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Abstract

Reservoir Computing with Cellular Automata (ReCA) is a
promising concept by virtue of its potential for efficient hard-
ware implementation and theoretical understanding of Cel-
lular Auotmata (CA). However, ReCA has so far only been
studied in exploratory studies. In this work, we take a more
in depth view of the landscape of Elementary Cellular Au-
tomata for Reservoir Computing. In this paper, the ReCA
is applied to the X-bit memory benchmark with a thorough
exploration for key parameters including number of random
mappings (R), number of bits (Nb) and size of the vector that
the random mapping is mapped to (Ld). Our evidence shows
that the parameter space, including the full panoply of CA
rules, is much richer then what previous evidence indicates.
This suggests that some CA rules would require careful con-
sideration and custom parameters setup.

Introduction
Modern Machine Learning (ML) has given great benefits to
society, but it comes at a cost. One such cost is the energy
requirement to train modern ML algorithms, such as Deep
Learning (DL) with error backpropagation (Strubell et al.,
2019). Top-down approaches, such as DL, require careful
design and engineering of the network architectures to solve
the given task, as well as global error calculations used for
training, which implies a form of centralized control.

Reservoir computing (RC) is a bottom-up approach which
shows potential to reduce the training time. This is per-
formed simply by projecting the input through a non-trained,
but dynamically set-up substrate and separating the high-
dimensional results through a linear readout layer. The con-
cept originated in Echo-State Network (ESN) using a Re-
current Neural Network (RNN) as a substrate (Jaeger, 2001)
and in Liquid State Machines (LSM) where a Spiking Neu-
ral Network served as a substrate (Maass et al., 2002). Since
then, both concepts have been grouped under the umbrella
term of RC, and other substrates have been explored. One
such substrate is Cellular Automata (CA).

CA can be considered to be a special case of (neural) net-
works, where connectivity is ordered such that every node is
connected to exactly the same number of neighbours, which

in turn are uniformly connected to each-other. One advan-
tage of CA is that they can be implemented in hardware,
such as in Field Programmable Gate Arrays (FPGA) (Morán
et al., 2019), which results in energy efficient computing
substrates as well as fast execution due to the hardware sup-
porting CA implementation natively and CA being fully par-
allel.

Reservoir computing with Cellular Automata (ReCA) is
the version of RC using CA as the substrate for the reser-
voir. The concept was first explored in Yilmaz (2014). Since
then, ReCA has been studied in several exploratory studies
(Nichele and Molund, 2017; Nichele and Gundersen, 2017;
Margem and Gedik, 2019; Kleyko et al., 2020; McDonald,
2017; Babson and Teuscher, 2019). All of these studies uti-
lize CA as part of the reservoir, but none of them explore the
entire rule-space of Elementary Cellular Automata (ECA).
By accumulating some of the findings from these studies the
reservoir can be made much smaller then the original stud-
ies, such that exploring the entire rule-space becomes more
computationally viable. This is beneficial in order to gain a
better understanding of the important factors that need to be
considered when practically setting-up a RC system.

We introduce some of the relevant concepts this paper
builds on in the upcoming background section. The third
section introduces the methodology of the 5 bit benchmark
as well as the ReCA implementation, and two performance
metrics, namely perfect score and weighted average. The
fourth section introduces the experimental setup where the
extended information is given in order to replicate this study.
The fifth section documents the conducted experimental re-
sults and their analysis. The sixth section includes the dis-
cussion and conclusion where the key findings are shown
and discussed. Finally, the future work section is presented.

Background
Cellular Automata
In this work, ECA is used as a computing substrate. ECA
is a special case of CA, where each cell has 2 possible
states and 3 neighbours, where 1 neighbour is the cell it-
self. A common way to handle how to update the CA to
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the next state is a Transition Table (TT). This method relies
on using a lookup-table where the current state of the rele-
vant neighbourhood is used to look up what the next state
of the cell is. Due to the limits on the number of neigh-
bours and states, ECA has 256 unique rules in the rule-
space. The index of ECA’s TT is fixed, therefore the rules
can be compressed to just the results which is in essence
a 8-bit binary string. The conversion of the rules binary
string in decimal is used as convention to name the rule, e.g.,
bin(01011010) = dec(90).

