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Abstract
Machine learning research within healthcare frequently lacks the
public data needed to be fully reproducible and comparable. Datasets
are often restricted due to privacy concerns and legal requirements
that come with patient-related data. Consequentially, many algo-
rithms and models get published on the same topic without a stan-
dard benchmark to measure against. Therefore, this paper presents
HYPERAKTIV, a public dataset containing health, activity, and
heart rate data from adult patients diagnosed with attention deficit
hyperactivity disorder, better known as ADHD. The dataset con-
sists of data collected from 51 patients with ADHD and 52 clinical
controls. In addition to the activity and heart rate data, we also
include a series of patient attributes such as their age, sex, and
information about their mental state, as well as output data from a
computerized neuropsychological test. Together with the presented
dataset, we also provide baseline experiments using traditional ma-
chine learning algorithms to predict ADHD based on the included
activity data. We hope that this dataset can be used as a starting
point for computer scientists who want to contribute to the field
of mental health, and as a common benchmark for future work in
ADHD analysis.

CCS Concepts
• Applied computing → Health informatics; • Computing
methodologies → Machine learning; Cross-validation; Super-
vised learning.
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1 Introduction
Attention-Deficit/Hyperactivity Disorder (ADHD) is a diverse chronic
condition affecting nearly five percent of the adult population. The
disorder often severely impacts social and occupational functioning,
as well as quality of life for those affected [38]. ADHD diagnostics is
currently based on subjective evaluation and clinical observations,
and it is therefore a need for more objective methods [23, 35]. Sen-
sory data collected from patients and analyzed by machine learning
techniques have gained considerable interest as a tool to support
existing subjective diagnostic practices within mental health [14].
Within the field of objective ADHD diagnostics, support vector ma-
chines have shown promising abilities of discriminating between
children with ADHD and healthy controls in movement data from
accelerometers and gyroscopes [26]. Other studies have applied
various neural network algorithms to data from the brain, like func-
tional magnetic resonance imaging (fMRI) and electroencephalog-
raphy (EEG), with promising results for a similar discriminating
approach [1].

Analysis of sensor data containing information about the mental
health of a person requires reliable and reproducible results. There-
fore, in addition to presenting results, it is important to make data,
methods and results equally freely available. However, within the
medical field, sharing data is often problematic due to ethical and
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legal restrictions. We have previously shared two datasets contain-
ing anonymized actigraph recordings of motor activity collected
through clinical studies. First, the DEPRESJON dataset [13] which
contains data from bipolar and unipolar depressed patients, as well
as healthy controls. Second, the PSYKOSE dataset [19] which con-
tains activation data from patients with schizophrenia. In this paper,
we present another openly shared anonymized dataset containing
various sensory data collected from patients referred to a private
psychiatric out-patient clinic in need of a diagnostic evaluation of
either ADHD, mood or anxiety disorders. A total of 103 patients
were recruited, 51 of which were diagnosed with ADHD, and 52
with other diagnoses (clinical controls). The Norwegian Regional
Medical Research Ethics Committee West approved the original
protocol for the data collection, and all processes were in accor-
dance with the Helsinki Declaration of 1975. The data collected
were recordings of motor activity and heart rate, the output of a
computerized test of attention-related problems, as well as various
diagnostic and clinical assessments [10–12]. It is also important
to point out that the actigraph equipment used to record motor
activity are identical to the equipment used when collecting the
files of the DEPRESJON [13] and PSYKOSE [19] datasets. Conse-
quently, the 32 healthy controls included in those two datasets can
be used as an additional comparison group when analyzing the new
HYPERAKTIV dataset.

Recording of motor activity is a simple method of monitoring
human rest and activity cycles, and is ordinarily collected with
a wrist-worn actigraphic device that registers acceleration in the
three-dimensional space. Data from actigraphs have been applied
to studies of sleep [40] and psychiatric diagnosis like bipolar disor-
der [30], unipolar depression [5] and schizophrenia [39]. Regarding
ADHD, studies of actigraph data from both adolescents and adults
have recognized a great potential for motor activity in ADHD diag-
nostics [9, 23]. Activity data from one day is visualized in Figure 1.
In addition, a study of circadian rhythmicity in adult ADHD [36]
found augmented restlessness in sleep towards the end of the night,
and increased activity in the afternoon, when comparing mature
humans with ADHD to healthy controls. In previous studies of
the motor activity data from the HYPERAKTIV dataset, the ADHD
patients did not display evidence of general hyperactivity, but pre-
sented different activity patterns to controls for Fourier analyses,
intra-daily variability and autocorrelation [11]. This dataset has
never been analyzed by machine learning techniques. However, pre-
vious analyses of the DEPRESJON dataset using various machine
learning approaches provided favorable discriminating abilities,
especially for Deep Neural Networks [18].

