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Abstract 

 

This paper explores the possibility for a cabin producer to manage lumber price volatility by 

hedging with futures contracts. Our intention is to explore if the introduction of a futures 

market for lumber will provide Norwegian (and European) producers with a viable way to 

handle said volatility. With a set of simplifying assumptions, a minimum variance strategy is 

tested on an artificially constructed cabin producer to estimate the effectiveness of such a 

strategy. Estimating the minimum variance hedge position is done using two advanced 

autoregressive models, in addition to a simpler, unconditional model. The three approaches 

are compared in a segmented time-series to isolate the effectiveness prior to and after the 

price shock that came with the Covid-19 pandemic.  

The findings indicate that the hedging strategy has great potential of reducing the variance of 

the cash flows. Prior to the Covid-19 outbreak, the variance of the cash flows could have been 

reduced by almost 50 percent. In that period, all three estimation models achieved almost 

identical effectiveness, with all three being within three percentage points of each other. 

Following the Covid-19 outbreak, there is a greater spread between the approaches, with the 

surprise being that the simpler, unconditional model outperforms the autoregressive models. 

The inferior performance of the conditional models indicates a weakness in the models’ 

ability to estimate the optimal hedge position in times of sustained increased volatility.  
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1 Introduction 
 

The construction industry is characterized by lengthy project timelines, complex supply 

chains and sensitivity to external factors. Factors such as extreme weather, changes in laws- 

and regulations, and humanitarian crises like the Covid-19 outbreak and the invasion of 

Ukraine. Events like these can have, and have had, a big impact on production and prices in 

the industry.  

Following the Covid-19 outbreak, labor shortage and an unexpected increase in demand 

caused US lumber prices to rise by more than 300% (van Kooten & Schmitz, 2022). The 

increase in demand came at a time where the inventory in the US lumber industry was already 

suffering due to forest fires and beetle infestations (Lambert, 2021). Subsequently, this led to 

an increase in import from Europe, which caused the European prices to rise. Just like that, 

the global lumber industry experienced a price shock, seemingly out of nowhere. Price shocks 

of that magnitude are few and far between, but the sudden increase in volatility has great 

damage potential.  

 

Graph 1: Softwood lumber producer price index (BLS, 2022) 

 

Commodity price volatility (CPV) is a major source of risk in the construction industry 

because contracts are usually signed long before materials are acquired. The severity of CPV 

in the industry is illustrated by the rise in lumber prices during the Covid-19 outbreak. A price 

increase of that magnitude is enough to financially ruin a firm without a strategy in place to 

manage that particular risk. 
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In the Norwegian cabin industry, the most common way to manage CPV has been with an 

escalation clause. The clause usually states that prices can be adjusted from the time of 

signing until the time of delivery (or production). The adjustment is based on a third-party 

index that aims to mirror the price changes in the marked (SSB, 2022). Because the index 

represents an average cabin model, the effectiveness of this risk management strategy will 

vary among producers and models. Nevertheless, a quick search reveals that many of the 

major cabin production firms in Norway use this strategy ((Telemarkhytter (2021), 

Familiehytta (2021), Nordlyshytter (2021), RanaHytter (n.a.), Saltdalshytta (2021)). After 

exploring other possible strategies, it becomes apparent why.  

Gaudenzi et al. (2018) categorize different CPV management strategies into three main 

groups. First group is sourcing strategies, which include capital intensive strategies like 

vertical integration and store keeping. Second group is contracting strategies, in which, 

among other things, the escalation clause used in Norway falls. The final group is financial 

strategies, which means hedging. When looking at the preferences of producers and 

customers, it is revealed that the choice of CPV management strategy is somewhat 

constrained.  

Considering the probable requirements of the sourcing strategies, it becomes apparent why it 

might be a less preferred strategy. Vertical integration, purchase timing (which would require 

store keeping), and commodity substitution are all examples of sourcing strategies. For the 

average firm, they all require substantial investments and/or significant changes in the supply 

chain. For that reason, firms might not prefer it as a CPV management strategy, which leaves 

contracting strategies and financial strategies.  

Of the contracting strategies mentioned by Gaudenzi et al. (2018), the interesting ones are the 

escalation clause and a closely related strategy, which involves directly passing on the price 

increase to the customer without the use of a third-party index. While the price increase seen 

during the Covid-19 outbreak has caused turmoil among producers, the customers are also 

heavily affected by it. Customers who signed contracts with escalation clauses would have 

seen the price of their cabin projects increase tremendously, and news coverage of the 

situation has led to great uncertainty among potential customers who are considering buying. 

The recent price increase alone has led to a decrease in the average cabin customer’s relative 

purchasing power, which has resulted in a decrease in the realistic number of potential 

customers. On top of that comes the risk of even further price increases, which has scared a 

great portion of the remaining potential customers. This uncertainty has resulted in a severe 
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reduction in sales industrywide (Boligprodusentene, 2022b), which has sparked an interest in 

the producers to explore the only remaining group of strategies, the financial strategies. 

Exploring the possibility and effectiveness of a hedging strategy is the underlying aim of this 

thesis, and will be done using different estimation techniques. A hedging strategy can be 

combined with the escalation clauses, giving the customer a more stable price outlook, which 

is precisely what is being called for. 

A detached house or cabin is made out of many different types of material, and hedging the 

entirety of the house would therefore require a whole bundle of different futures contracts. 

When taking into consideration the varying amounts needed of the different types of material, 

a complete hedging strategy would undoubtedly appear excessive. Of all the materials used to 

build an average Norwegian detached house, or cabin, wood accounts for approximately 50 

percent (SSB, 2019). The remaining 50 percent consists of smaller amounts of metal, pipes, 

electrical components and more. Consequently, the exposure to lumber price volatility is 

significantly greater than the exposure to price volatility from other commodities. For that 

reason, this thesis will exclusively look at the management of lumber price volatility.   

An immediate issue with a lumber hedging strategy in the Norwegian housing -and cabin 

industry, is the lack of a lumber futures market in Europe. The only real lumber futures 

market that exists is on the Chicago Mercantile Exchange (CME), where contracts on 

American lumber are traded. Meanwhile, most of the lumber used in the Norwegian industry 

is of domestic origin, or comes from other European producers (Treindustrien, 2022). One 

could try to use CME lumber futures contracts to hedge against lumber price volatility in 

Norway, but the lack of covariation between Norwegian lumber prices and CME lumber 

futures contracts would make it ineffective (appendix 1). For that reason, this thesis will look 

at a lumber hedging strategy from an artificially constructed American cabin producer’s 

perspective. Even though the hedging is done from the perspective of a cabin producer, the 

hedging itself will be possible for a multitude of industries that are exposed to lumber price 

volatility. Therefore, the results can be useful to numerous industry parties, and potentially be 

used as support for the creation of a European lumber futures market.  

 

The primary aim of this thesis is to answer the following two research questions: 

i. To what extent can a cabin producer reduce lumber price volatility by hedging with 

futures contracts? 



8 

 

ii. How do advanced, autoregressive hedge ratio estimation models perform compared to 

a simple, unconditional estimation model? 

