E. Searles, J. Ho, and J. Sun,
“COPA: Constrained PARAFAC2 for Sparse & Large Datasets,” in
ACM Int. Conf. on Inf. and Knowl. Management, 2018, pp. 793–802.

[9] P. A. Chew, B. W. Bader, T. G. Kolda, and A. Abdelali, “Cross-
language information retrieval using PARAFAC2,” in Proc. 13th ACM
SIGKDD Int. Conf Knowl Discov and Data Mining, 2007, pp. 143–152.

[10] M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali, and E. Acar,
“Tracing network evolution using the PARAFAC2 model,” in Proc.
Int. Conf. on Acoust., Speech, and Signal Process., 2020.

[11] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro, “PARAFAC2 - Part
I. A direct fitting algorithm for the PARAFAC2 model,” J. Chemom.,
vol. 13, no. 3-4, pp. 275–294, 1999.

[12] J. E. Cohen and R. Bro, “Nonnegative PARAFAC2: A flexible coupling
approach,” in LVA/ICA’18, 2018, pp. 89–98.

[13] N. E. Helwig, “Estimating latent trends in multivariate longitudinal
data via Parafac2 with functional and structural constraints,” Biom. J.,
vol. 59, no. 4, pp. 783–803, 2017.

[14] K. Yin, A. Afshar, J. C. Ho, W. K. Cheung, C. Zhang, and J. Sun,
“LogPar: Logistic PARAFAC2 factorization for temporal binary data
with missing values,” in KDD, 2020, pp. 1625–1635.

[15] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and
efficient algorithmic framework for constrained matrix and tensor
factorization,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5052–
5065, 2016.

[16] C. Schenker, J. E. Cohen, and E. Acar, “A flexible optimization
framework for regularized matrix-tensor factorizations with linear
couplings,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3,
pp. 506–521, 2021.

[17] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1–122, Jan. 2011.

[19] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Mach.
Learn., vol. 1, no. 3, pp. 127–239, 2014.

[20] N. Gillis and F. Glineur, “Accelerated multiplicative updates and
hierarchical ALS algorithms for nonnegative matrix factorization,”
Neural Comput., vol. 24, no. 4, pp. 1085–1105, 2012.

[21] L. Condat. “Software.” [Accessed: 2020-10-19]. (2019), [Online].
Available: https://lcondat.github.io/software.html.

[22] L. Condat, “A direct algorithm for 1-D total variation denoising,” IEEE
Signal Process. Letters, vol. 20, no. 11, pp. 1054–1057, 2013.

[23] N. E. Helwig, “The special sign indeterminacy of the direct-fitting
Parafac2 model: Some implications, cautions, and recommendations
for simultaneous component analysis,” Psychometrika, vol. 78, no. 4,
pp. 725–739, 2013.

[24] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,”
in Learning theory and kernel machines, Springer, 2003, pp. 144–158.

https://lcondat.github.io/software.html

	Introduction
	Tensor decomposition with PARAFAC2
	Optimisation
	PARAFAC2 & ALS
	PARAFAC2 & AO-ADMM
	ADMM for the B mode
	ADMM for the A mode
	ADMM for the D mode
	PARAFAC2 AO-ADMM
	Selecting

	Experiments
	Non-negativity constraints
	Structure imposing regularisation

	Conclusion

