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Abstract. Global warming is one of the most important environmental issues that threatens the 

living on this globe so far. Carbon dioxide (CO2) emission from the construction industry is one 

of the major sources of emissions that leads to global warming. Therefore, CO2 emission 

reduction potentials are of additional attention nowadays. New technologies such as artificial 

intelligence, machine learning, and digital tools can assist this effort. Development in such 

technologies has made decision-making more optimized and automatic. To fulfil this aim, it is 

essential to have comprehensive knowledge on how emission reduction can be accomplished 

and what are the best decision-makings based on the new technologies of artificial intelligence 

and machine learning techniques. This paper provides a thorough picture of how artificial 

intelligence and machine learning techniques can contribute to CO2 emission reduction in 

construction. The concepts of CO2 reduction in the related derived literature are categorized 

into six clusters: 1) sustainable material design and production, 2) automation, digitalization 

and prefabrication, 3) real-world monitoring, 4) off-road vehicles and equipment, and 5) energy 

and life cycle assessment, and 6) decision-making and solution-based platforms. As most of the 

research studies in this area are related to the first cluster, i.e., sustainable material design and 

production, this paper has focused more on this area, and the other categories are preserved for 

future studies. Then, limitations and further research directions in this area are provided, which 

can be a valuable source for researchers in their future research.  
 

1 INTRODUCTION 

Greenhouse gas (GHG) emission is one of the main causes of global warming, and many 

countries are experiencing its adverse environmental impacts [1, 2]. Carbon dioxide (CO2) is 

the main component of GHGs [1]. In this regard, there is an urgent need to mitigate emissions 

in all industries, including construction. The construction industry, accounting for emissions of 

up to 50%, is the largest source of GHG emissions globally [3]. Many research studies have 

addressed global warming concerns and the potential to mitigate CO2 emissions in different 

stages of the construction process, i.e., preconstruction, construction, use phase and even post-
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disaster temporary housing and reconstruction [4-6]. The concrete industry is one of the most 

pollution-oriented sectors in construction. Cement production is estimated to contribute to 

almost 8% of global warming emissions [7]. 

Technology can affect CO2 emissions in both positive and negative ways. Today, new and 

intelligent technology is required to be applied in the direction of sustainability and emission 

reduction [8, 9]. By transforming traditional to new construction technologies, materials, and 

automated practices in both hardware and soft computing aspects, there would be great potential 

for CO2 emissions reduction in the construction industry. Internet of things (IoT), artificial 

intelligence (AI) and real-time monitoring, machine learning (ML), and optimization methods 

are among the novel practices in which the globe is shifting its direction. 

Several papers have addressed using new technologies, AI and ML, for CO2 emission 

reduction in construction [10-12]. In addition, many papers investigated designing and 

producing sustainable and environmentally-friendly building materials [13-18]. This 

particularly applies to the cement and concrete industry as being the most pollution-driven 

sector [19-23]. On the other hand, several papers examined CO2 emission reduction on the 

construction sites for off-road vehicles and equipment. They tried to optimize the fuel and the 

activity of such vehicles [24-27]. Life cycle assessment [28-31] and real-world monitoring [32-

35] are among other directions which some papers have addressed. There is a need to look at 

this area holistically in order to gain comprehensive knowledge to find out on what directions 

the previous research studies have investigated and to identify limitations, gaps and future 

research potentials in this area. Thus, this paper reviewed the literature's scope and provided a 

thorough picture of the ongoing research. The first part was dedicated to the research methods 

of the scoping review and papers inclusion. The second part classified the concepts existing in 

the derived literature and illustrated what kind of AI or ML techniques contribute to CO2 

emission mitigation. Finally, part three elaborated the gaps, suggestions, and future research 

directions.  

2 RESEARCH METHOD 

This paper is a scoping review of the research on CO2 emissions reduction in construction 

using AI and ML. Six different directions were identified in the literature review. However, this 

paper has addressed the most critical direction of these six directions, as many available papers 

were laid in this cluster.  

2.1 Scoping review 

Scoping review is the approach used to inform the research study design in this paper. Instead 

of examining the depth or quality of the existing literature, a scoping review is an excellent 

strategy for concentrating on the range of coverage of the literature existing on a topic [36]. 

This was in keeping with the study's goals, which were to provide a preliminary inquiry into 

the scope and type of existing evidence in order to gain thorough knowledge in the field and to 

aid the planning of research directions studies on the subject [36, 37].  

