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Abstract

This thesis investigates optimal investment in real options with the presence of regime

switching and mean reverting commodity prices. Our aim is to provide a methodology

that can address such behaviors in a commodity. Therefore, we are studying the electric-

ity spot price as the underlying asset. In order to discover the value of the investment

opportunity, we applied a combination of methods by utilizing a detailed algorithm. The

algorithm accounts for early exercise values and is thus intended to value American real

options. The analysis utilizes electricity price as the underlying variable on an investment

in a hydropower plant. We find that electricity prices follow a mean reverting process with

regime dependent parameters. Given this stochastic process, we analyze the optimal tim-

ing of an investment decision using a regime-augmented binomial tree.

We illustrated the use of the algorithm on the hypothetical investment opportunity, where

it provides us with the option value tree for the two volatility states as well as the optimal

early exercise boundaries within each state. Our findings show that the algorithm is an

efficient and easy way to value American real options with a mean-reverting underlying

variable with multiple volatility states. It gives a fair option value and supplies early ex-

ercise boundaries for the option. The algorithm can easily be applied to time series with

different characteristics and behaviours as well, with minor changes.
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Chapter 1

Introduction

In today´s business world, with ever faster changes, decision makers face a range of chal-

lenges when deciding the future of their business. Managers may face decisions such as

when to invest to grow their company, when to extract a resource, or when to abandon a

project.

Even though these decisions are fundamentally different, they share some important fea-

tures. The actions taken will be difficult if not impossible to reverse. The effect of either

taking or not taking the action is uncertain. Finally, the nature and timing of the actions

directly affect the cash flows generated by the entities.

The traditional analytical techniques such as the discounted cash flow(DCF) method are

widely used by practitioners to analyze such projects. The problem with these techniques

is that they assume that decision-makers commit to all future actions at present time and

will not change this behavior in the future, despite the arrival of new information. The

DCF assumes that the decision-maker do not fully exploit the flexibility available to them.

This is not rational behavior and does not give a realistic reflection on decision-making.

Alternative techniques should thus be applied to analyze such projects.

The approach should recognize decision-makers as rational and that they base their de-
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CHAPTER 1. INTRODUCTION

cisions on information that is available to them at the current date. Fortunately, there is

a part of finance that covers this, the option pricing theory. It is possible to apply the fi-

nancial option pricing theory to real-world projects and decisions. This approach is called

real option pricing theory. The theory assumes that decision makers act to maximize mar-

ket value or another objective function and use all available information in their decision

making to achieve this.

In this thesis we will apply real option theory in the investment analysis of Norwegian

hydropower production, a market with highly fluctuating prices and uncertainty.

1.1 Motivation and Purpose

The purpose of our thesis is to incorporate mean reversion and regime switching in a real

option valuation. Option valuation often contains time series from one regime with a

binomial lattice approach. Simultaneously, studies with multiple regimes predominantly

uses a stochastic time series with a random walk without mean reversion, or continous

time. To this end, we apply a methodology for the electricity spot price, which consists of

a time series which is both mean reverting and have two regimes.

Several studies and literature that provides methodology for pricing real options uses the

approach suggested by Guthrie (2009) which again builds on the framework provided

by Cox, Ross & Rubenstein (1979). This framework can be effective and a plausible

alternative to the traditional DCF model. The framework by Guthrie (2009) addresses

the mean reversion and provides a binomial lattice approach for the spot price of copper.
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CHAPTER 1. INTRODUCTION

Hamilton (1994) used Markov switching chain to model time series behavior which had

dramatical changes. Option pricing with multiple regimes builds on the same premise,

and was simplified by Aingworth, Das & Motwani (2006), who describe the approach for

pricing American options with two regimes. The paper by Aingworth, Das & Motwani

(2006) addresses two regimes with a Brownian motion process and lays the framework for

a multinomial price tree without a mean reverting time series.

This thesis may contribute to the literature of real option pricing for two main reasons.

First, the literature available on commodity time series in a real option analysis has, to the

best of our knowledge, mainly binomial lattice approaches with one regime. Secondly,

there are few studies that provide a multi regime model with mean reversion in the context

of real option valuation without the use of continious time. Thus, we aim to contribute by

combining approaches with both, regime switching and mean reversion for a real option

valuation.

1.2 Research Question

To value a real option with a mean reverting and regime switching time series we offer the

following research question:

How to incorporate mean reversion and regime switching in real option valuation?

1.3 Overview of Chapters

Our thesis is structured in the following manner. Chapter 2 contains an overview of the

case study to which we apply our method, where we swiftly present industry details and

the framework for investment decision. Chapter 3 presents the theory regarding real op-
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CHAPTER 1. INTRODUCTION

tions and regime switching. Chapter 4 consist of methodology and combining of literature.

Chapter 5 presents the technical approach to our model. Chapter 6 presents our results and

findings. Chapter 7 consists of a discussion on choices and methodology. Finally, chapter

8 provides concluding remarks and suggestions for further research.
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Chapter 2

Case Study

2.1 Hydropower

Hydropower is described as a source of energy using the flow of water either through

stream or fall (Office of Eneregy Efficiency & Renewable Energy, 2022). Hydropower

relies on a water source from a dam or a river that can provide kinetic energy. The flow-

ing water is used to spin the turbine which again turns the shaft that is connected to a

generator. Electricity from the generator flows to the grid and long-distance power lines

into consumers private homes and businesses (Office of Eneregy Efficiency & Renewable

Energy, 2022).

Figure 2.1: Hydropower Process

Process from river sourced powerplant(Hydropower, 2016)
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CHAPTER 2. CASE STUDY

The amount of energy generated is relied on the elevation of the fall and the volume of

water that flows through the turbine. As a result, large and efficient hydropower plants de-

mand specific locations with access to large volumes of water and elevation (Good Energy,

2022).

2.2 Hydropower in Norway

Large reservoirs and high capacity makes hydropower the largest source of electric energy

in Norway (Energi Fakta Norge, 2021). The large reservoirs give the Norwegian power

plants an advantage in flexibility. Levels of production can be adjusted accordingly to

marginal cost and market swings. This flexibility is vital in competition with wind parks

and solar plants. Reservoir levels are dependent on rainfall and production levels, and av-

erage levels in April of 2022 are at 22 per cent (Norwegian Water Resource Directorate,

2022b). As of March 2022, Norway’s hydropower share in electricity production was

89.4 per cent (Statistisk sentralbyrå, 2022). According to The Norwegian water resource

and energy directorate there are 1743 operating hydro power plants that produce 138108

GWh annually (Norwegian Water resource and Energy Directorate, 2022a). Hydropower

plants in Norway has a technical-economic expansion and rearmament potential of 6-7

TWh annually, with utilization of new areas and increase efficiency on existing hydro

power plants. In April of 2022 there are 82 ongoing expansions projects and 16 approved

projects that has not yet started (Norwegian Water Resource & Energy Directorate, 2022c).
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2.3 The Nordic and Baltic Power Market

The Nordic power market consist of multiple energy sources where hydropower is one

of the largest and main sources. During the late 1990s the Nordic countries deregulated

the power market and created a collected market. The Baltic countries deregulated their

power market in 2013 and joined the Nordic Nord Pool market the same year (Nord Pool,

2022a).

Figure 2.2: Daily system spot price

Measured in NOK/kWh from January 1st 2013 to December 31st 2021 (Nord Pool, 2022b)

The price of power is set by the equilibrium of supply and demand and is affected by

several different factors such as temperature, capacity, weather, and price of other energy

sources. A high supply will lead to a lower price, while a low supply pulls the price

upwards. The demand for electricity is influenced by the season where the colder months

are characterized by high consumption and the warmer months have less consumption.
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The spot price is determined through the Nordic and Baltic power market at Nord Pool

Spot where spot prices and futures contracts are traded (Nord Pool, 2022a). Daily spot

prices are displayed in figure (2.2).

2.4 Cloudberry Clean Energy ASA

Cloudberry is the parent company of renewable energy production. They own, develop,

and operate both wind farms and hydropower plants in Sweden and Norway. Cloudberry’s

business model consists of three revenue generating sectors, development, production, and

operation. They generated a revenue of 41 million NOK in 2021 with a production of 117

GWh. Cloudberry has 26 hydro assets and 3 wind assets producing, and 4 wind assets

under development as of 31st of December 2021 (Cloudberry Clean Energy ASA, 2021,

ss. 6-7). The 20th of august 2021 Cloudberry acquired Usma Kraft AS for 82.877 million

NOK.

2.5 Usma Hydropower Plant

Usma hydropower plant is a small power plant located in Selbu, Trøndelag Norway. The

power plant utilizes the flow of water from the river Usma, which provides them a water

fall of 127 meters. Usma is equipped with an intake structure of 315 meters and a power

station structure of 188 meters. The minimum flow of water is during the summer season

760 liters per second, and 100 liters per second during the winter (Småkraft AS, 2022).

It has an annual normalized production capacity of 25.5 GWh with an installed effect of

9MW (Cloudberry Clean Energy ASA, 2021). We will assume that the annual production

is as the normalized production capacity.
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2.6 Investment Decision Framework

The investment decision of this thesis will consist of a one-year call option on a hypothet-

ical hydropower plant with identical structure as the Usma plant. The investment cost of

82.877 million NOK will be the strike price of the option. The option can be exercised at

any date prior to the one-year maturity date and will have a start date at 01.01.2022. Be-

cause of the complexity of the real option model, we will value the option with one-week

intervals through the one-year period. The option will thus have 52 possible exercise dates.
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Chapter 3

Real Options Theory

3.1 Real Options

To start describing real option theory we must draw an analogy between real options and

financial options. An option gives the holder the right to take a certain action, but not the

obligation to do so (Hull, 2018). The first main formula (BS) of valuating financial options

was derived from economists Black and Scholes in 1973 and has opened the development

of real options (Reuer & Tong, 2007). A few years later the binominal lattice approach

(Cox et al., 1979) was presented to the world as an alternative to the Black & Scholes

model. The binominal lattice approach gained great popularity, especially because of its

convenience when valuing early exercise options. The model also opened for new oppor-

tunities when it came to real option valuation.

