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a b s t r a c t

In group decision-making (GDM), fuzzy preference relations (FPRs) refer to pairwise preferences in
the form of a matrix. Within the field of GDM, the problem of estimating missing values is of utmost
importance, since many experts provide incomplete preferences. In this paper, we propose a new
method called the entropy-based method for estimating the missing values in the FPR. We compared
the accuracy of our algorithm for predicting the missing values with the best candidate algorithm
from state of the art achievements. In the proposed entropy-based method, we took advantage of
pairwise preferences to achieve good results by storing extra information compared to single rating
scores, for example, a pairwise comparison of alternatives vs. the alternative’s score from one to five
stars. The entropy-based method maps the prediction problem into a matrix factorization problem, and
thus the solution for the matrix factorization can be expressed in the form of latent expert features
and latent alternative features. Thus, the entropy-based method embeds alternatives and experts in
the same latent feature space. By virtue of this embedding, another novelty of our approach is to
use the similarity of experts, as well as the similarity between alternatives, to infer the missing values
even when only minimal data are available for some alternatives from some experts. Note that current
approaches may fail to provide any output in such cases. Apart from estimating missing values, another
salient contribution of this paper is to use the proposed entropy-based method to rank the alternatives.
It is worth mentioning that ranking alternatives have many possible applications in GDM, especially
in group recommendation systems (GRS).

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction: predicting pairwise preferences based on in-
dividual similarities

In a group decision-making (GDM) problem, a group of indi-
iduals (experts) evaluate different options (alternatives) to find
he best option in terms of some given criteria. Applications of
DM are vary, and can be as simple as the recommendation
f music or a book to an online group of customers of a store
r as crucial as vital decisions made by politicians. In real-life
ituations, GDM is based on information available in relation to
n individual’s preferences. Therefore, typically, one uses pair-
ise comparisons, for instance, to understand to what extent a
ustomer prefers music A to music B. However, such problems
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suffer from a ubiquitous lack of available data. In most cases, es-
pecially when the number of alternatives is high, several pairwise
comparisons may be missing.

This paper addresses the question of how to estimate missing
pairwise comparisons for properly predicting customers’ prefer-
ences for a specific alternative, proposing a matrix factorization
framework that permits discovery of latent features of experts
and alternatives. In this manner, similarity measures between
different experts and between different alternatives can be bet-
ter captured using our framework and used for predicting the
pairwise preferences of experts.

We know that some alternatives, such as cuisines, can be
similar. For example, in the case of Chinese and Japanese food,
the most notable similarity between these two culinary cultures
is the use of fresh ingredients. Whether we think of fresh seafood
or fresh vegetables, the dishes almost always require fresh meat
and other fresh products. Therefore, people who like the fresh
Chinese dishes probably also like Japanese dishes. As a result, we
can say that these types of food are similar, and both differ from
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ome well-cooked cuisines, such as Turkish cuisine. The same
oncepts can be considered in regard to the similarity between
xperts who have similar tastes. Hence, in the above example, we
ay two experts are similar if they have the same taste and food
references. For example, they both like pizza and Italian food,
ut they are less fond of Mexican dishes.
Motivated by the idea of similarity, in this paper, we tried to

stimate the missing preferences of one expert by determining
he preferences of a similar expert. The most important advantage
f this method is that even in situations where there are too many
issing values, we have an excellent opportunity to estimate

he missing values while some other methods fail to work [1,2].
he problem of estimating missing values of pairwise preferences
as a long tradition in GDM [1–8]. The better the missing value
stimation is, the more accurate the group ranking of the alter-
atives is. While experts have their own preferences, the final
roup decision will be made as a result of the aggregation of all
f them. Experts usually express their preferences in different
ays, including (i) rankings, in which a list of alternatives is
rdered from the most to the least preferred [9], (ii) the so-
alled utility vectors, in which the utility of every alternative
s indicated by its corresponding element in the vector [10,11],
iii) preference relations, where the binary relation of the alter-
atives is considered as the preference [12], and (iv) so-called
uzzy preference relations (FPRs), in which the experts express
heir pairwise preferences on a set of alternatives that are usually
tored in the form of a preference matrix.
In this paper, we have chosen to use pairwise preferences from

mong the different ways of expressing the preferences. This is
ecause compared to single rating scores, pairwise preferences
ive more information about the alternatives. In the following,
e explain this more clearly with an example from the single
ating method. Typically, experts rate food A as a 5 (from 1 to
) if they like it. However, if they also like food B, they will
lso rate it as a 5. Therefore, although the experts like both
oods, they cannot say which one they like more using this rating
ystem. Accordingly, ranking the foods they like would not be
ery accurate. On the other hand, instead of a single rating, if
hey compare the foods they like by giving pairwise scores, they
ould have a better chance of obtaining a more accurate ranking
f their food preferences. The idea of comparing alternatives
y using pairwise scores when recommending alternatives to a
roup of experts with different personalities was introduced by
bolghasemi et al. [13]. This approach resulted in very precise
nd fair recommendations.
In most works on the application of FPR in GDM such as [1],

nly the preferences of the expert in question are used to esti-
ate the missing pairwise preferences. For instance, if the expert

ikes food A more than food B, B more than C, and C more than D,
he classical methods will conclude that the expert likes food A
ore than food D. The main drawback of this family of methods

s that if one pair in this chain is missing, we may not be able
o estimate the pairwise preferences of another related pair. For
nstance, in the above example, if the pairwise preference of B
ver C is missing, then it will be impossible to calculate that of A
nd D. Therefore, in such situations, calculating some pair scores
s impossible. To overcome this problem, in this paper, we not
nly take the experts’ pairwise preferences into account but also
se the similarity between the experts and the similarity between
he alternatives.

