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ABSTRACT
Characterizing time-evolving networks is a challenging task, but it is
crucial for understanding the dynamic behavior of complex systems
such as the brain. For instance, how spatial networks of functional
connectivity in the brain evolve during a task is not well-understood.
A traditional approach in neuroimaging data analysis is to make sim-
plifications through the assumption of static spatial networks. In this
paper, without assuming static networks in time and/or space, we ar-
range the temporal data as a higher-order tensor and use a tensor fac-
torization model called PARAFAC2 to capture underlying patterns
(spatial networks) in time-evolving data and their evolution. Numer-
ical experiments on simulated data demonstrate that PARAFAC2 can
successfully reveal the underlying networks and their dynamics. We
also show the promising performance of the model in terms of trac-
ing the evolution of task-related functional connectivity in the brain
through the analysis of functional magnetic resonance imaging data.

Index Terms— PARAFAC2, tensor factorizations, net-
work evolution, dynamic networks, time-evolving data

1. INTRODUCTION

Time-evolving data analysis is of interest in many disciplines
to capture the underlying patterns as well as the evolution of
those patterns. For instance, in neuroscience, underlying pat-
terns may correspond to spatial networks capturing functional
connectivity [1], and in social networks, patterns may reveal
communities. Capturing those patterns (networks) as well as
their temporal evolution, holds the promise to improve our
understanding of complex dynamic systems such as the brain,
social networks, and molecular mechanisms in the body [2].

An effective way of representing time-evolving data is
to use higher-order tensors (also referred to as multi-way ar-
rays), i.e., tensors with more than two axes of variation. For
instance, functional magnetic resonance imaging (fMRI) data
from multiple subjects can be rearranged as a third-order ten-
sor with modes: subjects, voxels, and time windows. Tensor
factorizations [3, 4] have proved useful in terms of revealing
the underlying patterns in such higher-order data sets. Previ-
ously, for the analysis of time-evolving data, a popular ten-
sor factorization model called the CANDECOMP/PARAFAC
(CP) [5, 6] model has been used to extract temporal patterns to
address the temporal link prediction problem [7], to capture
the evolving popularity of different meaningful topics from

email threads [8] and to detect suspicious activity in network
traffic [9]. However, the CP model assumes that underlying
patterns stay the same across time, which may not be satisfied
by dynamic data [10, 11, 12, 13].

In data mining, there is an increasing interest in captur-
ing time-evolving factors. One approach is to use sliding
window-based methods [14, 15]; however, patterns are still
assumed to be static within each window, and determining
the window size is a challenge. Alternatively, dynamic data
has been modeled using temporal matrix factorizations with
temporally evolving patterns [16, 17], but with a focus on re-
construction of data matrices, e.g., for link prediction, without
discussing the uniqueness of the captured patterns.

In this paper, we use the PARAFAC2 tensor factoriza-
tion model, with rather well-studied uniqueness properties
[18], to model time-evolving data in such a way that cou-
pled matrices correspond to matrices at different time points
and underlying patterns in the matrices may change over time.
PARAFAC2 has been used to analyze time-evolving data pre-
viously [19, 20], but the coupled matrices corresponded to
matrices for different subjects and patterns were allowed to
change across subjects, rather than across time. Here, we as-
sess the performance of the PARAFAC2 model in terms of
capturing temporal evolution of the underlying patterns and
demonstrate that it is a promising tool to trace the evolution
of networks such as growing, shrinking and shifting networks.
We also use the PARAFAC2 model in a novel neuroimaging
application to understand task-related connectivity and cap-
ture time-evolving connectivity patterns that significantly dif-
fer between patients with schizophrenia and healthy controls.

2. METHODS

Higher-order tensors are extensions of matrices to more than
two modes, i.e., a vector is a first-order tensor and a matrix
is a second-order tensor. This section briefly describes two
tensor factorization models, CP and PARAFAC2, which we
compare in terms of capturing evolving patterns.

