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Abstract

Associative memories enjoy many interesting properties in terms of error correction
capabilities, robustness to noise, storage capacity and retrieval performance and their
usage spans over a large set of applications. In this article, we investigate and extend
Tournament-Based Neural Networks, originally proposed by Jiang et al. (2016), which
is a novel sequence storage associative memory architecture with high memory effi-
ciency and accurate sequence retrieval. We propose a more general method for learning
the sequences which we call Feedback Tournament-Based Neural Networks. The re-
trieval process is also extended to both directions: forward and backward, i.e. any
large-enough segment of a sequence can produce the whole sequence. Furthermore,
two retrieval algorithms, Cache-Winner and Explore-Winner are introduced to increase
the retrieval performance. Through simulation results, we shed light on the strengths
and weaknesses of each algorithm.
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1 Introduction
Neural associative memory is a type of neural networks which is capable of memoriz-
ing (learning) a set of patterns and retrieving them from their corresponding noisy or
incomplete versions. The term association refers to the linkage of two or more pieces
of information. Hopfield neural network (Hopfield, 1982) was among the first designed
artificial neural network with auto-associative memories which is able to retrieve infor-
mation given only some partial clues as well as reconstruct perturbed patterns. Hopfield
neural networks have some drawbacks such as being biologically implausible, due to
the fully connected structure, low efficiency and spurious memories (see, e.g., Hoff-
mann, 2019, and references therein). To improve Hopfield network many variants of
it have been proposed in the literature (see, e.g. Maurer et al., 2005; Berrou & Gripon,
2010; Krotov & Hopfield, 2016; Kim et al., 2017). Due to the sparse coding in the
brain (for sparse coding see, e.g, Olshausen & Field, 2004; Rinkus, 2010), sparse as-
sociative memories are considered more biologically plausible models (Gripon et al.,
2016; Hoffmann, 2019).

Gripon & Berrou (2011) proposed novel sparse neuro-inspired associative mem-
ories that organize neurons into clusters and memorize patterns using the concept of
cliques (see also, Hopfield, 2008, for another clique-based network model of associa-
tive memory). This model, also referred to as GB model or Clustered Cliques Networks
(CCNs), has fundament in information theory (Gripon & Berrou, 2012) and bears sim-
ilarity to the Willshaw-type model (Willshaw et al., 1969) where sparse patterns and
binary connections are considered. These models have been further developed in the lit-
erature (e.g. Aliabadi et al., 2014; Boguslawski et al., 2014; Jarollahi et al., 2014, 2015;
Jiang et al., 2015, 2016; Mofrad et al., 2015, 2016; Mofrad & Parker, 2017; Berrou &
Kim-Dufor, 2018), and used in many applications, such as solving feature correspon-
dence problems (Aboudib et al., 2016), devising low-power content-addressable mem-
ory (Jarollahi et al., 2015), oriented edge detection in image (Danilo et al., 2015), im-
age classification with Convolutional Neural Networks (Hacene et al., 2019), finding all
matches of a probe in a database (Hacene et al., 2017), to mention a few. Furthermore,
they were implemented on a general purpose graphical processing unit (GPU) (Yao
et al., 2014), in 65-nm CMOS (Larras et al., 2018), and in distributed smart sensors
architectures (Larras & Frappé, 2020). Therefore, CCN models can be referred to as an
important brain-inspired memory system (Berrou et al., 2014) that became a basis for a
wide range of research in associative memory models.

Learning and retrieval of temporal sequences in neural networks is a fundamen-
tal property of human intelligence which is studied through different approaches (see,
e.g., Brea et al., 2011; Hawkins et al., 2009; Maurer et al., 2005; Jiang et al., 2016).
Tournament-based Neural Network (TNN) (Jiang et al., 2016) is an extension of the
clique-based approach to associative memories which have oriented connections, and
therefore the ability to store sequential information (see also, Marques et al., 2017, for
an implementation on the GPU). The novel structure of TNN is not only a sequence stor-
age with high memory efficiency, but also a more compatible model with the neuronal
signal propagation in the brain via oriented connections (see also Hawkins et al., 2009;
Hawkins & Ahmad, 2016, for biologically plausible memory sequence structures).

In this paper, we improve the TNN architecture by proposing a more general struc-
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ture, named Feedback TNN, as well as more accurate retrieval algorithms. The original
TNN can be considered as a special case of Feedback TNN, with zero feedback con-
nections. For retrieval, obviously, a less number of random selections during retrieval
results into less component and sequence error at the end. The Cache-Winner retrieval
revisits and changes some previous randomly selected components, in case an error is
detected during retrieval. On the other hand, Explore-Winner reduces the randomness
in decisions by considering the consequences of each decision. The idea behind the
Cache-Winner technique can be illustrated in simple terms by drawing analogy with
human decision making: imagine a person who makes a decision fast and then, if he
realizes a mistake, tries to resolve it by manipulation of past decisions. On the other
hand, Explore-Winner has the analogy with a rather careful decision-maker who inves-
tigates the consequences of all possible decisions at the time and then makes the best
possible decision. In terms of achieving accurate sequence retrieval, both proposed re-
trieval techniques are superior to the Winner, which literally makes a random decision
in the case of equal chance situations, and continues without further actions even when
realizing a mistake later.