In a GDM, experts express their preferences on the alterna-
ives differently. In GDM-related problems, experts often provide
nsufficient information about the alternatives [1,14–18]. For in-
tance, in an FPR, there are some missing values. Therefore, it
s important to find an accurate method to estimate the missing

alues in the FPR and then rank the alternatives correctly. In this

2

section, we will detail some research that has tried to estimate
the missing values in an FPR.

In [19], Liang et al. proposed an interactive GDM approach
to make rankings with incomplete additive preference relations.
One aspect of this approach is that it incorporates the strength
of social ties and social influence calculated by social network
analysis methods. Moreover, to complete the missing preference
values of the incomplete additive preference relations, a linear
programming model is used. The main advantage of resorting to
the linear programming model is maintaining consistency. In [1],
a learning procedure for estimating the missing values in an
incomplete FPR based on additive consistency is introduced. This
method uses the known values to estimate the unknown values
using the transitivity property. The main drawback of this method
is that, at first, it only works well if data are consistent, and the
second is that in some conditions, it does not succeed in the
completion of the FPR. More clearly, if the expert did not provide
a pairwise preference score for one alternative over the others,
it would be impossible to estimate that expert’s preferences.
In this paper, we introduce a method that can predict the pair
scores even when all the pairwise preferences of one alternative
are missing. Since our model works based on similarity, it will
determine the expert’s taste in food by considering their prefer-
ences for the other alternatives and their similarities to the other
experts. Some works have used collaborative filtering to deal with
incomplete information in the field of group decision making [20–
22]. Making recommendations for groups is a well-known GDM
problem that benefits greatly from the idea of similarity in col-
laborative filtering [23]. For instance, in [24], using the idea of
collaborative filtering in GDM, the authors constructed a social
trust network for travel recommendations that resulted in a
better online booking experience for travelers.

Matrix factorization (MF) [25] is a type of collaborative filter-
ing method that finds the relationships between the experts and
the alternatives by learning their latent features. MF aims to find
the similarity between different experts and different alterna-
tives. In [26–28] the idea of MF in GDM is implemented to find the
aggregation between the experts used to reach a final decision.
Although MF was successful in addressing the group decision-
making problems, its input is a single rating. More precisely, the
datasets are made up of scores indicating the experts’ preferences
on the alternatives. As we explained earlier in this section, pair-
wise preferences can better show the experts’ preferences. Thus,
they are more informative than the single rating scores. In this
paper, we applied the idea of pairwise preferences in MF for the
GDM problem, which allowed us to better predict missing values
and rank the alternatives.

In GDM, reaching a consensus is a key concept. In [29], a
distance measure for detecting the inconsistencies among ex-
perts is used to calculate the consensus level. Then, a feedback
mechanism (benefit or cost) is developed to obtain the individual
consensus evaluation matrix. The final group evaluation matrix is
obtained by integrating all individual consensus evaluation ma-
trices. In [30], a group consensus-based travel destination evalu-
ation method is proposed, which uses online reviews, estimates
missing preferences, and reaches a group consensus. This method
contains steps: (1) represent the decision opinions through the
sentiment matrix with the percentage distribution. (2) obtain
the weight vector of attributes by the preference of attributes
given by group experts and then estimate missing values. (3)
reach consensus based on the minimum adjustment cost feed-
back mechanism and obtain ranking. In [31], a comprehensive
star rating approach for cruise ships based on interactive group
decision-making with personalized individual semantics is pre-
sented. This paper presents a novel weight calculation method for

assigning the importance of the main cruise indicators. Moreover,
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he personalized individual semantics (PIS) model is adopted to
ffectively address uncertainty. In comparison, in our algorithm,
fter predicting the missing pairwise preferences, we created a
roup-based score for every alternative based on all individual
cores. As a result, with a straightforward Borda count method,
e could obtain the group opinion. It is worth mentioning that
he main aim of our paper is predicting missing pairwise values
nd not designing a novel consensus algorithm; thus, more so-
histicated approaches for aggregating preferences and achieving
onsensus can be used.

. Theoretical background: From fuzzy preference relations
FPR) matrices to ranking vectors

The framework we will apply to derive predictions of pairwise
references is based on a matrix of pairwise preferences, usually
alled the fuzzy preference relation (FPR) matrix. Additionally, we
ill also use a Bayesian optimization criterion called Bayesian
ersonalized ranking (BPR) [32]. In this section, we describe the
ramework, including a background that defines and implements
hese tools and concepts.