2.2 Data extraction, search strategy, and papers selection 

The literature was searched through Web of Science and Scopus databases in the first step. 

The following combination of keywords (Emissions AND (CO2 OR carbon) AND construction 
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AND (smart OR "artificial intelligence" OR AI OR intelligent OR IoT OR "internet of things" 

OR “machine learning” OR ML)) were used in the second step to search the relevant literature. 

As a result, 678 papers were identified. In the next step, to decide the eligibility of the detected 

papers for inclusion, several criteria were considered: 1) peer-reviewed journal papers, 2) 

papers in English, 3) papers related to the phase of construction. This led to 345 papers. After 

eliminating the duplicated papers in the fourth step, 96 papers remained. In the last step, titles 

and abstract screenings were carried out, and 118 papers were kept. The full article review 

retained 80 papers for the scoping review. As this paper has only focused on the sustainable 

material design and production cluster, 37 out of the 80 papers were reviewed holistically 

(Figure 1). 

 

Figure 1: Literature screening and paper inclusion process 

3 FINDINGS AND DISCUSSION ON CO2 EMISSIONS IN CONSTRUCTION 

In this part, all the concepts identified in the literature related to the initiatives to reduce CO2 

emissions in construction using new technologies like artificial intelligence and machine 

learning techniques are covered, then the gaps and future research are elaborated. 

3.1 Content analysis of the reviewed papers 

The identified papers were categorized into six clusters, including 1) sustainable material 

design and production, 2) automation, digitalization and prefabrication, 3) real-world 

monitoring, 4) off-road vehicles and equipment, and 5) energy and life cycle assessment, and 
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6) decision-making and solution-based platforms as shown in Figure 2. Most papers lay in 

sustainable material design and production cluster (having 37 records). Thus, this paper has 

carried out content analysis regarding this cluster. 

 

        [13, 14, 16-23, 28, 38-62] 

 

 

 

  

 

 

Figure 2: Concepts of CO2 emissions reduction initiatives in construction using AI and ML 

3.2 Sustainable Material Design and Production 

Concrete and cement production are among the most pollutants industry. Many efforts have 

been made to reduce their impact by replacing more sustainable materials in the concrete design 

components and predicting their properties using ML techniques [63-66]. 

 Long et al.  [39] used calcined clay, limestone powder, silica fume, as cement substitutes 

for a low-carbon and low-energy 3D printable composite. Particle packing theory for the 

optimization of the packing density of the particle components through the particle size 

distribution was applied. The results show that the dynamic yield stress when composites 

contain 33.33 wt% calcined clay, 16.67 wt% limestone powder, and 5 wt% silica fume with 

sand/binder ratio of 2.5, can be significantly improved. Furthermore, the embodied energy and 

embodied carbon emissions per cubic meter of optimal mortar respectively decreased by 50.2% 

and 45.2% with respect to the plain mortar. Zhang & Zhang [19] proposed a sustainable design 

method for reinforced concrete members based on a discrete optimization method to reduce 

construction embodied emissions and costs. The study used multi-objective genetic algorithm 

from “cradle to site” instead of using a single-objective one at just the material production 

phase. The optimization was followed by the numerical examination of a case study to compare 

the Pareto optimal solutions for singly- and doubly-reinforced concrete beams. The results 

showed that an extra cost of 5–6% can make up for a 14.7% of emission reduction. Trinh et al. 

[13] introduced a method for carbon-based optimization (minimum CO2 emissions) of a flat 

plate reinforced concrete building using Branch-and-Reduce deterministic algorithm. Different 

case studies with different slab spans and floor levels were optimized. The Branch-and-Reduce 

Optimization Navigator commercial package and genetic algorithm solver of MATLAB were 

applied for the optimization. The results showed that the optimized one reduces 5–17% 

embodied carbon compared to conventional buildings. The proposed method decreases 31% of 

the total embodied carbon compared to the genetic algorithm method. Wimala et al. [48] 

introduced an artificial neural network (ANN)-based model to predict CO2 emissions of 

producing precast concrete. First, a survey was carried out for 107 plants precast concrete in 

Japan to acquire data on the CO2 emission factors. Six factors of ordinary Portland cement 

Automation, Digitalization and 

Prefabrication (4 papers) 

Sustainable Material Design and 

Production (37 papers- 2 papers overlap 

other categories) [13, 14, 16-23, 28, 38-62] 

Real-world Monitoring (5 papers-

1 paper overlaps another category) 

Off-road Vehicles and 

Equipment (14 papers) 