 

2 Literature review 
 

2.1 Optimal hedge ratio 

One of the main objectives when using derivative instruments for hedging purposes is 

determining the optimal hedge ratio (Chen et al., 2003; Harris & Shen, 2003; Myers & 

Thompson, 1989). That is, the amount of spot positions to be covered by opposite positions in 

the futures market (Myers & Thompson, 1989). The optimal hedge ratio depends on the 

objective function to be optimized (Chen et al., 2003), but one of the most common hedging 

strategies is based on minimizing the variance of the hedged portfolio. The minimum variance 

(MV) hedge ratio is popular due to its simplicity and effectiveness, but it is important to point 

out one of its shortcomings.  

The only task of the MV hedge ratio is to minimize the variance of the hedged portfolio. For 

that reason it completely ignores the expected return, which is not in accordance with the 

mean-variance framework introduced by Markowitz (1952). In the mean-variance framework, 

risk and reward are weighted against each other, which means both variance and expected 

return are included in the investment decision. The exclusion of expected return in the MV 

strategy implicitly assumes that investors are infinitely risk averse or that the expected return 

is equal to zero, which would be the case if expected returns follow a stochastic process. The 

point is that the MV hedge ratio is optimal only under certain conditions. 

As mentioned earlier, the MV hedge ratio is only optimal when the objective function is to 

minimize the variance of the hedged portfolio. When the objective function is different, the 

optimal hedge ratio is also different. There has been done extensive research on the topic of 

optimal hedge ratios, and many different objective functions have been studied (Chen et al., 

2003). However, in accordance with the purpose of this thesis, which is to explore the 

possibility of hedging against lumber price volatility, utility functions in the industry, and the 

effectiveness of other hedging strategies are not included. Therefore, the only hedge ratio to 

be included in this thesis is the MV hedge ratio. 
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2.2 Stochastic process of commodities 

The mean reverting nature of commodity prices has been studied previously. Schwartz (1997) 

notes how fundamental microeconomic reasoning suggests that periods of high prices would 

cause more producers to contribute to the supply which drives the prices back down, and vice 

versa. Faustmann’s formula further backs this reasoning, where the optimal time for cutting 

down a forest is pushed back if the price of timber falls causing the added growth to be less 

valuable compared to the potential returns of holding on longer. This causes the supply to fall 

and will eventually cause the price to rise. The opposite is true for when the prices are higher 

than normal. 

Similar findings are made by Insley (2002) where the real option valuation within forestry 

management is compared between models using geometric Brownian motion versus mean 

reversion as assumptions for the underlying stochastic process of lumber prices. She notes 

how the characteristics of a GBM model will have an effect on the option value at lower 

prices, thereby “… implying option value estimates will be inaccurate for low prices” (Insley, 

2002). The production of timber globally has previously shifted from cutting old growth over 

to more industrial plantation-grown wood and second-growth wood (Sedjo, 1997). Such a 

shift in operations toward industrial plantations implies that the prices will follow a mean 

reverting process with the long-run marginal cost as its mean (Insley, 2002). Using models 

that assume a long run mean reversion, like the ARMA-GARCH models, is therefore 

appropriate. 

2.3 ARMA-GARCH 

The ARMA(p,q)-GARCH(p,q) model specifies both the conditional mean and the conditional 

variance of a time-series in the same model. ARMA-GARCH models’ forecasting ability 

have been extensively tested and applied. Liu et. Al (2011) tested the forecasting ability of 

several ARMA-GARCH models in modelling the mean of wind speed data. Even though this 

is not a financial time series, it still showcases the models’ ability to model nonlinearity. 

Using ARMA-GARCH models has become commonplace in modelling return time series due 

to its accuracy and ability to accommodate for heteroscedasticity (Shi et. Al, 2013). 

 



10 

 

2.4 Hedging effectiveness 

The effectiveness of the hedging strategy is measured by comparing the variance of the 

hedged portfolio with the unhedged portfolio, using the following formula from Ederington 

(1979): 

𝐻𝐸 = 1 −
𝑉𝑎𝑟(𝐶𝐹𝐻)

𝑉𝑎𝑟(𝐶𝐹𝑈𝐻)
 

The interpretation is straightforward. A hedging effectiveness (HE) below 0 means the 

variance of the hedged portfolio is greater than the unhedged. A HE between 0 and 1 means 

the variance is decreased, and a HE of 1 means all the variance is eliminated (i.e., a perfect 

 

3 Data 
 

3.1 Futures prices 

Unlike stocks, futures contracts have an expiration date. When the current front-month 

contract expires, the contract that previously was the two-period contract, is then the new 

front-month contract. For that reason, futures prices need to be manipulated to be used in 

historical data analysis. This is done by rolling the contracts over, and combining them into, 

so called, continuation contracts. The continuation contracts used in this thesis is collected 

from Refinitiv’s Datastream. The one-period and three-period contracts are the primary 

contracts being used in this thesis. The four-period contract is also utilized, but in a 

supplementary fashion.  

In Datastream, the continuation contracts are limited to 20 years of historical data. Therefore, 

the time-series used in this thesis is a 20-year long, monthly series starting from April 2002.  

 

3.2 Producer price index 

To simulate how the price of lumber develops in the spot market, the Producer Price Index 

(PPI) published by the U.S. Bureau of Labor Statistics is used. Specifically, the PPI for 

softwood lumber (code WPU0811). The PPI’s aim is to measure the average change in selling 

prices over time received by U.S. producers of goods and services (Producer Price Indexes, 

2018). To match the length of all the time-series’, and because of the 20-year limitation in the 

futures contracts, the data from the PPI is also 20 years, starting from April 2002. 
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4 Method 
 

To test the hedging strategy, this thesis uses an artificially constructed cash flow. The cash 

flow is created with the purpose of replicating that of an actual cabin production firm, while 

keeping it as simple as possible. For simplicity, a set of assumptions is placed on the cash 

flow.  

4.1 General assumptions  

The purpose of the thesis is to test the possibility for a cabin production firm to hedge against 

lumber price volatility, and the potential effectiveness of such a hedge. For that reason, the 

constructed cash flow includes only wood related costs and revenues. Further, the cash flow is 

designed to replicate that of a firm which sells pre-cut cabin kits, and it excludes everything 

that is not related to cabin kit sales or the acquirement of wood related materials. A cabin kit 

would naturally include other components than wood, and a firm selling them would have 

other costs than those associated with procurement of wood, but for the purpose of this thesis, 

all such factors are excluded.  

Following this trend of simplicity, the cost estimates used in the cash flow time series is 

assumed to follow the movement of the softwood lumber PPI. For testing purposes, all values 

have to be the same unit of measure. The transformation of the PPI into U.S. Dollars is done 

by assuming the first periods cost is equal to the front-month futures price in the same period 

plus a markup. This assumption is made because firms that sell pre-cut cabin kits are usually 

outsourcing the actual preparation of the lumber. These producers are assumed to buy lumber 

from their local sawmill at the prevailing market price. A market price which, if the law of 

one price holds, will be relatively close to the front-month futures contract price. With a cost 

timeseries in U.S. Dollars, a similar assumption is made about the price at which the firm sells 

the cabin kits.  

One could assume that the firm takes into account the expected future price of lumber in their 

pricing strategy by looking at the longer period futures contracts. To maximize the effect of 

hedging, however, it is assumed that the firm does not include information from the futures 

market in their pricing strategy. They simply use the prevailing price offered by the cabin kit 

manufacturer and add a markup to cover costs and profits. 