To introduce both FPR matrices and the output ranking vec-
ors, we assume that E = {e1, . . . , em} is a set of experts deciding
etween and comparing a set of alternatives X = {x1, . . . , xn}. For
ach expert, we can then define an FPR P on a set of alternatives
as a relation characterized by function µP on the product set
× X . For each pair of alternatives in the product, µP retrieves a
alue in the interval [0, 1], which is considered to be the expert’s
omparison score on that pair of alternatives [33]. In other words,
e will write each pairwise comparison weight as pij = µP (xi, xj)

and interpret its value as the preference degree of alternative xi
over alternative xj. In particular, if pij > 0.5, we say that xi is
preferred to xj and if pij = 0.5, we say that we equally prefer
lternatives xi and xj. Note that, for consistency we assume P to
e additive reciprocal, i.e. pij + pji = 1, for every i, j ∈ {1, . . . , n}.
ypically, relation P is represented as an n × n matrix (with
= |X |), which we will call the preference matrix, whose entries
re pij.
Preference matrices help assess how and when consensus in

he group of m experts is reached. In fact, when using a GDM
pproach to monitor collective opinions, all individual preference
atrices would be aggregated, and the deviations of the indi-
idual matrices from the collective (average) would be observed.
his is usually called an indirect approach to GDM [11]. A di-
ect approach would predict the collective opinion by looking at
he individual rankings of the alternatives according to experts’
references. This can be done by transforming FPR preference
atrices into vectors whose entries measure the ranking of the
lternatives.
More formally, a weighted ranking can be defined as a function
↦→ R, which maps each alternative in X into its single rating

cores. Ordering these single rating scores from the highest to the
owest yields the ranking vector, and aggregating the individual
anking vectors yields a direct GDM approach to assess consensus
ynamics.
There are several ways to deduce a ranking vector based on

fuzzy preference relation matrix. Two relevant approaches are
he quantifier-guided dominance degree (QGDD), where the rank of
ach alternative represents the dominance or importance of the
lternative over the rest of the alternatives, and the quantifier-
uided nondominance degree (QGNDD), where the rank of each
lternative represents the degree to which the alternative is not
ominated by the rest of the alternatives [34]. Another method is
he Netflow method [35], which defines the rank of an alternative
s the difference between the inflow and the outflow preference
f the alternative. This method has also been defined in [36] as

he broad Borda count.

3

Instead of the processes above, we have used the approach
introduced recently in [11,37,38], where the vector of single
rating scores is given by the stationary distribution π solving the
equation

π = πS , (1)

where S is an irreducible aperiodic stochastic matrix defined by
the entries sij as

ij =
1

n− 1
pji if i ̸= j , (2a)

sii = 1−
n∑

j=1,j̸=i

sji . (2b)

Note that the stationary distribution π can be either computed
iteratively via a random walk on the Markov chain defined by
the stochastic matrix S or analytically via the computation of the
eigenvector associated with the highest eigenvalue of the matrix
S.

Finally, regardless of which approach one chooses, direct or
indirect, or method one uses to derive ranking vectors, there
are also different ways to aggregate the corresponding individual
preference values (corresponding entries in FPR matrices or rank-
ing vectors) into a collective preference value. This is typically
carried out using an aggregation operator.

3. Methods and data

We assume that each of the m experts expresses their pref-
erences independently and in the form of an FPR. Following the
terminology from the previous section, we will denote µ(k) the
FPR of the kth expert and let P (k)

= [p(k)ij ]n×n be the corresponding
preference matrix. Consequently, p(k)ij = µ

(k)
P (xi, xj) for all i, j =

1, . . . , n and k = 1, . . . ,m.

3.1. The cross-entropy approach to predict pairwise preferences

This section introduces our approach to predicting pairwise
preferences based on the concept of cross-entropy. In general,
the entropy of a given distribution ρ(x) measures the level of
uncertainty of that distribution, quantified by the aggregated
value of log (ρ(x)) weighted by the distribution itself, i.e.,

∫
ρ(x)

log (ρ(x))dx. In case the stochastic variable is discrete, the integral
is substituted by a sum over all possible values. Cross-entropy
measures the relative entropy of a distribution or set of proba-
bilities, pi, compared to another one, p̂i, usually a model of the
first ones. In this manuscript we will deal with cross-entropy
loss functions of discrete stochastic variables, which compare the
‘‘true’’ probability values, p, with the ones estimated by some
model, p̂, namely, L(p̂i) =

∑
i pi log (p̂i). In particular, since we

will consider only pairwise preferences between two classes, we
will use a binary cross-entropy loss function.

We start by considering the matrix factorization pair-score
prediction (MFP), introduced in [39], as an aggregation method
that derives the weighted ranking of alternatives, x1, . . . , xn, by
aggregating the FPRs of experts, e1, . . . , em.