Energy and Life Cycle Assessment (12 

papers- 3 papers overlap other categories)   

Intelligent Initiatives 

for CO2 Emission 

Reduction 

Decision-making & Solution-

based Platforms (17 papers- 2 

papers overlap other categories) 
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(OPC), fine aggregate, coarse aggregate, electricity, kerosene, and heavy oil were considered 

using Principal Component Analysis to serve as the inputs of ANN model for CO2 emissions 

forecasting. A backpropagation neural network technique with three-layer perceptron was 

introduced to train the network. The network model having 51 hidden neurons with a set of 0.1, 

0.3, and 0.9 for learning rate, initial weight, and momentum, respectively, generated the best 

result. Mean absolute percentage error value below 10% revealed that ANN could predict CO2 

emissions in producing precast concrete with significant accuracy. 

Huseien et al. [41] examined substituting cement with fly ash (FA) and effective 

microorganism (EM) at an optimized proportion to produce sustainable concrete with lower 

CO2 emission and boosted mechanical properties. The amount of EM and FA as cement 

substitution was determined in four different ratios of 10, 20, 30 and 40% and various water 

ratios. Adaptive neuro-nuzzy inference system was employed to test the compressive strength 

of the laboratory-based database. The results revealed that the optimal mixture obtained for the 

specimen with OPC replacement with 10% FA and EM operated optimally resulted in 

compressive strength of 50 MPa, 41.5% lower carbon dioxide, 39.4% less energy consumption, 

and 24.8% lower cost. Kordnaeij et al. in [52] & [18] replaced partial cement with a more 

environmentally friendly zeolite material. In [18], they conducted a lab-based study to examine 

the impact of several factors, including sand size, water/binder ratio, and cement replacement 

percentage with zeolite, on the compressive strength of the specimens. Multiple regression 

model (MLR) and a group method of data handling (GMDH)-type neural network were applied 

to predict the compressive strength of zeolite-cement grouted sands. In [52], the authors applied 

MLR and a kind of ANN (GMDH) to predict the small strain shear modulus in zeolite–cement 

grouted sands. The small strain shear modulus function included three water to binder ratios 

(w/b) parameters, average sand grain size, and cement replacement with zeolite percentage. 

Active compounds were applied as input factors to consider the concurrent impact of zeolite 

percentage and w/b ratios on the shear modulus of grouted sands. The results revealed that MLR 

and GMDH techniques for predicting small strain shear modulus of grouted sands perform 

better when considering active compounds as an input factor than considering w/b and zeolite 

percentage as input factors. Applying active compounds to predict small strain shear modulus 

of grouted sands by the GMDH models led to about 35–41% prediction improvement. 

The GMDH-based model performed more efficiently than the MLR-based one.  

Ma et al. [56] applied a highly effective stabilizer based on cement and embedded FA to 

create a more environmentally friendly earth-based construction. Several parameters such as 

FA content, stabilizer content, physical indexes, and curing duration were considered to conduct 

a hybrid strength and embodied CO2 index measurement. MLR and power regression methods 

were employed in this study. The results revealed that the CO2-equal emission of the cement-

based high-efficiency stabilizer was lower than that with cement in the context of the same 

strength. The introduction of FA into stabilizer decreased the CO2-equal emission to some 

extent. This indicates that cement-based high-efficiency stabilizer is cleaner than cement, even 

though several chemical additives have higher CO2-equal emissions. Abbey  et al. [58] replaced 

partial cement with ground granulated blast slag (GGBS) and pulverized fuel ash (PFA) for 

deep soil concrete to improve the compressive strength and reduce CO2 emission. Different 

mixes of cement, cement with PFA, and cement with PFA and GGBS were tested at 7, 14, 28, 

and 56 days.  MLR was used for the prediction of the unconfined compressive strength. Soil 
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with less plasticity compared to that with higher plasticity indicated greater compressive 

strength. Adding GGBS and PFA reduced the cement content, leading to cost and CO2 

emissions reduction. The proposed method provided reliable and accurate prediction for 

compressive strength for weak soil with unified compressive strength less than 25 kPa, and for 

the proportion of w/b. Cement compositions with PFA and GGBS for deep soil mixing were 

appropriate for soil consolidations and highway embankments. The model was validated using 

different compositions of binders. Park et al. [23] investigated the potential application of 

crumb rubber made from recycled tires in geopolymer concrete to diminish cement content, 

which leads to CO2 emissions reduction. The effects of aggregates size and amount, the molarity 

of sodium hydroxide, curing method and time parameters on compressive strength were 

examined. Sodium silicate, sodium hydroxide liquid mix, FA, and crumb rubber were utilized 

in the geopolymer concrete. The regression model was applied to recognize important 

parameters and their interactions and decide on the strength of geopolymer concrete. It showed 

that the relationship between rubber substitution and other factors was not significant. The 

