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Complex absorbing potentials are frequently employed in quantum calculations. One of the advantages that
such absorbers provide is the ability to attenuate outgoing waves in simulations of unbound systems, thus allow-
ing for truncating the numerical domain. Here, we argue that the absorber may also be used to probe outgoing
waves so that physical information about absorbed particles may be retained. Moreover, under certain condi-
tions the physical information extracted via the absorber is subject to loss in coherence, as is also the case when
collapsing the wave function upon measurement. Both these aspects demonstrate clearly how, and when, the
effect of introducing a complex absorbing potential corresponds to that of a detector.

I. INTRODUCTION

Several theoretical and numerical studies of quantum sys-
tems make use of complex absorbing potentials (CAPs) [1–
4]. Arguably, the most frequent application is simulations
of unbound systems as they allow for applying truncated nu-
merical domains by attenuating outgoing waves without im-
posing artifacts such as unphysical reflections. They are also
applied in order to determine the characteristics of resonance
states and to describe many-particle tunneling decay, see, e.g.,
Refs. [3, 5–9]. Moreover, CAPs are used to calculate arrival
times in quantum systems [10–13]; arrival times may be de-
termined from the loss in the norm of the wave function, the
absorption rate, that the CAP induces. In this context, CAPs
or other non-Hermitian Hamiltonians are typically introduced
in order to mimic continuous observation. In the case of
strong absorbing potentials, such rates are, in fact, suppressed,
which, in turn, is a manifestation of the quantum Zeno ef-
fect [14–16]. This is an example of how a quantum system
may be manipulated by tailored measurements.

CAPs are usually imposed artificially – with the sole mo-
tivation of facilitating numerical implementations. Refs. [13,
17] are exceptions to this rule, however, as they arrive at ef-
fective CAPs from more fundamental principles. In the latter
case, this is done under very specific conditions, while the
former features a very generic approach, one in which a de-
tector is coupled to an environment in order to encompass the
irreversible nature of measurement. This, in turn, underlines
that detection really is a Markovian process, and the proper
framework is that of open quantum systems.

Although works such as Refs. [2, 11, 13, 17–20] highlight
the close connection between CAPs and detectors, the actual
effect of the CAPs is usually reduced to simply removing parts
of the wave function. However, since we know what we re-
move, we can do better. We can use the CAP in order to
probe the outgoing waves and, thus, extract physical infor-
mation about the quantum system in question – physical in-
formation such as energy or ejection angle. After all, this is
the main purpose of imposing a detector. Moreover, the act of
detection imposes loss in coherence. Detector models which
incorporate both these aspects are more scarce.

It should be noted that a family of methods for extracting
information about unbound quantum particles prior to absorp-
tion, see, e.g, Refs. [21–26], or during absorption, see, e.g.,
Refs. [27–33], have been put forward. As will be apparent in

the following, the present approach differ from these in sev-
eral respects. In the one-particle case, the present scheme may
be formulated in a rather straight forward manner in terms
of continuous projective measurements. While slightly less
straight forward, it may also, along the lines explained in [34],
be generalized to any number of particles exposed to any CAP
acting as a one-particle operator. In addition to studying how
various ways of implementing CAPs may be used in order to
probe outgoing waves and determine distribution functions for
unbound particles, we will also explain how the CAP charac-
teristics affect the coherence properties of these distributions.
This, in turn, provides a clear criterion for when a CAP may
be considered to act as a detector.

In the next section the theory is explained – with emphasis
on unbound systems with one-particle. Its application is illus-
trated with two simple examples in Sec. III. The purpose of
these numerical examples is to demonstrate how information
about unbound particles may be retained despite absorption –
and how different absorbers affect the coherence properties.
In Sec. III C it is briefly explained how the formalism gener-
alizes to a multi-particle context. The section also features a
brief comparison with some other approaches featuring abso-
prtion/particle removal. Conclusions are drawn in Sec. IV.

II. THEORY

Here we will explain the theory before we illustrate it with
two numerical examples. We will also outline how these no-
tions generalize to many-particle systems.