Conner’s Continuous Performance Test II (CPT-II) [8] is a com-
puterized neuropsychological response test frequently used in the
assessments of ADHD. Still, the specificity and discriminating abil-
ities of CPT-II are somewhat uncertain and may vary between
subtypes of ADHD and cognitive difficulties due to other condi-
tions [25, 35]. Previously, our research group has found the CPT-II to
be a useful supplement in the diagnosis of adult ADHDwhen apply-
ing linear and non-linear analytic tools to the current dataset [12].

Heart rate can be recorded using electrocardiogram (ECG) or
photoplethysmography (PPG) technology. ECG is regarded as the
benchmark and most reliable method [31], although it is not as
mobile as wrist-worn PPG devices. The heart rate data included in

Figure 1: Example of 24 hours (from midnight to midnight)
of actigraphy recordings from participant no. 57. Female,
age group 17-29, diagnosed with ADHD, unipolar depres-
sion, anxiety disorder and cyclothymic temperament.

this dataset is ECG-based and recorded using a small chest-worn
battery driven device, allowing free movement and long record-
ings. Another key point about the present heart rate data is that
it has not been analyzed for any publication at the time of writing
this paper. Heart rate data such as this can be used to calculate
heart rate variability (HRV), which is a measure of variation in
time between consecutive heartbeats. HRV is regulated by the au-
tonomous nervous system and is viewed as a marker of autonomic
activity. There is substantial evidence of reduced HRV in neuropsy-
chiatric disorders such as depression and psychotic disorders [2],
and efforts are being made to utilize this to aid diagnostics and
disease management [24, 37]. HRV in relation to ADHD is sparsely
studied, and results are somewhat conflicting [21]. Furthermore,
previous studies on the subject have mostly focused on pediatric
patient groups. Still, one systematic review found evidence of an
association between ADHD and autonomic dysregulation [28], and
we recently reported an association between lower HRV and poor
emotional regulation in adolescents with ADHD [22].

The main contributions of this paper are:

(1) We compile and publish a fully open dataset containing
sensory data collected from patients with ADHD and clinical
controls, patients with mood or anxiety disorders.

(2) We provide a set of baseline machine learning experiments
to benchmark the released dataset and evaluate its technical
validity.

(3) We discuss and suggest possible future research directions
and application scenarios using the dataset.

The remainder of this paper is organized as follows. First, we give
a brief introduction to the medical background related to ADHD
and the difficulties associated with this common disorder. Then,
we give an in-depth presentation of the dataset, including details
on the included files and directories. This is followed by a discus-
sion on potential use cases that can be a starting point for future
research. We then use one of the presented use cases to perform
two experiments meant as a benchmark for the dataset. Lastly, we
conclude this paper with a discussion on the experimental results
and future hopes for the dataset.
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2 Medical Background
Adult ADHD is a neuropsychiatric disorder characterized by the
core symptoms hyperactivity, impulsivity and inattention. Symp-
toms must be present over time and negatively affect social, aca-
demic, or occupational functioning to qualify for the ADHD diag-
nosis. Inattention seems to be the primary feature of adult ADHD,
characterized by disorganization and distraction, problems with
staying on task and focused, as well as a propensity for persistent
daydreaming. Many adults also have symptoms of impulsivity and
hyperactivity, such as talkativeness, constant restlessness, and an
inclination towards taking spontaneous decisions without evaluat-
ing potential consequences. Among children with ADHD, the latter
condition generally has a more substantial manifestation [38]. An-
other difference between adult and pediatric ADHD is that ADHD
seems to be a predominantly male disorder among children [29].
This gender difference becomes more equalized among adults [38].
Stimulants are considered the most effective medications for ADHD
treatment. However, such medications have a pronounced potential
for misuse and dependency. In general, adult ADHD is associated
with an increased risk of developing substance-use disorders [38].
Furthermore, adult ADHD is also often concurrent with other psy-
chiatric conditions such as mood and anxiety disorders, as well as
sleeplessness [29, 34, 38].