It is also known that the brain is able to follow the previously stored sequences,
from any given point forward, and somewhat, also backwards (see, e.g. Hawkins &
Blakeslee, 2007). The other contribution of this paper is introducing Feedback-Backward
retrieval method which makes our model more biologically plausible. Using Feedback-
Backward retrieval, the model gains the capability of retrieval of the whole sequence,
given a sub-sequence, no matter its location. The Feedback-Backward retrieval is more
compatible with the Feedback TNN, but works well with the original TNN as shown
in the results. Backward retrieval, therefore, adds more capabilities to these types of
sequence storage structures, and makes them more similar to brain functioning.

The paper is organized as follows: in section 2 we briefly survey the CCN and TNN
structures. In section 3, different learning and retrieval algorithms are explained. The
simulation results are provided in section 4, and afterwards, in section 5, discussion and
concluding remarks are presented.

2 Background
In this section, first the clustered clique-based neural network structure is described
in section 2.1. These types of networks are able to store and retrieve the fixed length
patterns. Next, in section 2.2, tournament-based neural networks which have the ability
to store and retrieve sequences is surveyed.

2.1 Clustered Clique Networks (CCNs)
In Clustered Clique Networks (CCNs) the way the neurons are organized within clus-
ters, and the sparsity of the encoding used for storing patterns in cliques, result into
large storage diversity, i.e. number of storable patterns, high capacity, i.e. the amount
of storable information, and strong robustness against erasures and errors (Gripon &
Berrou, 2011; Jarollahi et al., 2015; Gripon et al., 2016).
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Formally, the structure of CCNs consists of n neurons divided into c clusters with
possibility of different sizes. The input patterns are formed from a pre-defined alphabet
A where the number of neurons in each cluster matches the size of used alphabet |A|.
For simplicity all clusters are considered to have the same number of neurons, say
l = n/c, and therefore the same alphabet size |A| = l. The jth neuron in the ith cluster
is denoted by nij and it has an associated value, v(nij), equals one if it is activated, and
zero otherwise; where 1 ≤ i ≤ c and 1 ≤ j ≤ l. Let P be the set of patterns to be
stored where pattern p ∈ P contains c sub-patterns, i.e. p = p1p2 · · · pc; for pi ∈ A.

The learning process starts by assigning a unique set of neurons -one per cluster- to
each p ∈ P:

p = p1p2 · · · pc → (f(p1), f(p2), · · · , f(pc))

where f : {pi} → {nij|1 ≤ j ≤ l}.

Learning proceeds by activation of the selected neurons, i.e. v(nij) = 1, and forming a
clique by connecting the selected c active neurons to each other through binary edges.
As a result, the learning process generates a set of binary edges

W = {ω(ij)(i′j′)| if i 6= i′ and ∃ p ∈ P s.t. f(pi) = nij and f(pi′) = ni′j′},

where ω(ij)(i′j′) is an edge between nij and ni′j′ .
The edge ω(ij)(i′j′) belongs to W independently from the number of patterns that use
both nij and ni′j′ neurons, but only if there exists such a pattern. Figure 1 illustrates the
storing process in clique-based networks.
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Figure 1: The learning process of three patterns, in a network with c = 4 clusters and
l = 16 neurons per cluster. Node ni,j refers to the jth neuron in the ith cluster. Each
clique represents one of the three (4, 1, 8, 12), (10, 2, 8, 1), and (10, 12, 6, 11) patterns
with yellow, green, and purple respectively. Coloured nodes refer to the activation of
neurons for at least one pattern. The red nodes, n1,11 and n3,9, belong to two patterns.
Note that it is not possible to retrieve the patterns by finding a unique clique using only
one of these red nodes.

The recall or retrieval phase of a possibly distorted version of a learnt pattern, p̂, is
based on finding the closest match from P . Depending on the type of distortion, var-
ious retrieval methods might be used (see, Aboudib et al., 2014), however, in general
the recall procedure consists of local and global phases. The local phase aims to find
the most probable neurons in different clusters, using information from p̂ or incoming
connections from previously activated neurons, and activate them, i.e. v(nij) = 1. The
global phase is to recall the established edges inW that have an end in activated neu-
rons. This procedure alternate between global and local retrieval to gradually complete
the clique and therefore the pattern.

It is noteworthy that other sparse structures were presented by Aliabadi et al. (2014),
according to which, c � χ where χ = n/l denotes the number of clusters and c was
used to denote a smaller set of clusters for which a sparse pattern is mapped into. Re-
trieval, in this case, would be more complicated and various scenarios could be consid-
ered (see, e.g., Aboudib et al., 2014; Jiang, 2014). For instance, the winner-take-all rule
activates neurons with the highest activity (or maximum score), whilst Losers Kicked-
Out rule (LsKO) eliminates active neurons with less activity using a threshold filter (see
Jiang, 2014, for details).
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2.2 Tournament-Based Neural Network (TNN)
An extension of the CCNs (Jiang et al., 2016) is proposed by using directed edges
between clusters in such a way that the network can store sequential information in a
tournament-based1 neural network. In a chain of tournaments of order c and degree r,
denoted by Tr(c), each node is directed clockwise to its r consecutive neighbors; see
Figure 2 with c = 8 and r = 3 for a sample chain of tournaments. A TNN can then be
seen as a concatenation of tournaments of size r + 1.

Figure 2: An illustration of a chain of tournaments, T3(8), for storing sequences of
length 20. The eight clusters are represented by colored circles, and each arrow rep-
resents a set of possible connections between nodes within the clusters. The clusters
construct eight tournaments of size r + 1 = 4. For instance, clusters that have been
shown with 1, 2, 3, 4 make one tournament starting from cluster 1, and clusters labeled
with 7, 8, 1, 2 involve in another tournament starting from cluster 7. A sequence of
length 20 and the assigned clusters for each component si are represented around the
network. Given the first r components (s1, s2, s3) with solid circles, the retrieval algo-
rithm could retrieve the rest sequentially using the tournament connections. This figure
is based on (Jiang et al., 2016, Fig. 5).