We now introduce d factors whose values compose a vector
that characterizes experts and alternatives. In other words, we as-
sume that each expert ek and each alternative xi are characterized
by d factors, which we represent as vectors f (k) = (f (k)1 , . . . , f (k)d )
and g (i)

= (g (i)
1 , . . . , g (i)

d ) respectively.
The MFP method consists of estimating a matrix R as

= FGT , (3)

where matrix F is an m × d matrix, usually called the expert-
feature matrix, and G is an n × d matrix, usually called the
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Fig. 1. Matrix R is factorized into two matrices:expert-feature matrix (F) and alternative-feature matrix (G).
n

T

lternative-feature matrix. Fig. 1 illustrates how matrix R is
actorized into two matrices F and G. In this figure, d = 2
eans every expert, and every alternative is considered as a
ector of two features. Experts that have similar food preferences
ill be represented with vectors that are similar according to
ome similarity metric such as cosine similarity. Therefore, sim-
lar alternatives (restaurants such as Chinese and Japanese) will
e clustered together in this two-dimensional space.
With the elements rki, (k = 1, . . . ,m and i = 1, . . . , n) we can

stimate the pairwise comparisons of expert k as

ˆ
(k)
ij = bij + rki − rkj = bij +

d∑
ℓ=1

f (k)ℓ

(
g (i)
ℓ − g (j)

ℓ

)
(4)

here bij = β̃i − β̃j with βi the bias of alternative xi, i.e., the
ntrinsic value of the alternative, independent of the expert.

To find the optimal values of parameters βi, f
(k)
ℓ and g (j)

ℓ the
following loss function is used:

L(p̂(k)ij ) = −p(k)ij log
(
h(p̂(k)ij )

)
− (1− p(k)ij ) log

(
1− h(p̂(k)ij )

)
(5)

where h(x) = 1
1+e−x is the logistic function used to map the

predicted data between 0 and 1. Function L(p̂(k)ij ) is the binary
ross-entropy loss (log-loss), which is typically used to predict
he error [40]. In other words, function L(p̂(k)ij ) can be interpreted
s a binary classification of the pairwise alternatives, indicat-
ng whether those alternatives are correctly ordered or not. The
bjective function is defined as

(Θ) =
n∑

i,j=1

L(p̂(k)ij )+ R(Θ) (6)

here R(Θ) is used for regularization and Θ is the set of model
arameters, namely,

= (βi, βj, f
(k)
ℓ , g (i)

ℓ , g (j)
ℓ ) , (7)

for i, j = 1, . . . , n, k = 1, . . . ,m and ℓ = 1, . . . , d. To optimize the
odel, we search for the minimum value of the objective function
(Θ), which is found using a stochastic gradient descent (SGD)
lgorithm. The SGD algorithm updates each model’s parameters
ccording to

new ← Θold − α

((
h(p̂(k)ij )− p(k)ij

)
∇Θ p̂(k)ij + λΘΘ

)
, (8)

where α is the learning rate, λΘ is the regularization coefficient
or each parameter Θ = (βi, f

(k)
ℓ , g (j)

ℓ ), and ∇Θ is the gradient of
preference estimations in the parameter space.
 a

4

Considering each parameter separately, Eq. (8) is decomposed
into the following system of equations(
f (k)ℓ

)
new
←

(
f (k)ℓ

)
old

−α

((
h(p̂(k)ij )− p(k)ij

)((
g (i)
ℓ

)
old
−

(
g (j)
ℓ

)
old

)
+ λ

f (k)
ℓ

(
f (k)ℓ

)
old

)
, (9a)(

g (i)
ℓ

)
new
←

(
g (i)
ℓ

)
old

−α

((
h(p̂(k)ij )− p(k)ij

)(
f (k)ℓ

)
old
+ λ

g(i)
ℓ

(
g (i)
ℓ

)
old

)
, (9b)(

g (j)
ℓ

)
new
←

(
g (j)
ℓ

)
old

+α

((
h(p̂(k)ij )− p(k)ij

)(
f (k)ℓ

)
old
− λ

g(j)
ℓ

(
g (j)
ℓ

)
old

)
, (9c)

(βi)new ← (βi)old − α

((
h(p̂(k)ij )− p(k)ij

)
+ λβi (βi)old

)
, (9d)(

βj
)
new ←

(
βj

)
old + α

((
h(p̂(k)ij )− p(k)ij

)
− λβj

(
βj

)
old

)
. (9e)

To see how we obtained Eqs. (9a)–(9e) from Eq. (6), we refer the
reader to Appendix A.

Having estimated in this way matrices F (k), A and B, i.e., all
parameters βi, f

(k)
ℓ and g (j)

ℓ , for i, j = 1, . . . , n, k = 1, . . . ,m and
ℓ = 1, . . . , d, we can now predict the missing relative preference
p̂(k)ij by using Eq. (4).