3 Dataset Structure
The dataset is organized into four different items that can be found
in the root directory. The directory activity_data contains the activ-
ity data collected from all participants, organized into separate
files. Each file starts with few lines of metadata before the ac-
tivity measurements start. The directory hrv_data contains the
heart rate data collected from all participants, and like the activity
data, it is separated into one file per participant. Each file starts
with two lines of metadata before the IBI values start. The file
CPT_II_ConnersContinuousPerformanceTest.csv contains the individ-
ual responses of the 360 CPT-II test trials, the omission and com-
mission errors, and the ADHD Confidence Index. The file names
features.csv contains the pre-extracted features used to perform the
experiments presented in Section 7. Each line in the file corresponds
to features for a single participant. Lastly, the file patient_info.csv
contains all the information featured in Section 4. The file consists
of 32 different columns, where each line corresponds to features
for a single participant.

4 Dataset Details
As previously described, the dataset HYPERAKTIV contains time
series of motor activity and heart rate, output from a neuropsycho-
logical computer test, the conclusions and sum scores of various
diagnostic assessment tools, as well as the participant’s sex, age,
and prescribed medications. Sex is given as zero (female) and one
(male). Participant ages are presented in four groups, where 1 =
17-29 years, 2 = 30-39 years, 3 = 40-49 years and 4 = 50-67 years. Of
the 85 patients that recorded motor activity, 23 patients belonged
to age group 1, 26 patients to age group 2, 24 to age group 3, and
12 to age group 4. The majority of the participants were not on
medications. Among the participants diagnosed with ADHD who
provided motor activity recordings, 73 percent were not medicated

Table 1: Characteristics and demographics of the 85 patients
having recorded motor activity. Data from clinical assess-
ments are given as mean (standard derivation). Differences
tested with the Independent Samples t-test with Levene’s
test for Equality of Variance, at a significance level of 𝑝 <

0.05. (NS equals 𝑝 > 0.05)

ADHD Controls 𝑝

N 45 40
Sex (m/f) 24 / 21 20 / 20
Bipolar (n) 16 20
Unipolar (n) 15 10
Anxiety (n) 18 26
Substance (n) 12 7
Other (n) 11 16
CT (n) 26 22
MDQ (n) 18 11
WURS 51.5 (19.1) 29.5 (15.7) <0.001
ASRS 47.6 (11.3) 34.0 (12.3) <0.001
MADRS 13.3 (7.6) 14.0 (8.4) NS
HASD-A 9.5 (4.6) 9.5 (4.8) NS
HASD-D 4.4 (3.8) 5.7 (4.2) NS
Medicated (n) 12 15

and only one individual was prescribed stimulants. Some more
characteristics of the dataset is shown in Table 1.

Two experienced and certified psychiatrists performed diagnos-
tic assessments of all patients, using the Mini-International Neu-
ropsychiatric Interview (MINI Plus, version 5.0.0) [32]. The conclu-
sions of the diagnostic interviews are presented as seven diagnostic
variables that are scored as not present (0), present (1), or unknown
(9). The ADHD variable states the general presence of ADHD, and
the ADD variable identifies the presence of the inattentive subtype
of ADHD. The BIPOLAR, UNIPOLAR, and ANXIETY variables spec-
ify the presence of Bipolar Disorder, Unipolar Depression and/or
Anxiety disorder. Potential drug or alcohol addictions are recog-
nized by the SUBSTANCE variable, and the presence of additional
psychiatric disorders are stated by the OTHER variable. Of the 103
patients assessed with MINI Plus, 51 patients received an ADHD
diagnosis, and 23 had the inattentive sub-type.

The Adult ADHD Self-Report Scale (ASRS) is a screening tool
for evaluating current symptoms of ADHD. This 18-item scale
assesses symptoms of impulsivity, hyperactivity, and inattention.
The outputs are sum scores between 0 and 72, and a higher score
means more severe symptoms [4].

The Wender Utah Rating Scale for Attention Deficit Hyperac-
tivity Disorder (WURS) is a 25-item questionnaire retrospectively
assessing the presence and severity of childhood ADHD symptoms.
The scale outputs a sum score between 0 and 100, and higher scores
indicate increased manifestation and severity of symptoms [4].

The Mood Disorder Questionnaire (MDQ) is a self-reported
screening instrument for bipolar spectrum disorder, containing 13
yes/no questions regarding commonly observed hypomanic/manic
symptoms in bipolar disorder, as well as two additional questions.
The diagnostic criteria are that at least 7 of the 13 questions are
answered yes, several of the symptoms have occurred at once and
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have caused personal problems. The bipolar spectrum diagnosis is
more widely defined than bipolar I and II diagnoses, as it also in-
cludes subthreshold cases [17]. The MDQ-POS variable is reported
similarly to the MINI Plus variables.