In order to store a set of sequences, S, in a chain of tournaments, we suppose that
each sequence s ∈ S contains L component, i.e. s = s1s2 · · · sL; for st ∈ A, t =
1, 2, . . . , L, and |A| = l.

By labeling clusters from 1 to c, the learning process could be explained as follows.
First a unique sequence of neurons must be assigned to each s ∈ S by using function

1In graph theory, by assigning direction to all edges of a complete graph, a tournament can be
achieved.
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f = (f1, · · · , fc), where fi, i = (t− 1 mod c) + 1, maps a component st, to a unique
neuron nij in cluster i:

fi : {st} → {nij|1 ≤ j ≤ l, }, 1 ≤ i ≤ c,

therefore,

f(s) = (f1(s1), f2(s2), · · · , fc(sc), · · · , f(L−1 mod c)+1(sL))

Learning continues by connecting neuron nij to neuron ni′j′ at passage π as follows

nij → ni′j′ , if:
{
fi(s(i+(π−1)c)) = nij
fi′(si′+(π−1)c) = ni′j′

and, 1 ≤ δi(i
′) ≤ r (1)

where δi(i′) = (i′ − i) mod c, and 1 ≤ π ≤ bL
c
c.

In general, for s ∈ S, if the above conditions are satisfied for a given π such that
nij → ni′j′ , we set Ns,π(nij, ni′j′) = 1, which means that nij is connected to ni′j′ , in
sequence s, otherwise we set Ns,π(nij, ni′j′) = 0. In Figure 2, s2 is connected to s3 in
passage π = 1, but not to s11 (in passage π = 2), and s19 (in passage π = 3) in the same
sequence s, for instance. So the neighboring connections are defined based on both s
and π values.

At the end of learning or storing process, the network has the following connections:

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1} (2)

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l (see
Algorithm 1 for the learning process).

A stored sequence retrieval process could start with any subsequence of r consec-
utive components and the activation of a component in the following cluster relies on
the connections of r previous clusters. If the given subsequence is not the first r com-
ponents of the sequence, the retrieval algorithm requires the information of the location
of clusters. In Figure 2, the first three components s1, s2, and s3 are shown with solid
circles, and the components to be retrieved are shown with dashed circles.

The proposed retrieval procedure is sequential using a Winner-Takes-All (WTA)
decision at each step. For brevity, we call this retrieval Winner in the rest of paper (see
Algorithm 2).

3 Structures and Algorithms
The original learning and retrieval algorithms for TNN that were proposed by (Jiang
et al., 2016) are reported in section 3.1. In sections 3.1.1 and 3.1.2, the newly proposed
retrieval algorithms Winner-Cache and Winner-Explore are provided respectively. Feed-
back TNN structure along with its corresponding learning and retrieval algorithms,
Feedback-Forward and Feedback-Backward, are presented in section 3.2. Finally, the
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error types that are used for evaluation of structures are addressed at the end of this
section (section 3.3).

3.1 Learning and Retrieval Algorithms in TNN
TNN structure, which is explained in section 2.2, is summarized by Algorithm 1 and
Algorithm 2 for the learning and retrieval phases respectively.

Algorithm 1: Learning in TNN
input : c, k, r, L & S

initialization

l = 2k,

Generate directed graph G with n = c× l nodes structured in c clusters of size

l.

Assign clusters indices from 1 to L cyclically (similar to Figure 2)

begin

for s ∈ S do

Activate the corresponding neurons to the sequence components;

Connect each active neuron to the consecutive r active neurons.

output: G

Algorithm 2: Winner Retrieval in TNN
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

for i ∈ [r + 1 : L] do
Establish the output edges from previous r active neurons in the

sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
activate one of the candidate nodes randomly as winner and record

it as si;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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For retrieval, the first r components of a previously learnt sequence, [s1 : sr] and the
learnt graph, G, are given and the complete sequence starting with [s1 : sr] is expected.

In Algorithm 2, first each of the given r components are mapped to their related
neurons in the first r clusters. Note that each component value is a number from 0 to
l − 1. Then, the retrieval algorithm establishes the output edges from these r active
neurons. The neurons in the destination cluster with highest input score will form the
candidate set for the next component of the sequence. If there is just one candidate it
will be added to the retrieved sequence and activated for retrieving the next component.
Otherwise, the component must be chosen randomly among the candidates.

3.1.1 Winner-Cache Retrieval in TNN

In the case of Winner-Cache algorithm, the learning phase is similar, but the retrieval
is more advanced. As reported in Algorithm 3, a temporary cache memory is used in
the cases where random selection among winners results into an error which is detected
later (see Figure 3 for an illustration).

Figure 3: The mechanism of using temporary cache memory in the Winner-Cache re-
trieval is illustrated. The component si, with yellow color, represents the point in the
retrieval where none of the nodes in cluster i has a score equal to r = 3 from last three
previous activated neurons. This means that si−1, si−2, and si−3 do not belong to any of
previously stored sequences. Starting from cache memory in cluster i − 3 for compo-
nent si−3, if there is an alternative candidate to be activated, we change the component,
and start retrieving the sequence from that point. If in si−3 the cache memory is empty,
the algorithm checks for si−2 and then si−1. At the end, if there is no alternative, or
using the alternatives does not help, the candidate set for component si will be one of
the winners, i.e. a node with maximum score.