ECA have been extensively studied and classified most
notably by Wolfram (Wolfram, 2002). CA rules have been
grouped into 4 classes of behavior, i.e., uniform (Class 1),
periodic (Class 2), chaotic (Class 3) and complex (Class
4). In Wolfram (1986), many of the rules were found to
be equivalent to other rules, this reduces the rule-space to 88
unique rule groups: each group, having a Minimum Equiv-
alence (ME) rule that represents its rule group. A simple
overview of the Equivalence classes and associated Wolfram
classification can be found in Martinez (2013).

ECA with Memory (ECAM)
ECAM is a classification of ECA based on how the ECA rule
changes behaviour in regard to the Wolfram classes used in
combination with a memory rule (Martinez et al., 2013). In
contrast to ECA, ECAM makes use of more then just the
previous state of the CA. This is performed by either apply-
ing the function majority, minority or parity to the x pre-
vious steps and then using the same ECA TT to select the
next state. The ECA rule-space fits into 3 different classes
in regards to how they changed behavior.

Strong: Most memory functions change the rule to an-
other different class quickly

Moderate: Memory functions can transform to a differ-
ent class and conserve the same class as well

Weak: Memory functions are unable to transform into
another class

One might notice how this definition is different from the
form presented in Martinez et al. (2013). There appears to be
an inaccuracy in the definition of the weak and strong, which
are flipped. As the definition contradicts the propositions
and evidence in the paper, a correction would be in order.
Therefore, the definitions have been changed to account for
this. In fairness, one could also have flipped which rules are
strong and weak, instead of flipping the definitions.

Edge of Chaos and λ Parameter
”Edge of chaos” is a term used to name the region in the
parameter space of complex systems displaying transition
between ordered and disordered behavior. Here it is theo-
rized that computation defined as transformation, manipula-
tion and storage of information is found. In Langton (1990),

it was shown that the rule-space of 1 dimensional multi-
state enlarged neighbourhood CA forms a phase transition
between order and chaos when organized over a parameter,
named λ (Lambda).

Reservoir Computing
In simple terms, RC consists of 3 parts, the input layer, the
untrained reservoir layer, and the (linear) output layer. The
input layer maps the input into the untrained reservoir layer,
the reservoir layer projects the input into higher dimensions,
and the output layer reads the reservoir state and extract the
useful features. Since its origin in ESN (Jaeger, 2001) and
LSM (Maass et al., 2002), RC has expanded into many dif-
ferent substrates. Some alter the structure, e.g., in Gallicchio
and Micheli (2016) a strategy using a deep layered structure
of several reservoirs was employed. Other change the reser-
voir substrate, e.g., in Jensen and Tufte (2020) the substrate
is Artificial Spin Ice which consists of a simulated lattice
of nanomagnets. RC has also been implemented in many
physical systems (Tanaka et al., 2019). One novel concept
is implementing the RC framework using Biological Neural
Networks (BNN), by growing neurons on a Micro Electrode
Array (MEA) (Aaser et al., 2017). The BNN can be stim-
ulated using electric signal and the MEA can also read the
state of a region of neurons. It has also been demonstrated
that the RC framework can work on a bucket of water, en-
coding the input using motors as waves on the water surface
that is recorded with a camera. The recording is then used
by a simple perception to solve XOR and speech recognition
problems (Fernando and Sojakka, 2003).

