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Introduction

Background

Extending the ideas of classical geometry to quantum spaces is an active area of research, with many different approaches 
having been proposed over the years. The underlying idea is that certain non-commutative algebras should be regarded 
as consisting of functions on (virtual) non-commutative spaces, usually arising from classical spaces by some quantization 
procedure. A rich source of examples is given by the theory of compact quantum groups (see for instance [13]), which 
allows to quantize any compact semisimple Lie group, as well as large classes of homogeneous spaces, among which we 
have the quantum projective spaces. The aim of this paper is to study the quantum Riemannian geometry of these quantum 
homogeneous spaces, continuing the investigation initiated in [16]. The results obtained here generalize those obtained by 
Majid for the quantum 2-sphere in [14] (and later revisited with Beggs in [1–3]).

First we should specify what we mean by quantum Riemannian geometry, since the framework one uses can depend 
strongly on the approach considered. For instance, a popular approach to non-commutative geometry is the one introduced 
by Connes [5], which studies a quantum space by representing its algebra on a Hilbert space and using a densely-defined 
operator to extract the geometrical information. This leads to the concept of spectral triples, which for the quantum projec-
tive spaces have been widely studied, see for instance [8,7,6]. On the other hand, the approach we consider in this paper is 
more algebraic and a thorough discussion of it can be found in the book [3]. It has the advantage of being a more straight-
forward adaptation of the classical picture, which lets us easily introduce a quantum analogue of the metric tensor, study 
the compatibility of a connection with a metric, and define geometrical objects like the Ricci tensor.

We summarize the main ingredients of this approach, which we refer to as quantum Riemannian geometry, following [3]. 
Given a non-commutative algebra A, a convenient starting point for a geometrical study is the introduction of a differential 
calculus �• over A. This choice is not unique in general, but for many examples there are canonical choices. The differential 
calculus enters the picture mainly through its first and second-order parts, denoted by �1 and �2 respectively. A quantum 
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metric can be defined as an element g ∈ �1 ⊗A �1 admitting an appropriate inverse metric (·, ·) : �1 ⊗A �1 → A. Next, a 
connection on �1 is a map ∇ : �1 → �1 ⊗A �1 satisfying an appropriate Leibniz rule. This is a standard notion in the 
algebraic context, as well as that of torsion-free connection. Furthermore, a notion of compatibility between a connection 
∇ and a quantum metric g can be formulated. Requiring torsion-freeness and compatibility with the metric leads to the 
notion of quantum Levi-Civita connection. The existence of these objects is not guaranteed, at this level of generality.

Further geometrical aspects can be introduced, provided we have a quantum metric and a connection. We define the 
Riemann tensor R∇ : �1 → �2 ⊗A �1 as the curvature of the connection ∇ , which is a standard notion. Next, the Ricci tensor
can be defined as a certain element Ricci ∈ �1 ⊗A �1, which is constructed via an appropriate contraction of the Riemann 
tensor using the quantum metric and its inverse. This definition also requires an auxiliary choice, namely a map s : �2 →
�1 ⊗A �1 splitting the wedge product of �• . Also the scalar curvature scal ∈ A can be defined as a further contraction of 
the Ricci tensor. Finally, a quantum analogue of the Einstein condition can be formulated naturally, as the requirement that 
the Ricci tensor should be proportional to the quantum metric g .

Quantum projective spaces

We consider the framework discussed above in the case of quantum projective spaces. Starting from the quantum special 
linear group Cq[S Lr+1], we can define the algebra corresponding to the quantum projective space of complex dimension r, 
which we denote by B. This algebra admits a canonical differential calculus �• , introduced by Heckenberger-Kolb in [11,12]
(more generally for any quantum irreducible flag manifold). We denote its first-order part simply by �. This opens the door 
to the study of the quantum Riemannian geometry of B. The case r = 1, also known as the Podleś sphere, was originally 
studied by Majid in [14] (and later expanded, as mentioned above).

Our aim in this paper is to investigate the geometry of general quantum projective spaces, that is for any value of r. This 
study was initiated in [16], where the main results were the introduction of a particular quantum metric g ∈ � ⊗B � and 
a quantum Levi-Civita connection ∇ : � → � ⊗B �. In the classical limit, the metric g reduces to the Fubini-Study metric 
and the connection ∇ reduces to the corresponding Levi-Civita connection (acting on the cotangent bundle). These are the 
natural ingredients to use for the study of further geometrical aspects of quantum projective spaces, like the Riemann and 
Ricci tensors.

Results

Let us now summarize the results of this paper. We start our investigation by studying in some detail the generalized 
braiding σ : � ⊗B � → � ⊗B � corresponding to the quantum Levi-Civita connection. This map, which classically amounts 
to the flip map, is uniquely defined by the fact that ∇ is a bimodule connection, as shown in [16]. First we prove that 
the components of σ , relative to the decomposition � = �+ ⊕ �− into “holomorphic and antiholomorphic parts”, satisfy 
appropriate quadratic relations. Then we use σ to give a new presentation of the differential calculus �• , paralleling the 
classical picture.

Theorem. The differential calculus �• can be presented as

�• = TB(�)/〈im(id + σ)〉,
where TB(�) is the tensor algebra of the B-bimodule �.

In particular this implies the property ∧ ◦ (id + σ) = 0, which can be used to relate two different formulations of the 
notion of metric compatibility.

Before getting into the more geometrical aspects, we prove various results related to the differential calculus �• and 
the inverse metric (·, ·). We introduce a one-parameter family of maps s : �2 → � ⊗B � splitting the wedge product, that 
is satisfying s ◦ ∧ = id, which we are going to use to define the Ricci tensor. We compute the quantum metric dimension of 
�• , which is what we call the composition (·, ·) ◦ g , corresponding in the classical case to the dimension of the space in 
consideration. We show that it is a scalar and determine its value using the notion of quantum dimension. Finally we show 
that the inverse metric (·, ·) satisfies a certain twisted symmetry, which involves the generalized braiding σ .

We now come to the Riemann tensor R∇ corresponding to the quantum Levi-Civita connection ∇ . We explicitly compute 
its expression on the generators of �. These computations show that R∇ ∈ �(1,1) ⊗ �, where �(1,1) ⊂ �2 denotes the space 
of (1, 1)-forms with respect to the naturally defined complex structure. Moreover we prove the following result.

Theorem. We have that R∇ : � → �2 ⊗B � is a B-bimodule map.

We remark that in general the curvature is a left module map, but is not guaranteed to be a right module map. This 
non-trivial result has various interesting applications, which we discuss: it implies that the generalized braiding σ can be 
extended to a map � ⊗B �n → �n ⊗B � for any n ∈N in a natural way; it gives a certain antisymmetry property for the 
Riemann tensor; it implies that σ satisfies the braid equation, possibly up to symmetric terms.
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Finally we come to the Ricci tensor, whose definition depends on the auxiliary choice of a splitting map. We compute its 
expression on the generators of �, using the one-parameter family of splitting maps s discussed above. We show that this 
free parameter can be uniquely fixed by requiring that Ricci is symmetric. This leads to the following result.

Theorem. We have a quantum analogue of the Einstein condition, that is

Ricci = kg.

The Einstein constant k is explicitly computed, and reduces to the corresponding value for the Fubini-Study metric in the 
classical limit. We also compute the scalar curvature, which is a constant proportional to k that also reduces to the correct 
classical value.

Organization

The paper is organized as follows. In Section 1 we discuss various preliminaries on quantum groups, focusing in partic-
ular on some properties of their categories of finite-dimensional modules. In Section 2 we summarize the various results 
obtained in [16] for the quantum projective spaces, including quantum metrics and quantum Levi-Civita connections. This 
section also contains the various relations that form the technical backbone of this paper. In Section 3 we prove various 
properties satisfied by the generalized braiding σ , in particular how it can be used to give a new presentation of the dif-
ferential calculus �• . In Section 4 we prove various results involving the differential calculus and the inverse metric (·, ·), 
as discussed above. In Section 5 we compute the Riemann tensor, show that it is a bimodule map and derive various con-
sequences of this fact. Finally, in Section 6 we use these results to compute the Ricci tensor. We show that, upon choosing 
an appropriate splitting map, we can have the Ricci tensor to be symmetric. Moreover this implies the quantum Einstein 
condition discussed above. We also compute the scalar curvature in this case.

This paper also contains various appendices, to which we relegate some technical matters. In Appendix A we write the 
classical limits of the various expressions obtained here, for better comparison between the classical and the quantum case. 
In Appendix B we recall various properties satisfied by the maps S and S̃ introduced in [16], which we use extensively in 
our computations here. In Appendix C we prove various identities that are used in the main text. Finally in Appendix D we 
derive various equivalent expressions for the mixed relations between the generators of �, holding in the degree-two part 
of the differential calculus.

Acknowledgments. I would like to thank Jyotishman Bhowmick for a discussion related to certain aspects of differential 
calculi.

1. Preliminaries

In this section we recall some essential facts about quantum groups, in particular about the quantized enveloping al-
gebras Uq(g). We focus on the category of finite-dimensional Uq(g)-modules, which is a braided monoidal category with 
duality, recalling various details about the braiding and the duality morphisms. In what follows we use the language of 
tensor categories to make our computations more transparent, with [10] as our main reference.

1.1. Quantum groups

Let g be a complex simple Lie algebra. We denote by (·, ·) the non-degenerate symmetric bilinear form induced by the 
Killing form, normalized in such a way that we have (α, α) = 2 for all short roots α. Write {αi}r

i=1 for the simple roots and 
{ωi}r

i=1 for the fundamental weights. We also write, as customary, ρ for the half-sum of the positive roots, or equivalently 
for the sum of all fundamental weights.

Given a real number q such that 0 < q < 1, the quantized enveloping algebra Uq(g) is defined as a certain Hopf algebra 
deformation of the enveloping algebra U (g). It has generators {Ki, Ei, Fi}r

i=1 with r = rank(g) and relations as in [13, 
Section 6.1.2]. The representation theory of Uq(g) is essentially the same as for U (g). This means that we have a simple 
Uq(g)-module denoted by V (λ) for each dominant integral weight λ.

Dually we have the quantized coordinate ring Cq[G]. This is a subspace of the linear dual of Uq(g), namely the space 
of matrix coefficients of all finite-dimensional (type 1) Uq(g)-modules, see for instance [12, Section 2.2.6]. By construction 
Cq[G] is a Hopf algebra and a Uq(g)-bimodule. These actions can be used to define quantum homogeneous spaces as 
appropriate subalgebras of Cq[G], for example the quantum projective spaces.

1.2. Braiding

In what follows, an important role is going to be played by the monoidal category of finite-dimensional Uq(g)-modules. 
This is a braided monoidal category, where we recall that a braiding on a monoidal category is the choice of a natural 
3
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isomorphism X ⊗ Y ∼= Y ⊗ X for each pair of objects X and Y , satisfying the hexagon relations [10, Definition 8.1.1]. It is a 
generalization of the flip map in the category of vector spaces.

For the category of finite-dimensional Uq(g)-modules we write the braiding as

R̂V ,W : V ⊗ W → W ⊗ V .

The braiding is not unique and we adopt the same choice as [12], described as follows. Given two simple modules V (λ) and 
V (μ), choose a highest weight vector vλ for the first and a lowest weight vector w w0μ for the second (here w0 denotes 
the longest word of the Weyl group, as usual). Then the braiding is determined by

R̂V (λ),V (μ)(vλ ⊗ w w0μ) = q(λ,w0μ)w w0μ ⊗ vλ.

Indeed, vλ ⊗ w w0μ is a cyclic vector for V (λ) ⊗ V (μ), hence R̂V (λ),V (μ) is completely determined by the action on this vector 
and the fact that it is a Uq(g)-module map. We also note that this implies the following: given weight vectors vi ∈ V (λ)

and w j ∈ V (μ), we have

R̂V (λ),V (μ)(vi ⊗ w j) = q(wt(vi),wt(w j))w j ⊗ vi + · · · , (1.1)

where any additional term in this expression has weight lower than wt(w j) in the first leg and weight higher than wt(vi)

in the second leg.

1.3. Duality

The notion of duality in a monoidal category is captured by the existence of evaluation and coevaluation morphisms, 
which in our setting are described as follows. Let V be a finite-dimensional Uq(g)-module and V ∗ its linear dual. Then, 
omitting the dependence on V (which will be fixed in our computations), we have Uq(g)-module maps

E : V ∗ ⊗ V → C, C :C → V ⊗ V ∗,
E′ : V ⊗ V ∗ → C, C′ : C → V ∗ ⊗ V ,

satisfying the following duality relations (using standard leg-notation)

E23C1 = id, E12C2 = id,

E′
23C′

1 = id, E′
12C′

2 = id.
(1.2)

The maps E and C correspond to the existence of a left dual, while E′ and C′ correspond to the existence of a right dual. 
In the case of the quantized enveloping algebra Uq(g), the property S2(X) = K2ρ X K −1

2ρ of the antipode guarantees that the 
two duals can be identified.

Let us now discuss the explicit formulae for these maps. Take a weight basis {vi }i of V and write λi := wt(vi) for the 
weight of vi . For the corresponding dual basis { f i}i of V ∗ we have wt( f i) = −λi . Then the evaluation and coevaluation 
maps are given by

E( f i ⊗ v j) = δi
j, C =

∑
i

vi ⊗ f i,

E′(vi ⊗ f j) = q(λi ,2ρ)δ
j
i , C′ =

∑
i

q−(λi ,2ρ) f i ⊗ vi .

The factor q(λi ,2ρ) is related to the element K2ρ in the square of the antipode.
We also have various compatibility relations with the braiding R̂V ,W , since the latter is a natural isomorphism in both 

entries. For the evaluation morphisms we have

E12 = E23(R̂V ∗,W )12(R̂V ,W )23, E23 = E12(R̂W ,V )23(R̂W ,V ∗)12,

E′
12 = E′

23(R̂V ,W )12(R̂V ∗,W )23, E′
23 = E′

12(R̂W ,V ∗)23(R̂W ,V )12.
(1.3)

Similarly, for the coevaluations morphisms we have

C1 = (R̂W ,V ∗)23(R̂W ,V )12C2, C2 = (R̂V ,W )12(R̂V ∗,W )23C1,

C′
1 = (R̂W ,V )23(R̂W ,V ∗)12C′

2, C′
2 = (R̂V ∗,W )12(R̂V ,W )23C′

1.
(1.4)

We are also going to need the following identities.
4
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Lemma 1.1. Let V = V (λ) be a simple Uq(g)-module. Then we have

E′ = q(λ,λ+2ρ)E ◦ R̂V ,V ∗ , C′ = q(λ,λ+2ρ)R̂V ,V ∗ ◦ C.