A. Wave function depletion

The evolution of the wave function for a quantum system is
dictated by the Schrödinger equation,

i~
d

dt
Ψ = HΨ, (1)

or generalizations thereof. The CAP is introduced by re-
placing the Hermitian Hamiltonian H with an effective non-
Hermitian Hamiltonian

Heff = H − iΓ, (2)
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where the CAP, Γ, may be a local potential, i.e., one that de-
pends on position only, or a non-local one. In any case, it
should be chosen such that it only affects the dynamics near
the boundary of the numerical domain and leaves the interior
region unaffected. Here we will also insist that the Γ-operator
is Hermitian and positive semi-definite,

Γ† = Γ, and Γ ≥ 0. (3)

This ensures that the norm of the corresponding wave func-
tion decreases for a system where there is an overlap between
the CAP and the wave function; from one time step to the
next, a part of the wave function will be removed. We wish
to analyze this part on the fly. In order to arrive at a properly
normalized expression we find it instructive to do this in terms
of the corresponding pure state density matrix, ρ = |Ψ〉〈Ψ|:

ρ(t+∆t) = ρ(t)− i

~
[H, ρ]∆t− 1

~
{Γ, ρ}∆t+O(∆t2). (4)

The part which has been removed from the density matrix dur-
ing this time step is given by the anti-commutator above. In
a context in which only the remainder is under study, a nor-
malization of the density matrix may be imposed, which, in
turn, leads to a non-linear master equation for the time evo-
lution [35–37]. Here, on the other hand, we want the trace
of ρ to decrease according to Eq. (4). For a single-particle
system, the anti-commutator in Eq. (4) adds to an effective
one-particle density matrix σ:

dσ =
1

~
{Γ, ρ} dt. (5)

The notion of σ as a density matrix should not be take too far,
however. While it is a Hermitian operator, σ is not in general
positive semi-definite.

B. The momentum/energy differential spectrum

Suppose now that we are interested in, e.g., the probability
distribution differential in momentum for a single unbound
particle, ∂P/∂p. This can be estimated by aggregating the
diagonal elements in the momentum eigen states |p〉:

d

dt

∂P

∂p
= 〈p|dσ

dt
|p〉 =

1

~
〈p|{Γ, ρ}|p〉, (6)

or, alternatively, in terms of projective measurements:

∂P

∂p
=

∫ t=∞

t=0

Tr (|p〉〈p|dσ) . (7)

For the CAP, the simplest and, arguably, most natural
choice is that of a local potential, i.e., one that is diagonal
in position x:

Γx =

∫
dx γ(x)|x〉〈x|, (8)

where |x〉 are position eigen states and the CAP position func-
tion γ(x) is zero in the interior of the domain and positive

closer to the boundary of the numerical domain. Here ‘
∫
dx’

is to be taken as the definite integral over all space, in all di-
mensions. Now, according to Eq. (6) or (7), the momentum-
differential probability distribution of the unbound part of the
wave function reads

∂P

∂p
=

∫ t=∞

t=0

Tr (|p〉〈p|dσx) = (9)

2

~
Re

∫ ∞
0

dt [F{Ψ(x; t)}(p)]∗ F{γ(x)Ψ(x; t)}(p)

where F is the Fourier transform. There may, of course,
be other physical quantities of interest than momentum; in
Eq. (6) we may very well substitute the momentum projec-
tions with projection onto eigen states of other physical ob-
servables such as energy or, as we will address in Sec. II C,
position. While the CAP may affect the physical system by in-
ducing artificial reflections, Eq. (9) should at least produce the
actual asymptotic distribution of the unbound quantum parti-
cle in the limit that the CAP function vanishes, γ → 0+.

Note that Eq. (9) provides a coherent sum of absorbed con-
tributions obtained at different times; a wave contribution ab-
sorbed at a specific time may add constructively or destruc-
tively to waves aggregated from earlier absorption. Another,
related observation is the fact that the distribution does not
only depend on the overlap between the CAP and the wave
function, it also depends on the wave function beyond the
CAP region. Thus, it is crucial that the support of the states
we project onto is not limited to the CAP region.