The start of real options was established from the influential idea that investments in real

assets gives a firm the right but not the obligation to make certain decisions at the present

time and in the future. A firms investment opportunities could be viewed as a financial call

option. A real option uses the operative cash flows of a firm as the underlying asset, while

the cost to invest is the exercise price. The time to maturity is described as the time the

decision maker can change their decision before the opportunity expires (Reuer & Tong,

2007). In order to understand how real options work, it´s necessary to have introduction
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CHAPTER 3. REAL OPTIONS THEORY

to option theory.

3.2 Option Theory

As mentioned, an option gives the holder the right to take a certain action, but not the

obligation to do so (Hull, 2018). Options are therefore fundamentally different from other

derivatives like futures, forwards, or swaps where the parties are obligated to commit an

action. Entering the other derivatives is most often free of charge, but for an option the

trader must pay a price upfront. The option price stem from the reduced downside risk of

the option holder and increased downside risk of the option writer.

There are two types of options, call and put. A call option gives the holder the right to buy

an asset at a certain price at a certain date. A put option gives the holder the right to sell

an asset at a certain price at a certain date (MacKenzie, 2006). The price determined in

the contract is called the strike or exercise price. The date specified in the option contract

is called the maturity or expiration date.

Options arrive in two forms, American and European. A European option can only be

exercised at expiration date. The American option on the other hand can be exercised at

any time up to the expiration date (Sick, 1995).

When considering European options, a call option will always be exercised if it is “in

the money”, which means the spot price of the asset is larger than the exercise price at

expiration (Hull, 2018). The same goes for European puts if the spot price of the asset is

lower than the exercise price at expiration. The net profit will depend on the initial price
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of the option itself relative to the margin between the exercise price and spot price. If the

spot price is lower(call) or higher(put) than the exercise price at maturity, the call/put will

simply be left unexercised. The net loss will then equal the initial price of the call option.

Figure 3.1: Option profit graph for put and call

Strike price = 80, Call/Put-price = 5

The same dynamics are true for American options at the expiration date, but they differ

from their European counterpart when it comes exercise conditions. American options

can be exercised at any date before the expiration (Chen, 2011). The option can thus be

exercised as soon as there are favorable price movements to lock in profit. This is rarely

the optimal trading strategy because of the option´s time-value, but there are instances

where early exercise is optimal. This is manly just before a dividend date for call options,

and right after a dividend date for puts.

If we are to know when to exercise an American option, it is important to know how to

value the option. The first step is then to understand which factors affect the option value.
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3.3 Option Pricing

When valuing options there are multiple factors that affect the option value. This goes for

both American and European options. The six main components affecting the price of an

option are:

1. The current asset price, S0

2. The strike price, K

3. The time to expiration, T

4. The volatility of the asset price, σ

5. The risk-free rate of interest, r

6. Expected dividend payments, Div

(Hull, 2018).

The value of a call option will increase with a rise in asset spot price S0 as this will yield a

larger margin and payoff (Hull, 2018). The opposite relationship is true for puts. A larger

strike price K will result in a lower value for calls and higher for puts for the same reasons.

For an American option, a larger time to expiration T will result in a higher value for both

a call and put (Barone-Adesi & Whaley, 1987). This is because of the time value of the

option. Let’s imagine to identical American options, with only the time variable to differ.

Since an American call can be exercised at any time prior to expiration, the option with

a larger maturity will have the same possibilities to be exercised as the lower maturity

option, plus more potential payoff because of the additional time. The same relationship

between option value and time to expiration T is true for European options as well, even
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though dividends can affect this relationship.

Since both call and put options have limited downside risk a rise in volatility σ will increase

the value of both call and puts, American and European (Scott, 1997). A rise in volatility

will increase the chance of a far in the money call/put. This results in a greater chance of

large profit and increases the option value.

If the risk-free interest rate r increases and we keep the other variables the same, the value

of call options will increase and put options decrease (Hull, 2018). This is mainly a result

of the higher expected return from investors. This is only theoretical as in real life an

increased interest rate would likely result in lower stock prices and thus the relationship

would be the opposite. Dividends reduce stock prices on the ex-dividend date and thus

increase the value of puts and decrease the value of call options (Hull, 2018). The increase

of the variables will have the following effect on the option value:

Table 3.1: Variable effect on option value
Variable European call European put American call American put

S0 Increase Decrease Increase Decrease
K Decrease Increase Decrease Increase
T - - Increase Increase
σ Increase Increase Increase Increase
R Increase Decrease Increase Decrease
Div Decrease Increase Decrease Increase

(-) indicates an uncertain relationship

Page 14



CHAPTER 3. REAL OPTIONS THEORY

3.4 Brownian Motion

When valuing options there are two main techniques used. The first method is the Black-

Scholes formula (Black & Scholes, 1973) and the second one is binominal lattice approach

(Cox et al., 1979). Both models are based around the principles of constant volatility and

drift, and that the stock price follows a geometric Brownian motion:

∆S = µS∆t+ σϵ
√
∆t, dz ∼ N(0, dt) (3.1)

Brownian motion is a stochastic process with drift µ, and volatility σ, and dz representing

the standard wiener process (Hull, 2018). The binominal approach uses a discrete time

version of geometric Brownian motion:

∆S

S
= µ∆t+ σϵ

√
∆t

or ϵ ∼ N(0, 1) (3.2)

∆S = µS∆t+ σSϵ
√
∆t

Variable ∆S represents the change in the asset price during a short time interval ∆t. Where

ϵ has a normal distribution with a mean of zero and standard deviation of one (Hull, 2018).

µ is the expected return of the asset. The first term on the right side of equation (3.2)

represents the expected return of the asset during the time interval, and the second term

on the right side represents the stochastic part of the of the return. The stochastic part of

the model, in particular variable ϵ can also be approximated. We then must limit ∆t to
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approach zero, and the equation is reduced to:

∆S = S exp[σϵ
√
∆t] (3.3)

Where the expected up and down factor is approximated by the stochastic part of the

model:

∆Up = exp[σϵ
√
∆t]

& (3.4)

∆Down = exp[−σϵ
√
∆t]

This is the process that the movements in the binominal model is based on. With possible

price movements after n steps equal to n + 1. The model is versatile and can be used to

value both European and American options. The binominal model is convenient when it

comes to valuing potential early exercise American options. These are options where early

exercise can be optimal. The Black & Scholes model do not account for early exercise for

American options, which is one of the model’s limitations (Whaley, 1982). The binominal

model will therefore be preferred in such cases.

3.5 Risk-Neutral Valuation

When valuing options there is one fundamental assumption taken, no arbitrage opportuni-

ties. The assumption is based on the theory of highly efficient markets, where assets are

fairly priced. Thus, the law on one price claims that two portfolios generating identical

future cash flows must be equally priced (Guthrie, 2009). If the law of one price does
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not hold investors would exploit the arbitrage opportunity by short selling the expensive

portfolio and buying the relatively cheap one, locking in riskless profit. The theory of effi-

cient markets assumes that if arbitrage opportunities occur, arbitrageurs will instantly take

advantage of it and the price will be corrected to the fair one.

Moving on to application of risk-neutral pricing to the binomial tree. If a state variable

takes on the value of X , the next period it will either equal Xu if a up move occurs, or Xd if

a down move occurs. The estimation of these values is of great interest since it influences

the decision of the option holder. The cash flows corresponding to the state variable are Yu

for a up move and Yd for a down move. Since we have the law of one price it is possible

to create a synthetic portfolio of traded assets which generates a cash flow stream “close”

to the one being valued and using the cost of the portfolio as the market value of the asset

(Guthrie, 2009). We do this by combining a portfolio consisting of a one period risk-free

bond with a certain payoff of rf and a risky asset generating a return of either Xu or Xd

with a current cost of Z. The information from Z and rf can then be used to determine

the value of the cash flows from Yu & Yd. The cost of the replicating cash flow portfolio is

given by the formula:

V =
πuYu + πdYd

1 + rf
(3.5)

Where risk neutral probabilities of up u and down d moves are according to Guthrie (2009):

πu =
Zrf −Xd

Xu −Xd

and πd =
Xu − Zrf
Xu −Xd

(3.6)
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3.6 Marketed Asset Disclaimer

Traditional real option analysis uses an adequate portfolio of twin securities to value an

option, and thus argues for complete markets (Barton & Lawryshyn, 2010). Copeland and

Antikarov (2003) argue that markets are incomplete and because of this the best market

value estimate for the project is the present value of the project itself, but with no flexibility.

In other words use the traditional net present value (NPV) of the project to value the

option. They argue that no portfolio will have greater correlation with the project then the

cash flows generated by the project itself. We will use this assumption in our real option

valuation of the hydropower investment.

3.7 Mean Reverting Price

The property of a mean reverting price is that the price will revert toward its long term

mean after sudden up or down moves occur, if the moves differ from the mean. Sudden

increases in the price of a commodity will cause an increase in supply, and create a reduc-

tion in the price. This is a result of the reversion to the commodity’s long-term marginal

production cost. The opposite will happen after a sudden price decrease. Decrease in

production will lead to a fall in supply, which generates an increase in the price (Guthrie,

2009).

Regression of time series data in which the model consists of an explanatory variable

and one or more lags of the explanatory variable, is called an autoregression (Gujarati &

Porter, 2018). The number of lags defines the order of the regression, a model with one

lag is called a first order autoregression AR(1).
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We assume that the spot price of electricity follows a first order autoregressive process,

which is given by:

pj+1 − pj = a0 + a1pj + uj+1, uj+1 ∼ N(0, ϕ2) (3.7)

Where pj represents the log price of the jth observation and a0, a1 and ϕ are constants.