Finally, the rankings of alternatives can also be estimated as
follows. We first aggregate the estimated relative preferences p̂(k)ij

to compute what we call a personalized alternative score s(k)i ,
given as the average of relative preferences, namely,

s(k)i =
1
n

n∑
j=1

p̂(k)ij . (10)

The score s(k)i is the personalized score of expert k for alter-
ative i and measures how much expert k prefers alternative i

with respect to the universe of possible alternatives. From these
personalized scores, we compute the so-called group alternative
scores as

ai =
1
m

m∑
k=1

s(k)i . (11)

he group ranking of alternatives will be achieved by sorting the
in descending order.
i
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Fig. 2. Illustration of the front-end and back-end of the interface used to perform the online experiment (see text). (Left) Front-end: A expert is comparing and
valuating different pairs of dishes. This data is used as pairwise preference scores in the dataset. (Right) Back-end: The collected dataset contains a FPR matrix for
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.2. The datasets: a social experiment on consensus

The datasets used in this paper were collected in an online ex-
eriment called Consens@OsloMet, performed at Oslo Metropoli-
an University (Norway). The experiment aimed to study two
ifferent ways groups can reach consensus (general agreement)
hen presented with multiple choices regarding food prefer-
nces, namely, Chinese food, French food, Turkish food, Italian
ood, Japanese food, and Mexican food. The participants were
rouped into groups of five. Then, each group was asked to update
or not – their food choices according to their knowledge about

he average opinion within the group. The experiment has been
egistered in and approved by the Norwegian Centre for Research
ata, the Norsk Senter for Forskningsdata (NSD) with reference
umber 631862.
The authors developed an online interface that allows experts

o compare different food pairs and enter their pairwise scores. A
iew of the front-end interface is illustrated in Fig. 2 (left). In the
xample shown in the figure, the expert compares a Japanese dish
ith an Italian dish. A score of 0.4, indicated on the screen, means
hat the expert would choose Japanese with a 40% probability,
ompared to 60% for the Italian option. In terms of the back-
nd of the interface, the data concerning the choices – values
etween 0 and 1 – were collected as preference matrices for each
xpert in each group. An illustration of the preference matrix is
iven in Fig. 2 (right). The exact values of the preference matrices
re given in Appendix B. From each matrix, we compute the
orresponding vector of single rating scores, as defined in Eq. (1),
ccording to the following order of choices: Chinese (entry 1 of
he vector), French, Turkish, Italian, Japanese, and Mexican (last
ntry).

.3. Data processing and evaluation metrics

To process the data, we then generated ‘‘incomplete’’ pref-
rence matrices by deleting some of the entries in the original
reference matrices. Note that only the upper (or lower) triangu-
ar part of these matrices has independent values (see the bold
umbers in Appendix B). Since we have 6 × 6 entries, we need
o consider between 1 and 15 = 6 × 5/2 missing values in each
atrix. Since we have a total of 10 matrices (experts), we will
ave a number N between 1 and 150 missing values in each trial.
5

For each value N = 1, . . . , 150, we sampled 100 trials. Each
rial was conducted as follows:

• We randomly select N of the independent values in the
upper triangle of all ten matrices.
• We remove those selected values and the corresponding

ones in the lower triangle part of all ten matrices.
• We perform our algorithm, described in Section 3.1, to esti-

mate each of the N missing values.
• We evaluate how accurate these estimates are compared to

the original matrices (see below).

Additionally, we compared the average ranking computed
rom the original matrices with the ranking computed from
he ‘‘estimated’’ matrices. This was done by averaging both the
riginal and estimated matrices, computing the vector of single
ating scores, as in Eq. (1), and finally ordering these single rating
cores. Please see the logical diagram of the proposed method in
ig. 3. The codes of the proposed method will be published on
itHub after the paper is accepted.
To check the quality of the proposed method, we define two

ifferent prediction errors. The prediction error is Ep̂ for the
estimated pairwise comparisons in each preference matrix, and
the ranking error is ER̂ of the estimated average ranking.

The former is given by

Ep̂ =
1
N

m∑
k=1

n∑
i,j=1

⏐⏐⏐p̂(k)ij − p(k)ij

⏐⏐⏐ . (12)

Note that for the ‘‘nonmissing’’ values, the terms in the sum
in Eq. (12) are zero.

The latter prediction error is given by

ER̂ =
1
n

n∑
i=1

⏐⏐r̂i − ri
⏐⏐ , (13)

where ri and r̂i are the entries of the average ranking vector r⃗ and
its estimate ˆ⃗r .

We have illustrated the framework described in this section
with one specific example. For this experiment, we used the
pairwise preferences of m = 5 experts (matrices P1 to P5 in
Appendix B), with n = 6 alternatives and d = 2 factors:
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Fig. 3. Logical diagram of the process of the proposed method.
w
(

• Step 1: initialize matrices F and G in Eq. (3) with dimensions
5 × 2 and 6 × 2 with random entries in the range [0, 0.01]:

F =

⎡⎢⎢⎢⎣
0.008 0.001
0.006 0.002
0.004 0.0006
0.007 0.004
0.009 0.003

⎤⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎢⎣
0.003 0.003
0.004 0.008
0.004 0.005
0.005 0.008
0.002 0.006
0.001 0.006

⎤⎥⎥⎥⎥⎥⎦ .