Proof. We have that E′ and E ◦ R̂V ,V ∗ are both morphisms from V ⊗ V ∗ to C. Since V is a simple module we must have 
E′ = cE ◦ R̂V ,V ∗ for some c ∈C. Consider vλ ⊗ f −λ , where vλ is a highest weight vector of V and f −λ is its dual, which is 
a lowest weight vector of V ∗ . Then we have E′(vλ ⊗ f −λ) = q(λ,2ρ) . On the other hand we have

E ◦ R̂V ,V ∗(vλ ⊗ f −λ) = q−(λ,λ)E( f −λ ⊗ vλ) = q−(λ,λ).

Comparing the two expressions we find c = q(λ,λ+2ρ) .
Similarly we have that C′ and R̂V ,V ∗ ◦ C are both maps from C to V ∗ ⊗ V . Since V is a simple module we must have 

C′ = c′R̂V ,V ∗ ◦ C. Now consider v w0λ ⊗ f −w0λ , where v w0λ is a lowest weight vector of V and f −w0λ is its dual, which is a 
highest weight vector of V ∗ . Taking into account the property (1.1) for the braiding, we have

R̂V ,V ∗(v w0λ ⊗ f −w0λ) = q−(w0λ,w0λ) f −w0λ ⊗ v w0λ + · · · .

Observe that f −w0λ ⊗ v w0λ can not appear in the additional terms. By the same argument the term f −w0λ ⊗ v w0λ can not 
appear in R̂V ,V ∗ (vi ⊗ f j) unless vi ⊗ f j = v w0λ ⊗ f −w0λ .

Since C = ∑
i vi ⊗ f i , the term f −w0λ ⊗ v w0λ appears in R̂V ,V ∗ ◦C with coefficient q−(w0λ,w0λ) = q−(λ,λ) , by the argument 

above. On the other hand in C′ = ∑
i q−(λi ,2ρ) f i ⊗ vi it appears with coefficient q−(w0λ,2ρ) = q−(λ,2w0ρ) . We have −w0ρ = ρ , 

since −w0 acts by permuting the fundamental weights and ρ is the sum of all the fundamental weights. Hence we obtain 
q−(w0λ,2ρ) = q(λ,2ρ) . Comparing the two expressions we get c′ = q(λ,λ+2ρ) . �
1.4. Quadratic condition

In the following we shall focus on the case of Uq(slr+1) and fix V = V (ωs) with s = 1 or s = r, corresponding to the 
fundamental module of Uq(slr+1) or its dual. The index s is always going to be used in this sense.

With V as above, we have that the braiding R̂V ,V satisfies a quadratic relation, known as the Hecke relation in this 
context. More precisely this is

(R̂V ,V − q(ωs,ωs))(R̂V ,V + q(ωs,ωs)−(αs,αs)) = 0. (1.5)

This reflects the fact that the tensor product V (ωs) ⊗ V (ωs) has a decomposition into simple modules with only two 
summands, namely

V (ωs) ⊗ V (ωs) ∼= V (2ωs) ⊕ V (2ωs − αs).

Note that both R̂V ,V and R̂V ∗,V ∗ satisfy such quadratic conditions.

2. Results on quantum projective spaces

In this section we recall various results related to quantum projective spaces. We begin with the presentation of their 
algebras and the differential calculi of Heckenberger-Kolb [12]. Next, we consider the quantum Riemannian geometry frame-
work of [3], in particular the notions of quantum metric, inverse metric and quantum Levi-Civita connection. These were 
all derived in [16] for general quantum projective spaces, generalizing previous results for the quantum 2-sphere. The cited 
paper forms the technical backbone of the current one, to which we refer for some occasional unexplained definitions and 
notations used here.

2.1. Quantum projective space

We denote by B the algebra of functions on the r-dimensional quantum (complex) projective space, which is a subalgebra 
of Cq[S Lr+1] generated by certain elements {pij}r+1

i, j=1 (see for instance [16] for details). The essential thing to know is that 
they correspond to the product of certain matrix coefficients of two Uq(slr+1)-modules, namely V := V (ωs) (with s = 1 or 
s = r) and its dual V ∗ .

To write the relations between these elements, we introduce the maps

S123 := (R̂V ,V ∗)23(R̂V ,V )12(R̂
−1
V ,V ∗)23,

S̃234 := (R̂V ,V ∗)23(R̂
−1
V ∗,V ∗)34(R̂

−1
V ,V ∗)23.

(2.1)

The main properties satisfied by these maps are recalled in Appendix B. Then, using index-free notation as in [12] and [16], 
we have the relations
5
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S123 pp = q(ωs,ωs) pp, S̃234 pp = q−(ωs,ωs)pp, E′
12 p = q(ωs,2ρ). (2.2)

In this way we obtain presentation of the algebra B by generators and relations, as proven in [12]. In what follows we shall 
mostly forget about the underlying quantum groups, but crucially use the categorical relations for the Uq(slr+1)-modules V
and V ∗ .

We should mention that, using (2.2), it easily follows that the generators pij are the entries of a projection. This means 
that 

∑
k pik pkj = pij , or in index-free notation

E23 pp = p. (2.3)

It can be derived by applying E′
12 to the first relation of (2.2) and using (C.1).

2.2. Heckenberger-Kolb calculus

Now we describe the first-order differential calculus (abbreviated as FODC) on B introduced by Heckenberger and Kolb 
in [12]. We denote it by � and follow the presentation given in [16]. It is a direct sum � := �+ ⊕ �− , with �+ and �−
generated respectively by ∂ p and ∂̄ p as left B-modules, and with relations

S̃234 p∂ p = q−(ωs,ωs) p∂ p, E′
12∂ p = 0,

S123 p∂̄ p = q(ωs,ωs) p∂̄ p, E′
12∂̄ p = 0.

(2.4)

To describe the right B-module structure of � it is convenient to write

T1234 := S123S̃234 = S̃234S123. (2.5)

Then the right B-module relations are given by

∂ pp = q(αs,αs)T1234 p∂ p = q(αs,αs)−(ωs,ωs)S123 p∂ p,

∂̄ pp = q−(αs,αs)T1234 p∂̄ p = q(ωs,ωs)−(αs,αs)S̃234 p∂̄ p.
(2.6)

Here the alternative expressions are obtained using (2.4). We also note that, using the relations above, we can rewrite those 
of (2.4) with p appearing on the right.

Finally one can obtain the following simple relations for ∂ p and ∂̄ p:

E23 p∂ p = 0, E23∂ pp = ∂ p,

E23 p∂̄ p = ∂̄ p, E23∂̄ pp = 0.
(2.7)

For more details about these, see for instance [15, Lemma 5.2] (with different notation).

2.3. Fubini-study metric

The natural metric on a projective space is given by the Fubini-Study metric. A quantum analogue of this metric is given 
by g := g+− + g−+ , where

g+− := E′
12E23∂ p ⊗ ∂̄ p, g−+ := E′

12E23∂̄ p ⊗ ∂ p. (2.8)

It can be seen that g reduces to the Fubini-Study metric in the classical case.
We have that g is a quantum metric in the sense of Beggs-Majid [3]. This notion requires the existence of an appropriate 

inverse metric, which amounts to a B-bimodule map (·, ·) : � ⊗B � → B such that the following conditions hold

((·, ·) ⊗ id)(ω ⊗ g) = ω = (id ⊗ (·, ·))(g ⊗ ω), ∀ω ∈ �.

As shown in [16, Theorem 6.11], the inverse metric corresponding to the Fubini-Study metric g is given by (∂ p, ∂ p) =
(∂̄ p, ̄∂ p) := 0 and by

(∂ p, ∂̄ p) := q(αs,αs)q−(ωs,ωs+2ρ)S123C3 p − q(αs,αs)q−(ωs,2ρ) pp,

(∂̄ p, ∂ p) := C′
2 p − q−(ωs,2ρ) pp.

(2.9)

Further properties of the quantum metric g are recalled later on.
6
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2.4. Levi-Civita connection

According to [16, Proposition 7.1 and Proposition 7.2] we have a (left) connection ∇ : � → � ⊗B � defined by

∇(∂ p) := q(αs,αs)E23S123S̃234∂̄ p ⊗ ∂ p − q(αs,αs)q−(ωs,2ρ) pg−+,

∇(∂̄ p) := E23∂ p ⊗ ∂̄ p − q−(ωs,2ρ) pg+−.
(2.10)

In the classical case it reduces to the Levi-Civita connection with respect to the Fubini-Study metric (acting on the cotangent 
bundle). In the quantum case it satisfies the conditions of a quantum Levi-Civita connection in the sense of [3], as shown in 
[16, Theorem 8.4]. This essentially means that ∇ is torsion-free and compatible with the quantum metric g . In particular 
this implies that ∇ is a bimodule connection (see below for this definition).

We should also mention that, due to the results of [9], this connection coincides with the unique covariant connection 
on � (and hence also with the one in [17]).

2.5. Generalized braiding

We recall that ∇ being a bimodule connection means that there exists a B-bimodule map σ : � ⊗B � → � ⊗B �, called 
the generalized braiding, such that

∇(ωb) = σ(ω ⊗ db) + ∇(ω)b, ω ∈ �, b ∈ B.

This map is unique, when it exists. The main property of bimodule connections is that they naturally lift to connections on 
tensor products (in particular to � ⊗B �).

The quantum Levi-Civita connection ∇ is a bimodule connection, as shown in [16, Proposition 8.3]. The corresponding 
generalized braiding σ is given by

σ(∂ p ⊗ ∂ p) := q(αs,αs)S123S̃234∂ p ⊗ ∂ p,

σ (∂̄ p ⊗ ∂̄ p) := q−(αs,αs)S123S̃234∂̄ p ⊗ ∂̄ p,

σ (∂ p ⊗ ∂̄ p) := q2(αs,αs)−2(ωs,ωs)S123S̃−1
234∂̄ p ⊗ ∂ p + (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ) pg−+p,

σ (∂̄ p ⊗ ∂ p) := q2(ωs,ωs)−2(αs,αs)S−1
123S̃234∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q−(ωs,2ρ) pg+−p.

(2.11)

In the classical case it simply reduces to the flip map.
In the following we write σab : �a ⊗B �b → �b ⊗B �a (with a, b ∈ {+, −}) for the restriction of the map σ to �a ⊗B �b . 

Note that these are all B-bimodule maps.

2.6. Properties of the metric

Finally we recall some additional properties satisfied by the quantum metric g . It is symmetric, in the sense that

∧(g) = 0. (2.12)

Here ∧ : � ⊗B � → �2 denotes the product of one-forms, as usual. Observe that, given the decomposition of g , this implies 
the identity ∧(g+−) = − ∧ (g−+).

Classically the Fubini-Study metric on a complex projective space is a Kähler metric. This statement is also true in the 
quantum case, once suitably interpreted. For our purposes this means the identities (see the proof of [16, Proposition 6.5])

(d ⊗ id)(gab) = (id ⊗ d)(gab) = 0, a,b ∈ {+,−}. (2.13)

Finally we have some identities related the compatibility of the quantum Levi-Civita connection ∇ with the quantum 
metric g . These are (see the proof of [16, Theorem 8.4])

(∇ ⊗ id)(gab) = (id ⊗ ∇)(gab) = 0, a,b ∈ {+,−}. (2.14)

3. Properties of the generalized braiding

In this section we prove various properties satisfied by the generalized braiding σ . First, we show that its components 
satisfy certain quadratic relations. Then we use this result to give a new presentation of the Heckenberger-Kolb calculus �• : 
we show that it can be obtained from the tensor algebra of the FODC � upon taking the quotient by the ideal generated by 
im(id + σ). This parallels the classical construction of �• from the space of one-forms �.
7
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3.1. Quadratic relations

Our goal here is to show that the components of the generalized braiding σab (with a, b ∈ {+, −}) satisfy certain quadratic 
relations. We begin by computing the action of σ on the components of the quantum metric g .

Lemma 3.1. We have

σ(g+−) = g−+, σ (g−+) = g+−. (3.1)

In particular σ(g) = g.

Proof. The term σ(g+−). Applying the generalized braiding (2.11) to g+− we get

σ(g+−) = q2(αs,αs)−2(ωs,ωs)E′
12E23S123S̃−1

234∂̄ p ⊗ ∂ p

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)E′
12E23 pg−+p.

Let us abbreviate this as

σ(g+−) = q2(αs,αs)−2(ωs,ωs) A1 + (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ) A2.

Consider the term A1. Using the quadratic relation (B.1) for S123 we get

A1 = q2(ωs,ωs)−(αs,αs)E′
12E23S−1

123S̃−1
234∂̄ p ⊗ ∂ p + (1 − q−(αs,αs))q(ωs,ωs)E′

12E23S̃−1
234∂̄ p ⊗ ∂ p.

Using (B.1) once more for S̃−1
234 we get

A1 = q2(ωs,ωs)−(αs,αs)E′
12E23S−1

123S̃−1
234∂̄ p ⊗ ∂ p

+ (1 − q−(αs,αs))q3(ωs,ωs)−(αs,αs)E′
12E23S̃234∂̄ p ⊗ ∂ p

+ (1 − q−(αs,αs))2q2(ωs,ωs)E′
12E23∂̄ p ⊗ ∂ p.

The second term vanishes due to the identities E23S̃234 = q−(ωs,ωs+2ρ)E′
34 and E′

34∂̄ p ⊗ ∂ p = 0, which correspond to (C.1)
and (C.2) respectively. Then

A1 = q2(ωs,ωs)−(αs,αs)E′
12E23S−1

123S̃−1
234∂̄ p ⊗ ∂ p + q2(ωs,ωs)(1 − q−(αs,αs))2E′

12E23∂̄ p ⊗ ∂ p.

Now using the relation (C.1) twice we have

E′
12E23S−1

123S̃−1
234 = q−(ωs,ωs+2ρ)E′

12E′
12S̃−1

234 = q−(ωs,ωs+2ρ)E′
12E′

34S̃−1
234 = E′

12E23.

Therefore we obtain

A1 = q2(ωs,ωs)−(αs,αs)E′
12E23∂̄ p ⊗ ∂ p + q2(ωs,ωs)(1 − q−(αs,αs))2E′

12E23∂̄ p ⊗ ∂ p

= q2(ωs,ωs)−2(αs,αs)(q2(αs,αs) − q(αs,αs) + 1)g−+.

Now consider the term A2. Taking into account that the component g−+ of the quantum metric is central, we use the 
algebra relations to compute

A2 = E′
12E23 pg−+p = E′

12E23 ppg−+ = E′
12 pg−+ = q(ωs,2ρ)g−+.

Finally we obtain

σ+−(g+−) = (q2(αs,αs) − q(αs,αs) + 1)g−+ − (q2(αs,αs) − q(αs,αs))g−+ = g−+.