Since the process is mean reverting, it is given that a1 is negative. (Guthrie, 2009)

The behavior of an economical or financial commodity in a time series has in some in-

stances breaks. These changes in behavior can come from numerous reasons such as

policy changes, financial crises, or weather changes (Durlauf Blume, 2009). Separating

periods and characterizing them with different levels of volatility can be done by using a

Markov switching model. Utilizing the principals for characterizing regimes, proposed by

Durlauf & Blume (2009) gives us:

(pj+1 − pj) = a0st + a1stpj + uj+1, uj+1 ∼ N(0, ϕ2) (3.8)

Where st represent the regime the time series can be characterized by. Its transition prob-

abilities are given by:

Pr(st = j|st−1 = i, st−2 = k, ..., yt−1, yt−2...) = Pr(st = j|st−1 = i) = pij (3.9)

Which is given from the switching Markov chain (Durlauf & Blume, 2009).

What is known as the Ornstein-Uhlenbeck process is an alternative for geometric Brow-
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nian motion. The process is meant to model mean reverting to properly describe what is

modeled (Andersen, Davis, Kreiß & Mikosch, 2009).

The process can be used to generalize the AR(1) processes so that arbitrary frequency

is found in the observed price using rate of mean reversion a, long-term level b, and

the volatility σ (Guthrie, 2009). From time t, the difference in the price over the next

change in time ∆t has a normal distribution with volatility of σ2(1−e−2a∆t)
2a

and a mean

(−e−a∆t)(b− pt) thus:

pt+∆t − pt ∼ N

(
(1− e−a∆t)(b− pt),

σ2(1− e−2a∆t)

2a

)
(3.10)

(Guthrie, 2009)
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Chapter 4

Real Option Valuation Method

This chapter contains a description of the valuation method we will use. It consists of the

recombination of two binomial lattices to one quadrinomial tree.

4.1 Autoregression with Regime Switching

The spot price of electricity is mean reverting and follows a first order autoregression

which can be represented by equation (3.8). We assume the spot price has breaks and

periods that can be characterized by two different regimes st, which gives us the following

autoregression:

(pj+1 − pj) = a0st + a1stpj + uj+1, uj+1 ∼ N(0, ϕ2
st)

Where the changes in the sample average is defined by the random variable st and there is

an assumption that st = H for the period with high volatility and st = L for the periods

with low volatility, and for period that have the same characteristics as either st = H or

st = L. This will give us two AR(1) processes, one for st = H and one for st = L,

defining two different regimes, one for high volatility H, and one for low volatility L. The

two different AR(1) processes are defined by:

(pj+1 − pj) = a0H + a1Hpj + uj+1, uj+1 ∼ N(0, ϕ2
H)
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(pj+1 − pj) = a0L + a1Lpj + uj+1, uj+1 ∼ N(0, ϕ2
L)

To obtain the probability law governing (pj+1 − pj) we need the parameters from the

AR(1) process and the transition probabilities pHH , pHL, pLH and pLL given by the

regime switching model.

4.2 From Data to Normalized Estimated of the Parame-

ters

Under the AR(1) processes, changes in p are normally distributed with a mean of a0+a1pj

and variance ϕ2. The parameters of a0, a1 and ϕ are thus related to the Ornstein-Uhlenbeck

parameters by the following equations (Guthrie, 2009):

a0(1− e−a∆t)b, a1 = −(1− e−a∆t), ϕ2 =
σ2

2a
(1− e−2a∆t), (4.1)

If the autoregression offers us estimates â0, â1 and ϕ̂ from our daily price data, reasonable

estimates of parameters a, b and σ are the values â, b̂ and σ̂.

â0(1− e−â∆t)b̂, â1 = −(1− e−â∆t), ϕ̂2 =
σ̂2

2â
(1− e−2â∆t), (4.2)

We get the normalized parameter estimates by solving the equations for â, b̂ and σ̂.

â =
−log(1 + â1)

∆td
, b̂ =

−â0
â1

, σ̂ = ϕ̂

(
2log(1 + â1)

â1(2 + â1)∆td

) 1
2

(4.3)
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Once the estimates â0, b̂0 and ϕ̂ from the auto regression is obtained we substitute the

parameter estimated into the equations for â, b̂ and σ̂. in order to obtain the normalized

parameter estimates (Guthrie, 2009).

Since we are using a two-state regime model and therefore two sets of parameters of a0,

a1 and ϕ from the AR(1) model, this process must be done two times separately for each

of the states. Thus, we get a different set of normalized parameter estimates â, b̂ and σ̂ for

each state.

4.3 From Normalized Estimates to the Price Tree

The normalized estimates are utilized to create the binominal tree for the prices. Each

period in the tree represents ∆td years, and the tree for the log price starts at x(0, 0) =

logP0. Each following period, the log price either increases or decreases by the stochastic

factor σ̂
√
∆td, depending on whether an up or down move occur (Guthrie, 2009). At node

(i, n) we can calculate the amount of up and down moves with up moves being the sum of

n− i and down moves being the sum of i. The log price will thus equal:

logP0 + (n− i)(σ̂
√

∆td) + i(−σ̂td)
Starting value effect of up move effect of down move

(4.4)

Which simplifies to:

X(i, n) = logp0 + (n− 2i)σ̂
√
∆td (4.5)

By taking the exponential of both sides of the equation we can find the price at node (i, n)

with:

X(i, n) = ex(i,n) = P0e
(n−2i)σ̂

√
∆td (4.6)

Page 23



CHAPTER 4. REAL OPTION VALUATION METHOD

This closed-form expression for the price enables us to calculate the expected price at any

node of the binominal tree without having to iterate from x(0,0) to the respective node:

Figure 4.1: Binomial tree

We can use the closed-form expression to calculate the size of up and down movements.

We then consider a up movement from node (i, n) to (i, n+ 1), where the price will be:

X(i, n+ 1) = P0e
((n+1)−2i)σ̂

√
∆td = eσ̂

√
∆tdX(i, n) (4.7)

The size of an up move at this node equals:

U =
X(i, n+ 1)

X(i, n)
= eσ̂

√
∆td (4.8)
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The same principle is true for a down move, where the price will be:

X(i, n+ 1) = P0e
((n+1)−2(i+1))σ̂

√
∆td = e−σ̂

√
∆tdX(i, n) (4.9)

The size of a down move at this node equals:

D =
X(i, n+ 1)

X(i, n)
= e−σ̂

√
∆td (4.10)

This illustrates that the up and down movements are constant throughout the tree. Since

we have a two-state regime model its necessary to calculate the up and down movements

for both the regimes. The calculation of the movements is the same, but the size of the up

and down movements will differ between the states. The reason for this is the different

volatility between the states. The high volatility state σ̂H will yield larger up and down

movements for the price, than the low volatility state σ̂L.

The up and down moves from the Ornstein-Ulenbeck process for each regimes DH , DL,

UH , and UL are used to calculate the possible moves. From each node the price can move

four different ways.
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Figure 4.2: Possible movements from each node

Each node can move up and down in the current regime, or up and down with a regime

switching as displayed in figure (4.2). The four possibilities at each node makes the tree

grow at a large scale for each added time step.

4.4 Probabilities of Up and Down Moves

The next step is to calculate the probabilities of up and down moves for the electricity spot

price at each node in the tree. We need to determine the probabilities so that the expected

value of the change in log price over the next period is equal to the value implied by our

normalized parameter estimates â, b̂ and σ̂ (Guthrie, 2009).

If the up-move probability at node (i,n) equals:

θu(i, n) =
1

2
+

(1− e−â∆td)(b̂− x(i, n))

2σ̂
√
∆td

(4.11)
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The expected change in the log price will be:

(1− e−â∆td)(b̂− x(i, n)) (4.12)

This matches the expected value of the Onrstein-Uhlenbeck process. The mean-reversion

in the electricity spot price is illustrated in the up-move probability formula as a rise in

the log price x(i, n) will result in a lower up-move probability. If the spot price x(i, n)

rises above its long-run level b̂ a down-move will be more likely than an up-move. If the

spot price x(i, n) falls under its long-run level b̂ an up-move will be more likely than a

down-move. The log-price will thus always be drawn towards its long-run level by the

mean reverting probability structure (Guthrie, 2009).

A complication of the model is that θu(i, n) can become negative or over 1 for sufficiently

large x(i, n) values. We solve this by resetting θu(i, n) to 1 if θu(i, n) ≥ 1 and θu(i, n) to

0 if θu(i, n) ≤ 0 . The probability of an up or down move at node (i,n) thus equals:

θu(i, n) =


0 if, 1

2
+ (1−e−â∆td )(b̂−logX(i,n))

2σ̂
√
∆td

≤ 0,

1
2
+ (1−e−â∆td )(b̂−logX(i,n))

2σ̂
√
∆td

if,0 < 1
2
+ (1−e−â∆td )(b̂−logX(i,n))

2σ̂
√
∆td

< 1,

1 if, 1
2
+ (1−e−â∆td )(b̂−logX(i,n))

2σ̂
√
∆td

≥ 1,

(4.13)

Therefore, at certain nodes we can be sure that the next move for the spot price will be

down. This is the nodes where θu(i, n) = 0:

θu(i, n) =
1

2
+

(1− e−â∆td)(b̂− logX(i, n))

2σ̂
√
∆td

≤ 0 (4.14)
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We can calculate at which log price a down move will be certain:

logX(i, n) ≥ b̂+
σ̂
√
∆td

1− e−â∆td
(4.15)

The reverse is true for nodes where θu(i, n) = 1:

θu(i, n) =
1

2
+

(1− e−â∆td)(b̂− logX(i, n))

2σ̂
√
∆td

≥ 1 (4.16)

At these nodes we can be sure that the next move is a up move. And the log price where

this happens is:

logX(i, n) ≤ b̂+
σ̂
√
∆td

1− e−â∆td
(4.17)

When we take the exponentials of the right side of the expression, we get the price in

which the up or down moves are certain. The probabilities are regime dependent and must

be estimated for each of the volatility states (σ̂H , σ̂L). When valuing an option using a

single state regime it is enough to use a binomial tree. When working with two states

it is required to use a tree recombined from two different binomial trees, one for each

state. The recombined tree has four possible moves for each node and is therefore called a

quadrinomial tree.