The Cache-Winner algorithm proceeds as follows: whenever there is no unique
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candidate, the component is chosen randomly among the candidates and other candi-
dates will be recorded temporarily (up to assignment of the next r components). If
the algorithm can not find a candidate connected to all the previous r active neurons,
the algorithm starts retrieval from the earliest non-empty cache memory by randomly
choosing another member. For the sake of brevity, we refer to this retrieval as Cache in
the rest of paper.

Algorithm 3: Winner-Cache Retrieval in TNN.
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

i = r

while i < L do

i+ = 1

Establish the output edges from last r active neurons in the sequence;

Create a candidate set of nodes with maximum score in cluster i.

if maximum score < r then
search in the cache data of last r neurons ([i− r : i− 1]), find the

first non-empty cache (j) and select a new member randomly.

Update the cache by removing the new member and start retrieval

from that point (j) again by putting i = j.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
activate one of the candidate nodes randomly as winner and record

it as si;

Put the remaining members of the candidate set into a temporary

cache;

keep the cached data until the next r neurons are assigned.

output: s[s1:sr] // Retrieved sequence given [s1 : sr]

3.1.2 Winner-Explore Retrieval for TNN

At this juncture, we introduce a retrieval technique which performs exploration within
the forthcoming clusters to find a more accurate solution. As reported in Algorithm 4,
whenever the candidate set in a cluster is not unique, by using the previous activated
neurons, we produce possible candidates in the next clusters and consequently try to
eliminate the current candidates by exploring the connections to the generated candidate
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sets (see Figure 4 for an illustration). The maximum number of clusters that can be
investigated (rexplore) is upper bounded by r − 1. However, as will be discussed in
section 4.1.1 one could limit the retrieval algorithm to explore shorter distances. For
instance setting rexplore < c− r in order to reach each cluster at most once for a specific
component. Exploration involves searching for candidate sets in the following clusters
and then trying to eliminate the number of candidates in the current cluster. The two
techniques for this part are called Forward technique and Clique technique. In Forward
technique, any candidate which is not connected to at least one node in the following
clusters will be deleted from candidate set. Therefore, it is possible to find a unique
candidate by reducing the size of candidate set. Clique technique is more advanced
since it removes the candidates that are not in a tournament of largest possible size. We
use term Clique for this technique to differentiate this technique from the learning on
chain of tournaments.

Figure 4: Using exploration technique to eliminate the number of components that
are chosen randomly among the winners in Winner-Explore retrieval algorithm is il-
lustrated. Suppose that by using the edges from r = 3 previous nodes equivalent to
si−3, si−2, and si−1 to find si component, more than one option is found for the candi-
date set in cluster i. In this case, rexplore = r − 1 = 2 previous components, i.e. si−2
and si−1 are used to create a candidate set in cluster i + 1. In the Forward technique,
the algorithm checks which candidates for component i are connected to at least one
of the nodes in the candidate set in cluster i + 1 (using links labeled with 1). If there
is still more than one option, a candidate set in cluster i + 2 will be constructed using
si−1. Again, using Forward technique, the connections between candidates in cluster i
and the candidate sets in the following i+ 1 and i+ 2 clusters are used to eliminate the
options (labeled with 1 and 2). If still no unique option is available, Clique technique
will be used which searches for the possible cliques of size 3 (using all the links labeled
with 1, 2, and 3). Since rexplore = 2, if there is no unique candidate in cluster i within
the cliques, the process stops and the winner will be chosen randomly.
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The retrieval process, as reported in Algorithm 4, searches for a candidate set in
one cluster at each iteration: first by using the Forward technique, and then applying
Clique technique. In the case of a non-unique option, algorithm proceeds by adding a
new candidate set in the following cluster, and so on. The search for unique candidate
stops whenever a unique option is found or all the clusters for exploration are taken into
computation.
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Algorithm 4: Winner-Explore Retrieval in TNN
input : G & [s1 : sr], rexplore

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

for i ∈ [r + 1 : L] do

Establish the output edges from last r active neurons in the sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then

for j ∈ [1 : rexplore] do
Create a candidate set in cluster i+ j using the r − j activated

nodes prior to i;

Construct a sub-graph of G with nodes of candidate sets in

cluster i up to cluster i+ j;

Update the candidate set in cluster i by keeping nodes with

maximum output edges in sub-graph

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as

si. // Forward technique worked.

else if len(candidate set) > 1 then
Find all tournaments in the sub-graph including nodes from

candidate set in cluster i with size j + 1;

Update the candidate set in cluster i so that only candidates

in such tournaments remain;

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as

si. // Clique technique worked.

else if len(candidate set) == 0 or j == r − 1 then
Return the last non-empty candidate set as the final

candidate set for cluster i;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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3.2 Feedback TNN Structure
In this structure, the learning phase sets tournaments with forward and backward con-
nections. Each node in a tournament of size r + 1, has rfwd links to the forthcoming
clusters and receives rfbk links from the forthcoming [rfwd + 1 : r] active neurons,
where 0 ≥ rfbk ≥ rfwd and r = rfwd + rfbk (see Figure 5).The original TNN can be
seen as a Feedback TNN with zero feedback links (rfbk = 0).

Figure 5: In the chain of tournament structure with feedback connections, the first
rfwd connections of each tournament are clockwise and the next rfbk connections are
counterclockwise. In this illustration, rfwd = 2 and rfbk = 1.