Also when it comes to the CAP itself, we are not restricted
to one that is diagonal in position. We could choose one that is
diagonal in momentum or energy instead. Such a CAP would
not be given by any local potential. Examples of non-local
CAPs seen in literature are the Transformative CAP [38, 39],
the Reflection-Free CAP [40] or Infinite Range Exterior Com-
plex Scaling [41]. In our context, we insist that the CAP re-
mains Hermitian, cf. Eq. (3); otherwise, the physics of the
particle undergoing absorption is altered in an artificial way.
We also insist that the CAP is written in terms of projections
as in Eq. (8). However, a straight forward replacement of the
position x with the momentum p in Eq. (8) is not adequate
as such an implementation would introduce absorption to the
entire domain, including the inner interaction region. We pro-
pose the following energy absorber:

Γε =

∫
dε µ(ε)|ϕε〉〈ϕε|, (10)

where the |ϕε〉-s are energy normalized eigen functions of the
Hamiltonian

Hε = H + Vε(x) where Vε(x) =

{
∞, x ∈ DI

0, x /∈ DI
. (11)

Here, DI is the interior of the numerical domain; typically
it is the given by |x| ≤ R for some finite distance R from
the origin. With this the eigen functions ϕp(x) = 〈x|ϕp〉 are
only supported for x /∈ DI. Correspondingly, the CAP of
Eq. (10) is both energy and position dependent, contrary to



3

the strictly position-dependent CAP of Eq. (8). The positive
CAP function µ(ε), however, is purely energy dependent.

In obtaining the momentum or energy distribution using the
CAP of Eq. (10), we will, instead of using the momentum
basis, conveniently project onto the |ϕε〉 basis, in which the
CAP is diagonal:

∂P

∂ε
=

∫ t=∞

t=0

Tr (|ϕε〉〈ϕε|dσε) =

2

~

∫ ∞
0

dt µ(ε)|〈ϕε|Ψ(t)〉|2. (12)

We note that, contrary to Eq. (9), this integral is incoherent
and manifestly non-negative. Moreover, it only features con-
tributions from projection onto states which are supported in
the CAP region exclusively. Again, the correct, asymptotic
distribution should be obtained by extrapolating the strength
of the CAP function, in this case µ(ε), to zero. However, as
we will see, spectra obtained with finite-valued µ(ε) are also
of interest as it allows us to simulate detection.

C. Angular distribution

In addition to energy/momentum differential distributions,
distributions differential in position, or rather, direction are
also of interest experimentally. For a three-dimensional sys-
tem we may write the position eigen state |x〉 in terms of
spherical coordinates as |r,Ω〉 and introduce the additional as-
sumption on the local CAP of Eq. (8) that it is isotropic:

Γr =

∫
r2drdΩ γ(r)|r,Ω〉〈r,Ω|. (13)

As in the case of Eq. (12), the position distribution obtained
from the position diagonal CAP of Eq. (13) becomes an in-
coherent integral. As the distribution in radial distance r is
usually less interesting than the distribution in Ω, we integrate
out the r-dependence and arrive at

∂P

∂Ω
=

2

~

∫ ∞
0

dt

∫ ∞
0

r2dr γ(r)|Ψ(r,Ω; t)|2. (14)

The analogous expression in two-dimensional polar coordi-
nates reads

∂P

∂θ
=

2

~

∫ ∞
0

dt

∫ ∞
0

rdr γ(r)|Ψ(r, θ; t)|2. (15)

III. NUMERICAL EXAMPLES

In the following we will illustrate the approaches outlined
above to absorption and analysis of two particular unbound
one-particle systems. As they are both rather simple and
generic, they serve well to illustrate the scheme presented here
– with particular emphasis on the close correspondence be-
tween detectors and absorbers.