Constructing the tree will entail the transition probabilities between the two regimes, ex-

pressed as a matrix:

P =

pHH pHL

pLH pLL

 (4.18)
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Where pLL represents the probability of staying in regime H , pLH represents the proba-

bility of switching state from H to L, pHH is the probability of moving from state L to

H , and pHH is the probability of staying in state L.

With the Ornstein-Uhlenbeck parameters for probabilities of up θu and down θd moves we

can calculate the probabilities of each node in the recombined tree. Where the transition

probability is used with the probability of up and down moves from each state. Giving us

four different possibilities for each node in both regimes:

Table 4.1: Probabilities in both regimes
High volatility regime Low volatility regime

θHu (i, n) ∗ pHH θLu (i, n) ∗ pLL
θHu (i, n) ∗ pHL θLu (i, n) ∗ pLH
θHd (i, n) ∗ pHH θLd (i, n) ∗ pLL
θHd (i, n) ∗ pHL θLd (i, n) ∗ pLH

The probability changes either to an up or down move in the given regime or goes up and

down with a regime switch.

4.5 Risk-Neutral Probabilities

The risk neutral probabilities for an up move are:

πu(i, n) =
Zrf −Xd

Xu −Xd

(4.19)

Where Z represents the price of the asset after either and up move Xu or a down move

Xd. When calculating the risk-neutral probabilities we must be careful so that the risk
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neutral probabilities are correct for each node. The risk-neutral probability of an up move

is calculated such that:

πu(i, n) =
Z(i, n)rf −X(i+ 1, n+ 1)

X(i, n+ 1)−X(i+ 1, n+ 1)
, (4.20)

The expressions Xd and Xu are replaced by X(i + 1, n + 1) and X(i, n + 1). The risk-

neutral probability of a down move is:

πd(i, n) = 1− πu(i, n) (4.21)

One complication occurs when calculating the risk-neutral probabilities, the probability

can reach either zero or one at some nodes, which results in no risk in the movements

because of mean reversion. Therefore, the the risk-neutral probability of an up move is

given by:

πu(i, n) =


0 if, θu(i, n) = 0,

Z(i,n)rf−X(i+1,n+1)

X(i,n+1)−X(i+1,n+1)
if,0 < θu(i, n) < 1,

1 if, θu(i, n) = 1,

(4.22)

Using this formula simplifies the process and allows us to use the standard valuation ap-

proach (Guthrie, 2009).
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4.6 Using the CAPM

To estimate the risk neutral probabilities, we will use the CAPM with the same data used

to calibrate the tree, thus:

K = E[R̃x]− (E[R̃m]− rf )βx (4.23)

Where R̃m is the return of the market portfolio, βx = Cov[R̃x,R̃m]

V ar[R̃m]
is the electricity spot

price beta, and R̃x = X̃
X

. The probability of a risk neutral up move at node (i, n) is:

πu(i, n) = θu(i, n)−
(E[R̃m]− rf )βx

U −D
(4.24)

To calculate this, we only need market risk premium and the price beta since we already

have the other estimates.

As there are numerous market risk premium estimates available, and the estimation can be

a controversial issue, we will, as Guthrie (2009) suggest apply an available estimate for

the Norwegian market.

For the price beta βx we will use the residuals from the Markov-Switching model. The

residuals for each regime will be regressed as the dependent variable, on the returns of a

market portfolio proxy rm,j . Which gives us:

ûj = y0 + y1rm,j + vj, (4.25)
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Using a broad stock index as the market portfolio proxy is popular, but it is important that

the returns of the proxy is continuously compounded to keep it consistent with the com-

position of the residuals (Guthrie, 2009).

After obtaining the βx and market risk premium, we adjust the time increment of the mar-

ket risk premium so that we use the same time increment as our tree is. Which gives us

(E[R̃m] − rf ) ∗∆t. To make the beta applicable such that the time increment for the log

price of the residuals is the same as for the market proxy return, we will use:

βx = ŷ1

√
∆t2
∆t1

∗ 1− e−2â∆t1

1− e−2â∆t2
(4.26)

Where t1 and t2 represent the time increment for the return of market proxy portfolio and

the time increment for our tree (Guthrie, 2009).

Next, we find the adjustment factor for the probability of an up move:

(E[R̃m]− rf )βx

U −D
(4.27)

4.7 Constructing the Tree

To price the real options, we first must create and value the binominal tree for the under-

lying electricity price V (i, n). We will assume the that the electricity spot price follows

a mean reverting process with two volatility regimes, and that historic price fluctuations

reflect the future volatility of the price.

Thus, we have to fit an AR(1) model with two regimes to the historic price data and follow
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the steps from section (4.2) to obtain the normalized parameter estimates â, b̂ and σ̂. The

next task is to follow the steps from section (4.4) to obtain the sizes of U and D move-

ments for both states.

We start with the present value of the spot price V (0, 0) and compute the tree by multiply-

ing it with the U and D movements for both states σ̂H and σ̂L. This results in four possible

price movements at n = 1: V (0, 0)UH , V (0, 0)UL, V (0, 0)DH , V (0, 0)DL. At any fol-

lowing state V (i, n) there will be four possible price movements: V (i, n)UH , V (i, n)UL,

V (i, n)DH , V (i, n)DL. We therefore construct the quadrinomial tree by calculating the

four possible price movements for each node.

4.8 Finding the Option value

After constructing the quadrinomial price tree for the underlying electricity spot price, the

next step is to value the option C(i, n). The option in question is an American option. To

value the option, we must work backward through the tree, and value the option at each

node n(i, n) based on one period ahead option values (i, n+ 1). The option value C(i, n)

at each node is thus derived from the four possible (UH , UL, DH , DL) next period option

values, the probabilities of the U and D movements within each state, and the probabilities

of a regime shift between the two states (σ̂H , σ̂L):

The first task will be to derive the option value for the range of possible prices V (i, n)

at the last date before expiration. Consider that the number of time periods n in our tree

represents the number of possible exercise dates T = {t1 < t2 < ... < t(n−1)}, as well

as investment costs associated with the exercise date I = {I1, I2, ..., I(n−1)}. In our case
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the investment cost is identical for all possible exercise dates, and we can simply refer to

it as I . The last possible exercise date tn represents an investment cost of In = I . The

option value C(i,n) at the last possible exercise date N , will be the greatest of zero and the

options intrinsic value:

C(i, N) = max{V (i, tn)− I, 0} (4.28)

When we then iterate backward through the tree from the last exercise date option, we use

the following expression for the value of the underlying V (i, n) at any node (i, n):

Vst(i, n) = e−r∆t{|πH
u (i, n)CH

u +πH
d (i, n)CH

d |pHst+|πL
u (i, n)C

L
u +πL

d (i, n)C
L
d |pLst} (4.29)

Where:

CH(i, n+ 1) = CH
u ,

CH(i+ 1, n+ 1) = CH
d ,

CL(i, n+ 1) = CL
u ,

CL(i+ 1, n+ 1) = CL
d ,

In the expression we have the node specific risk neutral-probabilities up and down moves

within each regime [πH
u (i, n), πH

d (i, n), πL
u (i, n), π

L
d (i, n)] and the probabilities of a regime

shift from equation (4.18) dependent on the present regime:

Table 4.2: Node specific risk neutral-probabilities
High volatility regime Low volatility regime

πH
u (i, n) ∗ pHH πL

u (i, n) ∗ pLL
πH
u (i, n) ∗ pHL πL

u (i, n) ∗ pLH
πH
d (i, n) ∗ pHH πL

d (i, n) ∗ pLL
πH
d (i, n) ∗ pHL πL

d (i, n) ∗ pLH

Page 34



CHAPTER 4. REAL OPTION VALUATION METHOD

The option value C(i, n) is the greater of V (i, n)− I and zero:

Cst(i, n) = max{e−r∆t{|πH
u (i, n)CH

u + πH
d (i, n)CH

d |pHst+

|πL
u (i, n)C

L
u + πL

d (i, n)C
L
d |pLst} − I, 0}

(4.30)

This will be the risk-neutral pricing formula we use to value the real options. We use this

formula to iterate backwards through the tree, starting with the option value C(i, n) at the

last possible exercise date. The backward recursion must be done two times, once for the

high σ̂H , and once for the low σ̂L state as the initial regime.

In the underlying price tree at any time n there will be matching values for some of the

nods within the possible up and down movements combined with regime shifts. The tree

therefore grows at polynomial complexity rather than exponential. This will result in a less

complex tree. If we are to analyze the complexity of the model, we must find a counting

system for the number of nodes at any time step n.

Porposition 1

The number of distinct possible nodes at time step n is
(
n+2P−1
2P−1

)
where P is the number

of regimes(Aingworth et al., 2006).

When determining the total number of possible nodes after n steps, we can look at the

underlying electricity spot price S:

S(u1)
U1(d1)

D1(u2)
U2(d2)

D2 ...(uP )
UP (dP )

DP ,

P∑
i=1

Ui +Di = n, (4.31)
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Were u1, d1, u2, d2...up, dp are the up and down moves for regime P , and U1, D1, U2, D2...