To calculate the total cash flow, as well as the hedge position, a specific number of sold 

cabins must be determined. Using information about the number of construction-starts in 2021 
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from the top five biggest cabin firms in Norway, and assuming a steady stream of 

construction-starts and sales throughout the year, an average of 30 cabins a month is acquired 

(Boligprodusentene, 2022a). In addition to a number of cabins sold, an estimate of lumber 

consumption per cabin is needed. The estimate used is an average of 30 cubic meters of 

lumber per cabin and comes from a conversation with an employee at one of the biggest cabin 

firms in Norway. 30 cubic meters is approximately equal to 12,7 thousand board feet (mbf). 

Another feature of the cabin industry which require an assumption is the lengthy sales 

process, which is also the primary reason a CPV management strategy is necessary. In 

Norway, the local government is responsible for issuing building permits, which results in 

geographical variation in processing time. Considering all the other factors that are distinctive 

to each project, there will be considerable variation in processing time between the projects. 

However, for testing purposes the assumption is that the sales process is six months for each 

project. This also leads to the assumption that the firm always closes out its position before 

settlement. That is, the firm holds the futures contract for approximately six months and then 

cancels the long futures position by taking an equal sized short position. 

The six months-assumption, in combination with the fact that the futures contracts are only 

traded with settlement every other month, causes a minor issue that needs to be addressed. A 

three-period contract entered into on either of the “off-months” (the months without 

settlement) will have five months to settlement, not six. For the purpose of this thesis, the 

“issue” is ignored on account that the three-period and four-period contracts are very closely 

correlated (appendix 2). The increased validity from implementing a model that considers 

four-period contracts for the off-months, is judged to be of less value than the associated 

increase in complexity and chance of more severe, statistical issues. For that reason, the three-

period continuation contracts are used to estimate the six months hedge payoff.  
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4.2 Cash flow formula 

Because the futures contracts are quoted in U.S. Dollars per thousand board feet (mbf), all 

other elements in the cash flow are also built on the same quotation. 

Unhedged cash flow per mbf (later referred to as CF1): 

 𝐶𝐹 𝑝𝑒𝑟 𝑚𝑏𝑓𝑡 = 𝑃𝑡−6
𝐶 − 𝐶𝑡

𝐶 (1)  

 

Cash flow per mbf at time t is simply the price at which the lumber portion of the cabin is sold 

minus the associated lumber costs. The only caveat is, again, that the price is set six months 

prior to the cost being observable.  

Unhedged cash flow per cabin: 

 𝐶𝐹 𝑝𝑒𝑟 𝑐𝑎𝑏𝑖𝑛𝑡 = 𝜆𝑃𝑡−6
𝐶 − 𝜆𝐶𝑡

𝐶 = 𝜆(𝑃𝑡−6
𝐶 − 𝐶𝑡

𝐶) (2)  

 

Cash flow per cabin is equal to the cash flow per mbf multiplied by the amount of lumber 

used per cabin, denoted with the Greek letter lambda. Then, to get the total unhedged cash 

flow, the unhedged cash flow per cabin is multiplied with the amount of cabins sold. 

Total unhedged cash flow: 

 𝐶𝐹𝑡 = 𝑁𝜆𝑃𝑡−6
𝐶 − 𝑁𝜆𝐶𝑡

𝐶 = 𝑁𝜆(𝑃𝑡−6
𝐶 − 𝐶𝑡

𝐶) (3)  

 

In accordance with the assumption that the firm always closes out its position before the 

settlement date, the profit from the hedge is the following.  

Hedge profit per mbf (later referred to as CF2): 

 Π𝑡
𝐻 = (𝐹𝑡

1 − 𝐹𝑡−6
3 ) (4)  

 

Where 𝐹1 is the front month futures contract, and 𝐹3 is the three-period contract. To acquire 

the total hedge profit, the per mbf profit formula is multiplied by the hedge position and the 

ratio of the contract unit and price quotation. The hedge position is denoted by H and the ratio 

by q.  
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Total hedge profit: 

 𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑑𝑔𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝐻𝑞Π𝑡
𝐻 (5)  

 

Adding the total hedge profit to the total unhedged cash flow yields the total hedged cash 

flow. 

Total hedged cash flow: 

 𝐶𝐹𝑡
𝐻 = 𝑁𝜆(𝑃𝑡−6

𝐶 − 𝐶𝑡
𝐶) + 𝐻𝑞(𝐹𝑡

1 − 𝐹𝑡−6
3 ) = 𝐶𝐹𝑡

𝐻 = 𝑁𝜆𝐶𝐹 𝑝𝑒𝑟 𝑚𝑏𝑓𝑡 + 𝐻𝑞Π𝑡
𝐻 (6)  

 

4.2.1 Deriving the minimum variance hedge position 

Deriving the variance of the total hedged cash flow formula, yields: 

Variance of total hedged cash flow: 

 𝑉𝑎𝑟(𝐶𝐹𝑡
𝐻) = 𝑁2𝜆2𝑉𝑎𝑟 (𝐶𝐹𝑡𝑝𝑒𝑟 𝑚𝑏𝑓

) + 𝐻2𝑞2𝑉𝑎𝑟(Π𝑡
𝐻)

+ 2𝑁𝜆𝐻𝑞𝐶𝑜𝑣 (𝐶𝐹𝑡𝑝𝑒𝑟 𝑚𝑏𝑓
, Π𝑡

𝐻) 

(7)  

 

Applying the first order condition for minimum variance and solving for H yields the optimal 

MV hedge position. 

 𝜕𝑉𝑎𝑟(𝐶𝐹𝑡
𝐻)

𝜕𝐻
= 2𝐻𝑞2𝑉𝑎𝑟(Π𝑡

𝐻) + 2𝑁𝜆𝑞𝐶𝑜𝑣 (𝐶𝐹𝑡𝑝𝑒𝑟 𝑚𝑏𝑓
, Π𝑡

𝐻) = 0 (8)  

 

Minimum variance hedge position: 

 

𝐻∗ = −
𝑁𝜆𝐶𝑜𝑣 (𝐶𝐹𝑡𝑝𝑒𝑟 𝑚𝑏𝑓

, Π𝑡
𝐻)

𝑉𝑎𝑟(Π𝑡
𝐻)𝑞

 (9)  

 

4.3 Hedge position estimation 

Estimating the hedge position is done by using three different variance -and covariance 

estimation models. Two of which are ARMA-GARCH/mGARCH DCC models where one 

uses the six months ahead forecast, while the other uses the on-date estimate to calculate the 

hedge ratios, and the last is an unconditional expanding window estimation.  
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4.3.1 Conditional model 

4.3.1.1 ARMA (p,q) 

The ARMA model was first introduced in Peter Whittle’s thesis “Hypothesis testing in time 

series analysis” in 1951. The ARMA model contains an autoregressive (AR) process 

introduced by G.U. Yule and moving average (MA) process introduced by E. Slutsky. The 

ARMA(p,q) model can be specified as: 

 𝑦𝑡 = 𝛼0 + 𝜇𝑡 + 𝜖𝑡 (10)  

 

Where 𝜇𝑡 is the conditional mean of the process, and is estimated as: 

 

𝜇𝑡|𝐼𝑡 = ∑ 𝛼𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑘𝜖𝑡−𝑘

𝑞

𝑘=1

 
(11)  

 

 

Where: 

- 𝐼𝑡 is the available information at time t and can be defined as 𝐼𝑡 = (𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3, … ), 

- 𝑝 is the order of autocorrelations (how many lags back in time the model uses), 

- 𝑞 is the order of the moving average (how many lags back in time the model uses), 

- 𝛼0 is a constant, 

- 𝛼𝑖, … , 𝛼𝑝 are the parameters for the autocorrelation process, 

- 𝛽𝑘, … , 𝛽𝑞 are the parameters for the moving average process, 

- 𝜖𝑡 is a white noise term, meaning 𝐸(𝜖𝑡) = 0. 