The Cyclothymic temperament scale (CT) is a 21-item self-rated
scale, assessing the emotional instability and hypersensitivity to
external stimuli typically associated with this bipolar spectrum
disorder. CT is originally a part of the comprehensive TEMP-A
questionnaire [34]. The variable is reported like the MINI Plus
variables.

Montgomery and Asberg Depression Rating Scale (MADRS) is
a 10-item clinician-rated instrument, which evaluates the severity
of ongoing depression. The sum score (0-60) states the severity of
depression, and scores below 10 are classified as the absence of
depressive symptoms [15].

Hospital Anxiety and Depression Scale (HADS) is a patient-rated
assessment tool for evaluating the severity of the current state of
anxiety and depression. The scale consists of 14-items, where seven
items rate the anxiety level (HADS-A), and seven rate the depressive
state (HADS-D). Each dimension gives a sum score between 0 and
21, and scores below 8 indicate the absence of symptoms regarding
the condition in question [33].

Motor activity was collected with a wrist-worn actigraph device
(Actiwatch, CambridgeNeurotechnology Ltd, England,model AW4),
containing a piezoelectric accelerometer programmed to record the
integration of intensity, amount, and duration of movement in the
x, y, and z-axes. The sampling frequency was 32 Hz and movements
over 0.05 g were recorded. The output is an integer value propor-
tional to the movement intensity for 1-minute epochs [10]. The
dichotomous variable ACC identifies the participants who have
recorded motor activity (N/Y), the ACC-TIME variable tells when
the recordings were started (HH:MM), and ACC-DAYS gives the
number of 24h cycles recorded for each participant. The 45 patients
with ADHD recorded motor activity for 6.6 ± 1.3 days (mean ±
standard derivation), and the 40 clinical controls recorded motor
activity for 7.2 ± 0.9 days.

Heart rate was recorded naturalistically with the chest-worn
ECG-based monitoring device Actiheart (Cambridge Neurotechnol-
ogy Ltd, England) [3]. The time between beats (inter-beat interval
(IBI)) is measured in milliseconds. This data is completely raw, with-
out any correction or imputation. When faced with missing data,
the Actiheart creates its own artifacts, expressed as several identical
IBIs after each other. The time series should be evaluated for these
artifacts and for the potential infrequent appearance of extrasys-
toles. After adequate quality control, the IBI data can be analyzed
into HRV measures. The dichotomous variable HRV identifies the
participants who have recorded heart rate (N/Y), the HRV-TIME
variable tells when the recordings were started (HH:MM), and HRV-
HOURS gives the approximate number of hours heart rate was
recorded for each participant. A total of 80 participants provided
heart rate recordings: 38 ADHD patients for an average of 20.5±3.9
hours, and 42 clinical controls for 21 ± 4.3 hours.

Conner’s Continuous Performance Test II (CPT-II) is a comput-
erized neuropsychological test which evaluates impulsivity and
sustained attention by response or nonresponse to various letters
presented for 250milliseconds on the PC screen. CPT-II contains 360
trials divided into six blocks, defined by the time interval between

the presented letters [25]. CPT-II calculates and outputs various
estimates, like omission and commission errors, as well as a clinical
ADHD Confidence Index score (range 0–100). However, analyzing
the raw data (the responses of the 360 trials) has previously been
fruitful for distinguishing between patient groups in the current
dataset [12]. In total, 49 clinical controls and 50 participants with
ADHD completed the CPT-II test.

HYPERAKTIV is licensed under Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0), and is available
for download at https://osf.io/3agwr.

5 Applications and Usage Scenarios
The purpose of publishing this dataset is two-fold. First, we want
to make the field of mental health research more accessible for
computer scientists that do not have access to private medical data.
Second, there is a lot of multimedia research on medical applica-
tions where datasets are private, making the work neither directly
applicable nor reproducible. We hope that by releasing this dataset,
we open up a more transparent and collaborative community for
mental health research. As a starting point, we foresee this dataset
to have several applications and usage scenarios. A few examples
are presented in the following.

• Predict whether a patient has ADHD or not by using the
included activity data, heart rate variability, or a combination
of the two.

• Use patient-related attributes to analyze associations be-
tween ADHD and other illnesses such as bipolar disorder.

• Use patient-related attributes and unsupervised techniques
to gain new insight to potentially advance diagnosis and
treatment of ADHD and related mental disorders.

• Analyze the heart rate data in context to ADHD.