UP , DP are the number of times the moves occur(Aingworth et al., 2006).

Figure 4.3: Three-step quadrinomial tree

The number of distinct prices is in a one-to-one correlation with
(
n+2P−1
2P−1

)
the number of

different ways to select 2P −1 distinct values in the range 1, 2, . . . , n+2P −1 (Aingworth

et al., 2006).

The n unselected numbers represent the up and down moves, with the number of elements

before the first one chosen representing the level of up moves in the regime one, between

the first and second represents the level of down moves in regime one, between the second

and third representing the level of up moves in regime two and so on, depending on the

number of regimes P . In a two regime model the number of elements after the third cho-

sen will represent the level of down moves in the second regime and will be the final one.

Every recombinant path has one representation, and each set of choices represents a valid
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path.

Porposition 2

The total number of nodes in the tree after n steps is
(
n+2P
2P

)
where P is the number of

regimes (Aingworth et al., 2006).∑n
j=0

(
j+2P−1
2P−1

)
=
(
2P−1
2P−1

)
+
(

2P
2P−1

)
+
∑n

j=2

(
j+2P−1
2P−1

)
,

we can expand the two first terms on the right side of the equation by using the definition

of combination:∑n
j=0

(
j+2P−1
2P−1

)
= (2P−1)!
(2P−1)!

+ (2P )!
(2P−1)!

+
∑n

j=2

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
= (2P )!
(2P )!

+ 2P (2P )!
(2P )!

+
∑n

j=2

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
= (2P )!(1+2P )

(2P )!
+
∑n

j=2

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
= (2P+1)!

(2P )!
+
∑n

j=2

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
= (2P+1)!

(2P )!
+ 2P (2P+1)!

(2P )!(2!)
+
∑n

j=3

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
=2(2p+1)!+2P (2P+1)!

(2P )!(2!)
+
∑n

j=3

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
=2(2P+1)!+2P (2P+1)!

(2P )!(2!)
+
∑n

j=3

(
j+2P−1
2P−1

)
∑n

j=0

(
j+2P−1
2P−1

)
= (2P+2)!
(2P )!(2!)

+
∑n

j=3

(
j+2P−1
2P−1

)
= (2P+n)!

(2P )!(n!)

The proposition shows that the quadrinomial tree has a polynomial growth:(
n+2P
2P

)
= (2P+n)!

(2P )!(n!)

= (2P+n)(2P+n−1)(2P+n−2)..(n+1)(n)(n−1)...1
(2P )!n!

= (2P+n)(2P+n−1)(2P+n−2)..(n+1)n!
(2P )!n!
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= (2P+n)(2P+n−1)(2P+n−2)..(n+1)
(2P )!

=
Π2P−1

i=0 (2P+n−1)

(2P )!

The expression is a polynomial of degree 2P.
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Algorithm

The algorithm we implement to value the real option starts at the maturity date and loops

backward one step at the time until it reaches the present date. We start by defining the

input variables and estimating the necessary variables discussed in chapter 4. We then

define zero matrices for the necessary variables and zero vectors for the early exercise

values. We do this to pre allocate the memory and speed up the process time of the code.

The algorithm starts by using the formula in proposition 1 under section (4.8) to calculate

the number of nodes at maturity. The next step is to estimate the maturity values for

the electricity spot price S and the option values CH , CL. Then we start the backward

recursion loop filling in all the time steps back to n = 0, where we also have node loop

covering all the nodes at a certain time n. We calculate the mean-reverting probabilities

for each node based on S section (4.4). Each node evaluates the option continuation value

equation (4.30) relative to the intrinsic value in case of exercise. The option value will

continue as the most valuable of the two. The code therefore accounts for if its most

valuable to exercise or hold the option at any node. The code saves the values in which its

more valuable to exercise the option at each state in vector EH and EL. When all nodes at

a certain time level is iterated the early exercise values are applied to the cell where early

exercise is optimal. Thus, we end up with the option value with early exercise boundaries

based on the simulated price path. See Appendix (A.1) for full MATLAB code.
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MATLAB Algorithm Main Steps:
Input
S0-current electricity spot price,

K-Strike price,

PM -Regime transition matrix,

Nsteps-n time steps,

delt1-1/252,

delt2=1/52,

NPV -NVP underlying Investment,

MRP -Market risk premium,

BetaRNP -Beta values for S in each state(H,L),

R-Discount factor,

(a0, a1 and σ)-AR(1) parameters for each state(H,L).

Output(Remark: (H,L)=High low volatility state)
V alueEl1 - The value of the electricity price option at time 0 in H .

V alueEl2 - The value of the electricity price option at time 0 in L.

V alueInvest1 - The value of the investment option at time 0 in H .

V alueInvest2 - The value of the investment option at time 0 in L.

Steps

1 Estimate â, b̂ and σ̂

2 Estimate u and d

3 Estimate Risk-Neutral beta correction constant

4 Estimate Discount factor

5 Define Complexity of the tree NLeaves=
(
Nsteps+2P−1

2P−1

)
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6 Define Matrices with size (NLeaves, Nsteps) for: S, CH and CL

7 Define Early exercise vectors with size (Nsteps) for: E1, E2. . .

8 Compute Intrinsic value (CH,CL) spot price S for nodes at maturity

9 Backward recursion:

10 for n = 1 to Nsteps

11 Define Nodes at current time step Nnodes: =
(
n+2P−1
2P−1

)
12 Define Nodes at next time step nLeaves: =

(
n−1+2P−1

2P−1

)
13 for h = 1 to Nnodes

14. Compute Expected asset value S Intrinsic value V (i, tn) at nodes

15 Compute Probabilities puH puL and boundaries

16 Identify All 4 corresponding nodes

17 Compute Node payoffs: UD probabilities*regime transition*node value

18 Compute Payoff node early exercise

19 Compute Investment option values tree: C(i, n)Investment(H,L)

20 end

21 end

22 Compute Value of electricity price option at time 0: C(i, 0)Electricity(H,L)

23 Compute Value of investment option at time 0: C(i, 0)Investment(H,L)

The algorithm is tested by applying two identical regimes with arbitrary transition proba-

bilities. By using an example from Guthrie (2009), we could utilize the given parameters

and use the findings from the book to check if our algorithm provides the correct results.

The algorithm gave the same results as in the book which implies that it works correctly

when valuing options on mean-reverting variables with multiple volatility states as well.
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Results and Findings

The modeling and valuation process of the real option from chapter 2.5 can be reduced to

seven main steps as discussed in chapter 4:

1. Estimate the AR(1) processes with Markov switching model(MSM) in STATA.

2. Find the normalized estimates of the parameters from the MSM with Ornstein-Uhlenbeck

parameters from equation (4.3) in MATLAB.

3. Calculating the up and down movements within each regime from equations (4.8) and

(4.10), and construct the quadrinomial tree in MATLAB.

4. Estimating the probabilities of up and down moves at each node within each regime

from equation (4.13), and the probabilities of a regime shift from equation (4.18) in MAT-

LAB.

5. Estimating the market price of risk to compute the risk neutral probabilities from equa-

tion (4.22) in MATLAB.

6. Compute a quadrinomial tree for the electricity price and the investment as discussed in

section (4.7) to (4.8).

7. Estimate the intrinsic value of the option with equation (4.28) and use backward recur-

sion to find the present value of the real option from equation (4.30) in MATLAB.

Most of the steps are conducted by using the Matlab code mentioned in chapter 5 which
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is found in section (A.1). We will in this part present the most important aspects of the

analysis itself as well as the results from the analysis.

6.1 Collection of Data

Our thesis utilizes time series data of spot prices from the Nordic-Baltic electricity mar-

ket. The data is collected from Nord Pool’s websites (Nord Pool, 2022b) and Invest-

ing.com’s database (Investing.com, 2022). The data has a daily frequency over the time

period 01.01.2013 to 31.12.2021.

Determining the mean reverting process

To determine mean reversion in our time series we performed multiple tests for stationarity.

Both the augmented dickey fuller test, and the Phillips-Perron test gives us a p-value of

0.00 from section (A.5). In this case we must reject the null hypothesis which says that

the spot price has a unit root and is non-stationary. Rejecting the null-hypothesis means

that our time-series is stationary. Stationarity in a timeseries tells us that there is mean

reversion in the spot price of electricity.

Regression and Ornstein-Uhlenbeck parameters

The first parameters we obtain comes from running a regression on equation (3.8) which

gives us two AR(1) processes. The results from the regressions are for the high volatility

regime (A.7):

pj+1 − pj = 0.2617441
(0.00)

− 0.0490557
(0.00)

pj , σ = 0.301582

and for the low volatility state (A.7):
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pj+1 − pj = 0.1186061
(0.00)

− 0.0208533
(0.00)

pj , σ = 0.06522

The results show us that the a1 is negative in both regimes, this is a necessary condi-

tion to generalize the AR(1) parameters with the Ornstein-Uhlenbeck process. The val-

ues displayed in the parenthesis represents the P-values from the regression. A P -value

lower than 0.05 can be allowed to reject the null hypothesis which says that the coefficient

equates zero and has no influence. From our regression we get significant P -values where

we can reject the null hypothesis, meaning the coefficient are affecting our model.