 

The ARMA model assumes constant volatility, meaning 𝐸(𝜎𝑡
2) = 𝜎2. 

Wold’s representation theorem is the underlying assumption of the ARMA model. The 

ARMA method models the return of a stationary stochastic process to its equilibrium after a 

shock (a significant deviation from said equilibrium). The process needs to be stationary 

because the coefficients (and therefore the equilibrium) in an ARMA model do not change 

over time. A non-stationary component (such as a trend) will necessitate the parameters to 

change over time which in turn makes predictions impossible to model. One of the constraints 

placed on the model is therefore that the time series needs to be stationary. 
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4.3.1.2 GARCH (p,q) 

The ARMA model assumes a constant variance throughout the time series, however this is 

usually not the case. Most time series, including commodities are usually characterized as 

having periods of elevated volatility where the price deviates substantially from the mean and 

periods of relatively low volatility where the price fluctuates closer to the mean. An 

alternative variance error model was presented by Engle in 1982 that allows for “… mean 

zero, serially uncorrelated processes with nonconstant variances conditional on the past, but 

constant unconditional variances” (Engle, 1982). Essentially, it allowed the conditional 

variance to be estimated using lagged squared error terms and their corresponding parameters. 

An extension of the ARCH model was proposed in 1986 by Tim Bollerslev titled Generalized 

autoregressive conditional heteroscedasticity” (GARCH). The GARCH model added the 

previous conditional variances to the estimation of the current conditional variance, thereby 

making it an ARMA equivalent of the ARCH process (Bollerslev, 1986). 

The GARCH process is given by: 

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝜎𝑡−𝑖
2

𝑝

𝑖=1

 (12)  

 

Where: 

- 𝜔 is a non-negative and non-zero constant, 

- 𝜀𝑡
2 is the squared error term at time t, 

- 𝜀𝑡
2|𝐼𝑡−1 ~ 𝑁(0, 𝜎2), 

- 𝜎𝑡
2 is the conditional variance at time t, 

- 𝛼𝑡 and 𝛽𝑡 are non-negative parameters for the previous squared errors and previous 

conditional variances respectively, 

- 
𝜔

1−𝛼−𝛽
 is the long run average variance, 

- 𝑞 and 𝑝 are the orders of lags for squared residuals and conditional respectively, 

GARCH(1,1) models assume that 𝛼 + 𝛽 < 1 , if not, the time series may not be stationary. 

 

Stationarity is, like ARMA, a necessary assumption for the GARCH model. 
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Note that if 𝛽𝑡 = 0 , then the GARCH model is reduced to the ARCH (q) model. Also, if   

𝑞 = 𝑝 = 0 , then the squared error terms (𝜀𝑡) is reduced to a white noise term. 

Benoit Mandelbrot (1963) showed that price changes in financial time series are usually 

followed by price changes of similar magnitude, a phenomenon known as volatility 

clustering. Due to the GARCH model specifying the autocorrelative nature of conditional 

volatility, it can handle these periods of volatility clustering and provide more accurate 

volatility estimates. The ubiquity of volatility clustering in financial data and its possible 

explanations is explored further by Lux et. al (2000).  

 

4.3.1.3 mGARCH DCC 

mGARCH (short for Multivariate Generalized AutoRegressive Heteroscedasticity) is a model 

used to specify the conditional covariance matrix of two or more time series as following a 

dynamic structure using past conditional covariance matrixes. 

Several mGARCH models exists, such as the constant conditional correlation (CCC), 

dynamic conditional correlation (DCC, the one used in this thesis, introduced by Engle and 

Sheppard in 2001), and varying conditional correlation (VCC).  

The general mGARCH model can be written as: 

 𝑦𝑡 = 𝐶𝑥𝑡 + 𝜖𝑡 (13) 

 𝜖𝑡 = 𝐻𝑡
1/2

𝑣𝑡 (14) 

 𝐻𝑡 = 𝐷𝑡
1/2

𝑅𝑡𝐷𝑡
1/2

 (15) 

 
𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄𝑡)−

1
2𝑄𝑡𝑑𝑖𝑎𝑔(𝑄𝑡)−

1
2 

(16) 

 𝑄𝑡 = (1 − 𝜆1 − 𝜆2)𝑅 + 𝜆1𝜀𝑡−1
′ 𝜀𝑡−1

∗ + 𝜆2𝑄𝑡−1 (17) 

 

Where: 

- 𝑦𝑡 is an 𝑚 vector of dependent variables, 

- 𝐶 is an 𝑀 ∗ 𝑘 matrix of parameters, 

- 𝑥𝑡 is a 𝑘-vector of independent variables, 

- 𝐻𝑡
1/2

 is the Cholesky factor of the time-varying conditional covariance matrix 𝐻𝑡, 

- 𝑣𝑡 is an 𝑚 vector of normal, independent, and identically distributed errors, 

- 𝐷𝑡 is a diagonal matrix of conditional variances, 
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- 𝜀𝑡−1
′  and 𝜀𝑡−1

∗  are immediate disturbances. 

 

The conditional variance in the diagonal matrix 𝐷𝑡 is specified according to a univariate 

GARCH model. The CCC differs from the DCC in its calculation of 𝐻𝑡, where 𝑅𝑡 = 𝑅 , 

meaning that the CCC keeps the conditional correlation constant over time regardless of 

previous realisations of the 𝑄𝑡 matrix. The 𝑅𝑡 matrix are known as conditional 

quasicorrelations (Aielli, 2009). 

Also note that if 𝜆1 = 𝜆2 = 0, then the DCC is reduced to a CCC model. 

4.3.1.4 Forecasting 

Suppose we have an AR (1) process where the variance follows a GARCH process. We get: 

𝑦𝑡+1 = 𝐶 + 𝜌𝑦𝑡 + 𝜀𝑡+1 

Then it follows that:            𝑦𝑡+2 = 𝐶 + 𝜌𝑦𝑡+1 + 𝜀𝑡+2 

→ = 𝐶 + 𝜌 (𝐶 + 𝜌𝑦𝑡 + 𝜀𝑡+1) + 𝜀𝑡+2 

So:  

                         𝑦𝑡+𝑛 = ∑ 𝜌𝑛−𝑖𝐶𝑛
𝑖=1 + 𝜌𝑛−1𝑦𝑡 + ∑ 𝜌𝑛−𝑖𝜀𝑡+𝑖

𝑛
𝑖=1  

Where: 

- 𝜀𝑡+1 ~ 𝑁(0, 𝜎2), 𝜎2 follows a GARCH process, 

- 𝜌 is the AR-coefficient. 