• Step 2: choose N = 10 out of 75 pairwise scores as the
missing values and estimate them according to Eq. (4).
• Step 3: update the matrices F and G entries according to

Eqs. (9a)–(9e).
• Step 4: predict all the missing values using Eq. (4).
• Step 5: repeat iteratively steps 3 and 4.
• Step 6: after 1000 iterations, the estimation is assumed to

converge to an optimal value. In this example, we reach the
final F and G matrices, which retrieve

Rfinal = FfinalG
T
final

=

⎡⎢⎢⎢⎢⎣
−0.656 −0.900 0.597 −0.316 0.718 0.110
0.123 −0.181 0.913 −0.567 −0.886 0.260
−0.178 0.683 −0.255 0.222 −0.160 −0.318
0.911 0.279 0.200 0.117 −0.625 −0.882
−0.530 0.793 −0.396 0.249 −0.257 −0.122

⎤⎥⎥⎥⎥⎦ .

(14)

Finally, the predicted missing values for the pairwise pref-
rences are used to calculate the group alternative scores, as
efined in Eq. (11). In this example, these scores (0.47, 0.52, 0.52,
.44, 0.53, 0.50) correspond to alternatives 1 to 5. To see how
he proposed method works, we have compared our proposed
ntropy-based model with the one introduced in [1], which we
all the ACHH model. The group alternative scores for the ACHH
odel are (0.47, 0.51, 0.50, 0.46, 0.51, 0.52).
All of these scores are compared with the ‘‘ground truth’’,

.e., the group scores calculated using Eq. (11) based on FPR
atrices in the food dataset with entries of pairwise preferences
6

ith no missing values. For the above example, these scores are
0.47, 0.53, 0.51, 0.44, 0.53, 0.50). Hence, the prediction error –
Eq. (12) – for our model is EP̂ = 0.16, while for the ACHH model,
it is EP̂ = 0.23.

For the group ranking of the alternatives, our model yields
(5, 2, 3, 6, 1, 4), whereas the ACHH model yields (6, 5, 2, 3, 1, 4).
Knowing that the ground truth rankings are (5, 2, 3, 6, 1, 4), it is
concluded that, unlike the ACHH model, our model predicts the
correct ranking in all cases.

4. Experiment and discussion

In this section, we show the validity of the proposed method
on two different datasets.

4.1. Experiment on the food dataset

The first experiment is performed on the ‘‘Food dataset’’ ex-
plained in Section 3.2, and the results are shown in Fig. 4. The pre-
diction error average is shown for the ACHH model (red dashed
lines) and the entropy-based model (solid green lines) together
with the corresponding standard deviations (error bars). The av-
erage prediction and ranking error for the entropy-based model
increases linearly, while the ACHH model shows a different trend.
It shows very little error change in the beginning, while when
the percentage of missing values exceed 50%, the errors increase
drastically until it stops completely in the best case with 80%
missing values. This is because in the ACHH method, as the
number of missing values increases, less information is avail-
able to calculate the missing values. The increasing number of
missing values, however, does not lose too much information
in the proposed entropy-based method. This is because we use
experts’ preferences and because we use the similarity of the ex-
perts and similarity of the alternatives, which helps substantially
in estimating the missing values. Therefore, even if the above-
mentioned stop condition is fulfilled, we can still estimate the
missing alternative score.

In the insets shown in Fig. 4, we indicate the fraction of

trials that stopped during execution when the percentage of the
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Fig. 4. (Left): Mean prediction error for the entropy-based model (green) and ACHH model (red) (Left): Mean ranking error for the entropy-based model (green) and
CHH model (red). In the insets we show the corresponding number of stopped experiments out of 100 trials. The plot is related to the food dataset.
Fig. 5. Mean prediction error for the entropy-based model (green) and ACHH model (red) for the car dataset. In the insets, we show the corresponding number of
stopped experiments out of 100 trials. The plot is related to the car dataset.
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missing values increased. As seen in the figures, for more than
80% of the missing values, there is no mean or STD in the ACHH
model. This is because this model stops working when there is a
special condition.

Based on [1], if a row in the FPR matrix is missing, then all
he pairwise scores of an expert on an alternative are missing,
he ACHH model does not have enough information to estimate
he expert’s preferences on that alternative. Therefore, this model
tops working. Since the missing values are chosen randomly in
he experiment, the above-mentioned condition will eventually
appen at different times. This stop completely depends on the
osition of the missing values. To see when this model stops
n average, we repeated the experiment 100 times, and the
verage stop was when the number of missing values reached
5% of all the data. However, as the figures confirm, the entropy-
ased model never stops, which is a significant advantage of our
odel.
7

4.2. Experiment on the car dataset

A dataset of car preferences1 provided by Abbasnejad et al. [41]
n 2013 was used in this experiment. The data were collected
rom 60 different experts from the United States using Amazon’s
echanical Turk. From this dataset we used the pairwise compar-

son data of 50 experts on ten different cars (alternatives). Each
xpert provided answers for all 45 possible pairs of alternatives,
iving 90 observations for each expert. In this dataset, if expert u
refers alternative i over alternative j, then pairwise preference
(k)
ij is considered as 1, otherwise as 0. If two alternatives are
qually preferred, then p(k)ij = 0.5.
We tested our algorithm and ACHH model with this car

ataset. The mean and standard deviation of the prediction error
or 10 experiments are shown in Fig. 5. As in the case of the food

1 http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html

http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html
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Fig. 6. Mean and standard deviation of the number of epochs in which the learning process of the proposed algorithm is completed. This experiment is executed
10 times on the food dataset.
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dataset, we can see that our model has less prediction error than
the ACHH model. Moreover, as we expected, the ACHH model
stops at some points when the percentage of missing values
increases.