Reservoir Computing with CA (ReCA)
The first study that introduced CA as a substrate in reservoir
computing is Yilmaz (2014). In this study, Game of Life
and several ECA rules were investigated as reservoir sub-
strates and tested on a 5 bit and 20 bit memory benchmark
(adapted for CA). In addition it presents, a theoretical com-
parison of CA vs ESN, using the metric of number of oper-
ations needed to solve the benchmark, which documents a
clear advantage of using CA.

Since then, other works have studied ReCA using the 5
bit memory benchmark. In Nichele and Molund (2017), the
structure of the CA was changed to a deep layered architec-
ture and compared to a single layer, which resulted in notice-
able improvements of performance. In Nichele and Gunder-
sen (2017), the CA substrate was organized as consisting of
two regions of different ECA rules. Different combinations
of rules were explored, some of them showed great promise.
In Margem and Gedik (2019), different methods of cell his-
tory selection that are used for the classification model are
explored on the 5 bit memory task and in addition a tempo-
ral order task and arithmetic and logic operation tasks. In
Babson and Teuscher (2019), CA rules with multiple states
and larger neighbourhoods were evolved and then tested on
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the 5 bit memory benchmark.
ReCA is also used on other benchmarks then the 5-bit

memory benchmark. E.g. in Morán et al. (2019), ReCA
is implemented in hardware and tested using MNIST.

Methodology
X-bit Memory Task
If one considers the reservoir substrate and classification
model as a black box, then it is evident that the X-bit mem-
ory task is one of the simplest IO binary classification task
with a temporal element.

Step Input Output Stage
1 1 0 0 0 0 0 1

Input bits
2 1 0 0 0 0 0 1
3 0 1 0 0 0 0 1
4 0 1 0 0 0 0 1
5 1 0 0 0 0 0 1
6 0 0 1 0 0 0 1 Distractor

period7...203 0 0 1 0 0 0 1
204 0 0 1 0 0 0 1
205 0 0 0 1 0 0 1 Cue signal
206 0 0 1 0 1 0 0

Output
bits

207 0 0 1 0 1 0 0
208 0 0 1 0 0 1 0
209 0 0 1 0 0 1 0
210 0 0 1 0 1 0 0

Table 1: Example of the 5 bit memory task with distractor
period of 200 and Input of the number 25 in binary form.
Artifact inspired by Babson and Teuscher (2019)

The X bit memory benchmark is designed to test long-
term-short-term memory capability of a reservoir under per-
turbation. To do so, it is designed in 4 stages seen in Table
1. The first stage encodes the input into the substrate, the
second stage inputs noise into the substrate, the third stage
sends the cue signal to tell the model to start returning the
binary input. The final 4th stage is the output stage when
the originally input bits are to be returned. The benchmark
has 4 input channels consisting of the actual bits to input,
the flipped bits to input, the distractor channel and the cue
signal channel. The task has 3 output channels: one chan-
nel to return the input, a second channel to return the flipped
input and a final channel to continually report that the sys-
tem is not in the binary output stage (or simply put 1s until
when the cue signal is given). As one and only one channel
returns 1 at each time, this can be considered a single label
classification task.

ReCA X-Bit Memory Task
Now that the benchmark has been presented independently
of the chosen substrate, we detail the specific benchmark
definition in the context of a CA substrate.

Figure 1: Simple model of the different parts of ReCA using
the X-Bit memory benchmark.

As shown in Figure 1, some steps have been added. The
Encoding part comes first which considers how to inject
the input into the substrate. For binary data there has been
many different methods proposed and or implemented (Yil-
maz, 2014; Nichele and Molund, 2017; Margem and Gedik,
2019), but there are some common tendencies. The input is
usually randomly mapped into the CA in several redundant
mappings. This random mapping stays fixed throughout the
experiment and is usually done multiple times. The number
of times is given by the redundancy (R) parameter in the ex-
periment. In Yilmaz (2014), this was done using a vector of
the same size as the input, but in later experiments (Nichele
and Molund, 2017; Nichele and Gundersen, 2017) a larger
vector is used. The size of this new vector is given by the
Ld parameter. The simplest way to encode the input into
the CA is to overwrite the current state of a mapping. Since
this might overwrite important information in the CA, other
methods have been used, such as simple binary operations
between the current state of the CA and the new input value.