The variance forecast becomes:  

𝑉𝑎𝑟(𝑦𝑡+𝑛) = 𝑉𝑎𝑟𝑡(∑ 𝜌𝑛−𝑖𝐶

𝑛

𝑖=1

+ 𝜌𝑛−𝑖𝑦𝑡 + ∑ 𝜌𝑛−𝑖

𝑛

𝑖=1

𝜀𝑡+𝑖) 

       Constants 

= 𝑉𝑎𝑟𝑡(∑ 𝜌𝑛−𝑖

𝑛

𝑖=1

 𝜀𝑡+𝑖) 

 
= ∑(𝜌𝑛−𝑖)2

𝑛

𝑖=1

 𝜎𝑡+𝑖
2  

(18) 
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The GARCH forecast for 𝜎𝑡+𝑖
2  is given in Hull (2018, p. 236) as: 

 𝐸[𝜎𝑛+𝑡
2 ] = 𝑉𝐿 + (𝛼 + 𝛽)𝑡(𝜎𝑡

2 − 𝑉𝐿) (19) 

Where: 

- 𝑉𝐿 is the long run variance 

- 𝛼 and 𝛽 is the ARCH and GARCH coefficients respectively. 

Note how the GARCH forecasts pulls the variance forecasts towards the long run variance if 

𝛼 + 𝛽 < 1, and the last term of the equation becomes smaller the further ahead one forecasts. 

If 𝛼 + 𝛽 > 1, then the “long-term average variance is negative and the process is mean 

fleeing rather than mean reverting” (Hull, 2018, p. 236). 

 

Figure 1: Visualization of the mean reverting nature of the variance forecasts. Graph (a) shows the forecast 

when current conditional variance is above the long run variance, and (b) shows when the variance is below. 

(Taken from Hull, 2018, p. 236) 

 

The 𝑄𝑡+𝑛 is forecasted the same way as the univariate GARCH model, which means our 

correlation forecasts can be written as: 

 𝐶𝑜𝑟𝑟(𝜀1,𝑡+𝑛 , 𝜀2,𝑡+𝑛) = 𝑑𝑖𝑎𝑔(𝑄𝑡+𝑛)−1/2𝑄𝑡+𝑛𝑑𝑖𝑎𝑔(𝑄𝑡+𝑛)−1/2 (20) 
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The covariance forecast then becomes the product of the forecasted correlation and the 

forecasted standard deviations: 

 𝐶𝑜𝑣𝑡(𝜀1,𝑡+𝑖, 𝜀2,𝑡+𝑖) = 𝐶𝑜𝑟𝑟𝑡(𝜀1,𝑡+𝑛, 𝜀2,𝑡+𝑛) ∗ √𝑉𝑎𝑟𝑡+𝑛(𝜀1) ∗ √𝑉𝑎𝑟𝑡+𝑛(𝜀2) (21) 

 

4.3.1.5 Parameter estimation 

The parameter estimation method used in STATA for all models is the maximum likelihood 

estimation (MLE) with a Gaussian distribution, where coefficients is determined by the 

iteration of the model producing the highest log-likelihood estimate. Using the maximum 

likelihood estimation technique will enable us to use the Akaike information criterion (AIC) 

and the Bayesian information criterion (BIC) to find optimal orders of p and q in the 

ARMA/GARCH model. 

 

4.3.1.6 AIC and BIC 

The Akaike information criterion and the Bayesian information criterion are both model 

selection methods utilizing the maximum likelihood estimate as its main criteria. While both 

are used for the same purpose, they do have their differences that will need to be considered: 

The Akaike information criterion developed by Hirotsugu Akaike in 1973 can be written as: 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑘 

Where: 

- 𝐿 is the maximum likelihood estimate from the model, 

- 𝑘 is the number of parameters in the model. 

 

The Bayesian information criterion developed by Gideon E. Schwartz can be written as: 

𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑘 ln(n) 

Where: 

- 𝑛 is the sample size. 
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Note that the lowest AIC and BIC is considered the best model. With this in mind, we see 

both criterions punish an increase in parameters without a corresponding increase to the log-

likelihood of the model. The difference between the two is that the BIC punishes the 

parameters more severely compared to the AIC (if the sample size surpasses 8). The “danger” 

of using the two are therefore the complete opposite; where the AIC may overfit the optimal 

model, the BIC may underfit.  

Weakliem (1999) and Burnham et. al (2004) argue that the selection of a selection method 

should be based on the philosophy toward whether one of the models is the “true” 

representation or an approximation. If the one of the models is a “true” representation of 

reality, then the elimination of models containing extra parameters providing minor effects is 

desirable, thereby justifying the strictness of the BIC. We can, however, not make any such 

assertions about our models. Therefore, should the two selection models disagree on the 

optimal model specification, then the AIC will take precedence.   

 

4.3.1.7 Testing for stationarity 

As mentioned previously, both time series need to be stationary if the ARMA-GARCH model 

is to be applied. To test for this, we use the augmented Dickey-Fuller unit-root test. If both 

time series follow a unit-root process, meaning they are non-stationary, then the Johansen test 

(1995) for cointegration will be used. 

 

4.3.2 Unconditional model 

In addition to the conditional variance -and covariance estimation models, a model using 

unconditional estimates is also employed. The model uses expanding window (see 

discussion), standard variance -and covariance estimations. The unconditional model requires 

far less effort than the conditional models. Comparing them might give insight as to whether a 

simple model yield satisfying results, or if an advanced model should be employed.  

The first 12 hedge positions used in the unconditional time-series is static, and is acquired 

using the variance and covariance from the period prior to the pandemic outbreak.  
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4.4 Time-series segmentation 

The increased volatility following the Covid-19 outbreak is a big reason for the interest in 

hedging. However, the severity of the increase could also be an issue when attempting to 

estimate the hedge position. The sudden increase in volatility could result in less ideal 

estimates for the conditional variance- and covariance model. For that reason, it is interesting 

to divide the time-series into pre- and post-pandemic, to explore how the strategy performs in 

the event of sudden and severe changes in volatility. The strategy is therefore evaluated for 

three time periods, the full period, pre-pandemic outbreak, and post-pandemic outbreak.  

 

5 Results 

 

5.1 Model specification 

5.1.1 Autocorrelation (AC) and partial autocorrelation (PAC) plots 

The AC an PAC plots from STATA gives us the following: 

 

Figure 2: AC and PAC plots for CF1. Top are unrestricted, bottom are time restricted 
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Figure 3: AC and PAC plot for CF2. Top are unrestricted, bottom are time restricted 

 

The top AC and PAC plots includes the entirety of the time series. The PAC plot is quite 

erratic and hard to interpret. ARMA-GARCH models gives 𝛼 + 𝛽 > 1 (Appendix 5), which 

makes forecasting impossible. The most probable reason for this is the extreme volatile period 

post-covid, where the price fluctuations and sustained elevated prices is hard to properly 

model together with the pre-covid period. The bottom AC and PAC plots restricts the time-

series to pre-covid only. For both time-series the restrictions cause better behaved coefficient 

estimates (𝛼 + 𝛽 < 1) and a far less erratic PAC plot. The ARMA-GARCH models will 

therefore need be constrained to the more stable pre-covid period. All forecasts will be made 

using coefficients from the constrained models. The PAC plots show some significant lags of 

higher order; however, they are small. The plots together seem to indicate an AR(1) process. 
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5.1.2 Dickey-Fuller test 

 

Figure 4: Dickey-Fuller test for CF1 

 

 

Figure 5: Dickey-Fuller test for CF2 

 

Where: 

𝐻0: The time series contains a unit-root 

𝐻𝑎: No unit-root is present 

Both Dickey-Fuller tests are rejected at a 1% level. We do not find evidence of non-

stationarity in either time-series and assume them to be stationary. 