ANOVA technique showed that the best proportion for crumb rubber is up to 5 % with 95% 

confidence level in three kinds of FA. Suitable proportion of rubber substitution could be 

applied without significant strength reduction. Fairbairn et al. [61] replaced cement with sugar 

as a by-product at the industrial level with the aim of reducing CO2 emissions. Sugar 

cane bagasse ash is a pozzolan that can be used as a substitution for cement to boost the cement-

based mixture properties. A simulation based on United Nations Framework Convention on 

Climate Change for the Clean Development Mechanism was carried out to assess the 

possibility of a reduction in CO2 emissions. Because the average distance between cement 

plants and sugar cane/ethanol factories is one of the major variables in estimating CO2 

emissions, a genetic algorithm was created to handle this optimization challenge. Over 60% of 

the country's sugar cane and ash production and a significant number of cement plants—located 

in Sao Paulo (Brazil)—were selected as a case study. In total, around 520 kilotons of CO2  were 

estimated annually to be reduced by applying this United Nations Framework approach. Table 

1 summarizes the ML techniques applied to design and produce sustainable materials. 

Table 1: Sustainable Material Design and Production using ML techniques 
Sustainable 

Materials 

Soft Computing 

Method/ Digital Tool 

Output  Refer

ence 

Bioinspired 

sandwich carbon-

fiber reinforced 

polymer 

Taguchi method  

Response surface 

methodology–multiple 

objective optimization 

-Substitution for steel in the recycled concrete beam 

that leads to CO2 emissions reduction 

-Lightweight and 0.73 to 4.4 times better than steel 

reinforced concrete structures in terms of fracture 

toughness, cost-effectiveness  

-Suitable for semi-automated systems & 3D printing 

[38] 

Silica fume 

concrete  

Hybrid beetle antennae 

search algorithm– back 

propagation neural 

network  

Trade-off between embodied emissions and financial 

costs. An extra cost of 5–6% can make up for a 14.7% 

of emission reduction. 

[20] 

Ocean-borne 

plastic flakes 

cement mortar 

Regression Ocean-borne plastic flakes as fine aggregate (specific 

gravity: 2.47, water absorption: 3.5). Not to be used in 

structural members. 

[40] 

 

Industrial 

byproduct-based 

Optimized hybrid 

model of principal 

component analysis – 

-Mixtures with high content of FA had the least EE and 

CO2 emissions. 

[43] 

https://www.sciencedirect.com/topics/engineering/bagasse-ash
https://www.sciencedirect.com/topics/engineering/pozzolans
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/united-nations-framework-convention-on-climate-change
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/united-nations-framework-convention-on-climate-change
https://www.sciencedirect.com/topics/engineering/clean-development-mechanism
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/united-nations-framework-convention-on-climate-change
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alkali-activated 

mortars  

optimized artificial 

neural network –

combined with the 

cuckoo optimization 

algorithm  

-Mixtures with high content of POFA and GBFS had 

the most rate of EE and CO2 emissions. 

-All the above have less EE and CO2 emissions in 

comparison to the OPC-based mortar. 

Sustainable self-

compacting 

geopolymer 

concrete 

Optimized artificial 

neural network 

combined with 

metaheuristic Bat 

optimization method 

Applying 50% of FA in the GBFS-FA composition in 

self-compacting geopolymer concrete obtained suitable 

strength as well as environmental impact mitigation. 

[42] 

Green bentonite 

and palm bunch 

ash concrete 

Fuzzy logic technique Applying 5% of palm bunch ash and bentonite as a 

replacement for cement led to the maximum 

compressive strength, thus, to green concrete with less 

environmental impact. 

[44] 

 

Hemp-based bio-

composite 

AI-based gene 

expression 

programming technique  

-The compressive strength and thermal conductivity 

were mainly influenced by plant aggregate to binder, 

water to binder ratio, and density of bio-composite. 

-Bio-composites absorbed 14 to 35 kg/m3 CO2 from the 

environment. 