The term σ(g−+). Similarly applying (2.11) to g−+ we get

σ(g−+) = q2(ωs,ωs)−2(αs,αs)E′
12E23S−1

123S̃234∂ p ⊗ ∂̄ p

+ (1 − q−(αs,αs))q−(ωs,2ρ)E′
12E23 pg+−p.

Let us abbreviate this as

σ(g−+) = q2(ωs,ωs)−2(αs,αs)B1 + (1 − q−(αs,αs))q−(ωs,2ρ)B2.
8
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Consider the term B1. Using (C.1) and (B.1) we compute

B1 = q−(ωs,ωs+2ρ)E′
12E′

12S̃234∂ p ⊗ ∂̄ p = q−(ωs,ωs+2ρ)E′
12E′

34S̃234∂ p ⊗ ∂̄ p

= q(αs,αs)−2(ωs,ωs)q−(ωs,ωs+2ρ)E′
12E′

34S̃−1
234∂ p ⊗ ∂̄ p

= q(αs,αs)−2(ωs,ωs)E′
12E23∂ p ⊗ ∂̄ p = q(αs,αs)−2(ωs,ωs) g+−.

For the term B2 we compute

B2 = E′
12E23 ppg+− = E′

12 pg+− = q(ωs,2ρ) g+−.

Therefore we obtain

σ−+(g−+) = q2(ωs,ωs)−2(αs,αs)q(αs,αs)−2(ωs,ωs)g+− − (q−(αs,αs) − 1)q−(ωs,2ρ)q(ωs,2ρ)g+−
= q−(αs,αs)g+− − (q−(αs,αs) − 1)g+− = g+−. �

We are now ready to derive the quadratic relations for the maps σab .

Proposition 3.2. We have the identities

(σ++ − q(αs,αs)id) ◦ (σ++ + id) = 0,

(σ−− − q−(αs,αs)id) ◦ (σ−− + id) = 0,

σ−+ ◦ σ+− = id, σ+− ◦ σ−+ = id.

Proof. The maps σ++ and σ−− . We begin with the map σ++ . Using the identity (C.3) we can rewrite the expression for σ++
in the following way

σ(∂ p ⊗ ∂ p) = q(αs,αs)T1234∂ p ⊗ ∂ p = q(αs,αs)−(ωs,ωs)S123∂ p ⊗ ∂ p.

Next, we rewrite the quadratic relation from (B.1) in the form

S2
123 = (1 − q−(αs,αs))q(ωs,ωs)S123 + q2(ωs,ωs)−(αs,αs).

Using this identity we compute

σ 2++(∂ p ⊗ ∂ p) = q2(αs,αs)−2(ωs,ωs)S2
123∂ p ⊗ ∂ p

= (q(αs,αs) − 1)q(αs,αs)−(ωs,ωs)S123∂ p ⊗ ∂ p + q(αs,αs)∂ p ⊗ ∂ p

= (q(αs,αs) − 1)σ++(∂ p ⊗ ∂ p) + q(αs,αs)∂ p ⊗ ∂ p.

This expression can be rewritten in the form (σ++ − q(αs,αs))(σ++ + 1) = 0.
The case of σ−− is very similar. We use (C.3) again to rewrite

σ−−(∂̄ p ⊗ ∂̄ p) = q−(αs,αs)T1234∂̄ p ⊗ ∂̄ p = q(ωs,ωs)−(αs,αs)S̃234∂̄ p ⊗ ∂̄ p.

Moreover from (B.1) we have

S̃2
234 = (1 − q(αs,αs))q−(ωs,ωs)S̃234 + q(αs,αs)−2(ωs,ωs).

A quick computation then leads to (σ−− − q−(αs,αs))(σ−− + 1) = 0.
The maps σ+− and σ−+ . Now let us consider the maps

σ+−(∂ p ⊗ ∂̄ p) = q2(αs,αs)−2(ωs,ωs)S123S̃−1
234∂̄ p ⊗ ∂ p + (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ) pg−+p,

σ−+(∂̄ p ⊗ ∂ p) = q2(ωs,ωs)−2(αs,αs)S−1
123S̃234∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q−(ωs,2ρ)pg+−p.

Taking into account (3.1) and that σ is a B-bimodule map we compute

σ−+σ+−(∂ p ⊗ ∂̄ p) = q2(αs,αs)−2(ωs,ωs)S123S̃−1
234σ−+(∂̄ p ⊗ ∂ p)

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)pσ−+(g−+)p

= ∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q2(αs,αs)−2(ωs,ωs)q−(ωs,2ρ)S123S̃−1
234 pg+−p

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)pg p.
+−

9
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We have pg+− p = ppg+− , since g is central. Moreover using (2.2) we have

S123S̃−1
234 pp = q(ωs,ωs)S123 pp = q2(ωs,ωs)pp.

Then S123S̃−1
234 pg+− p = q2(ωs,ωs) pg+− p and hence

σ−+σ+−(∂ p ⊗ ∂̄ p) = ∂ p ⊗ ∂̄ p − (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ) pg+−p

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)pg+−p

= ∂ p ⊗ ∂̄ p.

Similarly we check that σ+−σ−+ = id. We compute

σ+−σ−+(∂̄ p ⊗ ∂ p) = q2(ωs,ωs)−2(αs,αs)S−1
123S̃234σ+−(∂ p ⊗ ∂̄ p)

+ (1 − q−(αs,αs))q−(ωs,2ρ) pσ+−(g+−)p

= ∂ p ⊗ ∂̄ p + (1 − q(αs,αs))q−(αs,αs)q−(ωs,2ρ)q2(ωs,ωs)S−1
123S̃234 pg−+p

+ (1 − q−(αs,αs))q−(ωs,2ρ) pg−+p.

Here we have also used (3.1). Similarly to what we did above, we compute

S−1
123S̃234 pg−+p = S−1

123S̃234 ppg−+ = q−2(ωs,ωs)pg−+p.

Finally we obtain

σ+−σ−+(∂̄ p ⊗ ∂ p) = ∂ p ⊗ ∂̄ p − (1 − q−(αs,αs))q−(ωs,2ρ) pg−+p

+ (1 − q−(αs,αs))q−(ωs,2ρ) pg−+p

= ∂ p ⊗ ∂̄ p. �
Remark 3.3. The relations above can be compared with those satisfied by the braiding on the category of finite-dimensional 
Uq(g)-modules. Formally this is done using Takeuchi’s categorical equivalence, see for instance [12, Section 2.2.8]. There is 
a functor sending the object � ⊗B � to the object �/B+� ⊗B �/B+�, where B+ denotes the elements of B killed by the 
counit. It can be shown that, under this equivalence, the maps

σ++, σ−−, σ+−, σ−+,

correspond respectively to the transposes of

R̂ V ,V , R̂ V ∗,V ∗ , R̂−1
V ,V ∗ , R̂ V ,V ∗ ,

up to overall scalar multiples (we do not provide the details here). This can be checked on the generators ∂ p and ∂̄ p using 
[12, Proposition 3.6 and Proposition 3.7].

3.2. Presentation calculus

In this subsection we use the generalized braiding σ to give a new presentation of the Heckenberger-Kolb calculus �• , 
paralleling the classical picture.

In order to formulate this more precisely, we need to recall the notion of universal differential calculus corresponding to 
a FODC, see for instance [12, Section 2.3.2].

Definition 3.4. Let 
 be a FODC over an algebra A. The universal differential calculus corresponding to 
 is defined to be the 
quotient of the tensor algebra T A(
) = ⊕∞

k=0 
⊗Ak of the A-bimodule 
 by the ideal generated by the subspace{∑
i

dai ⊗ dbi :
∑

i

aidbi = 0

}
⊂ 
 ⊗A 
.

As the name suggests, there is a suitable universal property for 
u , expressing the fact that it is the most general 
differential calculus having 
 as its first-order part.

The differential calculus �• over B, introduced by Heckenberger-Kolb in [12], is defined to be the universal differential 
calculus corresponding to the FODC � = �+ ⊕ �− . The corresponding quadratic relations are also explicitly determined in 
the cited paper, more precisely in [12, Proposition 3.6, Proposition 3.7 and Proposition 3.11].
10
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We recall them here. The relations among the generators ∂ p are

(R̂V ,V + q(ωs,ωs)−(αs,αs))12(R̂
−1
V ,V ∗)23∂ p ∧ ∂ p = 0,

(R̂V ∗,V ∗ − q(ωs,ωs))34(R̂
−1
V ,V ∗)23∂ p ∧ ∂ p = 0.

(3.2)

Similarly, the relations among the generators ∂̄ p are

(R̂V ,V − q(ωs,ωs))12(R̂
−1
V ,V ∗)23∂̄ p ∧ ∂̄ p = 0,

(R̂V ∗,V ∗ + q(ωs,ωs)−(αs,αs))34(R̂
−1
V ,V ∗)23∂̄ p ∧ ∂̄ p = 0.

(3.3)

Finally, the mixed relations among ∂ p and ∂̄ p are

∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p + q−(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂ p ∧ ∂̄ p. (3.4)

This expression can be rewritten in several ways, as we show in Lemma D.1.
We are now ready to formulate our result.

Theorem 3.5. The differential calculus �• over B can be presented as

�• = TB(�)/〈im(id + σ)〉.

Proof. Since �• is the universal differential calculus corresponding to the FODC �, we need to show that the relations (3.2), 
(3.3) and (3.4) arise by acting with id + σ on � ⊗B � (and quotienting by ∧). Moreover, no further relations should arise 
this way.

Relations ∂ p and ∂̄ p. Applying (R̂V ,V ∗ )23 to (3.2) and (3.3) we rewrite them as

(S123 + q(ωs,ωs)−(αs,αs))∂ p ∧ ∂ p = 0, (S̃−1
234 − q(ωs,ωs))∂ p ∧ ∂ p = 0,

(S123 − q(ωs,ωs))∂̄ p ∧ ∂̄ p = 0, (S̃−1
234 + q(ωs,ωs)−(αs,αs))∂̄ p ∧ ∂̄ p = 0.

It follows from (C.3) that the second and third relations are identically satisfied in the tensor algebra TB(�). Therefore 
consider the elements

(S123 + q(ωs,ωs)−(αs,αs))∂ p ⊗ ∂ p, (S̃−1
234 + q(ωs,ωs)−(αs,αs))∂̄ p ⊗ ∂̄ p.

It is easy to check that these correspond (up to a scalar) with

(σ++ + id)(∂ p ⊗ ∂ p), (σ−− + id)(∂̄ p ⊗ ∂̄ p).

Indeed, these follow from the expressions σ++(∂ p ⊗ ∂ p) = q(αs,αs)−(ωs,ωs)S123∂ p ⊗ ∂ p and σ−−(∂̄ p ⊗ ∂̄ p) =
q(ωs,ωs)−(αs,αs)S̃234∂̄ p ⊗ ∂̄ p.

Mixed relations. Corresponding to the relation (3.4) we consider the element

A = ∂̄ p ⊗ ∂ p + q−(αs,αs)T−1
1234∂ p ⊗ ∂̄ p − q−(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂ p ⊗ ∂̄ p.

We write A1 = T−1
1234∂ p ⊗ ∂̄ p. Taking into account that T−1

1234 = S−1
123S̃−1

234 and using the quadratic relation (B.1) for S̃−1
234, we 

rewrite this term as

A1 = q2(ωs,ωs)−(αs,αs)S−1
123S̃234∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q(ωs,ωs)S−1

123∂ p ⊗ ∂̄ p.

On the other hand consider A2 = E′
34T−1

3456 p∂ p ⊗ ∂̄ p. Using Lemma C.4 we get

A2 = −(1 − q(αs,αs))q(ωs,2ρ)E45 p∂ p ⊗ ∂̄ p + (1 − q(αs,αs))pg+− p.

Moreover, using (2.6) and (2.7) we rewrite

E45 p∂ p ⊗ ∂̄ p = q(ωs,ωs)−(αs,αs)E45S−1
123∂ pp ⊗ ∂̄ p = q(ωs,ωs)−(αs,αs)S−1

123∂ p ⊗ ∂̄ p.

Taking these identities into account we obtain

A = ∂̄ p ⊗ ∂ p + q−(αs,αs) A1 − q−(αs,αs)q−(ωs,2ρ) A2

= ∂̄ p ⊗ ∂ p + q2(ωs,ωs)−2(αs,αs)S−1
123S̃234∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q−(ωs,2ρ)pg+−p

= (id + σ)(∂̄ p ⊗ ∂ p).
11



M. Matassa Journal of Geometry and Physics 179 (2022) 104611
No further relations. Finally we show that no additional relations arise by acting with id + σ on �+ ⊗B �− . Considering 
the element B = (id +σ)(∂ p ⊗ ∂̄ p), our goal is to show that ∧(B) = 0, which means that this relation is already satisfied in 
�• .

From the proof of [16, Lemma 8.2] we have the alternative expression

σ+−(∂ p ⊗ ∂̄ p) = q(αs,αs)T1234∂̄ p ⊗ ∂ p − (1 − q(αs,αs))q(αs,αs)E23T1234∂̄ p ⊗ ∂ pp

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ) pg−+p.

Using the identity from Lemma C.4 this can be rewritten as

σ+−(∂ p ⊗ ∂̄ p) = q(αs,αs)T1234∂̄ p ⊗ ∂ p − q(αs,αs)q−(ωs,2ρ)E′
34T1234∂̄ p ⊗ ∂ pp.

Plugging this into B = (id + σ)(∂ p ⊗ ∂̄ p) we obtain

∧(B) = ∂ p ∧ ∂̄ p + q(αs,αs)T1234∂̄ p ∧ ∂ p − q(αs,αs)q−(ωs,2ρ)E′
34T1234∂̄ p ∧ ∂ pp.

But we have ∧(B) = 0, as shown in Lemma D.1. �
This presentation immediately leads to the following property.

Corollary 3.6. We have ∧ ◦ (id + σ) = 0.

Remark 3.7. The property ∧ ◦ (id + σ) = 0 is called torsion compatibility in [3, Section 8.1], in the context of a bimodule 
connection with generalized braiding σ . When this holds, the strong form of metric compatibility (requiring a bimodule 
connection) implies the weak form (vanishing cotorsion), see [16] for a discussion of these properties.

4. Additional results

In this section we derive various additional results within our geometrical setting for quantum projective spaces. We 
introduce a one-parameter family of maps s : �2 → � ⊗B � splitting the wedge product, which we are going to use later to 
define the Ricci tensor. We compute the quantum metric dimension of the differential calculus, defined as the composition 
of the inverse metric (·, ·) and the quantum metric g . Finally we prove a symmetry property for the inverse metric, which 
involves the generalized braiding σ .