Table 6.1: Regression statistic
Parameter Highvolatility Low volatility

Sample period 1/1/13-31/12/21 1/1/13-31/12/21
Standard error of AR(1) 0.301582 0.06522

Observations 3268 3268
From the log spot price from Nord Pool(Nord Pool, 2022b)

Table 6.2: Ornstein-Uhlenbeck parameters
Parameter Highvolatility Low volatility

â, mean reversion 0.0502998 0.0210738
b̂, long-term mean 5.3356511 5.6876418

σ̂, standard deviation 0.301582 0.06522

The standard errors displayed in table (6.1) is an estimate of the standard error which is the

standard deviation of the residuals in the regressions. The MATLAB codes for building

the price tree is attached in the appendix(A.1). Other than the Ornstein-Uhlenbeck param-

eters displayed in table (6.2), we need multiple more parameters. The different variables

needed follows below.
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Current asset value S0

For the price tree the current asset value should be the day of the valuation. But since

our regression on historic spot prices ends at 31.12.2021, we will use the spot price from

01.01.2022 collected from Nord Pool’s spot prices for the Nordic-Baltic market. The price

was at 01.01.2022 761.64 NOK/MWh.

Risk-free rate, rf

The risk-free interest rate we have chosen for the investment is the rate of 12-month trea-

sury bonds from Norges Bank. We are using the rate from 03.01.22 which was 1.018%

(Norges Bank, 2022).

State beta, βx

Determining the beta for the investment can be computed in different manners. We have

chosen to estimate the state state beta by regressing the regime dependent residuals on the

Oslo Børs Benchmark Index(OSEBX) daily returns. We thus get two sets of Betas, one

for each state(βH , βL). The high state beta βH have a value of 1.048, and the low state

beta βL have a value of 1.02.

Market risk premium, MRP

The market risk premium is collected from PwC’s annual report for the Norwegian market.

We will use the 2021 market risk premium which was according to PwC 5.00% (PwC,

2022).
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Time to maturity, T

The time to maturity for our thesis is 12 months. In this relation we will build our tree of

52 weekly steps.

Transition matrix, P

The transition matrix used to calculate the mean reverting probabilities in our quadrinomial

tree was obtained from running a markov switching model (A.7). The transition matrix

used in our model is:

P =

 0.912385 0.087615

0.9611189 0.0388811

 (6.1)

6.2 The risk-neutral probabilities of an up and down move

To address the mean reversion in the spot price we need to apply risk neutral probability

for each node from equation (4.24). The probabilities will be in accordance with mean

reversion from equation (4.13) and are estimated in MATLAB (A.1). To obtain the risk-

neutral adjustment factor we need to adjust the daily Beta values (βH , βL) to weekly Beta

estimates in accordance with equation (4.27). From equation (4.26) we get the adjust-

ment factor of 0.0025 for each node in the low volatility state, and 0.000626 for the high

volatility state. The up move probability at each node are adjusted for the state dependent

adjustment factor to obtain the risk neutral probabilities in each state.
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6.3 Quadrinomial Price Tree for the Underlying Invest-

ment

When we are to compute the tree for the underlying there are two important assumptions

we make. The first assumption is that the net present value of the underlying investment is

reflected from process that drives the value, the current electricity production. The present

value of production is price dependent, and thus we assume that the NPV of the invest-

ment at any time n is reflected from the present electricity price S at that time n.

Since the value of the underlying investment is derived from the electricity price, the sec-

ond assumption is that the value of the underlying investment will follow the same process

as the electricity price.

Since we have these assumptions, we can compute the option tree for the electricity spot

price S with the strike price K and use the tree as a proxy for the underlying investment. S0

will then represent the NPV0 (S0=NPV0), K will represent the investment cost I (K=I),

and the S will represent the changes in the NPV relative to moves in the electricity spot

price S (∆S=∆NPV ). The relative sizes of up and down moves within both regimes

(UH , UL, DH , DL) will thus be the same for the NPV and S (A.8) figure (A.6).

6.4 Real Option Value

When finding the option value at n = 0 we start with computing the intrinsic values of

the of the option at the last possible exercise date as described in chapter (4.8). We still

use the underlying electricity price S as a proxy for the NPV (S=NPV ), and the strike
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price K as a proxy for the investment cost I (K=I). The reason for this is that the mean

reverting property of the probabilities is price dependent. And the price dependency is

estimated from parameters on historical electricity prices. Any other variable than the

electricity price S would thus not be compatible with the probabilities. Since we have

the assumptions discussed in chapter (6.3) this does not cause any major problems when

finding the option value of the investment opportunity.

We use the intrinsic values for S and iterate backwards through the tree to find the option

value at each possible node C(i, n) as explained in chapter (4.8). When we have iterated

all the option values, we can transform them from option values on the electricity price to

the option values for the investment. The electricity option values C(i, n)Electricity relative

to the present spot price S0 will be identical to relation between the investment option

values C(i, n)Investment and the NPV0, due to the assumptions in chapter (6.3):

C(i, n)Electricity

S0

=
C(i, n)Investment

NPV0

(6.2)

The option value on the investment at any node must therefore be:

C(i, n)Investment =
C(i, n)Electricity

S0

∗NPV0 (6.3)

With the relation between the strike price K and investment price I being:

K
S0

= I
NPV0

K = I
NPV0

∗ S0

I = K
S0

∗NPV0

(6.4)
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We can thus calculate the option values for the investment C(i, n)Investment at any node

with equation (6.3).

In our case we have a “at a money call option” where S0 = K = 761.64 NOK and n=52.

We get the following option trees for the electricity price in each of the two volatility states

(σ̂H , σ̂L), with the algorithm in (A.1).

Table 6.3: Option value electricity price
0 1 2 3 ..52 0 1 2 3 ..52

434.20 742.75 2209.82 5107.57 263.99 742.75 2209.82 5107.57
503.39 977.65 2673.80 270.40 977.65 2673.80
330.75 567.66 1249.23 232.33 287.55 1249.23
414.27 429.20 623.4 253.38 255.89 415.39

360.39 742.75 233.59 742.75
281.46 498.04 211.39 262.46
668.71 381.95 539.57 235.30
429.20 324.12 255.89 223.86
320.54 297.35 224.12 210.76
397.42 251.68 243.39 195.07

1808.51 1808.51
742.75 742.75
498.04 262.46
407.05 245.07
324.12 223.86
273.77 204.01
606.41 363.83
407.05 245.07
313.80 216.50
375.17 233.29

C(i, n)Electricity : σ̂H(left), σ̂L(right) : for the n(0 → 3). Figure (A.7)
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We utilize equation (6.3) at each node to get the option tree for the investment opportunity

with NPV = I = 82.88 MNOK and n = 52:

C(i, n)Investment = C(i,n)Electricity

S0
∗NPV0

Table 6.4: Option value investment
0 1 2 3 ..52 0 1 2 3 ..52

47.25 80.82 240.45 555.77 28.73 80.82 240.45 555.77
54.22 106.38 290.94 29.42 106.38 290.94
35.35 61.19 135.93 25.28 31.29 135.93
44.35 46.21 67.23 27.57 27.84 45.20

38.56 80.82 25.42 80.82
29.98 53.67 23.00 28.56
72.19 40.89 58.71 26.60
46.21 34.68 27.84 24.36
34.15 31.69 24.39 22.93
42.53 26.75 26.48 21.23

196.79 196.79
80.82 80.82
53.67 28.56
43.61 26.67
34.68 24.36
29.09 22.20
65.39 39.59
43.61 26.67
33.34 23.56
40.16 25.39

C(i, n)Investment : σ̂H(left), σ̂L(right) : for the n(0 → 3). Figure (A.8)

As we can see in table (6.3) the present value (n = 0) of a 1 year American “at the money”

call option on the electricity price is valued at 434.20 NOK in the high volatility state and

263.99 NOK in the low volatility state.

As for the hydropower investment, table (6.4) illustrates that the present value of the real
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option is 47.25 million NOK at n = 0 in a high volatility state, and a value of 28.73 million

NOK if in a low volatility state. Remembering table (3.1) from chapter (3) volatility has

positive correlation with the option value and it is expected that the value of investment

opportunity is larger in the high volatility state.

The nodes in table (6.5) marked in bold are the nodes where the intrinsic value is larger

than the continuation value of the option. This is instances where its optimal to exercise

the option rather than holding it. These are nodes where the underlying electricity price is

higher than the expected electricity prices between this date and maturity. Since the price

is mean reverting, this will be the case at certain relatively high prices. In the low volatil-

ity regime, there is more optimal early exercise dates since the probability of large upside

fluctuations will be lower, and thus early exercise will be optimal at lower prices than in

the high volatility regime. The remaining nodes are instances where the continuation value

of the option is larger than the intrinsic value, and the optimal strategy is to hold the option.
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Table 6.5: Early exercise boundaries for investment
1 2 3 ..52 1 2 3 ..52

80.82 240.46 555.77 80.82 240.46 555.77
54.22 106.38 290.95 29.42 106.38 290.95
35.36 61.19 135.93 25.28 31.29 135.93
44.35 46.21 67.23 27.57 27.84 45.20

38.56 80.82 25.42 80.82
29.98 53.67 23.00 28.56
72.19 40.89 58.71 25.60
46.21 34.68 27.84 24.36
34.15 31.69 24.391 22.93
42.53 26.75 26.48 21.23

196.79 196.79
80.82 80.82
53.67 28.56
43.61 26.67
34.68 24.36
29.09 22.20
65.39 39.59
43.61 26.67
33.34 23.56
40.16 25.39

C(i, n)Investment : σ̂H(left), σ̂L(right) : for the n(1 → 3). Figure (A.9)

6.5 Sensitivity Analysis

To analyze the key driver of the option valuation we will perform a sensitivity analysis on

the volatility and the strike price. As we have two regimes, we will perform a change in

volatility in both the high and low volatility regime. The strike price will remain the same

for both regimes.
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First, we will present an analysis of changing the strike price with 10% both upwards and

downwards. Table (6.5) display the effects of changing the strike price on the real option

value.