The second component is the actual substrate itself, a CA
in the work herein. This operates as any CA, and can be of
any dimensionality, with any number of states, and with any
neighbourhood scheme. Commonly, the CA permutes the
input a number of steps before given the next input. There-
fore, one can say that the CA and X-Bit memory benchmark
exist on different timescales. The number of steps before the
next input is represented by I, which is another parameter in
the experimental setup.

The third part is the classification model. This stage uses
the state of the CA (or a set of previous states) to classify
and produce an output state. Due to the nature of RC, the
classification model is commonly a linear model. Consider
if one were to use a Deep Neural Network as a classifica-
tion model rather then a linear one, this would cast doubt
about whether the separation was done in the model or the
substrate. Therefore using a linear model demonstrates that
the system is actually doing RC. When limited by this re-
quirement, there are two common models used, i.e., linear
regression and Support Vector Machine (SVM) with a linear
kernel. If linear regression is used, one would need to pair it
with a rounding function, or some max confidence method
in order to produce a clear output. If SVM is used, one takes
advantage of the fact that the output is always only a single
class and can therefore handle the model as a standard SVM
model.
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Figure 2: Snappshot of ReCA with Nb = 5, R = 4, I =
2, Ld = 40, Dp = 60 and Rule 90

Perfect Score Metric vs Weighted Average Metric
The common way to score the ReCA system on the X-bit
memory task is to run through all permutations of the X-bits.
The example in Table 1 represents only one out of 32 possi-
ble input permutations. In order to get a perfect run, not only
all permutations would need to be correct, but every step of
all the permutations needs to be correctly classified. For a
single run, that means 210 ∗ 32 = 6720 correctly classified
states and a single wrongly classified state result in a 0 score
on the full run. This method is strict, and it leaves little room
to identify setups that are close to solving the problem. We
introduce here a strategy based on a Weighted Average (W̄ )
metric to address this. Consider Table 1, one might notice
that there is one output that is more common then the oth-
ers. This ”no output state” is so common that in the example,
W = 205/210 ≈ 0, 976 of the classifications are the same.
This region can be easily guessed correctly, so all the diffi-
culty of this task lies in the final x-bits. In order to better
inspect the results, one can stretch that region by applying
a W̄ metric. Given that the length of the distractor period
is Dp, the number of bits is Nb and the fraction of correctly
classified states is S̄c, the following formula applies:

W =
Dp + (Nb)

Dp + (2 ∗Nb)
, W̄ =

S̄c −W
1−W

.

If a run got 6700
6720 ≈ 0.997 on average correctly classified

states, its W̄ would therefore be 0.997−0,976
1−0,976 = 0.875

Experimental Setup
Libraries, frameworks and Source Code
In order to carry out the experiments efficiently, the EvoDy-
namics framework was used to build the CA substrate. Evo-

Dynamics by Pontes-Filho et al. (2020) natively supports
CA reservoirs and is built upon TensorFlow, and therefore
can make use of TensorFlows-GPU optimised code. This
still does not reach the full potential of optimization for CA.
As an example, it still relies on float point, which is strictly
not necessary when working with CA, but EvoDynamics
strikes a good balance between performance and implemen-
tation time. In addition SciKit-learn was used to create and
train the SVM model (Pedregosa et al., 2011) that is used as
the classification model in this work.

The source code and extended results for this paper can
be found at the DeepCA project github1.

Exploring the Parameter Space
The full parameter space of the framework comprehends six
parameters: the redundancy R, the number of bits Nb, the
size of the vector the input is mapped to Ld, the CA permu-
tation iteration and reservoir height I , the distractor period
Dp and the CA rules.