4.1. Splitting map

We look for a splitting of the wedge product ∧ : � ⊗B � → �2, that is a B-bimodule map s : �2 → � ⊗B � such that 
∧ ◦ s = id. It is technically more convenient to first define s as a map � ⊗B � → � ⊗B �, and then ask that it descends to 
the space of two-forms �2. In the classical case this map is given by antisymmetrization, that is x ⊗ y �→ 1

2 (x ⊗ y − y ⊗ x). 
Keeping this in mind, we look for a map s which is a linear combination of id and the generalized braiding σ in each 
component �a ⊗ �b . More concretely, we assume that

s|�a⊗�b = cabid − c′
abσab, a,b ∈ {+,−}.

Note that any such s is a B-bimodule map, since this is true for each component σab of the generalized braiding. Within 
this setting, we have the following result.

Proposition 4.1. Let s : � ⊗B � → � ⊗B � be as above. Suppose that:

(1) it descends to a map �2 → � ⊗B �,
(2) we have ∧ ◦ s = ∧.

Then it must be of the form

s(∂ p ⊗ ∂ p) = 1

1 + q−(αs,αs)
(id − q−(αs,αs)σ++)(∂ p ⊗ ∂ p),

s(∂̄ p ⊗ ∂̄ p) = 1

1 + q(αs,αs)
(id − q(αs,αs)σ++)(∂̄ p ⊗ ∂̄ p),

s(∂ p ⊗ ∂̄ p) = (c+−id − c−+σ+−)(∂ p ⊗ ∂̄ p),

s(∂̄ p ⊗ ∂ p) = (c−+id − c+−σ−+)(∂̄ p ⊗ ∂ p).

In addition we must have c+− + c−+ = 1.
12
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Proof. We are going to show that requiring the conditions (1) and (2) to hold for the map s|�a⊗�b = cabid − c′
abσab fixes all 

the coefficients cab but one.
(1) According to Theorem 3.5, the differential calculus �• is the quotient of the tensor algebra TB(�) by the ideal 

generated by im(id + σ). Hence to show that s descends to a map �2 → � ⊗B � it suffices to show that s ◦ (id + σ) = 0. 
We can determine when this holds using the quadratic relations for the components σab from Proposition 3.2.

First, using σ 2++ = q(αs,αs) − (1 − q(αs,αs))σ++ we compute

s(id + σ)(∂ p ⊗ ∂ p) = (c++ − q(αs,αs)c′++)(id + σ++)(∂ p ⊗ ∂ p).

For this to vanish we must have c′++ = q−(αs,αs)c++ .
Similarly, using σ 2−− = q−(αs,αs) − (1 − q−(αs,αs))σ−− we compute

s(id + σ)(∂̄ p ⊗ ∂̄ p) = (c−− − q−(αs,αs)c′−−)(id + σ−−)(∂̄ p ⊗ ∂̄ p).

For this to vanish we must have c′−− = q(αs,αs)c−− .
Next, for the mixed case of �+ ⊗ �− we compute

s(id + σ)(∂ p ⊗ ∂̄ p) = (c+−id − c′+−σ+−)(∂ p ⊗ ∂̄ p) + (c−+id − c′−+σ−+)σ+−(∂ p ⊗ ∂̄ p)

= (c+− − c′−+)(∂ p ⊗ ∂̄ p) + (c−+ − c′+−)σ+−(∂ p ⊗ ∂̄ p).

For this to vanish we must have c′−+ = c+− and c′+− = c−+ . The computation for the case of �− ⊗ �+ is very similar and 
leads to the same conditions.

Hence, after imposing the condition (1), the map s looks as follows

s(∂ p ⊗ ∂ p) = c++(id − q−(αs,αs)σ++)(∂ p ⊗ ∂ p),

s(∂̄ p ⊗ ∂̄ p) = c−−(id − q(αs,αs)σ++)(∂̄ p ⊗ ∂̄ p),

s(∂ p ⊗ ∂̄ p) = (c+−id − c−+σ+−)(∂ p ⊗ ∂̄ p),

s(∂̄ p ⊗ ∂ p) = (c−+id − c+−σ−+)(∂̄ p ⊗ ∂ p).

(2) Now we require the condition ∧ ◦ s = ∧. To check this condition we can use the property ∧ ◦ σ = −∧ from Corol-
lary 3.6. For ∂ p ⊗ ∂ p we compute

∧ ◦ s(∂ p ⊗ ∂ p) = c++(1 + q−(αs,αs))∂ p ∧ ∂ p.

Hence we must have c++ = (1 + q−(αs,αs))−1. A similar computation for ∂̄ p ⊗ ∂̄ p leads to c−− = (1 + q(αs,αs))−1. For the 
mixed case it leads to c+− + c−+ = 1.

We conclude that the conditions (1) and (2) fix all but one of the coefficients cab and c′
ab . Using the explicit relations we 

obtain the map as in the statement. �
It follows that we have a well-defined map s : �2 → � ⊗B � (denoted by the same symbol) such that ∧ ◦ s = id. This 

leads to the following result.

Corollary 4.2. We have a split exact sequence

0 → ker(∧) → � ⊗B �
∧−→ �2 → 0.

Proof. This sequence is exact for any differential calculus. Splitting is equivalent to the existence of a map s : �2 → � ⊗B �

such that ∧ ◦ s = id, which is what we obtained. �
Remark 4.3. The splitting of the wedge product is a natural condition to require for a differential calculus. For instance, in 
[4] it is shown that it implies the existence of a torsion-free connection, under some further assumptions. However, these 
additional assumptions are not satisfied by the differential calculus �• we consider here.

4.2. Quantum metric dimension

We are now going to compute the expression (·, ·)(g), where g is the quantum metric and (·, ·) is the inverse metric. 
In the classical setting it corresponds to the trace of the metric tensor g , hence the dimension of the underlying space. For 
this reason (·, ·)(g) is called the quantum metric dimension in [3, Chapter 8]. A priori it is an element of the algebra B, but 
in our case it turns out to be a scalar. We are going to use the quantum metric dimension in the computation of the Ricci 
tensor.
13
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First we recall the notion of quantum dimension of a simple module V , given by

qdim(V ) := TrV (K2ρ) =
∑

i

q(λi ,2ρ).

We can derive a more convenient expression for qdim(V ) in our case. We employ the standard notion of q-numbers, defined 
by [x]q := qx−q−x

q−q−1 .

Lemma 4.4. Consider the Uq(slr+1)-module V = V (ωs) with s = 1 or s = r. Then

qdim(V ) = [r + 1]q = q(ωs,2ρ)+(αs,αs)/2 − q−(ωs,2ρ)−(αs,αs)/2

q(αs,αs)/2 − q−(αs,αs)/2
.

Proof. For any simple Uq(g)-module V (λ), the quantum Weyl dimension formula gives

qdim(V (λ)) =
∏
α>0

[(λ + ρ,α)]q

[(ρ,α)]q
.

Here the product is over the positive roots of g.
We use the above formula with g = slr+1 and λ = ω1 (the case λ = ωr is identical). Let us enumerate the positive roots of 

slr+1 by αi j = ∑ j
k=i αk with 1 ≤ i ≤ j ≤ r, where {αi}r

i=1 are the simple roots. Then (ω1, αi j) = 0 for i > 1 and (ω1, α1 j) = 1. 
Moreover we have (ρ, α1 j) = j, since ρ is the sum of all fundamental weights. Then we obtain

qdim(V ) =
r∏

j=1

[(ω1 + ρ,α1 j)]q

[(ρ,α1 j)]q
=

r∏
j=1

[ j + 1]q

[ j]q
= [r + 1]q.

The second expression for qdim(V ) follows easily from this one, using the fact that for slr+1 we have the values (αs, αs) = 2
and (ωs, 2ρ) = r. �

We now compute the quantum metric dimension of the differential calculus �• .

Proposition 4.5. For the quantum metric g = g+− + g−+ we have

(·, ·)(g+−) = q−(ωs,2ρ)qdim(V ) − 1,

(·, ·)(g−+) = q(ωs,2ρ)qdim(V ) − 1.

Moreover the quantum metric dimension can be written as

(·, ·)(g) = (qr+1 + q−(r+1))[r]q.

Proof. The term (·, ·)(g+−). Using the inverse metric (2.9) we get

(·, ·)(g+−) = q(αs,αs)q−(ωs,ωs+2ρ)E′
12E23S123C3 p − q(αs,αs)q−(ωs,2ρ)E′

12E23 pp.

For the second term we have E′
12E23 pp = E′

12 p = q(ωs,2ρ) . For the first term, using the quadratic relation (B.1) for S123 and 
the duality relation from (1.2), we compute

E′
12E23S123C3 p = q2(ωs,ωs)−(αs,αs)E′

12E23S−1
123C3 p + (1 − q−(αs,αs))q(ωs,ωs)E′

12E23C3 p

= q(ωs,ωs)−(αs,αs)q−(ωs,2ρ)E′
12E′

12C3 p + (1 − q−(αs,αs))q(ωs,ωs)E′
12 p

= q(ωs,ωs)−(αs,αs)q−(ωs,2ρ)E′
12C1E′

12 p + (1 − q−(αs,αs))q(ωs,ωs+2ρ)

= q(ωs,ωs)−(αs,αs)E′
12C1 + (1 − q−(αs,αs))q(ωs,ωs+2ρ).

The expression E′
12C1 corresponds to the quantum dimension, since

E′
12C1 =

∑
i

E′
12(vi ⊗ f i) =

∑
i

q(2ρ,λi) = qdim(V ).

Therefore we obtain the result

(·, ·)(g+−) = q−(ωs,2ρ)qdim(V ) + (q(αs,αs) − 1) − q(αs,αs)

= q−(ωs,2ρ)qdim(V ) − 1.
14
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The term (·, ·)(g−+). Similarly we have

(·, ·)(g−+) = E′
12E23C′

2 p − q−(ωs,2ρ)E′
12E23 pp.

We have E′
12E23 pp = q(ωs,2ρ) , as above. For the first term, using Lemma 1.1 we get

E′
12E23C′

2 p = q(ωs,ωs+2ρ)E′
12E23(R̂V ,V ∗)23C2 p = E′

12E′
23C2 p.

Using E′
23C2 = qdim(V ), as above, we find that

E′
12E23C′

2 p = qdim(V )E′
12 p = q(ωs,2ρ)qdim(V ).

Therefore we obtain the result

(·, ·)(g−+) = q(ωs,2ρ)qdim(V ) − 1.

Quantum metric dimension. We have (·, ·)(g) = (q(ωs,2ρ) + q−(ωs,2ρ))qdim(V ) − 2. Using Lemma 4.4 and (ωs, 2ρ) = r, plus 
the identity [r + 1]q = q[r]q + q−r , we check that

(q(ωs,2ρ) + q−(ωs,2ρ))qdim(V ) − 2 = (qr+1 + q−(r+1))[r]q.

This gives an expression which is closer to the classical one. �
Remark 4.6. The quantum metric dimension reduces to (·, ·)(g) = 2r in the classical limit q → 1, which coincides the di-
mension of CP r as a real manifold. This can also be checked using the general fact that qdim(V ) reduces to dim(V ) in the 
classical limit.

In the following we are going to write the quantum metric dimension as

Trq(g) := (·, ·)(g).

We employ similar notations for g+− and g−+ .

4.3. Symmetry inverse metric

We have seen that the quantum metric g is symmetric, in the sense that ∧(g) = 0. What about the inverse metric (·, ·)? 
We now show that it satisfies a certain twisted symmetry which involves the generalized braiding σ .

Proposition 4.7. The inverse metric (·, ·) : � ⊗B � → B satisfies

(·, ·) ◦ σ(∂ p ⊗ ∂̄ p) = q(αs,αs)q2(ωs,2ρ)(·, ·)(∂ p ⊗ ∂̄ p),

(·, ·) ◦ σ(∂̄ p ⊗ ∂ p) = q−(αs,αs)q−2(ωs,2ρ)(·, ·)(∂̄ p ⊗ ∂ p).

Proof. First identity. Using (2.9) and Proposition 4.5 we obtain

(·, ·)σ (∂ p ⊗ ∂̄ p) = q2(αs,αs)−2(ωs,ωs)S123S̃−1
234(∂̄ p, ∂ p) + (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)Trq(g−+)pp

= q2(αs,αs)−2(ωs,ωs)S123S̃−1
234C′

2 p − q2(αs,αs)−2(ωs,ωs)q−(ωs,2ρ)S123S̃−1
234 pp

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)(q(ωs,2ρ)qdim(V ) − 1)pp.

Using Lemma 1.1 and naturality of the coevaluation C as in (1.4), we get

S̃−1
234C′

2 = q(ωs,ωs+2ρ)S̃−1
234(R̂V ,V ∗)23C2 = q(ωs,ωs+2ρ)(R̂V ,V ∗)23(R̂V ∗,V ∗)34C2 = q(ωs,ωs+2ρ)C3.

We also have S123S̃−1
234 pp = q2(ωs,ωs) pp from (2.2). Then we obtain

(·, ·)σ (∂ p ⊗ ∂̄ p) = q2(αs,αs)−(ωs,ωs)q(ωs,2ρ)S123C3 p − q2(αs,αs)q−(ωs,2ρ) pp

+ (1 − q(αs,αs))q(αs,αs)q−(ωs,2ρ)(q(ωs,2ρ)qdim(V ) − 1)pp.

After some simplifications this can be rewritten as

(·, ·)σ (∂ p ⊗ ∂̄ p) = q2(αs,αs)−(ωs,ωs)q(ωs,2ρ)S123C3 p

−
(

q(αs,αs)q−(ωs,2ρ) − (1 − q(αs,αs))q(αs,αs)qdim(V )
)

pp.
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Next, using Lemma 4.4 we can easily verify the identity

q(αs,αs)q−(ωs,2ρ) − (1 − q(αs,αs))q(αs,αs)qdim(V ) = q2(αs,αs)q(ωs,2ρ).

Finally taking into account (2.9) we obtain

(·, ·)σ (∂ p ⊗ ∂̄ p) = q(αs,αs)q2(ωs,2ρ)(q(αs,αs)q−(ωs,ωs+2ρ)S123C3 p − q(αs,αs)q−(ωs,2ρ) pp)

= q(αs,αs)q2(ωs,2ρ)(·, ·)(∂ p ⊗ ∂̄ p).

Second identity. Similarly to the first case, we compute

(·, ·)σ (∂̄ p ⊗ ∂ p) = q2(ωs,ωs)−2(αs,αs)S−1
123S̃234(∂ p, ∂̄ p) + (1 − q−(αs,αs))q−(ωs,2ρ)Trq(g+−)pp

= q(ωs,ωs)−(αs,αs)q−(ωs,2ρ)S̃234C3 p − q2(ωs,ωs)−(αs,αs)q−(ωs,2ρ)S−1
123S̃234 pp

+ (1 − q−(αs,αs))q−(ωs,2ρ)(q−(ωs,2ρ)qdim(V ) − 1)pp.