In Section 7, we perform experiments using some of the aforemen-
tioned application scenarios.

6 Suggested Metrics
As described in Section 5, HYPERAKTIV contains ground truth
for several applications, which have different appropriate metrics
depending on the task. For classification tasks, we recommend using
standard classification metrics for either a binary or multi-class use
case [16]. This includes metrics such as precision, recall, F1-score,
and Matthews correlation coefficient (MCC). For a regression task,
metrics such as mean absolute error or root mean squared error are
more appropriate. Regardless of the application, multiple metrics
should always be reported for a full evaluation of an algorithm.

7 Experiments
One of the applications mentioned in Section 5 was to predict
ADHD based on the provided activity data. This section provides
a set of baseline experiments to provide a starting point for re-
searchers who want to get started with HYPERAKTIV. We split this
up into two separate experiments. The first experiment predicts if
a given patient has ADHD or not based solely on the activity data.

Features used for the experiments were extracted from the ac-
tivity data using the Python library tsfresh [7] and included in the
dataset (see Section 4). These features were reduced to only the rel-
evant features using the function select_features, which is included
in tsfresh. The data was split between a training and testing dataset
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(a) Area under the ROC curve. (b) Area under the PRC curve.

Figure 2: AUCROC and AUPRC plots for the best performing model.

Table 2: Baseline results for predicting ADHD on the on the
test dataset averaged across 10 folds. The best performing
model is highlighted in bold. The models above the midline
are the simple baselines.

Model Accuracy Precision Recall F1-Score MCC

RB 0.58 0.00 0.00 0.00 0.00
MIN 0.61 0.39 1.00 0.56 0.00
MAJ 0.58 0.00 0.00 0.00 0.00

LR 0.71 0.58 0.82 0.68 0.46
RF 0.72 0.60 0.76 0.67 0.44

XGB 0.71 0.61 0.67 0.63 0.40
LGBM 0.70 0.60 0.67 0.63 0.39

Table 3: The averaged confusion matrix calculated from the
predictions of the 10-foldmodels that performed best on the
testing dataset.

True ADHD
Positive Negative Total

Predicted Positive 14 7 14 + 7
Negative 4 10 4 + 10
Total 14 + 4 7 + 10 35

(80% for training and 20% for testing). We combine the clinical con-
trols contained in our previous dataset Psykose [19] to compare
against healthy controls. The test data was kept separate from the
training process and only used for the final test. Each algorithm
was trained on the training dataset using stratified 10-fold cross-
validation leading to ten different models per algorithm (one per
fold). After the training step, each model was then run on the test-
ing dataset. The reported results are the average of the ten models
per algorithm.

We tested four machine learning algorithms in addition to a
series of simple prediction rules. The four machine learning meth-
ods include logistic regression, random forest, XGBoost [6], and
LightGBM [20]. The logistic regression and random forest were im-
plemented in scikit-learn [27], while XBoost and LightGBM were
implemented in their respective official libraries. In addition to
the aforementioned machine learning methods, we also ran a se-
ries of simple prediction rules on the test dataset. This is done to

evaluate the effectiveness of the trained models. The simple rules
include always predicting the majority class, always predicting
the minority class, and random uniform prediction. Each rule was
implemented using the dummy classifier included in scikit-learn.
The code, dataset (with the used splits), and configurations used
for all models to perform the experiments are made open-source
and published on GitHub1.

Looking at the results presented in Table 2, we see that all tested
machine learning models beat the four baselines set for predict-
ing ADHD using the activity data. Of the four models, the logistic
regression method achieves the best MCC (0.46), which is approx-
imately 0.02 more than the runner-up (random forests). Figure 2
and Table 3 show the AUCROC and AUPRC curves and confusion
matrix for the logistic regression model. Overall, the baseline ex-
periments reveal that there is potential in using machine learning
with this data but that there is still space for improvement.

8 Conclusion
Open medical datasets are essential for reproducibility and com-
parability in a field that is well-known for its strict data access.
In this paper, we presented HYPERAKTIV, an open dataset meant
for ADHD research. The dataset contains activity and heart rate
data collected from 103 participants (ADHD patients and clinical
controls) together with a set of patient attributes. We discussed
several applications of the dataset and suggested a series of metrics
that should be used when evaluating machine learning methods
trained on HYPERAKTIV. A series of baseline experiments were
presented, showing that simple machine learning methods are able
to predict ADHD, but with much room for improvement. We hope
that this dataset will contribute to more open and collaborative
work in the computer science community regarding mental health
research.
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