In this paper, the parameter of R is selected for explo-
ration due to performance reliably increasing over increas-
ing R in past experiments (Yilmaz, 2014; Nichele and Mol-
und, 2017; Nichele and Gundersen, 2017). Nb was selected
because it was the most promising candidate for making the
problem difficulty harder or easier depending on value. Ld

is explored due to the surprising results of the R parameter
experiment. As this paper only explores 3 parameter, the
Dp = 200 and I = 2 have remained fixed for all experi-
ments described in this paper. They remain to be explored
in future experiments. To be precise, as the experiment ex-
ists on two different timescales, i.e., the benchmark and the
CA timescale,Dp = 200 is on the benchmark timescale (not
the CA). This means that 200 perturbations have been done
to the CA. The I = 2 parameter affects the experiment in
two ways. Firstly, it is directly linked with how many steps
of the CA is fed into SVM. I = 2 means that the last two
states of the entire CA width is used to classify an output.
Secondly, it is linked to how many CA development steps
are used before another input is given to the system. This
paper uses the input step also as a CA development step,
meaning for every input step on the timescale of the bench-
mark, 3 CA steps are performed. An argument for why I is
linked to two different concepts in the experiment, is that if
one were to predict from the classification model on more
previous states then available between two inputs, the clas-
sification model would be able to access the previous input
directly, rather than constructing it from the afterimage.

By fixing the two parameters above, we focus henceforth
in the region of the parameter space defined by R, Nb and
Ld. By exploring the behavior of CA rules in relation with
the variation of these three parameters, one is able to assess
important features of CA reservoirs. In order to evaluate

1https://git.io/JqCfW
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Figure 3: Strong and moderate class 2, using the W̄ metric and R = {1, 2, 3, 4, 5}

Figure 4: Weak class 2 and all class 3 and class 4, using the
W̄ and R = {1, 2, 3, 4, 5}

Figure 5: Perfect runs metric in % and R = {1, 2, 3, 4, 5}

memory, by varying R it is possible to identify which rules
are affected by redundancy. By varying Nb, a threshold for
memory can potentially be identified. By varying Ld the
grid-sizes dynamical relation to memory can be identified.

If not otherwise stated R = 4, Nb = 5, Ld = 40 and
ECA rules are always varied in all experiments. Using these
values, the full width of the CA can be calculated by R ∗
LD = 4∗40 = 160. The number of states given to the SVM
is calculated by R ∗ LD ∗ I = 4 ∗ 40 ∗ 2 = 320

Encoding Strategy

As previously mentioned, different encoding strategies have
previously been employed. This experiment uses XOR to
encode the current step of the CA with the input. This means
that the state of the CA is always modified if the input is 1.

Results: from Parameter Space to Memory
Features of CA Behavior

In this section, the results from the experiments are pre-
sented. First, the experiment where the parameter of R is
shown, followed by the experiment on the parameterNb and
finally Ld. For each experiment, we will review and discuss
the results of the W̄ metric first, followed by the Perfect run
metric. The two main experiments parameters for Nb and
R were conducted over the entire Rule-space of ECA, but
due to limited space the only rules that are presented are the
Minimum Equivalence (ME) rules. Furthermore, rules that
only achieved 0.005 W̄ or less score on all task were re-
moved. In all the experiments rule 0, 8, 23, 32, 40, 104, 128,
136, 160, 168, 200, 232 did not achieve this and therefore
are not present in any figure. Note that this list includes only
rules that are classified in Wolfram class 1 or 2, and that this
list includes all Class 1. This is explained by the fact that as
Class 1 rules quickly transform into uniform final states, any
input would be quickly forgotten.

The results were sorted using Wolframs classes, then by
ECAM category, then finally by W̄ Performance on the 3
bit memory, in sinking order of importance. This was per-
formed to highlight association between ECAM and Wol-
fram classes and behaviour within this experiment. On the
W̄ the results are also split between Strong and Moderate
Class 2, and the rest in order to better fit the width of this
paper. All subgroups are separated by a dashed line. All re-
sults given are averages over 100 runs and the SVM is fully
trained on all permutations of the input.