Table 6.6: Sensitivity anlysis of strike price, K
Strike price, k 685.48

(10%decrease)
761.64 837.80

(10%increase)

*Real option value in H 51.42
(8.82%increase)

47.25 43.69
(7.53%decrease)

*Real option value in L 30.58
(6.44%increase)

28.73 26.50
(7.76%decrease)

(*) indicates variable in MNOK

Our sensitivity analysis on the strike price, K tells us that a decrease in the strike price by

10% causes an increase in both the value if in the high volatility state and the low volatility

state by approximately the same percentage. However, an increase in the strike price by

10% provides a smaller decrease in both regimes. The value if in a high volatility state

decreases by 8.82% while the decrease if in the low volatility state is only 6.44%.

The sensitivity analysis will keep the volatility in one of the regimes constant while chang-

ing the volatility in the other regime. Table (6.7) and (6.8) displays the change in real

option value when preforming a change in volatility.

Page 53



CHAPTER 6. RESULTS AND FINDINGS

Table 6.7: Sensitivity analysis of volatility H

Volatility in H 28.15%
(6.6%decrease)

30.15% 32.15%
(6.6%increase)

Volatility L 6.52%
(Constant)

6.52% 6.52%
(Constant)

*Real option value in H 39.96
(15.4%derease)

47.25 57.36
(21.4%increase)

*Real option value in L 22.87
(20.4%decrease)

28.73 34.77
(21.02%increase)

Table 6.8: Sensitivity analysis of volatility L

Volatility in L 4.52%
(30.21%decrease)

6.525% 8.52%
(30.21%increase)

Volatility H 30.15%
(Constant)

30.15% 30.15%
(Constant)

*Real option value in H 46.48
(1.63%derease)

47.25 47.91
(1.40%increase)

*Real option value in L 27.46
(4.42%decrease)

28.73 30.60
(6.51%increase)

(*) indicates variable in MNOK

The results from the sensitivity analysis tells us that a change in the high volatility state

yields a larger change in the real option valuation. The results tell us that the largest change

in the real option value comes from an increase in the volatility in H by two per centage

points which equates a change of 6.6% in volatility gives us an increase of 21.4% in the

real option if in the high volatility state, and an increase of 21.02% if in the low volatility

regime. The results are aligned with real option theory where a higher volatility drives

the value and creates a larger upside. This was discussed in chapter 3 and displayed in

table (3.1). To conclude, the key driver which affects the real option value the most is the

volatility in the high volatility regime.
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Discussion

Our thesis contains a real option valuation of an investment opportunity, but the essence

of the thesis is to model mean reversion and dramatical breaks in the behavior of a time

series. We have combined methodologies and presented an approach which can be an

alternative to traditional methods. The methodology can be applied to processes and time

series that share behavior similarities with the electricity spot price in the Nordic-Baltic

power market. In this chapter we will first, discuss the results and our findings. Secondly,

we will discuss the methodology, and its benefits and limitations as well as providing a

description to critical choices.

7.1 Methodology

As presented in chapter one, our thesis aims to combine methodology such that we can

design an approach that can address specific processes and behaviors. In our research, we

have to the best our ability, structured a method that can on a surface level capture the

behavior of the spot price of electricity. We are aware of the limits as well as the benefit

the model provides.
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7.2 Modeling the Time Series

Let us now analyze the mean reversion process. The model does what our intension was

from the start. It is able to integrate the mean reversion of the electricity price by using a

standard Ornstein-Uhlenbeck process. With this process, the probability and price have a

development which mimics the realistic properties of the commodity. This is contrary to

widespread methods. The Ornstein-Uhlenbeck process is in our case used instead of a geo-

metric Brownian Motion which is is the continuous time equivalent of a random walk with

drift for log prices. The simplicity of only using geometric Brownian motion demands just

the calculation of volatility and the term for drift, while our method of choice, demands

the calculation of both the long-term mean and the level of mean reversion as described

in chapter 3, which complicates the method to some degree. Further, the mean reverting

process does not address every part of the electricity price, there are unfortunately some

drawbacks and areas to improve. Commodities and time series may in some instances be

affected by seasonality. This means that a season can be characterized with specific be-

havior. For instance, remembering back to chapter 2, the spot price of electricity is higher

during the winter season and lower during the summer. Our methodology does not address

and model this aspect of the time series. This is one drawback in our thesis which can be

improved by further research. There are multiple ways to take seasonality into account. It

can be done by applying dummy-variables to the AR-process, using a sine cosine function

in the regression, or utilizing seasonality filters to the time series. Our reasoning for not

applying sine cosine function was its complexity in the technical aspect. We also found

that utilizing smoothing filters did virtually nothing to the seasonality.
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Further, the model carries the benefit of capturing what is described as extraordinary

changes in behavior which can occur from multiple different reasons such as policy changes,

weather changes or geo-political shifts. By dividing the time series into two different

regimes with a Markov switching model, our model captures these changes. With few

adjustments it is also possible to apply more than two regimes. This benefit makes it more

appealing than a regular binomial lattice approach which does not hold the same proper-

ties. Next, we wish to address the choice of using two regimes. Our research consists

of one high volatility regime and one low volatility regime. Our logic for using only two

regimes comes from two main reasons. First, it would limit the possible steps, as more

than two regimes would increase the number of possible movements and the run time for

the code would substantially longer. Secondly, our statistical program did not manage to

apply a regression with switching variance over more than two states, which indicates that

the time series only contained two apparent regimes. However, there is evidence of jumps

and spikes in our time series. This can be observed in the graph displayed in figure (2.2)

These jumps are not accounted for in the model.

On a broader level the methodology holds the benefits of its applicability to other com-

modities other than the price of electricity. It is easy to change certain aspects of the model

such that you can address different process and behaviors. To end, the theory and intuition

easy to understand and digestible.

7.3 Obtaining the Risk Adjustment

As there are no concrete answer to what the correct required rate of return or beta for an

investment is, we wish to discuss the method for obtaining the risk neutral probabilities
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and discount factor. Guthrie (2009) suggest using the relationship between spot and futures

prices to estimate risk neutral probabilities since CAPM does not capture risk reward in

a sufficient way. Our thesis does not apply this method as there is not enough data on

futures prices in the Nordic-Baltic market. On this note, we decided to apply the CAPM

even if it assumes that historical data is a reliable indicator of the future and that the

CAPM correctly compensates investors for risk. When calculating the CAPM we used the

residuals of the markov switching model, and ran a regression with the return on the Oslo

benchmark Index.

7.4 Marketed Asset Disclaimer

The markedet asset disclaimer is used to solve the problem that occurs from incomplete

markets. The disclaimer makes an assumption that market value estimate for the project

is the present value of the project itself, but with no flexibility, as first described in chapter

3. When we valuate options in our thesis we use this assumption, but it comes with some

problems. The valuation is prone to inaccuracies as there are no way to test the assumption

in a market. For this reason, it is important to emphasize that the value of the underlying

is not in its entirety solved. As the production of Usma is electricity, we have made the

assumption that the volatility of the investment is equal to the commodity. This assumption

creates openings for errors in the valuations. An alternative to fix this issue can be to

individualize the operational income and spendings and assume fixed costs of operation

per unit produced and continuous production. In our case this is difficult as the cost of

production in a river sourced hydropower plant is significantly low and does not vary

much. At the same time both income and costs are not deterministic.
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7.5 Technicality

To apply our method, we utilized both STATA and MATLAB. Both the programs and our

application of the programs have their benefits and difficulties. Using STATA to perform

the AR(1) regression is intuitive and straight forward. It was easy to transform data and

manage variables. However, there are limitations to what the program can do. We were

not able to build our own models, and we could only use the models which are included

in the program. We recognize that we failed to include the weekend effect in our AR(1)

regression in STATA. The spot price has differences over the weekend, but the price for the

weekend is set before the Friday. This thesis ran an autoregression with a daily frequency

without weekend breaks. Addressing this effect and integrate it in the technical aspect

would improve the thesis.

As the mathematical and technical aspect of model increased in complexity we had to

switch to MATLAB where there is more room to design and build your own models. We

experienced more possibilities and more accessibility to information and tutorials online.

Coding in MATLAB did have its drawbacks. We were not as experienced with the program

and had to spend time learning the basics and the fundamentals. For this reason, we believe

we have a MATLAB-code which can be simplified and made more efficient by a seasoned

programmer. Running the code with 52 steps required approximately 85 minutes to finish

on a computer with 8 GB ram and a Ryzen AMD 5 processor. A better computer may

perform the code faster. Even though there are areas to improve, the code has the benefit

of being easy to adapt. Applying the code to a different methodology can be done with

only a few adjustments.
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As mentioned in chapter 5 we have tested our MATLAB code by applying two exact

regimes with arbitrary transition probabilities. By using an example from Guthrie (2009),

we could utilize the given parameters and use the findings from the book to check if our

algorithm provides the correct results. The algorithm gave the same results as in the book

which implies that it works correctly when valuing options on mean-reverting variables

with multiple volatility states as well. Unfortunately, we cannot generalize to multiple

regimes. There might still be a problem that did not show up when having two identical

regimes.
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Concluding Remarks

The presence of regime switching commodity prices in real option valuation is to the best

of our knowledge, limited in real option theory. It mostly consists of either binomial lat-

tice approaches or regime switching but, in continuous time. To this end, we believe that

our thesis contributes to the limited literature. We believe the contribution is combining

methodologies, such that mean reversion and regime switching is disclosed in the algo-

rithm.

We can conclude this thesis with the fact that our algorithm is an efficient and easy way

to value American real options with a mean-reverting underlying variable with multiple

volatility states. It gives a fair option price and supplies early exercise boundaries. We have

illustrated how one could apply the algorithm in a real-life investment in a hydropower

plant. Under the marketed asset disclaimer, we assume the NPV of the underlying invest-

ment is reflected from the present value of production and thus the present electricity price,

and that the underlying investment will follow the same process as the electricity price in

table (6.3). Under these assumptions we value the 1-year real option with 52 possible ex-

ercise dates. We estimate the present value of the option as displayed in table (6.4) with

early exercise boundaries presented in table (6.5) for both volatility states.
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The algorithm can easily be transformed to value an option on an underlying variable

that follows the geometric Brownian-motion as well. One would merely have to change

the probabilities from mean reverting to static, and the use Brownian motion or another

stochastic model to estimate the movement factors. We can thus conclude that our model

is quite versatile as well.