For storing sequence s ∈ S, where s = s1s2 · · · sL, the clockwise connections in
the network will be as follows:

nij → ni′j′ , if:
{
fi(si+(π−1)c) = nij
fi′(si′+(π−1)c) = ni′j′

and, 1 ≤ δi(i
′) ≤ rfwd, (3)

and for counterclockwise connections:

nij ← ni′j′ , if:
{
fi(si+(π−1)c) = nij
fi′(si′+(π−1)c) = ni′j′

and, rfwd ≤ δi(i
′) ≤ r (4)

where 1 ≤ π ≤ bL
c
c. In general, for s ∈ S , if the above conditions are satis-

fied for a given π such that nij → ni′j′ , we set Ns,π(nij, ni′j′) = 1. Similarly we
set Ns,π(ni′j′ , nij) = 1, if nij ← ni′j′; otherwise we set Ns,π(nij, ni′j′) = 0, and
Ns,π(ni′j′ , nij) = 0.

At the end of learning or storing process, the network has the following connections:

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1} (5)

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l
(see Algorithm 5 for the learning process). In Figure 5, activated neurons in cluster i
are connected to the activated neurons in clusters i + 1 and i + 2 clockwise, whereas
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activated neurons in cluster i + 3 are connected to the activated neurons in cluster i
counterclockwise.

Algorithm 5: Learning in Feedback TNN
input : c, k, r, rfwd, L & S

initialization

l = 2k, rfbk = r − rfwd

Generate directed graph G with n = c× l nodes structured in c clusters of size

l.

Assign clusters indices from 1 to L cyclically (see Figure 5 for labeling)

begin

for s ∈ S do

Activate the corresponding neurons to the sequence;

Connect each active neuron (say in cluster i) to the active neurons in

the next rfwd clusters ([i+ 1 : i+ rfwd]);

Connect each active neuron to the previous rfbk active neurons in

clusters [i− r : i− rfwd − 1];

output: G

3.2.1 Retrieval in Feedback TNN

Here we introduce two retrieval algorithms, Feedback-Forward (Algorithm 6) and Feedback-
Backward (Algorithm 7), which can retrieve a complete sequence from any given seg-
ment. To do so, we need a pre-matching process to find the clusters on which the given
sequence segment was stored (see Figure 6 for an illustration of Feedback-Forward and
Feedback-Backward processes).
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(a) For Forward retrieval in Feedback TNN,
first a candidate set in cluster i is created using
the connections from active neuron in clusters
i − 1 and i − 2 (since rfwd = 2). If there is a
unique winner candidate, the algorithm stops,
otherwise a sub-graph is constructed with the
candidate set and the active neuron in cluster
i − 3 (since rfbk = 1). The candidate set will
be updated by keeping nodes with maximum
score.

(b) For Backward retrieval in Feedback TNN,
first a candidate set in cluster i is created using
the connections from active neuron at cluster
i+3 (since rfbk = 1). If there is a unique win-
ner candidate, the algorithm stops, otherwise a
sub-graph is constructed with the candidate set
and the active neurons in clusters i+1 and i+2
(since rfwd = 2). The candidate set will be up-
dated by keeping nodes with maximum score.

Figure 6: Consider the structure in Figure 5 where rfwd = 2 and rfbk = 1. Given a
segment of r = 3 components, Forward and Backward retrieval processes are illustrated
respectively in (a) and (b).

Feedback-Forward algorithm (hereafter Forward) retrieves the sequence given the
first r components of it. This retrieval is performed in two phases: first, by using the
rfwd connections, and then if the winning candidate is not unique, the rfbk connections
are used to eliminate the number of candidates, as reported in Algorithm 6.

Feedback-Backward algorithm (hereafter Backward), retrieves the sequence given
the last r components of a sequence. As reported in Algorithm 7, the algorithm first
uses the rfbk input edges to make an initial candidate set, and then the output edges
from the candidate set is used to eliminate the number of candidates.
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Algorithm 6: Feedback-Forward Retrieval in Feedback TNN
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

Assign clusters indices from 1 to L cyclically

begin

for i ∈ [r + 1 : L] do
Establish the output edges from previous rfwd active neurons in the

sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
A sub-graph of G with nodes from candidate set in cluster i, and

previous rfbk active neurons in clusters [i− r : i− rfwd] is

constructed;

The new candidate set for cluster i is updated by keeping the nodes

which have maximum output edges in the sub-graph;

Select one node from the updated candidate set as winner and

record it as si;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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Algorithm 7: Feedback-Backward retrieval in Feedback TNN.
input : G & [sL−r+1 : sL]

initialization

Activate r neurons in the related r clusters using [sL−r+1 : sL]

Assign clusters indices from 1 to L cyclically

begin

for i ∈ [L− r : 1;−1] do
Establish the output edges from rfdk active neurons in clusters

[i+ rfwd : i+ r];

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
A sub-graph of G with nodes from candidate set in cluster i, and the

next rfwd active neurons is constructed;

The new candidate set for cluster i is updated by keeping the nodes

with maximum score (maximum output edges) in the sub-graph;

Select one node from the updated candidate set as winner and

record it as si;

output: s[sL−r+1:sL] // Retrieved sequence given [sL−r+1 : sL]

Note that Winner (Algorithm 2) can be seen as a special case of Forward (Algo-
rithm 6) when rfwd = r and rfbk = 0. In Figure 6a, only the first step that uses rfwd is
applicable. On the other hand, in the case of the original TNN, the Backward algorithm
starts with a candidate set of size l and makes a sub-graph with the given rfwd = r
components, since rfbk = 0 and there is no input connection. In Figure 6b, only the
second step that uses rfwd is applicable.