The Impact of Redundancy R on CA Behavior
The first results presented here are for the experiments where
R was the dependent parameter over the W̄ performance, as
seen in Figure 3 and Figure 4. Looking at the macro per-
spective, one can already notice several different behaviors.
By varying the R, some rules behave stably, this meaning
that increasing or decreasingR does not affect performance.
Some have an increase in performance with increase in R.
While some are more vulnerable to sufficient R to achieve
any score at all, and some seem very dynamic over R and
surprisingly show that more R is in fact not better.
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Figure 6: Strong and moderate class 2, using the W̄ metric and Nb = {3, 4, 5, 6}

Figure 7: Weak class 2 and all class 3 and class 4, using the
W̄ metric and Nb = {3, 4, 5, 6}

Some of the rules that are stable over R actually highlight
a weakness in the W̄ scoring method. If one considers this
benchmark, the worst scoring rules do get 0 on this scoring
method, but rules that can never get a perfect score are able
to get 50% reliably as long as they detect the cue signal. One
needs only to consider rule 204 to understand this. Rule 204
always projects the current state as the next step, meaning
that the binary input will be removed again with the next 1
from the input. This rule is incapable of separating the input
but it is very capable of detecting the cue signal, as it has
its own input channel. This means that rule 204 can, under
any rational condition, get 50% score but never more. Many
rules in class 2 seem to rely on this trick.

Some rules are stably increasing over R to points beyond
50%, meaning they must be able to remember some of the
input bits. Some rules only get any performance at all if they
have sufficient R, all rules that are strong class 3 behave this
way, and so do most of the class 4, with a slight exception
for rule 54. The most surprising results are the rules that
perform worse with increased R. Many of the strong and
moderate class 2 rules have peaks at R = 3 and the weak
class 3 has a peak atR = 4. Considering this, it is likely that
other rules that have not yet received a sufficient R might
also have peaks, only outside the scope of this experiment.

Let us consider the Figure 5 where the perfect run in %
metric is shown on the R parameter experiment. High per-
formance is more sparse when using this metric, yet one can
still see most of the same set of behaviors. Some rules, such

as rule 73, stably increase over R. While some rules peak at
R = 3 or R = 4, mostly in the same associated manner to
ECAM as using the previous metric.

Another surprising results is, if one considers both met-
rics, there are some rules that can remember many permuta-
tions of input but never manage to achieve a perfect result,
such as in rule 62, which gets reliably a very good score on
the W̄ , but no score on perfect runs.

Some additional rules not identified in previous literature
can also be highlighted here, Rule 42 and 170. The X-
Bit memory benchmark only features memory and rule 170
projects sideways, so as long as the CA is not saturated, the
trajectory of the input can easily be backtracked. Rule 42
employs largely the same strategy, in fact its TT is only dif-
ferent by a single bit, therefore it would only act differently
in only in a single neighbourhood scheme. Considering that
this benchmark tests memory, in a very different benchmark
which relies on complex interaction between the input these
rules could perform poorly. No weak class 2 or strong class
3 are able to solve a perfect run at all. The rules previously
identified as high performers on this benchmark still perform
well. These being the Rules 60, 90, 105 and 150, which
are all weak Class 3. Rule 60, 90 and 150 are all Additive
Cellular Automata (ACA) which rely on more then a single
neighbour. More details on ACA can be found at (Rowland
and Weisstein, 2021). Rule 105 is a compliment of rule 150
but is not not normally considered equivalent.