We have seen in the derivation of the first identity that S̃−1
234C′

2 = q(ωs,ωs+2ρ)C3. We also have S−1
123S̃234 pp = q−2(ωs,ωs) pp

using (2.2). Then we get

(·, ·)σ (∂̄ p ⊗ ∂ p) = q−(αs,αs)q−2(ωs,2ρ)C′
2 p − q−(αs,αs)q−(ωs,2ρ)pp

+ (1 − q−(αs,αs))q−(ωs,2ρ)(q−(ωs,2ρ)qdim(V ) − 1)pp.

After some simplifications we get

(·, ·)σ (∂̄ p ⊗ ∂ p) = q−(αs,αs)q−2(ωs,2ρ)C′
2 p

−
(

q−(ωs,2ρ) − (1 − q−(αs,αs))q−2(ωs,2ρ)qdim(V )
)

pp.

Now using Lemma 4.4 we can easily verify the identity

q−(ωs,2ρ) − (1 − q−(αs,αs))q−2(ωs,2ρ)qdim(V ) = q−(αs,αs)q−3(ωs,2ρ).

Finally taking into account (2.9) we obtain

(·, ·)σ (∂̄ p ⊗ ∂ p) = q−(αs,αs)q−2(ωs,2ρ)(C′
2 p − q−(ωs,2ρ) pp)

= q−(αs,αs)q−2(ωs,2ρ)(·, ·)(∂̄ p ⊗ ∂ p). �
Remark 4.8. This result gives a twisted symmetry for the inverse metric (·, ·), reducing to the usual symmetry in the classical 
case. It can be written in a nicer way by defining

σ̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ on �+ ⊗ �+
σ on �− ⊗ �−
q−(αs,αs)q−2(ωs,2ρ)σ on �+ ⊗ �−
q(αs,αs)q2(ωs,2ρ)σ on �− ⊗ �+

.

Then σ̃ is a B-bimodule map � ⊗B � → � ⊗B � and we have (·, ·) ◦ σ̃ = (·, ·).

5. Riemann tensor

In this section we compute the Riemann tensor corresponding to the quantum Levi-Civita connection ∇ . We also show 
that it is a B-bimodule map, a property that is not guaranteed to hold in general by its definition. Finally we show various 
consequences of this fact, namely the extendability of the generalized braiding σ , an antisymmetry identity for the Riemann 
tensor and also a version of the braid equation satisfied by σ .

5.1. Definition and computation

We define the Riemann tensor as the curvature of the connection ∇ : � → � ⊗B �. Indeed, in the classical case this 
corresponds to the usual definition up to an overall constant (see for instance [3, Example 3.29]).

Definition 5.1. The Riemann tensor is the map R∇ : � → �2 ⊗B � defined by

R∇ := (d ⊗ id − (∧ ⊗ id) ◦ (id ⊗ ∇)) ◦ ∇.
16



M. Matassa Journal of Geometry and Physics 179 (2022) 104611
We point out that, in general, this is a left module map but not necessarily a right module map. In our case, however, 
we are going to show that it is a B-bimodule map.

The rest of this subsection is devoted to explicitly computing R∇ .

Lemma 5.2. We have

R∇(∂̄ p) = −E23E23∂̄ p ∧ ∂ p ⊗ ∂̄ p − q−(ωs,2ρ)∂̄ p ∧ g+−.

Proof. According to (2.10), the quantum Levi-Civita connection acts on ∂̄ p by

∇(∂̄ p) = E23∂ p ⊗ ∂̄ p − q−(ωs,2ρ)pg+−.

First, using (d ⊗ id)(g+−) = 0 from (2.13) we compute

(d ⊗ id)∇(∂̄ p) = E23∂̄∂ p ⊗ ∂̄ p − q−(ωs,2ρ)dp ∧ g+−.

We have the identity (see for instance [16, Lemma C.6])

∂∂̄ p = E23∂ p ∧ ∂̄ p + E23∂̄ p ∧ ∂ p.

Then using ∂̄∂ = −∂∂̄ we can rewrite

E23∂̄∂ p ⊗ ∂̄ p = −E23E23∂ p ∧ ∂̄ p ⊗ ∂̄ p − E23E23∂̄ p ∧ ∂ p ⊗ ∂̄ p.

The first term vanishes, since E23E23 = E23E45 and E23∂̄ p ⊗ ∂̄ p = 0 from (C.2). Then

(d ⊗ id)∇(∂̄ p) = −E23E23∂̄ p ∧ ∂ p ⊗ ∂̄ p − q−(ωs,2ρ)dp ∧ g+−.

Similarly, using (id ⊗ ∇)(g+−) = 0 from (2.14) we obtain

(id ⊗ ∇)∇(∂̄ p) = E23E45∂ p ⊗ ∂ p ⊗ ∂̄ p − q−(ωs,2ρ)E23∂ p ⊗ pg+−.

The first term vanishes since E23E45 = E23E23 and E23∂ p ⊗ ∂ p = 0 from (C.2). Then

(id ⊗ ∇)∇(∂̄ p) = −q−(ωs,2ρ)E23∂ pp ⊗ g+− = −q−(ωs,2ρ)∂ p ⊗ g+−.

Putting the two terms together and using d = ∂ + ∂̄ we obtain

R∇(∂̄ p) = (d ⊗ id)∇(∂̄ p) − (∧ ⊗ id)(id ⊗ ∇)∇(∂̄ p)

= −E23E23∂̄ p ∧ ∂ p ⊗ ∂̄ p − q−(ωs,2ρ)∂̄ p ∧ g+−. �
We proceed by computing R∇ (∂ p), which is technically more challenging. We derive two different expressions for it. The 

second one, which is seemingly more complicated, is going to be used to simplify things in the computation of the Ricci 
tensor.

Lemma 5.3. We have

R∇(∂ p) = q(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p

+ q(αs,αs)E23T1234E23∂̄ p ∧ ∂ p ⊗ ∂ p

− q(αs,αs)q−(ωs,2ρ)∂ p ∧ g−+.

We can also write this as

R∇(∂ p) = q(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p

− E23T1234E23T−1
1234∂ p ∧ ∂̄ p ⊗ ∂ p

− (1 − q−(αs,αs))q−(ωs,2ρ) ∧ (g+−) ⊗ ∂ p

− q(αs,αs)q−(ωs,2ρ)∂ p ∧ g−+.

Proof. According to (2.10), the quantum Levi-Civita connection acts on ∂ p by

∇(∂ p) = q(αs,αs)E23T1234∂̄ p ⊗ ∂ p − q(αs,αs)q−(ωs,2ρ) pg−+.
17
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First expression. Using the identity (d ⊗ id)(g−+) = 0 from (2.13) we compute

(d ⊗ id)∇(∂ p) = q(αs,αs)E23T1234∂∂̄ p ⊗ ∂ p − q(αs,αs)q−(ωs,2ρ)dp ∧ g−+
= q(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p + q(αs,αs)E23T1234E23∂̄ p ∧ ∂ p ⊗ ∂ p

− q(αs,αs)q−(ωs,2ρ)dp ∧ g−+.

Here we also used the identity for ∂∂̄ p as in Lemma 5.2.
On the other hand, using (id ⊗ ∇)(g−+) = 0 from (2.14) we have

(id ⊗ ∇)∇(∂ p) = q(αs,αs)E23T1234∂̄ p ⊗ ∇(∂ p)

= q2(αs,αs)E23T1234E45T3456∂̄ p ⊗ ∂̄ p ⊗ ∂ p − q2(αs,αs)q−(ωs,2ρ)E23T1234∂̄ p ⊗ pg−+.

The relations (2.4) and (2.6) give S123∂̄ pp = q(ωs,ωs)∂̄ pp. Then, using this identity together with (C.1), we can rewrite the 
second term above as

E23T1234∂̄ pp = E23S̃234S123∂̄ pp = q(ωs,ωs)E23S̃234∂̄ pp

= q−(ωs,2ρ)E′
34∂̄ pp = ∂̄ p.

Now we focus on the first term, which we write as

A = E23T1234E45T3456∂̄ p ⊗ ∂̄ p ⊗ ∂ p.

Using T1234 = S̃234S123 and E23S̃234 = q−(ωs,ωs+2ρ)E′
34 from (C.1) we rewrite it as

A = q−2(ωs,ωs+2ρ)E′
34S123E′

56S345∂̄ p ⊗ ∂̄ p ⊗ ∂ p

= q−2(ωs,ωs+2ρ)E′
34E′

56S123S345∂̄ p ⊗ ∂̄ p ⊗ ∂ p.

We have S123∂̄ p ⊗ ∂̄ p = q(ωs,ωs)∂̄ p ⊗ ∂̄ p from (C.3). Using this together with the “braid equation” S123S345S123 =
S345S123S345 from Proposition B.1 we get

A = q−(ωs,ωs)q−2(ωs,ωs+2ρ)E′
34E′

34S345S123S345∂̄ p ⊗ ∂̄ p ⊗ ∂ p.

Using (C.1) again this can be rewritten as

A = q−(ωs,ωs)q−(ωs,ωs+2ρ)E′
34E45S123S345∂̄ p ⊗ ∂̄ p ⊗ ∂ p

= q−(ωs,ωs)q−(ωs,ωs+2ρ)E′
34S123E45S345∂̄ p ⊗ ∂̄ p ⊗ ∂ p.

Next, using the quadratic relation (B.1) for S345 and (C.1) we have

E45S345 = q2(ωs,ωs)−(αs,αs)E45S−1
345 + q(ωs,ωs)(1 − q−(αs,αs))E45

= q2(ωs,ωs)−(αs,αs)q−(ωs,ωs+2ρ)E′
34 + q(ωs,ωs)(1 − q−(αs,αs))E45.

The first term gives zero when acting on ∂̄ p ⊗ ∂̄ p ⊗ ∂ p. Hence we obtain

A = q−(ωs,ωs)q−(ωs,ωs+2ρ)q(ωs,ωs)(1 − q−(αs,αs))E′
34S123E45∂̄ p ⊗ ∂̄ p ⊗ ∂ p

= (1 − q−(αs,αs))q−(ωs,2ρ)E′
34E45∂̄ p ⊗ ∂̄ p ⊗ ∂ p

= (1 − q−(αs,αs))q−(ωs,2ρ)∂̄ p ⊗ g−+.

Plugging this expression back into (id ⊗ ∇)∇(∂ p) we get

(id ⊗ ∇)∇(∂ p) = q2(αs,αs)(1 − q−(αs,αs))q−(ωs,2ρ)∂̄ p ⊗ g−+ − q2(αs,αs)q−(ωs,2ρ)∂̄ p ⊗ g−+
= −q(αs,αs)q−(ωs,2ρ)∂̄ p ⊗ g−+.

Finally combining this with the expression for (d ⊗ id)∇(∂ p) we obtain

R∇(∂ p) = q(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p + q(αs,αs)E23T1234E23∂̄ p ∧ ∂ p ⊗ ∂ p

− q(αs,αs)q−(ωs,2ρ)∂ p ∧ g−+.

Note that the term of the form ∂̄ p ∧ ∂̄ p ⊗ ∂ p has canceled out.
Second expression. It is useful to derive an alternative expression for R∇(∂ p), obtained by rewriting the term ∂̄ p ∧ ∂ p in 

the form ∂ p ∧ ∂̄ p. Using Lemma D.1 we have
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∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p + q−(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂ p ∧ ∂̄ p.

Moreover according to Lemma C.4 we have

E′
12T−1

1234∂ p ⊗ ∂̄ p = −(1 − q(αs,αs))q(ωs,2ρ)E23∂ p ⊗ ∂̄ p + (1 − q(αs,αs))g+−p.

Combining these two identities we obtain

∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p + (1 − q−(αs,αs))E45 p∂ p ∧ ∂̄ p

− (1 − q−(αs,αs))q−(ωs,2ρ) pp ∧ (g+−).

Applying E23 and using (2.7) we get

E23∂̄ p ∧ ∂ p = −q−(αs,αs)E23T−1
1234∂ p ∧ ∂̄ p − (1 − q−(αs,αs))q−(ωs,2ρ) ∧ (g+−)p.

Now plugging this into the previous expression for R∇ (∂ p) gives

R∇(∂ p) = q(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p

− E23T1234E23T−1
1234∂ p ∧ ∂̄ p ⊗ ∂ p

+ (1 − q(αs,αs))q−(ωs,2ρ)E23T1234 ∧ (g+−) ⊗ p∂ p

− q(αs,αs)q−(ωs,2ρ)∂ p ∧ g−+.

Finally we can use (2.6) to compute

E23T1234 p∂ p = q−(αs,αs)E23∂ pp = q−(αs,αs)∂ p,

which allows us to rewrite the third term in the claimed form. �
Remark 5.4. It can be shown that the term E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p vanishes in the classical case. On the other hand it is 
non-zero in the quantum case, as we shall see.

It follows from our computations for the Riemann tensor that

R∇ ∈ �(1,1) ⊗ �,

where �(1,1) ⊂ �2 denotes the subspace of elements of the form ∂ p ∧ ∂̄ p (or equivalently of the form ∂̄ p ∧ ∂ p). This is 
analogous to what we have classically for a Kähler manifold.

5.2. Bimodule map

As mentioned before, the Riemann tensor R∇ is not a bimodule map in general. However this turns out to be the case 
here, as we now show.

Theorem 5.5. We have that R∇ : � → �2 ⊗B � is a B-bimodule map.

Proof. We only need to show that it is a right B-bimodule map. We are going to make extensive use of the identity 
E23T3456T1234 = T1234E45, see for instance [16, Lemma C.1].

Case ∂̄ p. Using the expression from Lemma 5.2, the right B-module relations (2.6) and the fact that R∇ is a left B-module 
map, we compute

R∇(∂̄ pp) = q−(αs,αs)T1234 R∇(p∂̄ p) = q−(αs,αs)T1234 pR∇(∂̄ p)

= −q−(αs,αs)T1234E45E45 p∂̄ p ∧ ∂ p ⊗ ∂̄ p − q−(ωs,2ρ)q−(αs,αs)T1234 p∂̄ p ∧ g+−.

Consider A1 = T1234E45E45 p∂̄ p ∧ ∂ p ⊗ ∂̄ p. Using T1234E45 = E23T3456T1234 we get

A1 = E23T3456T1234E45 p∂̄ p ∧ ∂ p ⊗ ∂̄ p

= E23T3456E23T3456T1234 p∂̄ p ∧ ∂ p ⊗ ∂̄ p.