3.3 Error Types
Based on the argument of Jiang et al. (2016), two different error types could be distin-
guished; an error type that is due to prior retrieval errors in simulation, and an error type
that is structural and which is caused by an excessive network density. The structural
error type could happen even if all the previous r components are given correctly.

Component Error Rate (CER) and Sequence Error Rate (SER) address the simu-
lation error; CER is defined as the ratio of the number of incorrect components over
the number of total retrieved components, whereas SER is defined as the number of
sequences that are failed to be retrieved correctly over the total number of sequences.
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Structural Component Error Rate (S-CER) and Structural Sequence Error Rate (S-
SER) address the structural error. According to Jiang et al. (2016), the S-CER can
be estimated as the error rate at a single retrieval step when the provided previous r
components are correct.

PS−CER = 1− (1− dr)l−1 (6)

where d is the network density which is the ratio of number of established connec-
tions during the storage process over all possible connections that the network structure
allows. The density is calculated (in Jiang et al., 2016, equation 7) as:

d = 1−
(
1− 1

l2

) |S|L
c

(7)

At the sequence level, S-SER is estimated (in Jiang et al., 2016, equation 9) as:

PS−SER = 1− (1− dr)(l−1)(L−r) (8)

Please note that the density in the Feedback TNN structure is the same as the density
of the original TNN structure (equation 7). This is due to the fact that the density is
calculated based on the probability of having a connection between two nodes, and in
the case of Feedback TNN just the directions of some connections are changed while
their number remains the same. Moreover, based on the definition of structural errors,
equations 6 and 8 are valid for Cache, Explore and Feedback TNN retrievals.

4 Simulation Results
In this section, the simulation results for different algorithms are presented in order to
show the robustness of storage and to compare different structures. Learning processes
for TNN and Feedback TNN structures (Algorithm 1 and Algorithm 5, respectively)
are considered when c = 20, k = 8, l = 28 = 256, r = 12, rfwd = 6, rfbk = r −
rfwd = 6, and L = 100. Regarding the retrieval, four scenarios; Winner (Algorithm 2),
Cache (Algorithm 3), Explore (Algorithm 4), Forward (Algorithm 6), and Backward
(Algorithm 7) are simulated and compared.

The sequences in the learning set are different in at least one of the first r compo-
nents. For instance, a learning set of size 1000 is a set of 1000 sequences that all are
different in at least one component in the 12 first components. To see if the memorized
sequences can be retrieved, 100 of the learnt sequences are randomly chosen from each
learning set. To reduce randomness effect, we fixed the 100 choices of sequences in the
learning set of each size (varies between 10 to 15000), in simulations for all the retrieval
algorithms.

4.1 TNN Retrieval Results
Figure 7 depicts the error rate for a range of learning set sizes, for different retrieval al-
gorithms, namely, Winner (Algorithm 2), Cache (Algorithm 3) , Explore with rexplore =
3, and rexplore = 7 (Algorithm 4). To illustrate the power of the algorithms with respect
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to the structure of the network, the calculated density and structured error are also plot-
ted. It is clear from the results that retrieval with the exploration when rexplore = 7
is far better than the rest of scenarios. For instance, when the learning set is com-
posed of 10000 sequences, each of size 100, the SER (Figure 7a) for the Winner is one,
which means that no sequence can be retrieved correctly with the original algorithm.
While this value is about 0.7 for the algorithm with cache memory and about 0.6 when
the exploration technique is used with rexplore = 3, and the SER for exploration with
rexplore = 7 is less than 0.2. This superiority of exploration algorithm can easily be
tracked in the CER results (Figure 7b). For instance, for the same learning set, the CER
for Winner is 0.75, for Cache it is 0.4, for Explore with rexplore = 3 it equals to 0.3, and
for Explore with rexplore = 7 it is near zero.

(a) Sequence error rate (SER) (b) Component error rate (CER)

(c) Running time ratio for Explore-r7 and
Cache over Winner.

Figure 7: Comparison between retrieval algorithms on the TNN structure; Winner (Al-
gorithm 2), Cache (Algorithm 3) , Explore with rexplore = 3, and rexplore = 7 (Algo-
rithm 4). The running time ratios of Explore (with rexplore = 7) and Cache over Winner
are reported in 7c.

In Figure 7a, the simulated error value for all retrieval methods are less than S-SER
which is obtained from equation 8. This can be explained by the fact that the S-SER
error estimation is based on the probability of having at least two nodes in a cluster that
all the previous r components are connected to. In this case, for the simplest version of
retrieval algorithms, Winner, one candidate will be chosen randomly. In other words,
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S-SER is an upper bound for SER and in the case that all the choices are unique (S-
SER = 0), there will be no error (SER = 0). Although there is no guarantee that
the randomly chosen candidate is the desired one, the SER value is slightly less than
the S-SER. Obviously, the more sophisticated retrieval algorithms, Cache and Explore,
reduce the random selections and therefore, the number of errors. The structure error
is a function of network density and as can be seen in Figure 7, higher density leads to
higher structure error.

For S-CER (Figure 7b), the argument is different and the simulated error values in
retrieval process are higher than S-CER. To calculate S-CER, the assumption is that the
previous retrieved components are correct and S-CER estimates the probability of hav-
ing at least two nodes that are fully connected to the previous r components. However,
in the simulation, the values of some of r previous components are faulty and as a result
the decision is not based on correct components. Therefore, in a sequence retrieval, er-
rors at each component could be propagated to the rest of retrieval and simulated error
CER will be higher than S-CER which assumes the r components are correct.