The Impact of Nb on CA Behavior
In Figure 6 and Figure 7 we explore the parameter of Nb

on the W̄ metric. It can be seen that most of the class 2
have comparatively little variation in performance of a 3 bit
compared to a 6 bit. This is in contrast to class 3 and 4 rules,
and especially true for strong Class 3 and most class 4 (Rule
41, 106 and 110) which on the W̄ Nb = 6 gain 0 score and
on the Nb = 4 nearly perfect score.

The behavior of rule 5 and 1 was surprising, as they seem
to find Nb = 5 easier to memorize then 4. One can spec-
ulate that this might be due to sensitivity of the exact exe-
cution length of the CA between the input is projected into
the reservoir and when it is required to give it out, as the
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Figure 8: Perfect run metric % and Nb = {3, 4, 5, 6}

Figure 9: Additional 7 and 8 Nb for stable rules.

total length is increased by (I + 1) = 3 CA steps per bit.
Therefore, the result may be dependant on an exact length.

When one considers Figure 8 where we explore the pa-
rameter ofNb on the perfect score in % metric, there are still
rules (marked by their absence) that are incapable of getting
any perfect run even on Nb = 3. In fact, no weak class 2 is
able at all, but considering that most of them seem to only
ever be able to remember the cue signal but not the input
bits, this is probably the cause. Also considering weak class
2 are the rules that continue to have class 2 behaviour when
any memory function is applied it makes sense that these
rules that only project downwards fit into this category. All
class 3 and 4 move quickly between finding the task trivial
and impossible (particularly true for strong class 3 and class
4).

Considering these two experiments, some rules behave
out of place. Rule 26 and 154 behave as strong class 3 and
class 4, and class 4 minus rule 54 behave like the strong class
3 and visa versa. If one considers that complexity is found
at the edge of chaos, and that some orderly rules from class
2 and chaotic rules from class 3 are indistinguishable from
some of the complex class 4, this is not unimaginable.

Some of the rules seem to in contrast to many others, find
very little variation in how difficult Nb = 3 and Nb = 6
are to memorize. If one extends this into Nb = 7 and then
Nb = 8 only strong class 2 manage to do this. The perfor-
mance on the perfect run in % metric can be seen in Figure 9.
These rules largely seem to not find 8 bit more difficult then
Nb = 3, considering that Nb = 8 has 256 different permu-

tations and Nb = 3 only 8, this is quite remarkable. Consid-
ering also that many of these rules do not reliably solve the
problem, they must be very dependent on the variability of
the experiment, which is the random mapping set at initial-
ization. It is hypothesized that these rules have a variation of
beneficial and detrimental mappings. This could potentially
explain why they have peaks at R = 3, if this is the point
where the likelihood of getting a detrimental mapping out-
weighs the likelihood of getting a beneficial mapping. Rules
with peak at R = 4 could simply have a different distribu-
tion of beneficial and detrimental mappings.

In the experiments presented earlier, only results for the
ME rules of ECA have been shown. In terms of variation in
range of behavior the ME rules are sufficient, however some
rules considered to be equivalent achieve very different re-
sults in this experiment. For example, Rule 18 and rule 183
are considered equivalent in Wolfram (1986) and Wuensche
et al. (1992), but perform rather differently. The same is
observed for rules 200 and 236.

The Impact of Ld and Grid-size on Performance
We saw from the earlier results that some rules were very dy-
namic based on their configuration, and that some rules had
peaks of R = 3 or R = 4 (in the parameter space explored).
One could assume that the SVM used is being overloaded
with the very large dimension of the data it is classifying, but
as the peaks are in different locations and some rules seem to
still have an increasing performance, this is not a sufficient
explanation on its own. Furthermore previous experiments
have used even larger dimensional data for SVM classifica-
tion and still report success (Nichele and Gundersen, 2017).
These peaks are in somewhat of a contrast to what is previ-
ously discovered (Yilmaz, 2014; Nichele and Molund, 2017;
Nichele and Gundersen, 2017), where higher R seems bet-
ter, but these previous experiments do not actually report odd
number values.