CANDECOMP/PARAFAC: The CP model [5, 6] repre-
sents a tensor as the sum of minimum number of rank-
one components, i.e., an R-component CP model of ten-
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Fig. 1: Illustration of a two-component PARAFAC2 model.

sor X ∈ RI×J×K is defined as X ≈ ∑R
r=1 ar ◦ br ◦ cr,

where ◦ denotes the vector outer product, ar,br, and cr are
the rth column of factor matrices A ∈ RI×R,B ∈ RJ×R,
and C ∈ RK×R, respectively. Using CP, each frontal slice
(Xk ∈ RI×J ) is formulated as:

Xk ≈ Adiag(ck:)B
T, (1)

where diag(ck:) is an R×R diagonal matrix with the kth row
of C on the diagonal. If X represents a subjects by voxels by
time windows tensor, each column of B may reveal a spatial
network, A indicates which networks are present in each
subject, and C contains the temporal profile of each network.

PARAFAC2: PARAFAC2 [21] is a more flexible model than
the CP model. While CP assumes that each slice, Xk ∈
RI×J , has the same A and B matrices, PARAFAC2 allows
each slice to have a different B matrix (Figure 1) as follows:

Xk ≈ Adiag(ck:)B
T
k , (2)

where Bks follow the PARAFAC2 constraint, i.e., BT
k1
Bk1

=
BT

k2
Bk2

for all k1, k2 ≤ K. If Xk slices correspond to
time windows, then networks captured by columns of Bk may
change over time as long as they satisfy this constraint. We
use the notation [bk]r to denote the rth column of matrix Bk.

3. EXPERIMENTS

In this section, we assess the performance of PARAFAC2 in
terms of extracting time-evolving networks using both simu-
lated and real data. First, we generate data with time-evolving
patterns, and demonstrate that the model can recover the un-
derlying evolving patterns, performing much better than a CP
model. Then we use the PARAFAC2 model to analyze fMRI
signals from a group of subjects consisting of healthy controls
and patients with schizophrenia and show the promise of the
model in terms of revealing the difference in the evolution of
task-related spatial networks across the two groups.

3.1. Simulated data

3.1.1. Generation of simulated data

We generated two types of simulated data: (i) data sets fol-
lowing (2) and the PARAFAC2 constraint, and (ii) data sets
following (2), having time-evolving patterns Bks that do not
necessarily follow the PARAFAC2 constraints.

Factor matrices in each mode are generated as follows
(with R = 4): The factor matrix for the first mode (i.e. sub-
jects) (A) has a clustering structure as shown in Figure 2. For
the second mode (i.e. voxels), (Bk)s are generated in two
different ways: (i) Random: random matrices following the
PARAFAC2 constraint, (ii) Network: matrices with each col-
umn corresponding to either a shifting, a growing, a shrinking
or a both shifting and growing network (Figure 3). Finally, the
factor matrix in the third mode (i.e., time) (C) is generated
in two different ways: (i) Random: with all columns drawn
from a uniform distribution randomly, (ii) Trends: with one
random column, and other three columns following either a
sinusoidal, an exponential or a sigmoidal curve (Figure 2).1

Once X is constructed based on (2) using the gen-
erated factor matrices, we add random noise: Xnoisy =

X+ ηE
∥X ∥F

∥E ∥F
, where η is the noise level, ∥ · ∥F is the Frobe-

nius norm, entries of E follow a standard normal distribution.

3.1.2. Performance evaluation

We generated twenty random data sets for all possible combi-
nations of factor matrix generation schemes and used differ-
ent noise levels; η = 0 and η = 0.33 (≈ 10% of the data being
noise). We fit both CP and PARAFAC2 using alternating least
squares [4, 18] with multiple random starts, and the start with
the best fit score was chosen for further analysis (after validat-
ing the uniqueness of the model). Non-negativity constraints
were imposed in the time mode when fitting PARAFAC2 to
resolve the sign ambiguity [22], which is more critical for
PARAFAC2 than CP. Model performance is assessed in terms
of the following measures:
Model fit: One metric used to assess the quality of the data
reconstruction, denoted by X̂, is the model fit defined as

Fit(X, X̂) = 100 ×
(
1− ∥X−X̂∥2

∥X ∥2

)
. The fit tells us how

well the model explains the data.
Factor Match Score (FMS): We measure the accuracy of the
methods, i.e., how well the methods recover underlying factor
vectors, using FMS defined, for each mode separately, as:

FMSU =
1

R

∑
r=1

∣∣uT
r ûr

∣∣
∥ur ∥ ∥ ûr ∥

,

where ur and ûr are true and estimated rth column of factor
matrix U, respectively (after fixing the permutation ambi-
guity). For the evolving mode (B), we concatenate all time
steps to form a (JK × R) matrix, B̃, and compute FMSB

using B̃. For CP, the same br vector is repeated K times.
Clustering accuracy: The clustering performance is as-
sessed using k-means clustering on the factor matrix ex-
tracted from the first mode, using all possible combinations
of factor vectors, and the best performance is reported.