 

5.1.3 AIC and BIC 

 

 

Figure 6: AIC and BIC for ARMA CF1 
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Figure 7: AIC and BIC for ARMA CF2 

 

c1 and c2 are AIC and BIC respectively. r1 is ARMA (1,0), r2 is ARMA (1,1), r3 is ARMA 

(2,0), r4 is ARMA (2,1). 

The AIC and BIC agree as to the optimal ARMA specification, the ARMA (1,1). Next will be 

to find the optimal ARMA (1,1)-GARCH (p,q) specification. 

 

 

Figure 8: AIC and BIC for GARCH for CF2 

 

r1 is ARMA (1,1)-GARCH (1,1), r2 is ARMA (1,1)-GARCH (2,2). The ARMA (1,1)-

GARCH (2,2) did not converge for the first time series. The ARMA (1,1)-GARCH (1,1) seem 

to be the best fit and is used for the rest of the thesis. 

 

5.1.4 mGARCH 

The problem with running the mGARCH DCC is that STATA is unable to run it using an 

ARMA-GARCH specification. The solution can be found in Francq and Zakoïan’s paper 

“Estimating multivariate volatility models equation by equation” (2015). The papers original 

intent was reducing the computational burden experienced when running multivariate 

volatility models known as the dimensionality curse. In step one, a GARCH model is 

estimated for the time-series and the residuals are extracted from it. In step two, the 

conditional correlation matrix (𝑅𝑡) is estimated using the residuals. Conveniently, this 

approach will enable the specification of an ARMA-GARCH model. For us, this means 

extracting the residuals from the ARMA(1,1)-GARCH(1,1) for both time-series and inserting 
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them into the mGARCH DCC model. Note here that the residuals from the GARCH models 

will be non-autocorrelative, have no moving-average and are mean-zero due to the ARMA 

specification. The mGARCH model will therefore have to be specified without constants and 

independent variables. 

The mGARCH gives us the following: 

 

Figure 9: Quasi-correlation, Lambda1 and Lambda2 

 

 

Figure 10: Wald test for Lambda 1 and Lambda 2 

 

Lambda 2 is significant at the 99% level, however Lambda 1 is very weakly significant. The 

Wald test show that both lambdas collectively are significant and that the time-invariant 

correlation imposed by the CCC is too restrictive for our time-series. 

The quasi-correlation and lambdas are used in forecasting and is teamed with the conditional 

variance estimates from the GARCH models in estimating the conditional covariance matrix 

(𝐻𝑡) manually. 
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5.2 Hedging strategy  

 

Results from the backtesting show that the variances of the hedged cash flows, using the three 

different hedge position estimation models, are all lower than that of an unhedged cash flow. 

From the graph below it is clearly visible that the hedging strategy does reduce the spread in 

the cash flow, especially in periods of increased volatility.  

 

Graph 2: Cash flows from the different estimation models and the unhedged cash flow. The outbreak of the 

Covid-19 pandemic is illustrated with the vertical, black line.  

 

The difference between the three estimation models, however, does not appear that significant 

on the graph. Nevertheless, it is quite visible when putting the variance and hedging 

effectiveness up against each other, which can be seen in the table below. The estimates are 

presented for all three variance -and covariance estimation models, as well as for the three 

time periods. For all estimation models and time periods, the HE is above 0, which indicates 

that the hedging strategy reduces the variance compared to an unhedged cash flow.  
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Figure 11: Variance, HE and CF for all estimation models, and time periods.  

 

Results from the time-series segmentation show that the HE is greatest in the period after the 

pandemic outbreak. In this period the hedged cash flows are also notably higher than the 

unhedged cash flow. Prior to the pandemic outbreak, the HE is reasonably lower, but still 

convincing. Opposite to the post-outbreak period, the hedged cash flows in the pre-outbreak 

period is slightly lower than the unhedged cash flow, however much more volatile.  

 

6 Discussion 
 

6.1 Estimation models 

The main weakness of this model is how it deviates from the real-life approach that would be 

taken. The conditional variance estimates and forecasts are all using coefficients estimated 

from a model using information they would not have access to until after the fact. Two likely 

approaches would be the rolling window estimation and expanding window estimation 

methods. 

For the rolling window estimation, the number of periods used in estimating the coefficients 

are kept constant, however the sample shifts as new observations are added. Usually, the 

smaller of the two estimation methods, it will help with avoiding “lookback-bias” where older 

observations that are no longer relevant exerts influence over the coefficient estimates 

Variance HE CF

Unhedged 1 994 312 438 - 9 828 266

Unconditional 770 971 067 0,61 10 449 926

Conditional 866 923 713 0,57 10 400 195

Conditional (F) 923 037 973 0,54 10 323 058

Unhedged 294 382 308 - 8 876 753

Unconditional 156 844 392 0,47 8 561 998

Conditional 161 567 560 0,45 8 576 545

Conditional (F) 159 832 624 0,46 8 606 919

Unhedged 16 118 708 431 - 951 513

Unconditional 4 815 092 920 0,70 1 887 929

Conditional 5 837 703 747 0,64 1 823 650

Conditional (F) 6 609 232 727 0,59 1 716 139

Pre covid-19

Full period

Post covid-19
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because as the “window rolls” the oldest observation is excluded. This will in turn cause the 

model and its forecasts to be more reactive to new observations. It will also help avoid 

overfitting the model because factors that will interfere with the estimation of the coefficients 

such as various forms of price shocks over time (especially if the AIC is used as a criterion). 

Choosing the correct window size would be the main challenge of such an approach. If the 

window is too large then lookback-bias will be a threat, but a window too small may give 

coefficients that are too biased toward recent observations. In instances such as sustained 

price shocks, the long run mean and variance will most likely be too high and the model will 

be unable to give accurate predictions when the price falls back down to the “true” long run 

mean.  

For the expanding window estimation, the number of periods used in the coefficient 

estimation is, as the name implies, expanding as new observations are added. This method 

will likely be more reliable in handling price shocks that are sustained for longer periods 

compared to the rolling window method because the stochastic process from more stable 

periods is given more weight. The big downside to this approach is its vulnerability to giving 

weight to obsolete data in the past. New innovations within the industry that changes the long 

run mean and volatility in the market that is relevant for the future will not be given the 

influence it is due. It should be noted that the expanding window approach will also at some 

point face the problem of 𝛼 + 𝛽 > 1. 

There are two reasons these approaches were excluded as ARMA-GARCH methods. Firstly, 

the data available is too scarce. The data available for the various future prices only stretches 

back 20 years and preliminary data is needed to forecast from 2002. Secondly, the 

computational load. The “true” approaches would have a new ARMA-GARCH and 

mGARCH model be made as new observations came in. For backtesting, this means 

estimating a new model for each observation and getting the appropriate forecasts using 

equally as many unique coefficients. The first observations would need to be used as 

preliminary data for estimating the first models. 
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6.2 Hedging performance 

Results from the backtesting are promising, and it shows that the hedging strategy has 

potential to significantly reduce the volatility of the cash flows. Of all the variance -and 

covariance estimation models used, in addition to the time-series segmentation, the lowest HE 

in the backtesting was 0,45.  

The forecasting model is marginally stronger than the non-forecasting dynamic model pre-

covid, however it suffers post-covid. All coefficients are, as mentioned previously, fitted for 

the pre-covid period and hints therefore at the model’s ability to accurately forecast both 

conditional variances and covariances for this period. The ability to accurately forecast the 

mean reverting nature of prices and volatility gives marginally better, but ultimately 

negligible results pre-covid. 