Consider that R does not only affect the level of redun-
dancy in the mapping but also the total width of the CA.
Could the parameter space of Ld be very dynamic? In this
experiment presented here, the goal is to remove R from the
experiment by setting it as 1, and explore some rules which
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Figure 10: Parameter space of Rule 90, 60, 170 and 10,
using the W̄ metric, R = 1 and Ld = {30, 31, ..., 48, 49}

Figure 11: Parameter space of Rule 90, 60, 170 and 10,
using the perfect runs metric in %, R = 1 and Ld =
{30, 31, ..., 48, 49}

are still able solve the benchmark when R = 1. Note, that
when R = 1 the only variable that affects grid-size is the Ld

variable. Stable rules are also contrasted with more dynamic
rules. Figure 10 and Figure 11 explore several rules. Rule
170 which is very stable and in general by a decent mar-
gin the best performing rule, rule 10 which shows a peak at
R = 3, but behaves largely stable with differentNb, and rule
60 and 90 which show a peak at R = 4 and vulnerable to in-
crease in Nb. The parameter space of these 4 groups show
more dynamical behavior then expected. Rule 60 and 90
show very dynamical behavior where just the small change
between Ld = 40 and Ld = 39 goes from one of the best
performing configuration to one of the worst. A strong trend
in Rule 60 and 90 for high performance on even number
and poorly with odd numbers can be observed. Rule 10
shows some dynamic behavior as well, but not as much as
Rule 60 and 90. Rule 170, has the most stable performance
and shows an increasing trend upwards over increasing Ld,
but there is also some dynamic behavior in particular in the
lower region of Ld.

Discussion & Conclusion
Categories
In the different parameter spaces explored in this work, some
different behaviors is shown. The behavior classified as in-
capable represents the rules that are not able to memorize
a single bit. The rules classified as cheaters are able to de-
tect the cue signal and guess about 50% of the time. They

are only reliable to memorize a single bit. Rules fall within
a range of stable to vulnerable when mappings are initial-
ized randomly. Some rules are stable with regard to param-
eter setup, but very dependent on the different random ini-
tialization. This poses the question of what is a beneficial
mapping. Rules fall within a range of stable to vulnerable
when regards to the parameter configuration. Some rules
are quickly changing between finding problems trivial and
impossible based on a small changes in the parameter con-
figuration. This indicates that the parameter space for these
rules is very dynamic and needs care when selecting values.

CA behavior association with ECAM We have seen that
some of the behaviors are strongly associated with ECAM
classifications and the Wolfram classification. Considering
that ECAM classifies ECA by behavior over different mem-
ory functions and the x-bit memory task evaluates memory
capabilities, therefore, some association is expected.

High sensitivity to CA total width We have shown that
some rules are very dynamical and sensitive to CA width
configuration. Grid size was also found to be important in
rule 90 (Kleyko et al., 2020), but in contrast, odd numbers,
and especially primary numbers were perceived to be bene-
ficial, but on the metric of the rules randomization period.

Performance of ACA We see that many of the ACA rules
perform well and that rule 170, performs better on the X-Bit
Memory benchmark then the rules previously highlighted
(rule 90). Considering that rule 170 is only using a single
neighbour cell to define its state, its hypothesized that on
a benchmark featuring complex interaction rather then just
memory performance would be different.

Future Work
In this work, we have shown that the regions of the param-
eter space are particularly dynamic (within the regions ex-
plored). Only some of the defined parameters for this bench-
mark have been examined systematically. Parameters such
as Dp and I remain to be explored further. Some rules are
hypothesized to have a variation of beneficial and detrimen-
tal mappings. Therefore, a promising direction of explo-
ration is to better predict robust mappings in order to iden-
tify beneficial configuration for ReCA more precisely. The
X-Bit Memory task only tests memory capability. It would
be beneficial to conduct similar studies to this paper on other
benchmarks. Specifically ones that require transformation
and manipulation of the input.
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