A. Energy spectra for a dynamic one-dimensional system

In our first example, which is one-dimensional, a particle
is initially trapped in the ground state of a confining poten-
tial V (x), which features a finite number of bound states and
a continuum. The particle is exposed to an explicitly time-
dependent perturbation; the total (Hermitian) Hamiltonian of
the system reads

H = − ~2

2m

d2

dx2
+ V (x) + qE(t)x, (16)

where q is the charge of the particle and

E(t) = EPulse(t) + EPulse(t− T − τ) where (17a)

EPulse(t) =

{
E0 sin2

(
π
T t
)

sin(ωt), 0 ≤ t ≤ T
0, otherwise . (17b)

The system may serve as a model atom exposed to two con-
secutive laser pulses.

The time-dependent Schrödinger equation, Eq. (1), is
solved with the effective Hamiltonian of Eq. (2) with the Her-
mitian part given by Eq. (16). First we employ a local CAP,
cf. Eq. (8) with a square CAP function:

γ(x) =

{
γ0(x−R)2, |x| > R
0, otherwise . (18)

The interference between outgoing wave components liber-
ated at different times causes a rich structure in the emerging
energy distribution of the unbound particle. The left column
of Fig. 1 shows this distribution calculated by using Eq. (9). It
is plotted against energy rather than momentum. In the CAP
region, the confining potential may safely be neglected so that
ε = p2/2m; projecting onto eigen states of the (Hermitian)
Hamiltonian rather than plane waves does not alter the results.

We use units defined by choosing ~, m and −q as the unit
of their respective quantities. In these units, i.e., atomic units
(a.u.), the confining potential, which is a negative Gaussian,
has the depth V0 = 0.6 and the width σV = 3. The corre-
sponding ground state energy is −0.48. The time dependent
perturbation is characterized by the strength E0 = 2, the an-
gular frequency ω = 1, and the delay τ between the pulses is
5 time units. Each pulse has a duration corresponding to ten
optical cycles, and the CAP onset R = 200 length units.

The energy spectra are calculated using various absorber
strengths γ0. It is striking to see that not only does the spec-
trum converge as the strength of the CAP function decreases;
apart from the low energy region, it is virtually independent
of the CAP strength. This feature does in no way rely on the
specific shape of the CAP function; other choices than the one
of Eq. (18) display the same behaviour (not shown). The dis-
crepancies we see at low energies are clearly unphysical, not
only because of the γ0 dependence, but also because they pro-
duce “negative probabilities”. This undesired feature, which
diminish with decreasing γ0, seems to be related to the fact
that hard absorption does induce artificial reflections [11].

With the perturbation of Eqs. (17) interpreted as an external
electric field, the structure seen in the upper panels of Fig. 1
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FIG. 1: Left column: Energy distribution from the unbound part of
the wave function obtained from a local CAP. Right column: Energy
distributions calculated for the same system albeit with an energy
CAP. In the latter case, both analysing the outgoing waves and ex-
pressing the CAP is done in terms of projections onto eigen states
which are only supported in the CAP region. The spectra are plotted
for various CAP strengths, be it diagonal in position, γ0 in Eq. (8),
or energy, µ0 in Eq. (10). The upper panels display the spectra with
a linear axis while the lower ones have a logarithmic y-axis. The
energy spectrum obtained by conventional means, without absorp-
tion, is also included for comparison. The vertical dashed lines in the
lower panels indicates n · ~ω for n = 1, 2 and 3.

corresponds to absorption of one photon. With a logarith-
mic y-axis, we also clearly see structures corresponding to
absorption of two and three photons as well (lower panels). A
somewhat stronger γ0-dependence is seen at the multi-photon
peaks. For a direct comparison, we have also calculated the
energy spectrum obtained by conventional means, i.e., by pro-
jecting the unabsorbed wave function onto the appropriate
scattering states, in the panes of Fig. 1.