Then using the right B-module relations (2.6) we obtain

A1 = q(αs,αs)E23T3456E23T−1
5678∂̄ p ∧ ∂ p ⊗ ∂̄ pp

= q(αs,αs)E E ∂̄ p ∧ ∂ p ⊗ ∂̄ pp.
23 23
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On the other hand for A2 = T1234 p∂̄ p ∧ g+− we compute

A2 = q(αs,αs)∂̄ pp ∧ g+− = q(αs,αs)∂̄ p ∧ g+−p.

Here we used that g+− is central. Then we obtain

R∇(∂̄ pp) = −E23E23∂̄ p ∧ ∂ p ⊗ ∂̄ pp − q−(ωs,2ρ)∂̄ p ∧ g+−p = R∇(∂̄ p)p.

Case ∂ p. Similarly, using the expression from Lemma 5.3 we compute

R∇(∂ pp) = q(αs,αs)T1234 R∇(p∂ p) = q(αs,αs)T1234 pR∇(∂ p)

= q2(αs,αs)T1234E45T3456E45 p∂ p ∧ ∂̄ p ⊗ ∂ p

+ q2(αs,αs)T1234E45T3456E45 p∂̄ p ∧ ∂ p ⊗ ∂ p

− q2(αs,αs)q−(ωs,2ρ)T1234 p∂ p ∧ g−+.

Let us write this expression in the form

R∇(∂ pp) = q2(αs,αs)B1 + q2(αs,αs)B2 − q2(αs,αs)q−(ωs,2ρ)B3.

For the term B1 we compute

B1 = T1234E45T3456E45 p∂ p ∧ ∂̄ p ⊗ ∂ p

= E23T3456T1234T3456E45 p∂ p ∧ ∂̄ p ⊗ ∂ p.

To proceed we use the “braid equation” T3456T1234T3456 = T1234T3456T1234, which can be easily derived from the properties 
listed in Proposition B.1. We get

B1 = E23T1234T3456T1234E45 p∂ p ∧ ∂̄ p ⊗ ∂ p

= E23T1234T3456E23T3456T1234 p∂ p ∧ ∂̄ p ⊗ ∂ p

= q−(αs,αs)E23T1234T3456E23T−1
5678∂ p ∧ ∂̄ p ⊗ ∂ pp

= q−(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ pp.

The computation for B2 is essentially identical and leads to

B2 = q−(αs,αs)E23T1234E23∂̄ p ∧ ∂ p ⊗ ∂ pp.

Finally we easily get B3 = ∂ p ∧ g−+ p. This leads to R∇ (∂ pp) = R∇(∂ p)p. �
5.3. Some consequences

In this subsection we explore various consequences of the fact that R∇ is a B-bimodule map. First we consider the 
possibility of extending the generalized braiding σ to a map � ⊗B �n → �n ⊗B �, following [3, Definition 4.10].

Definition 5.6. An A-bimodule E with left bimodule connection (∇E , σE) is called extendable if the generalized braiding 
σE : E ⊗A �1 → �1 ⊗A E extends to a map

σ [n]
E : E ⊗A �n → �n ⊗A E

for all n ≥ 1, in such a way that on E ⊗A �m ⊗A �n we have

σ [m+n]
E ◦ (id ⊗ ∧) = (∧ ⊗ id) ◦ (id ⊗ σ [n]

E ) ◦ (σ [m]
E ⊗ id).

It is easy to see that this extension is unique, provided it exists.
This notion of extendability features in the definition of a certain (DG) category AGA , defined by Beggs and Majid in [3, 

Section 4.1]. The objects of this category are triples (E, ∇E , σE), where E is an A-bimodule and (∇E , σE) is a left bimodule 
connection such that: 1) σE is extendable; 2) the curvature R E is a bimodule map.

Proposition 5.7. The generalized braiding σ : � ⊗B � → � ⊗B � is extendable.
20



M. Matassa Journal of Geometry and Physics 179 (2022) 104611
Proof. We make use of the following result ([3, Lemma 4.14], taking into account that the universal differential calculus is 
called maximal prolongation there): provided we use the universal differential calculus of a given FODC, if (E, ∇E , σE ) is a 
left bimodule connection with R E being a bimodule map, then σE is automatically extendable.

In our case we are considering the Heckenberger-Kolb calculus �• , which is the universal differential calculus of the 
FODC �. Since (∇, σ) is a left bimodule connection and R∇ is a bimodule map by Theorem 5.5, we obtain the result. �

Therefore (�, ∇, σ) is an object in the category BGB mentioned above. One consequence of this fact is the following 
identity, which in the classical case amounts to the antisymmetry property Rijkl = −R jikl for the components of the Riemann 
tensor.

Corollary 5.8. We have the identity

(R∇ ⊗ id + (σ [2] ⊗ id) ◦ (id ⊗ R∇))(g) = 0.

Proof. This follows from [3, Corollary 4.16], which gives the stated result provided that (�, ∇, σ) is an object in the category 
BGB and that the connection ∇ is compatible with the quantum metric g , that is (∇ ⊗ id + (σ ⊗ id) ◦ (id ⊗ ∇))(g) = 0. 
Compatibility of ∇ with g for the quantum projective spaces was proven in [16, Theorem 8.4]. �

Finally we come back to the generalized braiding σ . We show that it satisfies the braid equation possibly up to symmetric 
terms, in the following sense.

Proposition 5.9. The generalized braiding σ : � ⊗B � → � ⊗B � satisfies

(∧ ⊗ id) ◦ σ1 ◦ σ2 ◦ σ1 = (∧ ⊗ id) ◦ σ2 ◦ σ1 ◦ σ2

where we use the standard leg-notation σ1 = σ ⊗ id and σ2 = id ⊗ σ .

Proof. Since σ is extendable by Proposition 5.7, we have the identity

σ [2] ◦ (id ⊗ ∧) = (∧ ⊗ id) ◦ σ2 ◦ σ1.

We have ∧ ◦ (id + σ) = 0 by Corollary 3.6. This leads to

−(∧ ⊗ id) ◦ σ2 ◦ σ1 = (∧ ⊗ id) ◦ σ2 ◦ σ1 ◦ σ2.

Finally using −∧ = ∧ ◦ σ on the left-hand side gives the result. �
Remark 5.10. We leave open the question of whether σ actually satisfies the braid equation. It is easy to show that σ1 ◦
σ2 ◦ σ1 = σ2 ◦ σ1 ◦ σ2 holds when acting on �+ ⊗ �+ ⊗ �+ or �− ⊗ �− ⊗ �− , hence the difficult part is to show that it 
holds for the mixed terms.

6. Ricci tensor

In this section we study the Ricci tensor, corresponding to the quantum metric g and the quantum Levi-Civita connection 
∇ . Its definition depends on the auxiliary choice of a splitting map s for the wedge product, for which we use the one-
parameter family introduced in Proposition 4.1. We are going to show that this free parameter can be fixed by requiring the 
Ricci tensor to be symmetric, that is ∧(Ricci) = 0. Moreover, with this choice the Ricci tensor turns out to be proportional 
to the quantum metric g . This gives a quantum analogue of the Einstein condition for the quantum Fubini-Study metric.

6.1. Definition and computation

We define the Ricci tensor as an appropriate “contraction” of the Riemann tensor, following [3, Section 8.1].

Definition 6.1. The Ricci tensor is the element Ricci ∈ � ⊗B � defined by

Ricci := ((·, ·) ⊗ id ⊗ id) ◦ (id ⊗ s ⊗ id) ◦ (id ⊗ R∇)(g).

Here (·, ·) is the inverse of the quantum metric g , while s is a splitting map for the wedge product. In the classical case, 
with s being the antisymmetrization map, it corresponds to the usual Ricci tensor up to an overall factor (see [3, Example 
8.10]).
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In our case, we are going to use the splitting map s introduced in Proposition 4.1. This is actually a one-parameter family 
of splitting maps, since we have c+− + c−+ = 1 and

s(∂ p ∧ ∂̄ p) = (c+−id − c−+σ+−)(∂ p ⊗ ∂̄ p),

s(∂̄ p ∧ ∂ p) = (c−+id − c+−σ−+)(∂̄ p ⊗ ∂ p).

Corresponding to the decomposition g = g+− + g−+ , we also write

Ricci = Ricci+− + Ricci−+.

In the following we are going to explicitly compute these two components of the Ricci tensor. We begin with Ricci+− , which 
is technically easier.

Lemma 6.2. We have

Ricci+− = −c−+q−2(ωs,2ρ)qdim(V )g+−.

Proof. The component Ricci+− is defined by

Ricci+− = ((·, ·) ⊗ id ⊗ id) ◦ (id ⊗ s ⊗ id) ◦ (id ⊗ R∇)(g+−).

Using the expression for R∇(∂̄ p) from Lemma 5.2 we compute

(id ⊗ R∇)(g+−) = E′
12E23(id ⊗ R∇)(∂ p ⊗ ∂̄ p)

= −E′
12E23E45E45∂ p ⊗ ∂̄ p ∧ ∂ p ⊗ ∂̄ p

− q−(ωs,2ρ)E′
12E23E′

56E67∂ p ⊗ ∂̄ p ∧ ∂ p ⊗ ∂̄ p.

Now consider the splitting map s(∂̄ p ∧ ∂ p) = (c−+id − c+−σ−+)(∂̄ p ⊗ ∂ p) from Proposition 4.1. Taking into account that 
(∂ p, ∂ p) = 0 we obtain

((·, ·) ⊗ id) ◦ (id ⊗ s)(∂ p ⊗ ∂̄ p ∧ ∂ p) = c−+(∂ p, ∂̄ p)∂ p.

Using this result in the computation of Ricci+− we obtain

Ricci+− = −c−+E′
12E23E45E45(∂ p, ∂̄ p)∂ p ⊗ ∂̄ p

− c−+q−(ωs,2ρ)E′
12E23E′

56E67(∂ p, ∂̄ p)∂ p ⊗ ∂̄ p.

Let us write this in the form Ricci+− = −c−+(A1 + A2). We are now going to obtain simpler expressions for the terms A1
and A2.

The term A1 . Using the expression for inverse metric from (2.9) we write

A1 = E′
12E23E45E45(∂ p, ∂̄ p)∂ p ⊗ ∂̄ p

= q(αs,αs)q−(ωs,ωs+2ρ)E′
12E23E45E45S123C3 p∂ p ⊗ ∂̄ p

− q(αs,αs)q−(ωs,2ρ)E′
12E23E45E45 pp∂ p ⊗ ∂̄ p.

The second term vanishes, since using the algebraic relations we compute

E23E45E45 pp∂ p ⊗ ∂̄ p = E23E23E23 pp∂ p ⊗ ∂̄ p = E23E23 p∂ p ⊗ ∂̄ p = 0.

For the first term, using the duality relation (1.2) we get

E45S123C3 = S123E45C3 = S123.

Using this and (2.6) we obtain

E45S123C3 p∂ p ⊗ ∂̄ p = S123 p∂ p ⊗ ∂̄ p = q(ωs,ωs)−(αs,αs)∂ pp ⊗ ∂̄ p.

Finally we obtain

E′
12E23E45E45S123C3 p∂ p ⊗ ∂̄ p

= q(ωs,ωs)−(αs,αs)E′
12E23E45∂ pp ⊗ ∂̄ p = q(ωs,ωs)−(αs,αs)E′

12E23E23∂ pp ⊗ ∂̄ p

= q(ωs,ωs)−(αs,αs)E′ E ∂ p ⊗ ∂̄ p = q(ωs,ωs)−(αs,αs)g .
12 23 +−

22



M. Matassa Journal of Geometry and Physics 179 (2022) 104611
From this we conclude that A1 = q−(ωs,2ρ)g+− .
The term A2 . Now consider the term

A2 = q−(ωs,2ρ)E′
12E23E′

56E67(∂ p, ∂̄ p)∂ p ⊗ ∂̄ p = q−(ωs,2ρ)E′
12E23(∂ p, ∂̄ p)g+−.

We have E′
12E23(∂ p, ̄∂ p) = Trq(g+−). According to Proposition 4.5 we have

Trq(g+−) = q−(ωs,2ρ)qdim(V ) − 1.

Therefore we obtain

A2 = q−(ωs,2ρ)(q−(ωs,2ρ)qdim(V ) − 1)g+−.

The sum. Finally, since Ricci+− = −c−+(A1 + A2) we obtain

Ricci+− = −c−+
(

q−(ωs,2ρ) + q−(ωs,2ρ)(q−(ωs,2ρ)qdim(V ) − 1)
)

g+−

= −c−+q−2(ωs,2ρ)qdim(V )g+−. �
Next we compute Ricci−+ , which is technically more involved.

Lemma 6.3. We have

Ricci−+ = −c+−q(αs,αs)qdim(V )g−+.

Proof. Our goal is to compute the expression

Ricci−+ = E′
12E23((·, ·) ⊗ id ⊗ id) ◦ (id ⊗ s ⊗ id)(∂̄ p ⊗ R∇(∂ p)).

For R∇(∂ p) we use the second expression derived in Lemma 5.3, namely

R∇(∂ p) = q(αs,αs)E23T1234E23∂ p ∧ ∂̄ p ⊗ ∂ p − E23T1234E23T−1
1234∂ p ∧ ∂̄ p ⊗ ∂ p

− (1 − q−(αs,αs))q−(ωs,2ρ) ∧ (g+−) ⊗ ∂ p − q(αs,αs)q−(ωs,2ρ)∂ p ∧ g−+.

Now consider the splitting map s(∂ p ∧ ∂̄ p) = (c+−id − c−+σ+−)(∂ p ⊗ ∂̄ p) from Proposition 4.1. Taking into account that 
(∂̄ p, ̄∂ p) = 0 we obtain

((·, ·) ⊗ id) ◦ (id ⊗ s)(∂̄ p ⊗ ∂ p ∧ ∂̄ p) = c+−(∂̄ p, ∂ p)∂̄ p.

Using this in our expression for Ricci−+ we get

Ricci−+ = c+−q(αs,αs)E′
12E23E45T3456E45(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p

− c+−E′
12E23E45T3456E45T−1

3456(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p

− c+−(1 − q−(αs,αs))q−(ωs,2ρ)E′
12E23E′

34E45(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p

− c+−q(αs,αs)q−(ωs,2ρ)E′
12E23(∂̄ p, ∂ p)g−+.

With obvious notation, we can write the expression above as

Ricci−+ = −c+−(A1 + A2 + A3 + A4).

The term A1 . We begin with the term

A1 = −q(αs,αs)E′
12E23E45T3456E45(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p.

Using the inverse metric from (2.9) and the relation (2.7) we compute

E45(∂̄ p, ∂ p)∂̄ p = E45C′
2 p∂̄ p − q−(ωs,2ρ)E45 pp∂̄ p = C′

2E23 p∂̄ p − q−(ωs,2ρ) p∂̄ p

= C′
2∂̄ p − q−(ωs,2ρ)p∂̄ p.