The reported results in Figure 7 suggest Explore retrieval with higher number of
steps. Cache algorithm is also promising, but for large learning sets it has a low speed.
When the network density increases, Cache retrieval process creates larger candidate
sets for each component and therefore larger cache memory, and the algorithm might
go through all the options to find the correct component. Explore, on the other hand,
must explore longer distances that is the source of complexity in Explore. Figure 7c
compares the simulation running time between Explore-r7 and Cache with Winner for
different learning set sizes. The running time up to a learning set size of 8000 for all
the three algorithms is the same, while Explore-r7 and Cache perform far better than
Winner; compare the low performance of Winner (SER = 0.52) with the performance
of Cache (SER = 0.08) and Explore-r7 (SER = 0.02). As another example, for
learning set size 10000, SER = 1 for Winner; while Explore-r7 has SER = 0.18 and
running time ratio 1.2, and Cache has SER = 0.86 and running time ratio 1.7.

This shows that for reasonable error values (say less than 0.1), the running time ratio
is at the same level of Winner in both cases. Interestingly, the running time for Cache
reaches a peak for a learning set of size 14000 and thereafter starts to decline for larger
learning sets as shown in Figure 7c. This can be explained by the excessive density so
that the probability of having full score candidate at each step increases and therefore
the algorithm can not detect an error which reduces the processing time for checking
the Cache memory.

In Figure 7b, only Explore algorithm with rexplore = 7 that investigates further
clusters shows lower error than S-CER until the density about 0.6 and learning set
of size 12000. We will have a closer look at the simulation results for the Explore
algorithm below.

4.1.1 More Investigation on Explore Retrieval Algorithm

In Explore retrieval, by starting from distance one, the algorithm uses Forward and
Clique techniques consecutively and increases the exploration distance until a unique
candidate is found or rexplore limit is met. Clique technique is more powerful but it
is more computationally expensive than Forward technique. Figure 8a shows that by
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using the Clique technique alone (red dashed line) the exploration performance does
not change, whilst Forward technique alone (blue dashed line) is far less effective than
the achieved results by exploration algorithm. This is an expected result since Clique
technique is endowed with Forward technique.

Figure 8b and 8c show the number of components that Forward and Clique tech-
niques successfully retrieved (unique winner), respectively in the course of retrieving
each sequence. The columns show the exploration distance and the rows show the size
of learning sets. It is noteworthy that the first column in Figures 8c is all zero since for
a distance one, a forward connection and a tournament of size 2 are the same, and the
Forward technique is prior to the Clique technique in Algorithm 6.

As reported in Figure 7b, the Winner handles the retrieval when the learning set
sizes are up to 7000. Until this point, no exploration is demanded. But with larger sizes
of learning set and whenever it comes to the exploration phase, most of the cases can be
retrieved with exploration of distance one. This, however, does not mean that the best
choice, in terms of time/accuracy trade off, is rexplore = 1. When the size of learning
sets gets higher, the Clique technique gets more involved. Because the higher sizes
of candidate sets in under exploration clusters increases the searching domain, which
results Forward technique to be failed in retrieval and Clique technique starts to retrieve.
Let us consider for instance the learning set sizes around 12000 − 13000 which is the
highest number of successful retrievals per sequence using Explore retrieval (Figure
7a). For these sizes the CER error is high, for example it is about 0.46 for learning
set of size 12000 and equals 0.85 when the learning set size is 13000 and therefore the
overall retrieval is not successful. Interestingly, the S-CER also beats CER at around
12000 (Figure 7b) which shows that high density can not be managed with exploration
technique as well.

For learning sets of size 11000, the CER for Explore-r7 is 0.074 (Figure 7b) while
without exploration technique the CER value equals one for learning set sizes larger
than 10000. Figure 8b and 8c show decrease in the successful cases at exploration
with higher distances, say 6 or 7 which suggests that extra exploration is not worth the
computation. We found rexplore = 7 as a suitable choice for this setting of parameters.
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(a) CER for Explore algorithm compared with the cases that either Forward
technique or Clique technique is used.

(b) Number of unique winner components
which are found at [1 : 7] exploration distances
using Forward technique.

(c) Number of unique winner components
which are found at [1 : 7] exploration distances
using Clique technique (with tournament sizes
[1 : 7] + 1)

Figure 8: Analysis of Explore retrieval; Forward technique vs. Clique technique and
the required exploration distance for finding a unique component. Results of learning
set sizes between 6000 and 15000 are depicted.

4.2 Feedback TNN Retrieval Results
Figure 9 shows the retrieval error of Feedback TNN learning when r = 12 & rfwd = 6
(Forward-r6 and Backward-r6) together with the retrieval error of original learning
method (TNN) with Winner and Backward-r0 retrievals when r = 12. We start the
Winner and Forward-r6 retrievals when the first r = 12 components are given, and
Backward-r6 and Backward-r0 when the last r = 12 components are given.