It may appear less than intuitive that we, in fact, arrive at
spectra which agree very well with the correct one using pro-
jection onto plane waves, which, contrary to the appropriate
scattering states, does not take the nature of the potential V
into account. Of course, the analysis is based on the over-
lap between the CAP operator and the absorbed density ma-
trix; the potential may safely be neglected in the CAP region.
However, as discussed in regard to Eq. (9), the resulting for-
mula depends on the overlap between the wave function and
the scattering states in the inner region as well. As it turns out,
the analysis is quite insensitive to the shape of the scattering
states in the inner region. But the ability to preserve coher-
ence relies on the fact that the scattering states are supported
throughout the space, not just the CAP region. This will be
illustrated further in the following.

We will now study the same type of spectra using the energy
CAP of Eq. (10). We have chosen an CAP function of form

µ(ε) = µ0
6
√
ε. (19)

The energy distribution of the liberated and absorbed parti-
cle is now provided by Eq. (12), as opposed to Eq. (9) in the
preceding case. The results are displayed for various values
of µ0 in the right column of Fig. 1. It differs from the ones
in the left column in several respects. One difference is that
these spectra are all strictly non-negative – in accordance with
Eq. (12). A more striking difference is how strongly these
spectra depend on the CAP strength µ0. Specifically, ripples
are not resolved at all at hard absorption, while the resolution
of the structure improves as the absorption strength decreases.
Although the spectra depend strongly on the CAP strength in
this case, they do converge towards the same asymptotic form
as in the former case.

These observations are concordant with the following pic-
ture: As a particle enters into the CAP region, with some
probability, it is gradually attenuated and the energy of the
absorbed part is recorded as dictated by Eq. (12). Suppose an-
other outgoing wave reaches the energy CAP at a later stage;
its energy contribution is, again, recorded and added to the
total distribution – in an incoherent manner. Thus, these two
waves are not allowed to interfere; absorption is detrimental
to any interference patterns which would have emerged other-
wise. The same would be the case if an energy detector placed
in extreme vicinity with the quantum system induced a col-
lapse in the wave function prior to interference. This loss in
coherence together with the record of measured/absorbed data
motivates how an energy-diagonal CAP simulates the action
of a detector.

In more technical terms: When the measurement consist in
projection onto the |ϕε〉-basis, the pure state wave function is
collapsed:

|Ψ〉〈Ψ| →
∫
dε ζ(ε)|ϕε〉〈ϕε|, (20)

where ζ(ε) is the distribution function for ε, the outcome of
a series of energy measurements. This outcome may depend
on the characteristics of the detector – where it is placed and
how it is coupled to the system. Now, is it reasonable to in-
terpret the energy distribution of Eq. (12), i.e., the energy-
diagonal of the effective, accumulated density matrix σε, as
such a distribution function? Probability considerations re-
quire that the integral of ζ(ε) coincides with the trace of σε;
they should both equal the probability of the particle being
unbound. Moreover, the distribution is calculated as a cumu-
lative projective measurement onto states which are supported
in the region of measurement/absorption only. And contribu-
tions picked up at different times should all contribute in a
manifestly non-negative manner. The energy distribution of
Eq. (12) does, in fact, comply with these criteria; it can be
identified with a distribution function such as ζ(ε) of Eq. (20).
Correspondingly, a CAP could act as an energy detector – iff
it is diagonal in the basis of projection.

As we have seen, the situation is quite different when en-
ergy/momentum spectra are calculated using a local CAP,
Eq. (8), instead. Here, the absorbed waves are projected onto
states in which the CAP is not diagonal, states which are sup-
ported beyond the CAP region. According to Eq. (9), outgo-
ing waves absorbed and recorded at different times are added
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together in a coherent manner; effectively, they are allowed
to interfere in momentum space also after absorption. Thus,
even hard absorption allows interference patterns to be seen,
and the emerging spectra turns out to be quite insensitive to
the strength of the CAP function.

This suggests that in terms of implementation and simu-
lation, local CAPs are numerically favourable for determin-
ing energy spectra as they allow for resolving fine structures
while still admitting a strong truncation of the numerical do-
main. The energy CAP of Eq. (10), on the other hand, has
the interesting trait that it simulates the effect of imposing a
detector. Albeit experimental situations usually involve detec-
tors placed far away and with very large extension, R → ∞
and µ0 → 0+, we do find the ability to perform such dynami-
cal studies to be an interesting one. As the CAP function µ(ε)
could be virtually any positive function, there is a large degree
of flexibility in modelling the detector and thus manipulate the
quantum system in specific ways [13, 14].