[16] 

Oil palm shell 

Concrete 

Hybrid AI model based 

on random forest–

modified beetle 

antennae search  

algorithm 

-The model has high prediction accuracy with a 

correlation coefficient of 0.96 on the test set. 

-Along with appropriate compressive strength, the oil 

palm shell concrete led to CO2 reduction, natural 

resources conservation, and cost-efficiency. 

[67] 

 

Recycled 

aggregate 

concrete  

K-nearest neighbor, 

regressors, random 

forest (RF), support 

vector machine (SVM), 

backpropagation neural 

network (BPNN), 

multi-objective 

optimization model 

based on AI algorithms 

and multi-objective 

firefly algorithm 

-RF and BPNN gained the best accuracy performance 

for predicting compressive and splitting tensile strength 

of recycled aggregate concrete, indicated by the highest 

correlation coefficients (0.9064 and 0.8387, 

respectively) and lowest root-mean-square errors 

(6.639 and 0.5119 MPa, respectively). 

-The model successfully optimized the recycled 

aggregate concrete mixture proportions for the CO2, cost 

and compressive strength trade-offs. 

[45] 

 

High and 

ultra-high strength 

concrete 

Artificial neural 

network (ANN), 

Gaussian process 

regression (GPR), 

support vector machine 

(SVM), decision trees 

(DT), linear regression 

(LR) 

Several supervised machine learning techniques of 

ANN, GPR, SVM, DT, LR were applied to produce new 

concrete design compositions with low embodied 

carbon and defined compressive strength. More than 

700,000 designed compositions were analyzed. The 

results revealed that the ANN showed the best function 

while the LR was the worst. 

[28] 

 

Sustainable OPC 

concrete 

Meta-heuristic-based 

technique: Six machine 

learning techniques, 

including water cycle 

algorithm, soccer 

league competition 

algorithm, genetic 

algorithm, artificial 

neural network, support 

-Water cycle algorithm was selected as the most 

accurate algorithm, among others.  

-Six mixtures gained appropriate performance in the 

trade-off of all defined criteria of compressive strength, 

cost, environmental impacts (including embodied 

CO2 emission, and energy and resource consumptions). 

The most sustainable mixture gained a sustainability 

index of 1.9625. 

[17] 
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vector machine, and 

regression 

Waste sawdust-

based lightweight 

alkali-activated 

concrete 

Artificial neural 

network 

-The compressive strength of the concrete with 100% 

of sawdust as a replacement for natural aggregates was 

48.6. This formulation decreased CO2 below 85% fuel 

production compared to one with natural aggregates. 

-Cubic-shaped molds of size 100×100×100mm 

cured for 1, 3, 7, 28, 56, and 90 days following the 

ASTM C579 specification were applied. 

[47] 

 

Low CO2 slag-

blended Concrete 

Genetic algorithm -Concrete with various strength levels (w/b ratios from 

0.20 to much higher), different slag substitute levels 

(slag replacement ratios from 0 to 80%), and various 

curing conditions (curing temperatures of 5 oC to 80 
oC) 

-Strength development model: the slag substitute ratios 

were 25%, 50%, and 75%, and the compressive strength 

was measured at 1 day, 3 days, 28 days, and 18 months. 

[50] 

Low–cost and 

low–CO2 blended 

concrete 

Gene expression 

programming, genetic 

algorithm  

Regression was performed on concrete compressive 

strength at 28 days as a function of the w/b ratio, the fly 

ash to binder ratio, the slag–to–binder ratio, and the 

water content 

[49] 

Supplementary 

cementitious 

materials 

Response surface 

methodology  

 

- Three samples for every single mix at 7 and 28 days 

as per IS 516-1959 specification, cubic specimens of 

150×150×150 mm, cylindrical specimen (d×h) of 

150×130 mm and prism specimens of 100×100×500 

mm were cast to find the variation of compressive 

strength, splitting tensile strength, and flexural 

strength, respectively. 

- 20% alccofine substitution for cement, gained better 

durability and mechanical features in comparison to 

other mixes 

[22] 

Lightweight 

Concrete 

Artificial neural 

network 

-Six cubic samples for each lightweight concrete 1-15 

-Compressive strength test on the 28th day 

-The highest compressive strength was determined 

with glass ash aggregate ratio of 75% and 100% with 

21.35 MPa and 18.65 MPa, respectively. 

-Use of 25% of granulated expanded glass aggregate 

resulted in about a 13% increase in concrete 

compressive strength, a 12% decrease in density, and a 

15% decrease in porosity. 