To analyze the complexity of the proposed method, we
ecorded the number of epochs needed for the learning process
o be completed. The stopping criterion is when the change in
rror after 20 consecutive epochs is less than 0.0001. In Fig. 6,
he mean and standard deviation of the number of epochs for 10
ifferent experiments on the food dataset are illustrated. Based
n this figure, the average number of epochs increases as the
ercentage of missing values increases. However, this increase is
inear.

. Conclusion

In this paper, we focused on improving the estimation of miss-
ng values in fuzzy preference relations (FPRs) by using the idea of
imilarity and pairwise preferences. We proposed a new method
alled the entropy-based method to estimate the missing values
n FPR based on the idea of similarities between alternatives and
xperts. Pairwise preferences contain more information than the
ingle rating scores, and the similarity of experts and alternatives
elps find the missing values even with minimal data.
We also used the entropy-based method to rank the alter-

atives, which has many applications in group decision-making
GDM), especially in group recommendation systems (GRS). We
ave compared the accuracy of our algorithm with the best
andidate from the state of the art achievements. Entropy-based
ethods, and in particular the cross-entropy loss function used

n our framework, are particularly useful for estimating probabil-
ties, since they weigh probabilities associated with high certainty
ore than the lowest probabilities. However, similar to other
ethods, the overall model fitting, when minimizing the cross-
ntropy loss function, generates larger errors if the dimension of
ur problem – number of alternatives – increases.
A study on ‘‘the possibility of adding information related to the

xperts’ personalities’’ or ‘‘having dynamic expert preferences in
hich experts can change their opinions during the voting phase’’

s suggested for future work.
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Appendix A. Derivations and auxiliary calculus

In this section, we explain how we have obtained Eqs. (9a)–
(9e) from Eq. (6). Since we are looking for the minimum value
of the objective function L(Θ), we intend to solve the vanishing
f the gradient of L(Θ) with respect to the following set of
arameters Θ:

ΘL(Θ) =
(

∂L
∂Θ1

, . . . ,
∂L

∂Θ2n(d+1)+dm

)
= 0 , (A.1)

where the number of parameters can be computed by recalling
the vector of parameters in Eq. (7).

Substituting the definition of L(Θ) in Eq. (6) into Eq. (A.1)
yields for each parameter Θi (i = 2n(d+1)+dm), see (A.2) given
in Box I.
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∂L(Θ)
∂Θi

=
∂

∂Θi

⎡⎣ n∑
i,j=1

L(p̂(k)ij )+ R(Θ)

⎤⎦
=

∂

∂Θi

n∑
i,j=1

[
−p(k)ij log

(
h(p̂(k)ij )

)
− (1− p(k)ij ) log

(
1− h(p̂(k)ij )

)]
+

∂R(Θ)
∂Θi

=

n∑
i,j=1

⎡⎣−p(k)ij

∂ log
(
h(p̂(k)ij )

)
∂Θi

− (1− p(k)ij )
∂ log

(
1− h(p̂(k)ij )

)
∂Θi

⎤⎦+ ∂R(Θ)
∂Θi

=

n∑
i,j=1

⎡⎣−p(k)ij
1

h(p̂(k)ij )

∂h(p̂(k)ij )

∂ p̂(k)ij

∂ p̂(k)ij

∂Θi
− (1− p(k)ij )

1

1− h(p̂(k)ij )

∂

(
1− h(p̂(k)ij )

)
∂ p̂(k)ij

∂ p̂(k)ij

∂Θi

⎤⎦+ ∂R(Θ)
∂Θi

=

n∑
i,j=1

⎡⎣−p(k)ij

(
1− h(p̂(k)ij )

) ∂ p̂(k)ij

∂Θi
− (1− p(k)ij )

1

1− h(p̂(k)ij )

−p̂(k)ij

(
1− h(p̂(k)ij )

)
1

∂ p̂(k)ij

∂Θi

⎤⎦+ ∂R(Θ)
∂Θi

=

n∑
i,j=1

[(
−p(k)ij + p(k)ij h(p̂(k)ij )

) ∂ p̂(k)ij

∂Θi
+

(
h(p̂(k)ij )− p(k)ij h(p̂(k)ij )

) ∂ p̂(k)ij

∂Θi

]
+

∂R(Θ)
∂Θi

=

n∑
i,j=1

(
h(p̂(k)ij )− p(k)ij

) ∂ p̂(k)ij

∂Θi
+

∂R(Θ)
∂Θi

. (A.2)