It is very important to note that the hedging effectiveness of the forecasting models post-covid 

does NOT equate forecasting accuracy. The coefficients and the long-run variance and mean 

are all calculated from a stable, pre-covid period. This means that periods of sustained price 

shocks and volatility will always be predicted to fall in the forecasts. This is further shown 

when considering that the only period it outperforms the other models is in the sharp price 

drop in 2021. Appendix 3 shows how the post-covid period substantially deviates from pre-

covid. The poorer performance of the forecasting model post-covid is reflected in it causing a 

higher variance and lower cash flow compared to the non-forecasting dynamic model. 

The most notable observation in the results is the effectiveness of the unconditional expanding 

window approach. There are negligible differences in hedging effectiveness between the three 

approaches pre-covid, but more significant ones post-covid. The unconditional approach 

provides both a larger reduction in volatility and a larger increase in cash flow compared to 

the conditional approaches. This is more of an indication of the weakness of complex models 

under extraordinary circumstances, than it is to the strength of a more simplistic approach. 

The extreme and sustained differences between the pre-, and post-covid period makes it 

difficult to accurately model the full period, and the compromises made makes the model 

suffer during prolonged aberrative periods. 

 

An assumption made related to the hedge position, is the ability to purchase fractions of a 

futures contract. In reality, that is not possible with the CME lumber futures contracts. The 

assumption is made for testing purposes, and more importantly, comparing the different 
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estimation models. A real-world hedging strategy would have to account for that, and it would 

likely be an obstacle for smaller consumers. The reason being that the contract size of 110.000 

board feet, which equals nearly five truckloads, is quite large and the exposure that smaller 

agents experience might not be large enough to cover that amount. In the case of the 

Norwegian cabin industry, using the average monthly sale and the average amount of lumber 

needed per cabin, the hedge positions throughout the time-series range from 0,8 to 2,6. Which 

means, the average Norwegian cabin production firm will have a hard time hedging with 

contracts of that size. Therefore, the average Norwegian cabin producer will have to employ a 

strategy that accounts for that issue. The handling of said issue is beyond the scope of this 

paper, and is therefore excluded, but it should be pointed out.  

As a final point of discussion, it should be reiterated that the assumptions and simplifications 

made in the thesis are all factors that can, and almost certainly will, result in the strategy 

deviating from a real-world approach. Each individual firm will have distinctive features that 

will affect the effectiveness and practical implementation of the strategy. Also important to 

recognize, is the possible lack of applicability of the strategy in a potential European market. 

There are multiple factors in the separate markets that are dissimilar, and the applicability of 

the strategy will therefore be hard to predict.  

6.3 Further research 

It should be noted that this thesis only tested the standard ARMA-GARCH model. Testing the 

applicability of a wider spectrum of models could possibly give further insight as to the nature 

of the underlying process of the lumber prices. Examples could be the exponential weighted 

moving average (EWMA), the NAGARCH (Nonlinear Asymmetric GARCH) in case of 

leverage effect, and QGARCH (Quadratic GARCH) if there are asymmetric effects of 

negative and positive shocks. 
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7 Concluding remarks 

 

After exploring a minimum variance lumber hedging strategy for a cabin production firm, the 

results are promising and show great potential of reducing lumber price volatility with the use 

of futures contracts. With the assumptions that were made, and the strategy described, a cabin 

producer would have been able to reduce its lumber price volatility by up to 70 percent in the 

wake of the Covid-19 outbreak. Prior to the outbreak, in the longer, more stable period, the 

strategy would have yielded a variance reduction of almost 50 percent. Overall, the results 

show that the strategy has significant effectiveness, but that choice of estimation model does 

have a slight influence on the hedging effectiveness.  

For the entire time-series, the performance of the conditional models was inferior to the 

simpler, unconditional estimation model. Splitting the time-series into pre -and post-outbreak 

showed that the unconditional model performed marginally better pre-outbreak, and post-

outbreak it performed quite a lot better. Those results suggest that the conditional models are 

unable to effectively handle a sustained price shock of the magnitude that was seen during the 

Covid-19 outbreak. Further, it suggests that the unconditional model matches, if not 

surpasses, the performance of the conditional models. This is an interesting discovery, and it 

implies that a more advanced estimation model might not only be unnecessary, but also less 

effective. That information would especially be of interest to parties interested in hedging, but 

who are intimidated by the modeling requirements of such a strategy.  

 

 

 

 

 

 

 

 



33 

 

8 Bibliography 
   

Aielli, G. P. 2009. Dynamic Conditional Correlations: On Properties and Estimation. Working 

paper, Dipartimento di Statistica, University of Florence, Florence, Italy. 

Boligprodusentene. (2022a, 20.01.2022). 5 på topp fritidsboligbyggere i 2021. 

Boligprodusentene. https://www.boligprodusentene.no/artikkelarkiv/5-pa-topp-

fritidsboligbyggere-i-2021/ 

Boligprodusentene. (2022b). Bekymret over lav igangsetting i mars. 

https://www.boligprodusentene.no/artikkelarkiv/bekymret-over-lav-igangsetting-i-

mars/ 

Bollerslev, T. Generalized autorregressive conditional heteroscedasticity. Journal of 

 Econometrics, vol 31, issue 3, April 1986, pp. 307-327. 

Burnham, K. P, Anderson, D. R. Multimodel Inference: Understanding AIC and BIC in 

Model Selection. Sociological Methods & Research. 2004;33(2):261-304 

Chen, S.-S., Lee, C.-f., & Shrestha, K. (2003). Futures hedge ratios: a review. The quarterly 

review of economics and finance, 43(3), 433-465. 

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive  time 

series with a unit root. Journal of the American Statistical Association 74: 427–43. 

Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal 

of Finance, 34(1), 157-170. 

Engle, Robert F. Autoregressive Conditional Heteroscedasticity with Estimates of  

 the Variance of United Kingdom Inflation. Econometrica, vol. 50, no. 4, 1982,  

 pp. 987–1007. 

Engle, Robert. Dynamic Conditional Correlation: A Simple Class of Multivariate  

 Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of  

 Business & Economic Statistics 20, no. 3 (2002): 339–50 

Familiehytta. (2021). Indeksregulering av byggesettkontrakten. Familiehytta. Retrieved 

25.40.2022 from https://familiehytta.no/hyttesenter/indeksregulering-av-

byggesettkontrakten 

Francq, C. and Zakoïan, J-M, 2015, Estimating multivariate volatility models  

 equation by equation. Journal of the Royal Statistical Society. Series B  

 (Statistical Methodology), Vol. 78, No. 3, pp. 613-635. 

https://www.boligprodusentene.no/artikkelarkiv/5-pa-topp-fritidsboligbyggere-i-2021/
https://www.boligprodusentene.no/artikkelarkiv/5-pa-topp-fritidsboligbyggere-i-2021/
https://www.boligprodusentene.no/artikkelarkiv/bekymret-over-lav-igangsetting-i-mars/
https://www.boligprodusentene.no/artikkelarkiv/bekymret-over-lav-igangsetting-i-mars/
https://familiehytta.no/hyttesenter/indeksregulering-av-byggesettkontrakten
https://familiehytta.no/hyttesenter/indeksregulering-av-byggesettkontrakten


34 

 

Gaudenzi, B., Zsidisin, G. A., Hartley, J. L., & Kaufmann, L. (2018). An exploration of 

factors influencing the choice of commodity price risk mitigation strategies. Journal of 

Purchasing and Supply Management, 24(3), 218-237. 

https://doi.org/https://doi.org/10.1016/j.pursup.2017.01.004 

 Geary, R. C., A Study in the Analysis of Stationary Time Series,     

 The Economic Journal, Volume 66, Issue 262, 1 June 1956, Pages 327–330,  

 https://doi.org/10.2307/2227977 

Harris, R. D., & Shen, J. (2003). Robust estimation of the optimal hedge ratio. Journal of 

Futures Markets: Futures, Options, and Other Derivative Products, 23(8), 799-816. 