1Simulations are described in detail in the supplementary material:
https://github.com/marieroald/ICASSP20, with links to the
simulation code and Python implementations of CP and PARAFAC2.

https://github.com/marieroald/ICASSP20
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Fig. 2: Top: Scatter plot of true columns of A and the ones captured
by PARAFAC2. Bottom: Line plot of true columns of C and the
ones estimated by PARAFAC2 (noisy case).

3.1.3. Results of simulated data analysis

Table 1 shows the average performance (for twenty random
data sets) of CP and PARAFAC2 (R = 4) using different data
generation schemes. Results demonstrate that PARAFAC2
performs well in terms of recovering the true patterns and
their evolution with average FMS values above 0.90 for the
evolving network mode, and with much higher FMS in other
modes, consistently performing better than the CP model.

We observe that CP partially discovers A and C matrices
for the network data, even in the noisy case, while completely
failing for data with random Bs. Despite failing to capture the
true A, CP often has high clustering accuracy due to the clus-
tering structure in the simulations designed to separate groups
with several components, i.e., if a model recovers any infor-
mative components, the clustering accuracy will be high.

The results also demonstrate that there is room for im-
provement for PARAFAC2, especially when the PARAFAC2
constraint is not satisfied, i.e. the evolving network case.
Note that PARAFAC2 does not reveal the true components
perfectly when Bks have an evolving network structure,
even in the noise-free case. This challenge stems from the
PARAFAC2 constraint, which requires that the 2-norm of
the network factor vectors are constant in time. If a network
grows or shrinks in density, the resulting change in norm
cannot be represented in B, but rather in C. In the noisy
case, we observe similar performance for both random and
time-evolving network data. Figure 2 and Figure 3 illustrate
how well PARAFAC2 performs in terms of capturing the true
patterns in the noisy data.

3.2. Real data: fMRI

Our motivation for exploring PARAFAC2 is to understand
task-related dynamic connectivity in the brain and how that
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Fig. 3: True Bk factor vectors (left) and the ones captured by
PARAFAC2 (right) (noisy case). Factor vectors are shown as heat
maps, where brighter colors represent active nodes.

differs between controls and patients suffering from a psy-
chiatric disorder. Here, we use PARAFAC2 to analyze fMRI
data from the MCIC collection [23], which contains fMRI
scans from patients with schizophrenia and healthy controls
for different tasks. For this work, we used the sensory motor
task (SM) data from the 3T fMRI scanners at the University
of Iowa and Minnesota2. During the SM task, subjects were
equipped with headphones that played sounds with increas-
ing pitch, with a resting period between each sound. Subjects
were instructed to push a button each time they heard a sound.

To construct the data tensor, we first extracted the frac-
tional amplitude of low-level fluctuations (fALFF) [24] sig-
nal from sliding time windows of the blood-oxygen-level-
dependent signal. The fALFF is calculated in three steps:
(1) Discard high and low frequency components to remove
noise and the signal from the vascular system. (2) Sum the
square root of the frequency components to get the amplitude
of low-frequency fluctuation. (3) Divide by the total sum of
frequencies in the window. This approach provides a time-
evolving measure of brain activity within each voxel. The
window size and stride length were chosen so that each time
window, corresponding to 16 seconds, contains precisely one
block of task or rest with no overlap between the windows.
The data tensor was constructed using the fALFF values for
the voxels corresponding to gray matter as a feature vector for
each time window and each subject. The constructed tensor is
in the form of 145 subjects (of which, 90 of them are healthy
controls) by 63652 voxels by 14 time windows.

3.2.1. Results for fMRI data analysis

Before the analysis, the fMRI tensor was preprocessed by
subtracting the mean fALFF signal across the voxels mode,

2We have excluded the data from other sites either due to scanner differ-
ence or observed site differences in our preliminary analysis.