Figure 9a confirms that the sequence retrieval results in Feedback TNN can be as
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accurate as the original TNN memories. It is almost the same for CER (Figure 9b),
however the results for the original TNNs are slightly better. We can explain this as
a result of errors in recent previous rfwd = 6 components. Consider the case that the
algorithm finds a unique candidate for the current component based on last rfwd = 6
components, without considering the other rfbk = 6 links, and selects it as the only
winner, while it can be incorrect candidate due to some errors in previous steps. How-
ever, if the algorithm uses all the rfwd and rfbk links the candidate set might composed
of more components, which are not necessarily of full score. In this case, the final
candidate will be chosen randomly, and therefore there is a chance of correct compo-
nent selection. The above argument could similarly explain why CER for Backward-r0
are slightly better than Backward-r6. Note that the errors in Feedback TNN retrievals
might cause more random choices in retrieval of the rest of components (see section 4.3
for an analysis of randomly chosen components). Indeed, such errors do not increase
SER but CER could be affected as seen in Figure 9b.

(a) Sequence error rate (b) Component error rate

Figure 9: Comparison between the original TNN learning method and the learning in
Feedback TNN using Winner, Forward and Backward retrievals.

In summary, in Feedback TNN the retrieval is faster than TNN, the SER perfor-
mance is the same for both, but TNN could be slightly better in CER performance.

4.3 Randomness in Simulated Retrievals; an Overall Look
Figure 10 provides a general overview on the number of cases in average that retrieval
algorithms select the final component randomly from the candidate set. The success in
policy of reducing the number of cases with random decision in Cache and Explore re-
trievals to achieve better retrieval performance is clearly shown in the last three columns
related to these retrievals. For instance, when the learning set size equals 11000, nearly
50 components out of L − r = 88 are chosen randomly for Winner, as the original
retrieval algorithm, but it is about 20 for Cache, 15 for Explore with rexplore = 3, and
almost zero for Explore with rexplore = 7. The number of random choices for Feed-
back TNN structure, both Forward and Backward, is slightly higher than Winner and
Backward-r0. The argument is that the errors that appear due to the wrong unique
retrieval, produce more error afterwards in the sequence, and therefore more random
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winner retrieval cases in total. We also can observe a slightly higher number of random
winner selection in the Backward-r0. This could be related to the learning set genera-
tion in our simulations. The sequences in a learning set, are forced to be different in at
least one of the first r components. Therefore, the Winner can start the retrieval with
the unique sequence, while in the Backward-r0 more than one sequence can match with
the given last r components.

Figure 10: A comparison between number of random selection of winner candidate in
different scenarios.

5 Discussion and Concluding Remarks
In this study, two-fold contributions within the field of TNN structures were presented;
first, we proposed a more general learning and retrieval structure called Feedback TNN,
and second, we devised two more accurate retrieval algorithms in comparison with the
Winner algorithm.

In Feedback TNN, each segment of sequence of length r + 1 is mapped into a
tournament in r + 1 consecutive clusters where each neuron has rfbk input edges and
rfwd = r − rfbk output edges. The proposed retrieval for the Feedback TNN operates
in two phases, in a faster manner than TNN retrieval, and generates the same sequence
error rate while producing a slightly weaker component error rate.

The original TNN can be considered as a special case of Feedback TNN with zero
feedback connections. Using feedback connections, we obtained results of sequence
retrieval as precise as the original structure, with the possibility of faster retrieval. One
might also divide the r forward connections into two parts, say r1 and r2, and try to
retrieve the component using the most recent r1 active neurons, and if it is not possible
to uniquely retrieve, use the rest of r2 neurons. More generally, one can try to retrieve
by starting from the last active neuron and reduce the size of the candidate set (losers-
kicks-out), and adding more active neurons to the retrieval process, until either one
winner candidate remains or all the r active neurons are used.

By introducing Backward retrieval in this paper, we showed that it is possible to
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get a part of a sequence, no matter its location, and retrieve the rest. In this case,
the retrieval algorithm must be able to first locate a tournament matching the given
sub-sequence, and later retrieve the whole sequence from both directions. Backward
retrieval is compatible with both TNN and Feedback TNN structures, but Feedback
TNN with non-zero feedback links is preferable since the Backward retrieval algorithm
can start with a smaller size candidate set.

In order to improve the retrieval accuracy for a given network, we suggested two
algorithms with the overall strategy to limit the number of random selections during
retrieval. The Cache retrieval (Algorithm 3) uses a temporary cache memory for the
last r components to record the candidate set of winners whenever the chosen winner is
not unique. These cached alternatives are used whenever the algorithm detects an error
by observing no candidate having a full score. The reported results in section 4 confirm
the usefulness of this method. The more advanced, and successful, retrieval algorithm
(Algorithm 4) explores the forthcoming clusters to find a unique candidate in the cur-
rent cluster. This algorithm somehow investigates the consequence of choosing each
candidate by checking its connections to the possible future components and decides
more judiciously. This algorithm produces the best results.

Explore-Winner is a more reliable retrieval method than Cache-Winner since it lim-
its the number of random choices using the data in the forthcoming clusters, while
Cache-Winner tries to correct the errors by testing other possibilities. Cache-Winner
might be computationally expensive in higher densities where candidate sets of win-
ners are larger and therefore, larger sets are cached. Finding an optimal rexplore, for
exploration distance limit, as shown in section 4.1.1, is a trade-off between time and
accuracy. Although not reported in the simulations, both Cache-Winner and Explore-
Winner can be used in Feedback TNN and for Backward retrieval.

Similar to the double-layer structure proposed by Jiang et al. (2016), it is possible
to consider a hierarchical structure by adding an extra connectivity level. Moreover,
similar to the technique used in (Mofrad et al., 2016) a precoding could dramatically
increase the storage and retrieval capacity by forcing patterns to be well separated and
therefore reducing the common tournaments in different patterns.
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