Hull, John. (2018). Risk management and financial institutions, (5th edition). Wiley. 

Insley, M, 2002, “A Real Options Approach to the Valuation of a Forestry Investment”, 

  Jorunal of Envirnmental Economics and Management, Vol. 44, pp. 417-492 

Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector  

 Autoregressive Models. Oxford: Oxford University Press. 

Lambert, L. (2021, 10.06.2021). Southern loggers are pushing wood production to a 13-year 

high. So why is the price of lumber up 288%? FORTUNE. Retrieved 26.05.2022 from 

https://fortune.com/2021/06/10/lumber-prices-2021-chart-price-of-lumber-production-

wood-supply-costs-update-june/ 

Liu, Heping & Erdem, Ergin & Shi, Jing, 2011. Comprehensive evaluation of  

 ARMA- GARCH(-M) approaches for modeling the mean and volatility of  

 wind speed, Applied Energy, Elsevier, vol. 88(3), pages 724-732, March. 

Liu, Heping & Shi, Jing, 2013. Applying ARMA–GARCH approaches to forecasting  

 short-term electricity prices. Energy Economics, volume 37, May 2013, pp. 152-166. 

Lux, Thomas & Marchesi, Michele. Volatility Clustering in Financial Markets:   

 A Microsimulation of Interacting Agents. Journal of Theoretical and  

 Applied Finance, 2000, Vol. 03, No. 04, pp. 675-702. 

Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. 

https://doi.org/https://doi.org/10.1111/j.1540-6261.1952.tb01525.x 

Myers, R. J., & Thompson, S. R. (1989). Generalized optimal hedge ratio estimation. 

American journal of agricultural economics, 71(4), 858-868. 

https://doi.org/https:/doi.org/10.1016/j.pursup.2017.01.004
https://doi.org/10.2307/2227977
https://fortune.com/2021/06/10/lumber-prices-2021-chart-price-of-lumber-production-wood-supply-costs-update-june/
https://fortune.com/2021/06/10/lumber-prices-2021-chart-price-of-lumber-production-wood-supply-costs-update-june/
https://ideas.repec.org/a/eee/appene/v88y2011i3p724-732.html
https://ideas.repec.org/a/eee/appene/v88y2011i3p724-732.html
https://ideas.repec.org/a/eee/appene/v88y2011i3p724-732.html
https://ideas.repec.org/s/eee/appene.html
https://doi.org/https:/doi.org/10.1111/j.1540-6261.1952.tb01525.x


35 

 

Nordlyshytter. (2021, 04.06.2021). Indeksregulering av byggesettkontrakten. Nordlyshytter. 

Retrieved 25.04.2022 from https://www.nordlyshytter.no/indeksregulering-av-

byggesettkontrakten 

Producer Price Indexes. (2018, 30.01.2018).  U.S. Bureau of Labor Statistics. Retrieved 

05.05.2022 from https://www.bls.gov/ppi/overview.htm 

RanaHytter. (n.a.). Indeksregulering. R. hytter. 

Saltdalshytta. (2021). Leveransebeskrivelse. Saltdalshytta. 

Schwartz, E. S, 1997, The Stochastic Behavior of Commodity Prices;   

 Implication for Valuation and Hedging, Journal of Finance. Vol. 52, no. 3,  

 pp. 923-973 

Sedjo, R. A., 1997, The Forest Sector: Important Innovations, Resources for the Future, 

 Discussion Paper. 97-42, Washington, D.C.  

SSB. (2019). Byggekostnadsindeksene for bolig. Enebolig av tre - representantvarer og 

vekter. Promille. . 

SSB. (2022, 08.04.2022). Construction cost index for residential buildings. SSB. Retrieved 

29.04.2022 from https://www.ssb.no/en/priser-og-

prisindekser/byggekostnadsindekser/statistikk/byggjekostnadsindeks-for-bustader 

Telemarkhytter. (2021, 04.06.2021). Indeksregulering av byggesettkontrakten. 

Telemarkhytter. Retrieved 25.04.2022 from 

https://www.telemarkhytter.no/indeksregulering-av-byggesettkontrakten 

Treindustrien. (2022). Nøkkeltall. Treindustrien. Retrieved 18.05.2022 from 

https://www.treindustrien.no/nokkeltall 

van Kooten, G. C., & Schmitz, A. (2022). COVID-19 impacts on U.S. lumber markets. Forest 

Policy and Economics, 135, 102665. 

https://doi.org/https://doi.org/10.1016/j.forpol.2021.102665 

 Wald, A. 1943, Tests of Statistical Hypotheses Concerning Several Parameters When the  

 Number of Observations Is Large. Transactions of the American Mathematical 

 Society, vol. 54, no. 3, pp. 426–82. 

WEAKLIEM, D. L. A Critique of the Bayesian Information Criterion for   

 Model Selection. Sociological Methods & Research. 1999;27(3):359-397. 

 

 

https://www.nordlyshytter.no/indeksregulering-av-byggesettkontrakten
https://www.nordlyshytter.no/indeksregulering-av-byggesettkontrakten
https://www.bls.gov/ppi/overview.htm
https://www.ssb.no/en/priser-og-prisindekser/byggekostnadsindekser/statistikk/byggjekostnadsindeks-for-bustader
https://www.ssb.no/en/priser-og-prisindekser/byggekostnadsindekser/statistikk/byggjekostnadsindeks-for-bustader
https://www.telemarkhytter.no/indeksregulering-av-byggesettkontrakten
https://www.treindustrien.no/nokkeltall
https://doi.org/https:/doi.org/10.1016/j.forpol.2021.102665


36 

 

9 Appendices 
 

9.1 Appendix 1 

Correlation between the price change on the Norwegian lumber index and the one-period 

lumber continuation futures contract: 

 

Plotted accumulated prices changes: 

 

 

9.2 Appendix 2 

Correlation between three-period and four-period lumber continuation futures contracts.  

 

σ Norwegian lumber index

LBc1 -0,07135

σ LBc3

LBc4 0,997
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9.3 Appendix 3 

WPU0811 softwood lumber producer price index.  
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9.4 Appendix 4 

Hedge ratios from the different estimation models.  

 

 

 

9.5 Appendix 5 

ARMA-GARCH estimates 

 

Figure 12: Cf1 ARMA-GARCH unrestricted 
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Figure 13: Cf2 ARMA-GARCH unrestricted 

 

 

Figure 14: CF1 ARMA-GARCH restricted 
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Figure 15: CF2 ARMA-GARCH restricted 

 

 

Figure 16: AC and PAC for the FRED index, pre-covid 
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Figure 17: AC and PAC for CME prices, pre-covid 

 