This lets us rewrite A1 in the form

A1 = −q(αs,αs)E′
12E23E45T3456C′

2∂̄ p ⊗ ∂ p

+ q(αs,αs)q−(ωs,2ρ)E′ E E T p∂̄ p ⊗ ∂ p.
12 23 45 3456
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Write A1,1 = E′
12E23E45T3456C′

2∂̄ p ⊗ ∂ p. Using the definition of T3456 we have

A1,1 = E′
12E23E45S345S̃456C′

2∂̄ p ⊗ ∂ p = E′
12E23E45S345C′

2S̃234∂̄ p ⊗ ∂ p.

Next, using the quadratic relation (B.1) for S345 and (C.1), we compute

A1,1 = q2(ωs,ωs)−(αs,αs)E′
12E23E45S−1

345C′
2S̃234∂̄ p ⊗ ∂ p

+ (1 − q−(αs,αs))q(ωs,ωs)E′
12E23E45C′

2S̃234∂̄ p ⊗ ∂ p

= q−(ωs,2ρ)q(ωs,ωs)−(αs,αs)E′
12E23E′

34C′
2S̃234∂̄ p ⊗ ∂ p

+ (1 − q−(αs,αs))q(ωs,ωs)E′
12E23C′

2E23S̃234∂̄ p ⊗ ∂ p.

The second term vanishes after using (C.1). For the first term we use the duality relation E′
34C′

2 = id from (1.2). Then making 
use of (C.1) again we obtain

A1,1 = q−(ωs,2ρ)q(ωs,ωs)−(αs,αs)E′
12E23S̃234∂̄ p ⊗ ∂ p = 0.

Now consider the term A1,2 = E′
12E23E45T3456 p∂̄ p ⊗ ∂ p. Using the right B-module relations (2.6) and the commutation 

relations between S and S̃ we obtain

A1,2 = q(αs,αs)−(ωs,ωs)E′
12E23E45S345S̃456S̃−1

234∂̄ pp ⊗ ∂ p

= q(αs,αs)−(ωs,ωs)E′
12E23E45S̃456S̃−1

234S345∂̄ p ⊗ p∂ p

= E′
12E23E45S̃456S̃−1

234∂̄ p ⊗ ∂ pp.

Next, using (C.1) and (2.2) leads to

A1,2 = q−(ωs,ωs+2ρ)E′
12E23E′

56S̃−1
234∂̄ p ⊗ ∂ pp = q−(ωs,ωs)E′

12E23S̃−1
234∂̄ p ⊗ ∂ p.

Finally, using (B.1) for S̃−1
234, we get

A1,2 = (1 − q−(αs,αs))E′
12E23∂̄ p ⊗ ∂ p = (1 − q−(αs,αs))g−+.

Since A1 = −q(αs,αs) A1,1 + q(αs,αs)q−(ωs,2ρ) A1,2, we obtain

A1 = −(1 − q(αs,αs))q−(ωs,2ρ)g−+.

The term A2 . Now consider the term

A2 = E′
12E23E45T3456E45T−1

3456(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p.

We claim that E45T−1
3456(∂̄ p, ∂ p)∂̄ p = q−(ωs,2ρ)∂̄ pp. First, by (C.1) we have

E45T−1
3456 = E45S−1

345S̃−1
456 = q−(ωs,ωs+2ρ)E′

34S̃−1
456.

This leads to the expression

E45T−1
3456(∂̄ p, ∂ p)∂̄ p = q−(ωs,ωs+2ρ)E′

34S̃−1
456C′

2 p∂̄ p − q−(ωs,2ρ)q−(ωs,ωs+2ρ)E′
34S̃−1

456 pp∂̄ p.

For the first term we use the duality relation (1.2) and get

E′
34S̃−1

456C′
2 p∂̄ p = E′

34C′
2S̃−1

234 p∂̄ p = S̃−1
234 p∂̄ p.

For the second term we use the quadratic relation (B.1) for S̃−1
456 and (2.6). We get

E′
34S̃−1

456 pp∂̄ p = q2(ωs,ωs)−(αs,αs)E′
34S̃456 pp∂̄ p + (1 − q−(αs,αs))q(ωs,ωs)E′

34 pp∂̄ p

= q(ωs,ωs)E′
34 p∂̄ pp + (1 − q−(αs,αs))q(ωs,ωs+2ρ) p∂̄ p

= (1 − q−(αs,αs))q(ωs,ωs+2ρ) p∂̄ p.

Putting these identities together we obtain

E45T−1
3456(∂̄ p, ∂ p)∂̄ p = q−(ωs,ωs+2ρ)S̃−1

234 p∂̄ p − (1 − q−(αs,αs))q−(ωs,2ρ) p∂̄ p.

Then, using the quadratic relation (B.1) once more for S̃−1
234, we get

E45T−1 (∂̄ p, ∂ p)∂̄ p = q(ωs,ωs)−(αs,αs)q−(ωs,2ρ)S̃234 p∂̄ p = q−(ωs,2ρ)∂̄ pp.
3456
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Finally, using this together with (2.6) and (2.7), we compute

A2 = E′
12E23E45T3456E45T−1

3456(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p

= q−(ωs,2ρ)E′
12E23E45T3456∂̄ pp ⊗ ∂ p

= q−(αs,αs)q−(ωs,2ρ)E′
12E23E45∂̄ p ⊗ ∂ pp

= q−(αs,αs)q−(ωs,2ρ)E′
12E23∂̄ p ⊗ ∂ p

= q−(αs,αs)q−(ωs,2ρ) g−+.

The term A3 . Now we consider the term

A3 = (1 − q−(αs,αs))q−(ωs,2ρ)E′
12E23E′

34E45(∂̄ p, ∂ p)∂̄ p ⊗ ∂ p.

Using (2.2), (2.7) and (1.2) we compute

E′
34E45(∂̄ p, ∂ p)∂̄ p = E′

34E45C′
2 p∂̄ p − q−(ωs,2ρ)E′

34E45 pp∂̄ p

= E′
34C′

2E23 p∂̄ p − q−(ωs,2ρ)E′
34 p∂̄ p = ∂̄ p.

Therefore we obtain

A3 = (1 − q−(αs,αs))q−(ωs,2ρ)g−+.

The term A4 . Finally consider the term

A4 = q(αs,αs)q−(ωs,2ρ)E′
12E23(∂̄ p, ∂ p)g−+ = q(αs,αs)q−(ωs,2ρ)Trq(g−+)g−+.

We have Trq(g−+) = q(ωs,2ρ)qdim(V ) − 1 from Proposition 4.5. Then we obtain

A4 = (q(αs,αs)qdim(V ) − q(αs,αs)q−(ωs,2ρ))g−+.

The sum. For the sum A = A1 + A2 + A3 + A4 we obtain

A = −(1 − q(αs,αs))q−(ωs,2ρ)g−+ + q−(αs,αs)q−(ωs,2ρ)g−+
+ (1 − q−(αs,αs))q−(ωs,2ρ)g−+ + (q(αs,αs)qdim(V ) − q(αs,αs)q−(ωs,2ρ))g−+
= q(αs,αs)qdim(V )g−+.

Since Ricci−+ = −c+− A we obtain the result. �
6.2. Einstein condition and scalar curvature

Since the Ricci tensor is symmetric in the classical case, we can ask for the condition ∧(Ricci) = 0 in the quantum case. 
This uniquely fixes the coefficients c+− and c−+ appearing in the splitting map s, as in the next result.

Lemma 6.4. We have ∧(Ricci) = 0 if and only if

c+− = 1

1 + q(αs,αs)q2(ωs,2ρ)
, c−+ = 1

1 + q−(αs,αs)q−2(ωs,2ρ)
.

Proof. Using Lemma 6.2 and Lemma 6.3 we can write

Ricci = −c−+q−2(ωs,2ρ)qdim(V )g+− − c+−q(αs,αs)qdim(V )g−+.

We have ∧(g−+) = − ∧ (g+−), due to the symmetry property ∧(g) = 0 of the quantum metric from (2.12). Then applying 
∧ to Ricci gives

∧(Ricci) = qdim(V )(−c−+q−2(ωs,2ρ) + c+−q(αs,αs)) ∧ (g+−).

Since ∧(g+−) �= 0, this vanishes if and only if c−+q−2(ωs,2ρ) = c+−q(αs,αs) . Together with the condition c+− + c−+ = 1, this 
uniquely determines c+− and c−+ as in the claim. �

We are now in the position to discuss the relation between the Ricci tensor and the quantum metric g . We recall that 
a smooth manifold equipped with a metric tensor g is called an Einstein manifold if we have the equality Ricci = kg , where 
the scalar k is called the Einstein constant (see for instance [18, Section 3.1.4]).
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Theorem 6.5. Choosing the coefficients c+− and c−+ as above, we have

Ricci = − q(αs,αs)

1 + q(αs,αs)q2(ωs,2ρ)
qdim(V )g = − q2

1 + q2r+2
[r + 1]q g.

Hence the quantum projective spaces, equipped with the Fubini-Study quantum metric g, satisfy a quantum analogue of the Einstein 
condition.

Proof. Inserting the coefficients c+− and c−+ in the previous expression gives

Ricci = − q−2(ωs,2ρ)

1 + q−(αs,αs)q−2(ωs,2ρ)
qdim(V )g+− − q(αs,αs)

1 + q(αs,αs)q2(ωs,2ρ)
qdim(V )g−+

= − q(αs,αs)

1 + q(αs,αs)q2(ωs,2ρ)
qdim(V )(g+− + g−+).

Therefore the Ricci tensor is proportional to the quantum metric g = g+− + g−+ . The second expression is obtained using 
(αs, αs) = 2, (ωs, 2ρ) = r and qdim(V ) = [r + 1]q . �
Remark 6.6. As shown in [3, Example 8.10], Ricci reduces in the classical limit to the usual Ricci tensor from differential 
geometry, up to an overall constant. Let us denote the latter by Riccic , as defined for instance in [18]. Then [18, Section 4.5.3]
gives the result Riccic = 2(r + 1)g for the classical projective spaces with the Fubini-Study metric. This should be compared 
with the classical limit of Theorem 6.5, namely Ricci = − 1

2 dim(V )g = − 1
2 (r + 1)g , which shows that they coincide up to an 

overall constant.

Finally we can look at the scalar curvature, defined as

scal := (·, ·) ◦ Ricci.

Corollary 6.7. The scalar curvature is given by

scal = −q−r+1[r]q[r + 1]q.

Proof. This follows by combining Theorem 6.5 with the quantum metric dimension from Proposition 4.5, that is (·, ·) ◦ g =
(qr+1 + q−(r+1))[r]q . Indeed we have

scal = − q2

1 + q2r+2
[r + 1]q · (qr+1 + q−(r+1))[r]q = −q−r+1[r]q[r + 1]q. �

6.3. Discussion of the choices

In this brief subsection we discuss the choices made for the splitting map s, used in the definition of the Ricci tensor. 
In Proposition 4.1 we have restricted our attention to maps which are linear combinations of id and σ in each component 
�a ⊗ �b . This led us to a one-parameter family of splitting maps, upon requiring that they should descend to �2 and split 
the wedge product. Other choices are probably available, but we should point out that these choices are severely limited if 
we require the splitting map to be covariant, a natural requirement since the differential calculus � is covariant.

The one remaining parameter in s was fixed by the requirement that the Ricci tensor should be symmetric, that is 
∧(Ricci) = 0. This is certainly a natural condition and immediately leads to the Einstein condition Ricci = kg , as discussed 
above.

Here we point out a somewhat unexpected consequence of this choice. Classically we have the splitting map s(x ⊗ y) =
1
2 (x ⊗ y − y ⊗ x) and the identity (·, ·) ◦ s = 0 holds, since the inverse metric is a symmetric bilinear form. However this is 
not true in the quantum case with our choice. Indeed, using Proposition 4.7 we compute

(·, ·)s(∂ p ⊗ ∂̄ p) = 1

1 + q(αs,αs)q2(ωs,2ρ)
(∂ p, ∂̄ p) − 1

1 + q−(αs,αs)q−2(ωs,2ρ)
(·, ·)σ (∂ p ⊗ ∂̄ p)

= (1 − q(αs,αs)q2(ωs,2ρ))(∂ p, ∂̄ p).

A similar computation leads to (·, ·)s(∂̄ p ⊗ ∂ p) = (1 − q−(αs,αs)q−2(ωs,2ρ))(∂̄ p, ∂ p). Therefore (·, ·) ◦ s is proportional to (·, ·)
(with different coefficients on the two components).

This apparent defect could be fixed by making a different choice for the splitting map. Indeed, it is easy to check that 
one can also fix the free parameter in s by requiring that s ◦ (·, ·) should vanish. The drawback of this choice is that the 
Ricci tensor acquires an antisymmetric component, that is ∧(Ricci) is not zero, and the Einstein condition does not hold. 
We consider this choice to be less natural than the one made above.
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Appendix A. Classical formulae

In this appendix we write down the classical limits of the formulae derived in the paper. The aim is to provide a better 
comparison between classical and quantum projective spaces.

First of all, in the classical case the braiding is simply the flip map and we have

(S123 w)i jkl = wkjil, (S̃234 w)i jkl = wilkj, (T1234 w)i jkl = wkli j .

Using this fact, the relations (2.2) for the algebra B become

pij pkl = pkj pil, pij pkl = pil pkj,
∑

i

pii = 1.

Note that combining the first two relations gives pij pkl = pkl pi j , which amounts to commutativity of the generators pij . For 
the differential calculus, the relations (2.4) become

pij∂ pkl = pil∂ pkj,
∑

i

∂ pii = 0,

pij ∂̄ pkl = pkj ∂̄ pil,
∑

i

∂̄ pii = 0.

The quantum metric appearing in (2.8) reduces to

g =
∑
i, j

(∂ pij ⊗ ∂̄ p ji + ∂̄ pij ⊗ ∂ p ji),

which can be seen to correspond to the Fubini-Study metric (for more details see [16, Appendix A]). The inverse metric 
from (2.9) becomes

(∂ pij, ∂ pkl) = 0, (∂̄ pij, ∂̄ pkl) = 0,

(∂ pij, ∂̄ pkl) = δil pkj − pij pkl, (∂̄ pij, ∂ pkl) = δkj pil − pij pkl.

The connection (2.10) reduces to the Levi-Civita connection on the cotangent bundle, defined with respect to the Fubini-
Study metric. We have the formulae

∇(∂ pij) =
∑

k

∂̄ pkj ⊗ ∂ pik − pij g−+,

∇(∂̄ pij) =
∑

k

∂ pik ⊗ ∂̄ pkj − pij g+−.