Box I.
P

P

P

P

P

According to Eq. (4), the derivatives of p̂(k)ij with respect to the
arameter Θ are:

∂

∂Θ
p̂(k)ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(g (i)
ℓ − g (j)

ℓ ) if Θ = f (k)ℓ

f (k)ℓ if Θ = g (i)
ℓ

−f (k)ℓ if Θ = g (j)
ℓ

1 if Θ = βi

−1 if Θ = βj

(A.3)

y replacing the derivations of different parameters Θ from
qs. (A.3) into Eq. (A.2), we then obtain Eqs. (9a)–(9e).

ppendix B. The datasets

In this appendix, we provide the datasets used in our simula-
ions. The datasets are provided from the experiment described
n Section 3.2. In this paper, we only consider a small amount of
he preference matrices from the above-mentioned experiment,
amely, ten experts (m = 10) and six alternatives (n = 6). The

preference matrices are:

P1 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.23 0.26 0.71 0.19 0.13
0.77 0.50 0.19 0.21 0.15 0.18
0.74 0.81 0.50 0.83 0.13 0.20
0.29 0.79 0.17 0.50 0.17 0.21
0.81 0.85 0.87 0.83 0.50 0.15
0.87 0.82 0.80 0.79 0.85 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

2 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.64 0.37 0.64 0.19 0.69
0.36 0.50 0.28 0.65 0.22 0.66
0.63 0.72 0.50 0.69 0.06 0.71
0.36 0.35 0.31 0.50 0.27 0.74
0.81 0.78 0.94 0.73 0.50 0.18

⎤⎥⎥⎥⎥⎥⎦ ,
0.31 0.34 0.29 0.26 0.82 0.50
9

3 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.37 0.59 0.62 0.59 0.15
0.63 0.50 0.31 0.38 0.71 0.56
0.41 0.69 0.50 0.57 0.40 0.37
0.38 0.62 0.43 0.50 0.61 0.61
0.41 0.29 0.60 0.39 0.50 0.64
0.85 0.44 0.63 0.39 0.36 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

4 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.75 0.69 0.79 0.78 0.75
0.25 0.50 0.74 0.75 0.72 0.74
0.31 0.26 0.50 0.80 0.90 0.62
0.21 0.25 0.20 0.50 0.75 0.71
0.22 0.28 0.10 0.25 0.50 0.76
0.25 0.26 0.38 0.29 0.24 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

5 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.14 0.40 0.38 0.34 0.31
0.86 0.50 0.79 0.82 0.77 0.71
0.60 0.21 0.50 0.42 0.36 0.38
0.62 0.18 0.58 0.50 0.37 0.69
0.66 0.23 0.64 0.63 0.50 0.64
0.69 0.29 0.62 0.31 0.36 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

6 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.28 0.20 0.19 0.19 0.19
0.72 0.50 0.78 0.24 0.24 0.23
0.80 0.22 0.50 0.80 0.15 0.19
0.81 0.76 0.20 0.50 0.19 0.74
0.81 0.76 0.85 0.81 0.50 0.18
0.81 0.77 0.81 0.26 0.82 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

7 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.13 0.12 0.15 0.16 0.15
0.87 0.50 0.78 0.25 0.07 0.64
0.88 0.22 0.50 0.26 0.25 0.64
0.85 0.75 0.74 0.50 0.26 0.20
0.84 0.93 0.75 0.74 0.50 0.78
0.85 0.36 0.36 0.80 0.22 0.50

⎤⎥⎥⎥⎥⎥⎦ ,
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8 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.33 0.41 0.40 0.35 0.71
0.67 0.50 0.35 0.31 0.64 0.39
0.59 0.65 0.50 0.37 0.61 0.60
0.60 0.69 0.63 0.50 0.62 0.80
0.65 0.36 0.39 0.38 0.50 0.54
0.29 0.61 0.40 0.20 0.46 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

9 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.50 0.35 0.23 0.23 0.27
0.50 0.50 0.23 0.22 0.30 0.22
0.65 0.77 0.50 0.22 0.32 0.31
0.77 0.78 0.78 0.50 0.28 0.28
0.77 0.70 0.68 0.72 0.50 0.31
0.73 0.78 0.69 0.72 0.69 0.50

⎤⎥⎥⎥⎥⎥⎦ ,

10 =

⎡⎢⎢⎢⎢⎢⎣
0.50 0.27 0.33 0.15 0.39 0.28
0.73 0.50 0.72 0.36 0.64 0.65
0.67 0.28 0.50 0.21 0.34 0.34
0.85 0.64 0.79 0.50 0.87 0.85
0.61 0.36 0.66 0.13 0.50 0.77
0.72 0.35 0.66 0.15 0.23 0.50

⎤⎥⎥⎥⎥⎥⎦ .

s explained in Section 2, since preference matrices obey the
elation pij = 1 − pji for all off-diagonal entries (i ̸= j), matrices
f dimension 6 × 6 contain 15 independent terms, as highlighted
bove. The diagonal terms are always equal to one half.
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