B. Double slit interference

In the next example we will turn the table and use a local
potential, Eq. (8), to model a detector instead. We will study
the well known interference pattern emerging from a quantum
particle passing through a double slit. An initial wave func-
tion with narrow spatial extension in the propagation direction
travels towards a wall with two narrow gaps. Physically, the
interference pattern that emerges on the other side of the slit
will be altered if a wave emerging from one slit is subject to
a position measurement before it has had time to overlap with
waves emerging from the other slit.

Such a distortion is shown in the lower panel of Fig. 2. As
illustrated in the upper panel, we have imposed a local CAP
which is a two-dimensional analogue of Eq. (13) with a CAP
function of the same form as in Eq. (18) – with x replaced
by r, the distance from the midpoint between the two slits.
The angular distribution of the absorbed particle is calculated
form Eq. (15). In units defined by, again, setting ~ and the
particle mass to one, the initial wave is travelling towards the
wall with the mean de Broglie wavelength λ = 2π/k = 2; the
initial width in the propagation direction is equal to λ. The
slits, which have a rather smooth shape, are separated, centre
to centre, by 20 length units, and their widths are both 1.5
units. The CAP strength γ0 = 0.03.

As we see, the interference pattern is strongly affected by
absorption close to the double slit, while it converges as the
onset of the CAP is moved outwards. We explain this analo-
gously to the case of the right column of Fig. 1: From Eq. (15)
we see that absorbed waves are accumulated in an incoher-
ent manner. Consequently, if a wave passing through one
slit reaches the detector/CAP and is collapsed/absorbed be-
fore it has had time to overlap appreciably with waves emerg-
ing from the other slit, it will not be subject to the interference
which would have taken place otherwise. Figure 3 serves to
illustrate this.
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FIG. 2: Upper panel: The initial situation; a wave function of nar-
row spatial extension in the propagation direction (red) is incident
on a high wall with two narrow gaps (green). At the other side, the
outgoing waves are absorbed by a local CAP (blue). Lower panel:
The angular interference pattern emerging from a particle passing
through a double slit. It is obtained by probing the outgoing waves
with absorbers placed at various distances from the double slit.

C. Concluding remarks

In the present work we have only considered one-particle
systems. In [34] numerical examples similar to that of the left
column of Fig. 1 are described with two particles instead of
one. Contrary to the Schrödinger equation, Eq. (1), the GKLS
equation, Refs. [42, 43], allows for maintaining the remaining
particle as the other undergoes absorption [19, 44]. The re-
maining particle, which in general will not be in a pure state,
is described by a density matrix ρ1. This particle may go on
to be absorbed as well and, thus, also contribute to an energy
differential probability distribution. In both cases, i.e., in go-
ing from 2 to 1 particle and in going from 1 to 0 particles, the
information about the removed particle may be aggregated as
effective one-particle density matrices in a manner analogous
to Eq. (5). Specifically, information from the first absorption
is retained in the effective one-particle density matrix given
by

dσ2→1 =
1

~

{
Γ̂,Φ

}
dt where (21a)

Φ = 2

∫ ∫
dxdx′ φ(x, x′)|x〉〈x′| with (21b)

φ(x, x′; t) =

∫
dyΨ2(x, y; t)Ψ∗2(x′, y; t). (21c)

Here Ψ2(x, y) is the wave function of the two-particle part,
which remains a in a pure state. The second absorption is
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FIG. 3: The left panels show snapshots of the part of the wave func-
tion which has travelled through the double slit. Its initial momentum
points in the x-direction. The length units in both the x and y direc-
tions are defined by setting ~ and the particle mass to unity. The
wave packet is subject to an absorber with an onset R indicated by
the white dashed curve; the upper case corresponds to R = 20 while
R = 50 for the lower panels. The thick black lines to the left il-
lustrates the wall. As the wave packet enters the absorption region,
the amount of absorption at each position is aggregated. The right
panels illustrates this aggregation. The interference patterns shown
in the lower panel of Fig. 2 is precisely this distribution – with the
radial distance r integrated out, see Eq. (15).