[51] 

 

Recycled 

aggregate 

concrete 

Optimization method of 

Los Angles test 

machine through Ball 

Milling Method  

-0–20–40–60% recycled aggregate and improved 

recycled aggregate mixes. Two cylindrical specimens 

with an aspect ratio (h/d) of 2 and prismatic specimens 

with an aspect ratio of 5 were stored in lime-saturated 

water at until 28-day. 

[53] 

Concrete mixture Adaptive surrogate 

model 

genetic algorithm 

 

-15 samples points of three different types of concrete 

(C70, C40 and C30) from the Kaili concrete plant with 

28 days of curing. 

-when the content of FA and phosphorus slag are 99.27 

kg/m3, 152.99 kg/m3 and 113.56 kg/m3 and 191.61 

kg/m3, 101.39 kg/m3 and 103.01 kg/m3, respectively, 

cost and CO2 emissions of C70, C40 and C30 concrete 

are the lowest. 

[54] 

https://www.sciencedirect.com/topics/engineering/ball-milling
https://www.sciencedirect.com/topics/engineering/ball-milling
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Environmentally 

friendly cementiti

ous material  

Multi-regression model  

 

-GGBS substituted OPC at different percentages: 10, 

15, 20, 25, 30, 35, 40, 45 and 50% by mass of OPC to 

reduce CO2 emissions. 

-Three samples of dimensions 40×40×160 mm, two 

halves by three-point loading of the prism specimens 

and averages of six halves were taken to represent the 

final values for compressive strength. 

-At 3, 7, 28 and 56 days of curing and compared with 

that of the reference cement samples. 

[55] 

Cementless 

mortar using 

hwangtoh binder 

 

Nonlinear multiple 

regression 

 

-Cement replacement by hwangtoh 

-Cubes of 50mm, compressive strength at 1, 3, 7, 14, 28, 

and 91 days in temperature 23+/-2 C and relative 

humidity of 70+/-50% 

-Compressive strength increases gradually while 

increasing the volume fraction of fine aggregate but 

decreases at fine aggregate/hwangtoh binder ratio of 3.5 

[62] 

5 GAPS AND SUGGESTIONS FOR FUTURE RESEARCH  

There are several directions future research studies can address. For sustainable concrete 

development, investigating the quality depreciation and materials loss in the recycling process 

by considering a broader range of input variables (e.g., cement type, curing conditions, 

aggregate types and grading) is recommended to increase the generalization ability of the 

proposed model. Furthermore, more intelligent models need to be developed to design/predict 

different concrete mixtures (with different types and volumes of supplementary materials such 

as fly ash, slag, silica fume, manufactured sand, mineral coarse aggregate, and fibres, etc.) that 

minimize construction and environmental costs, reduce CO2 emissions, and maximize 

favorable mechanical properties. 

More accurate data is needed for training and testing the multi-objective optimization model. 

This ensures more refined tuning of hyperparameters and further improves the ability of the 

model to obtain meaningful patterns from data with noise. Improving the mathematical model 

by modifying the model scenario and employing other solution methods for multi-objective 

optimization, applying more improved and new prediction models capable of predicting the 

compressive strength of OPC, introducing advanced data pre-processing techniques such as 

missing data imputation and semi-supervised learning to replace the input and output missing 

values in the database are suggested for future research. Upgrading optimization algorithms and 

extending the proposed algorithms to solve reliability optimization of trade-off time, cost, 

quality, labor, and carbon dioxide emission factors in generalized construction projects are other 

future directions. 

6 CONCLUSIONS 

The paper provides a scoping review of the initiatives for CO2 reduction using AI and ML 

in the construction sector. The related papers were identified, and the concepts of carbon 

dioxide reduction using AI and ML methods were categorized into six clusters of 1) sustainable 

material design and production, 2) automation, digitalization and prefabrication, 3) real-world 

monitoring, 4) off-road vehicles and equipment, and 5) energy and life cycle assessment, and 

6) decision-making and solution-based platforms. As almost half of the papers belonged to the 

sustainable material design and production cluster, this paper has focused on giving a holistic 
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picture of this area and to find the gaps and future research. Reviewing other clusters are 

preserved for the authors’ future study. Various AI and ML techniques such as artificial neural 

network, genetic algorithms, regression models, support vector machines, and decision trees 

were used to predict and design sustainable building materials and compositions. These tools 

help in more automatic and accurate prediction and optimization of sustainable building 

materials’ design and production to reduce CO2 emissions.  
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