Table 1: The mean performance of PARAFAC2 (PF2) and CP for different setups.

Fit [%] Clustering Acc [%] FMSA FMSB FMSC

Noise C setup B Setup CP PF2 CP PF2 CP PF2 CP PF2 CP PF2

0 Random Network 75.1 100.0 89.3 94.6 0.75 0.98 0.58 0.97 0.87 0.98
Random 13.2 100.0 82.5 90.9 0.27 1.00 0.01 1.00 0.59 1.00

Trends Network 80.7 100.0 82.0 92.0 0.52 0.97 0.54 0.98 0.86 0.98
Random 15.5 100.0 77.8 91.8 0.17 1.00 0.01 1.00 0.47 1.00

0.33 Random Network 67.8 91.1 88.1 95.0 0.74 0.98 0.58 0.95 0.87 0.98
Random 11.9 91.1 82.4 93.0 0.27 0.97 0.01 0.92 0.58 1.00

Trends Network 72.8 91.1 85.9 95.0 0.52 0.95 0.52 0.92 0.86 0.98
Random 14.0 91.1 77.4 90.3 0.17 0.95 0.01 0.90 0.47 0.99
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Fig. 4: Factor vectors in voxels and time windows modes of 2-
component PARAFAC2 model. In voxels mode, only the first time
window, i.e., B1, is visualized. The p-values are 2.8 × 10−4 and
4.1× 10−2 for component 1 and 2, respectively.

and dividing each voxels mode fiber by its norm. The pre-
processed tensor was then modelled using PARAFAC2 and
CP such that A, Bk(or B matrix for CP) and C correspond
to subjects, voxels and time windows, respectively. To re-
solve the sign indeterminacy, we imposed non-negativity
constraints on C for the PARAFAC2 model. Previously,
PARAFAC2 was used for fMRI data analysis [20], where
each slice Xk corresponded to raw signals from a single sub-
ject and patterns in time and/or voxels were allowed to change
across subjects. Instead, we construct a tensor based on fea-
tures capturing the dynamic activity within each window and
model the tensor using PARAFAC2, letting the voxel patterns
(Bk) change in time, rather than across subjects.

Once the models were fit, we performed a two-sample t-
test on each column of the subjects mode factor matrix. We
achieved the lowest p-values using 2-component CP and 2-
component PARAFAC2 models illustrated in Figures 4 and 5.
Spatial maps are plotted using the patterns from the voxels
modes as z-maps and thresholding at |z| ≥ 1.2 such that red
voxels indicate an increase in controls over patients and blue
voxels indicate an increase in patients over controls.

Both CP and PARAFAC2 reveal activity in the sensori-
motor cortex (component 1) and auditory cortex (component
2), two brain regions known to be engaged by the SM task
[23]. The sensorimotor component has significantly lower ac-
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Fig. 5: Factor vectors in voxels and time windows mode of a 2-
component CP model. The p-values are 6.2× 10−4 and 3.7× 10−1

for component 1 and 2, respectively.

tivation for schizophrenic patients than healthy controls, i.e.,
entries of the corresponding subjects mode vector are pos-
itive for both groups but statistically significantly higher in
controls than patients. That makes sense since it is difficult
for patients to follow the task; hence the activation is lower.
Temporal profiles, especially for the first component, reflect
the on-off task pattern. While both models reveal similar spa-
tial networks, PARAFAC2 captures the temporal evolution of
these spatial networks (see supplementary material for videos
showing the temporal evolution). We also observe that due to
the flexibility of PARAFAC2, the PARAFAC2 spatial maps
are noisier compared to the ones captured by the CP model.

4. CONCLUSION

In this work, we have demonstrated that the tensor factor-
ization model PARAFAC2 can recover the underlying pat-
terns and their evolution from dynamic data, even for data
not strictly following the PARAFAC2 constraints. Moreover,
PARAFAC2 shows promising performance for detecting task-
related brain connectivity and its evolution from fMRI data.
As future work, we plan to relax PARAFAC2 constraints [25]
and incorporate prior information about the evolving network
structure (e.g., temporal and spatial smoothness) by regulariz-
ing the model to improve the recovery of underlying patterns.
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