This is clearly a bimodule connection, as any connection in the commutative case. The generalized braiding (2.11) is simply 
the flip map.

The Riemann tensor from Lemma 5.2 and Lemma 5.3 reduces to

R∇(∂ p) = −
∑
k,l

∂ plj ∧ ∂̄ pkl ⊗ ∂ pik − ∂ pij ∧ g−+,

R∇(∂̄ p) = −
∑
k,l

∂̄ pik ∧ ∂ pkl ⊗ ∂̄ plj − ∂̄ pij ∧ g+−.

The splitting map from Proposition 4.1, taking into account Theorem 6.5, becomes

s(x ∧ y) = 1

2
(x ⊗ y − y ⊗ x).

This is the usual antisymmetrizer, corresponding to the classical splitting map. Finally for the Ricci tensor given in Theo-
rem 6.5 and the scalar curvature we have

Ricci = −1

2
(r + 1)g, scal = −r(r + 1).

Up to overall factors in the definition of the Riemann and Ricci tensors, these expressions correspond to the classical 
formulae for the Fubini-Study metric.
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Appendix B. The maps S and S̃

In this appendix we recall various properties satisfied by the maps

S123 = (R̂V ,V ∗)23(R̂V ,V )12(R̂
−1
V ,V ∗)23,

S̃234 = (R̂V ,V ∗)23(R̂
−1
V ∗,V ∗)34(R̂

−1
V ,V ∗)23.

Proofs of these facts can be found in [16, Appendix A].
First some general properties, valid for any simple Uq(g)-module V .

Proposition B.1. The maps S and S̃ satisfy the following properties.

(1) We have the commutation relations

S123S̃234 = S̃234S123, S̃234S345 = S345S̃234.

(2) We have the “braid equations”

S123S345S123 = S345S123S345, S̃234S̃456S̃234 = S̃456S̃234S̃456.

Now we consider the case V = V (ωs), so that R̂V ,V satisfies a quadratic relation as in (1.5). This quadratic relation and 
its analogue for R̂V ∗,V ∗ lead to the following identities.

Lemma B.2. In the quadratic case we have the relations

S123 = q2(ωs,ωs)−(αs,αs)S−1
123 + (1 − q−(αs,αs))q(ωs,ωs),

S̃234 = q(αs,αs)−2(ωs,ωs)S̃−1
234 + (1 − q(αs,αs))q−(ωs,ωs).

(B.1)

The use of the maps S and S̃ is the main technical difference between the presentation of � given in [16] and the 
original presentation from [12].

Appendix C. Some identities

In this appendix we collect various identities used throughout the paper.
The first set of identities expresses certain relations between the evaluation maps E and E′ (a proof is given in [16, 

Lemma C.2]).

Lemma C.1. Let V = V (λ) be a simple module. Then we have

E′
12S123 = q(λ,λ+2ρ)E23, E′

34S̃−1
234 = q(λ,λ+2ρ)E23. (C.1)

Next, we show certain identities which hold in � ⊗B �, or alternatively in the tensor algebra TB(�). These identities 
rely crucially on the fact that the tensor product is over the algebra B, and do not hold when the tensor product is over C.

Lemma C.2. We have the identities

E23∂ p ⊗ ∂ p = 0, E23∂̄ p ⊗ ∂̄ p = 0. (C.2)

Proof. Using (2.7) and keeping in mind the tensor product over B, we compute

E23∂ p ⊗ ∂ p = E23E23∂ pp ⊗ ∂ p = E23E45∂ p ⊗ p∂ p = 0.

Similarly, for the second identity we compute

E23∂̄ p ⊗ ∂̄ p = E23E45∂̄ p ⊗ p∂̄ p = E23E23∂̄ pp ⊗ ∂̄ p = 0. �
The next result is similar in spirit to the previous one.

Lemma C.3. We have the identities

S̃234∂ p ⊗ ∂ p = q−(ωs,ωs)∂ p ⊗ ∂ p, S123∂̄ p ⊗ ∂̄ p = q(ωs,ωs)∂̄ p ⊗ ∂̄ p. (C.3)
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Proof. Using (2.7) and (2.2) we compute

S̃234∂ p ⊗ ∂ p = S̃234E23∂ pp ⊗ ∂ p = E23S̃456∂ p ⊗ p∂ p

= q−(ωs,ωs)E23∂ p ⊗ p∂ p = q−(ωs,ωs)∂ p ⊗ ∂ p.

Similarly, for the second identity we compute

S123∂̄ p ⊗ ∂̄ p = S123E45∂̄ p ⊗ p∂̄ p = E45S123∂̄ pp ⊗ ∂̄ p

= q(ωs,ωs)E45∂̄ pp ⊗ ∂̄ p = q(ωs,ωs)∂̄ p ⊗ ∂̄ p. �
Finally we derive formulae for certain combinations of the evaluation E′ and the maps T and T−1. The following terms 

are zero classically, but not in the quantum case.

Lemma C.4. We have the identities

E′
12T−1

1234∂ p ⊗ ∂̄ p = −(1 − q(αs,αs))q(ωs,2ρ)E23∂ p ⊗ ∂̄ p + (1 − q(αs,αs))g+−p,

E′
34T1234∂̄ p ⊗ ∂ p = (1 − q(αs,αs))q(ωs,2ρ)E23T1234∂̄ p ⊗ ∂ p − (1 − q(αs,αs))pg−+.

Proof. First identity. Using the quadratic relation (B.1) for S−1
123 in T−1

1234 = S−1
123S̃−1

234 we get

E′
12T−1

1234∂ p ⊗ ∂̄ p = q(αs,αs)−2(ωs,ωs)E′
12S123S̃−1

234∂ p ⊗ ∂̄ p + (1 − q(αs,αs))q−(ωs,ωs)E′
12S̃−1

234∂ p ⊗ ∂̄ p.

We abbreviate this as E′
12T−1

1234∂ p ⊗ ∂̄ p = q(αs,αs)−2(ωs,ωs) A1 + (1 − q(αs,αs))q−(ωs,ωs) A2.
Consider the first term. Using (C.1) and the quadratic relation for S̃−1

234 we compute

A1 = E′
12S123S̃−1

234∂ p ⊗ ∂̄ p = q(ωs,ωs+2ρ)E23S̃−1
234∂ p ⊗ ∂̄ p

= q2(ωs,ωs)−(αs,αs)q(ωs,ωs+2ρ)E23S̃234∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q(ωs,ωs)q(ωs,ωs+2ρ)E23∂ p ⊗ ∂̄ p

= q2(ωs,ωs)−(αs,αs)E′
34∂ p ⊗ ∂̄ p + (1 − q−(αs,αs))q(ωs,ωs)q(ωs,ωs+2ρ)E23∂ p ⊗ ∂̄ p

= (1 − q−(αs,αs))q(ωs,ωs)q(ωs,ωs+2ρ)E23∂ p ⊗ ∂̄ p.

Now consider the second term. First we write

A2 = E′
12S̃−1

234∂ p ⊗ ∂̄ p = E′
12S̃−1

234E23∂ pp ⊗ ∂̄ p = E′
12E23S̃−1

456∂ p ⊗ p∂̄ p.

Then using the quadratic relation for S̃−1
456 and (2.6) we compute

A2 = q2(ωs,ωs)−(αs,αs)E′
12E23S̃456∂ p ⊗ p∂̄ p + (1 − q−(αs,αs))q(ωs,ωs)E′

12E23∂ p ⊗ p∂̄ p

= q(ωs,ωs)E′
12E23∂ p ⊗ ∂̄ pp = q(ωs,ωs)g+−p.

Using the two relations derived above we get

E′
12T−1

1234∂ p ⊗ ∂̄ p = q(αs,αs)−2(ωs,ωs) A1 + (1 − q(αs,αs))q−(ωs,ωs) A2

= −(1 − q(αs,αs))q(ωs,2ρ)E23∂ p ⊗ ∂̄ p + (1 − q(αs,αs))g+−p.

Second identity. Using the quadratic relation for S̃234 in T1234 = S̃234S123 we get

E′
34T1234∂̄ p ⊗ ∂ p = q(αs,αs)−2(ωs,ωs)E′

34S̃−1
234S123∂̄ p ⊗ ∂ p + (1 − q(αs,αs))q−(ωs,ωs)E′

34S123∂̄ p ⊗ ∂ p.

We abbreviate this as E′
34T1234∂̄ p ⊗ ∂ p = q(αs,αs)−2(ωs,ωs)B1 + (1 − q(αs,αs))q−(ωs,ωs)B2.

Consider the first term. Using (C.1) and the quadratic relation for S123 we compute

B1 = E′
34S̃−1

234S123∂̄ p ⊗ ∂ p = q(ωs,ωs+2ρ)E23S123∂̄ p ⊗ ∂ p

= q2(ωs,ωs)−(αs,αs)q(ωs,ωs+2ρ)E23S−1
123∂̄ p ⊗ ∂ p + (1 − q−(αs,αs))q(ωs,ωs)q(ωs,ωs+2ρ)E23∂̄ p ⊗ ∂ p

= (1 − q−(αs,αs))q(ωs,ωs)q(ωs,ωs+2ρ)E23∂̄ p ⊗ ∂ p.

In [16, Lemma C.5] it is shown that pg−+ = q(ωs,2ρ)E23∂̄ p ⊗ ∂ p. Hence we get

B1 = (1 − q−(αs,αs))q2(ωs,ωs) pg−+.

On the other hand, we rewrite the second term using (C.1) as
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B2 = E′
34S123∂̄ p ⊗ ∂ p = q(ωs,ωs+2ρ)E23S̃234S123∂̄ p ⊗ ∂ p

= q(ωs,ωs+2ρ)E23T1234∂̄ p ⊗ ∂ p.

Using these expressions we obtain

E′
34T1234∂̄ p ⊗ ∂ p = q(αs,αs)−2(ωs,ωs)B1 + (1 − q(αs,αs))q−(ωs,ωs)B2

= −(1 − q(αs,αs))pg−+ + (1 − q(αs,αs))q(ωs,2ρ)E23T1234∂̄ p ⊗ ∂ p. �
Appendix D. Relations in degree two

In this appendix we derive alternative forms for the mixed relations between the generators ∂ p and ∂̄ p in the 
Heckenberger-Kolb calculus �• . We should point out that the expressions we derive here are valid for any irreducible 
flag manifold, as in the setting of [12].

Lemma D.1. We have the relations

∂ p ∧ ∂̄ p = −q(αs,αs)T1234∂̄ p ∧ ∂ p + q(αs,αs)q−(ωs,2ρ)E′
34T1234∂̄ p ∧ ∂ pp,

∂̄ p ∧ ∂ p = −q−(αs,αs)T1234∂ p ∧ ∂̄ p + q−(αs,αs)q−(ωs,2ρ)E′
34T1234∂ p ∧ ∂̄ pp.

We also have the relations

∂ p ∧ ∂̄ p = −q(αs,αs)T−1
1234∂̄ p ∧ ∂ p + q(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂̄ p ∧ ∂ p,

∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p + q−(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂ p ∧ ∂̄ p.

Proof. Consider the relation ∂ pp = q(αs,αs)T1234 p∂ p from (2.6). Applying ∂̄ we get

∂̄∂ pp − ∂ p ∧ ∂̄ p = q(αs,αs)T1234∂̄ p ∧ ∂ p + q(αs,αs)T1234 p∂̄∂ p.

We have the identity T1234 p∂∂̄ p = ∂∂̄ pp, as shown for instance in [16, Lemma C.7]. Then the relation above can be rewritten 
as

∂ p ∧ ∂̄ p = −q(αs,αs)T1234∂̄ p ∧ ∂ p + (1 − q(αs,αs))∂̄∂ pp.

Applying E′
34 to this we get (1 −q(αs,αs))q(ωs,2ρ)∂̄∂ p = q(αs,αs)E′

34T1234∂̄ p ∧∂ p, since E′
12∂̄ p = 0 and E′

12 p = q(ωs,2ρ) . Plugging 
this back into ∂ p ∧ ∂̄ p gives

∂ p ∧ ∂̄ p = −q(αs,αs)T1234∂̄ p ∧ ∂ p + q(αs,αs)q−(ωs,2ρ)E′
34T1234∂̄ p ∧ ∂ pp.

Similarly, the relation above (before applying E′
34) can be rewritten as

∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p − (1 − q−(αs,αs))T−1

1234∂̄∂ pp.

Using again T1234 p∂∂̄ p = ∂∂̄ pp gives

∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p − (1 − q−(αs,αs))p∂̄∂ p.

Now applying E′
12 we get −(1 − q−(αs,αs))q(ωs,2ρ)∂̄∂ p = q−(αs,αs)E′

12T−1
1234∂ p ∧ ∂̄ p. Hence

∂̄ p ∧ ∂ p = −q−(αs,αs)T−1
1234∂ p ∧ ∂̄ p + q−(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂ p ∧ ∂̄ p.

The other two relations can be obtained in a similar way starting from ∂̄ pp = q−(αs,αs)T1234 p∂̄ p, again from (2.6). Apply-
ing ∂ we get

∂∂̄ pp − ∂̄ p ∧ ∂ p = q−(αs,αs)T1234∂ p ∧ ∂̄ p + q−(αs,αs)T1234 p∂∂̄ p.

Taking into account T1234 p∂∂̄ p = ∂∂̄ pp we rewrite this as

∂̄ p ∧ ∂ p = −q−(αs,αs)T1234∂ p ∧ ∂̄ p + (1 − q−(αs,αs))∂∂̄ pp.

Applying E′
34 we get (1 − q−(αs,αs))q(ωs,2ρ)∂∂̄ p = q−(αs,αs)E′

34T1234∂ p ∧ ∂̄ p. Then

∂̄ p ∧ ∂ p = −q−(αs,αs)T1234∂ p ∧ ∂̄ p + q−(αs,αs)q−(ωs,2ρ)E′ T1234∂ p ∧ ∂̄ pp.
34
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Similarly we can rewrite the expression above as

∂ p ∧ ∂̄ p = −q(αs,αs)T−1
1234∂̄ p ∧ ∂ p − (1 − q(αs,αs))p∂∂̄ p.

Applying E′
12 we get −(1 − q(αs,αs))q(ωs,2ρ)∂∂̄ p = q(αs,αs)E′

12T−1
1234∂̄ p ∧ ∂ p. Then

∂ p ∧ ∂̄ p = −q(αs,αs)T−1
1234∂̄ p ∧ ∂ p + q(αs,αs)q−(ωs,2ρ)E′

34T−1
3456 p∂̄ p ∧ ∂ p. �

Remark D.2. The relation derived in [12, Proposition 3.11] and recalled in (3.4) corresponds to the fourth one of the previous 
lemma. Clearly any of these four expressions can be taken as the defining relation for the mixed terms in degree two.
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