recorded via

dσ1→0 =
1

~

{
Γ̂, ρ1

}
dt, (22)

where ρ1, as mentioned, is the one-particle sub-system emerg-
ing from the first absorption. The effective one particle den-
sity matrix Φ in Eq. (21b) may conveniently be expressed in
terms of second quantization, see Ref. [34] for details. Both
these effective density matrices, i.e., σ2→1 and σ1→0, may be
analysed on the fly by continuous projective measurements in
the exact same manner as explained in Sec. II.

This also applies to energy-absorbers, Eq. (10), as also
these may expressed as one-particle operators in a multi-
particle context. Thus, the arguments presented here on the
correspondence between CAPs and detectors are not limited
to the one-particle case.

It should be stressed that neither the idea of CAPs as detec-
tors nor the general idea of using CAPs actively to probe out-

going waves is not unprecedented in literature. In [27] it was
explained how different decay products in a breakup process
may be distinguished via matrix elements explicitly involving
CAP functions. This method, which has the advantage of be-
ing apt for implementation within the Multi-Configurational
Time-Dependent Hartree approximation [45], exploits the
possibility of assigning different CAPs to the various decay
channel.

Another technique used for analyzing unbound particles en-
countered in literature is referred to as virtual detectors, see,
e.g., [21, 22]. In the present context, the naming calls for
some disambiguation. Along with a number of similar tech-
niques, see, e.g., [23–25], it involves the calculation of the
probability current, or flux, through some surface. While the
notion of a detector would, to some extent, seem adequate
also in this context, virtual detectors differ more from the
present framework than the name would suggest. One rea-
son for this is that, contrary to the CAP, the virtual detector
does not have any spatial extension, nor does it bring about
any loss in coherence. The CAP is simply used in order to
attenuate outgoing waves; contrary to the method discussed
above and the one presented here, it is not used to probe the
outgoing wave. Moreover, it does not seem to generalize nat-
urally to the multi-particle case.

Yet another approach for modelling detection by means of
an absorbing boundary is proposed in [20], which, in turn, is
partially based on the work of [18]. As in the case of the vir-
tual detector it introduces a detector model without extension.
In contrast to most other works involving CAPs, however, the
absorber itself is also without extension. Correspondingly, the
system is subject to pronounced reflection at the boundary.
And the proposed detection is not necessarily accompanied
with absorption – in stark contrast with the notion of detec-
tion in the present work.

On the other hand, the Monte Carlo Wave Packet approach
and the closely related Quantum Jump method, see, e.g.,
Refs. [46, 47], bear strong resemblance to the present ap-
proach. Such approaches, along with the derivation of Hal-
liwell [13], could hopefully assist in making a closer corre-
spondence between physical detectors and the shape of the
CAP functions, be it of the form of Eq. (8), Eq. (10) or any
other.

IV. CONCLUSIONS

We explained how CAPs, in addition to attenuating outgo-
ing waves, may be used to probe quantum particles undergo-
ing absorption. By theoretical derivations and numerical ex-
amples we demonstrated how differential spectra of unbound
particles, such as energy distributions or angular distributions,
could be determined. We made a clear distinction between
situations in which the absorbed particle is analysed by pro-
jection onto states in which the absorbing potential is diagonal
and situations when it is non-diagonal.

In the latter case, we showed that energy spectra are quite
insensitive to the shape of local CAP as it allows for waves
absorbed at different times to interfere. This is not the case in
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the former, diagonal case. In such situations the CAP acts as a
detector. This applies both to the fact that the CAP effectively
provides distribution functions for absorbed particles – and
to the fact that it proves detrimental to interference effects in

these distribution functions.

This, in turn, may open an avenue for studying how quan-
tum systems may be manipulated by tailored detection.
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