8.1 Further Research

The core of our thesis is to model the volatility of the electricity prices. We believe our

research provides a simplistic and solid model. However, there are areas that can be ex-

tended for further research. First, we believe that if the seasonal behavior of electricity is

implemented in the model, it would prove better accuracy of the result. Next, the reality

of spikes and jumps in the time series can argue for the necessity of a process that captures

akin behavior. Additionally, the exploration of including more regimes can provide an

interesting extension, either through elimination or addition. Hence, we propose that any

further research consider the possibilities of such additions. Although it is not an essen-

tial part of the thesis, an interesting inclusion would be to apply the relationship between

futures and spot prices as the estimate for the risk neutral probabilities as Guthrie (2009)

suggests, if possible.

In addition, there are some technical aspects to consider expanding. First, the data treat-

ment to address the weekend effect would be beneficial to the proficiency of the model.

Lastly, we believe there are possibilities to streamline the algorithm, such that the code

runs faster and can be applied to a larger number of steps.

Page 62



Bibliography

Aingworth, D. D., Das, S. R., Motwani, R. (2006). A simple approach for pricing equity options with
Markov switching state variables. Quantitative Finance, 6(02), 95-105.

Andersen, T. G., Davis, R. A., Kreiß, J.-P., Mikosch, T. (2009). Handbook of Financial Time Series. New
York: Springer.

Barone-Adesi, G., Whaley, R. E. (1987). Efficient analytic approximation of American option values. The
Journal of Finance, 42(2), 301-320.

Barton, K., Lawryshyn, Y. (2010). Reconciling real option models: An approach to incorporate market
and private uncertainties. In 14th Annual International Conference on Real Options, Rome, Italy, June (pp.
16-19).

Black, F. Scholes, M. (1973). The pricing of options and corporate liabilities. The journal of political
economy, 81(3):637-654.

Branch, M. A. (2003). Real Options in Practice. John Wiley Sons, Inc.

Chen, X. (2011). American option pricing formula for uncertain financial market. International Journal of
Operations Research, 8(2), 32-37.

Cloudberry Clean Energy ASA. (2021). Annual report 2021. Oslo: Cloudberry Clean Energy ASA.

Copeland, T., Antikarov, V. (2003). Real options: A practitioner’s guide, revised edition. Thomson/Texere,
New York.

Cox, J. C., Ross, S. A., Rubenstein, M. (1979). Option Pricing: A Simple Approach. Journal of Finacial
Economics, 229-263.

Durlauf, S. N., Blume, L. E. (2009). Macroeconometrics and Time Series Analysis. The New Palgrave
Economics Collection. 202-203. London: Palgrave Macmillan.

Energi Fakta Norge. (2021, May 11). Energifaktanorge. Retrieved April 22, 2022, from https://energif-
aktanorge.no/en/norsk-energiforsyning/kraftproduksjon/

Good Energy. (2022, April 28). Goodenergy. Retrieved from How does hydroelectricity work?: https://www.-
goodenergy.co.uk/how-does-hydroelectricity-work/

Gujarati, D. N., Porter, D. C. (2018). Basic Econometrics (Fifth edition ed.). New York: McGraw-Hill
Irwin.

63



BIBLIOGRAPHY

Guthrie, G. (2009). Real Options in Theory and Practice. New York: Oxford University Press, Inc.

Hamilton, J. D. (1994). Time Series Analysis (1 ed.). Princeton: Princeton Univeristy Press.

Hydropower. (2016). Run of river [Image]. Retrieved from: http://www.alley600.eu/ASPCA.html

International Renewable Energy Agency. (2012). Hydropower. RENEWABLE ENERGY TECHNOLOGIES:
COST ANALYSIS SERIES, 17-24.

Investing.com. (2022, April 21). Retrieved from https://www.investing.com/indices/oslo-obx-historical-data

Isaac. (2014, October 21). MathWorks. Retrieved from MathWorks: https://se.mathworks.com/ma-tlabcent-
ral/fileexchange/48215-multinomial-expansion

Lütolf-Carroll, C., Pirnes, A. (2011). From Innovation to Cash Flows: Value Creation by Structuring High
Technology Alliances.

MacKenzie, D. (2006). Is economics performative? Option theory and the construction of derivatives mar-
kets. Journal of the history of economic thought, 28(1), 29-55.

Nord Pool AS. (2022a, April 21). Nord Pool. Retrieved from https://www.nordpoolgroup.com/en/the-
power-market/

Nord Pool AS. (2022b, March 25). Nord Pool. Retrieved from https://www.nordpoolgroup.com/en/M-arket-
data1//nordic/table

Norges Bank. (2022, May 14). Norgesbank. Retrieved from Norwegian government securities: https://www.-
norges-bank.no/en/topics/Statistics/zero-coupon-yields/

Norwegian Water resource and Energy Directorate. (2022a, March 22). Status for ny vannkraftproduksjon.
Retrieved from: https://www.nve.no/energi/energisystem/vannkraft/status-for-ny-vannkraftproduksjon/

Norwegian Water Resource and Energy Directorate. (2022b, March 23). Magasinstatistikk. Retrieved from:
https://www.nve.no/energi/analyser-og-statistikk/magasinstatistikk/

Norwegian Water Resource and Energy Directorate. (2022c, March 25). Reinvesteringsbehov, opprust-
ing og utvidelse. Retrieved from: https://www.nve.-no/energi/energisystem/vannkraft/reinvesteringsbehov-
opprusting-og-utvidelse/

Office of Eneregy Efficiency Renewable Energy. (2022, April 28). Water Power Technologies Office. Re-
trieved from Energy: https://www.energy.gov/eere/water/how-hydropower-works

PwC. (2022, May 03). Risikopremien i det norske markedet 2021. Retrieved from PwC: https://w-ww.pwc.-
no/no/publikasjoner/risikopremien.html

Page 64



BIBLIOGRAPHY

Reuer, J. J., Tong, T. W. (2007). Advances in Strategic Management (Vol. 24 Real Options Theory). Oxford:
JAI Press.

Scott, L. O. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest
rates: Applications of Fourier inversion methods. Mathematical Finance, 7(4), 413-426.

Sick, G. (1995). Real options. Handbooks in operations research and management science, 9, 631-691.
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Appendix

A.1 MATLAB Code

1 % I n p u t i n t h e model :

2 % S0= s t a r t p r i c e

3 % K= S t r i k e P r i c e

4 % PM= T r a n s i t i o n p r o b a b i l i t y m a t r i x f o r t h e r e g i m e s

5 % R= D i s c o u n t r a t e

6 % Sigma= V o l a t i l i t y i n t h e two d i f f e r e n t r e g i m e s [H, L ]

7 % o p t t y p e =0 f o r c a l l o p t i o n

8 % Ns te ps =number o f t i m e s t e p s

9 % S0= s t a r t p r i c e

10 % d e l t 1 = t ime i n c r e m e n t f o r O r n s t e i n −Uhlenbeck p a r a m e t e r s

11 % d e l t 2 = t ime i n c r e m e n t f o r Ns t e ps

12 % BetaRNP= Beta f o r r i s k − n e u t u r a l − p r o b a b i l i t i e s

13 % MRP=Market r i s k premium

14 % NPV=Net p r e s e n t v a l u e i n v e s t m e n t

15

16 % Outpu t i n t h e model :
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17 % V a l u e I n v e s t H = I n v e s t m e n t Opt ion Value i n t h e h igh

18 % v o l a t i l i t y s t a t e .

19 % V a l u e I n v e s t L = I n v e s t m e n t Opt ion Value i n t h e low

20 % v o l a t i l i t y s t a t e .

21

22 % I n p u t

23 PM= [ 0 . 9 1 2 2 6 5 1 , 0 . 0 8 7 7 3 4 9 ; 0 .0390129 , 0 . 9 6 0 9 8 7 1 ] ;

24 sigma = [ 0 . 3 0 1 5 8 2 , 0 . 0 6 5 2 2 ] ;

25 o p t t y p e =0;

26 S0 = 7 6 1 . 6 4 ;

27 Ns t e ps =52;

28 R= 0 . 0 1 0 1 8 ;

29 K= 7 6 1 . 6 4 ;

30 d e l t 1 = ( 1 / 2 5 2 ) ;

31 d e l t 2 = ( 1 / 5 2 ) ;

32 BetaRNPH = 1 . 0 4 8 ;

33 BetaRNPL = 1 . 0 2 0 ;

34 MRP= 0 . 0 5 ;

35 NPV= 8 2 . 8 7 7 ;

36

37 % I n p u t from AR( 1 ) Markov s w i t c h i n g model :

38 a0H = 0 . 2 61 7 44 1 ;

39 a1H = −0.0490557;
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40 sdh = 0 . 3 0 1 5 8 2 ;

41 a0L = 0 . 1 18 6 06 1 ;

42 a1L = −0.0208533;

43 s d l = 0 . 0 6 5 2 2 ;

44

45 % Normal ized y e a r l y e s t i m a t e s o f t h e p a r a m e t e r s O r n s t e i n −

46 % Uhlenbeck :

47 a l f a H =( − l o g (1+ a1H ) ) / d e l t 1 ;

48 betaH = −(a0H / a1H ) ;

49 sdH=sdh * ( ( 2 * l o g (1+ a1H ) ) / ( a1H *(2+ a1H )* d e l t 1 ) ) ˆ ( 1 / 2 ) ;

50 a l f a L = ( − l o g (1+ a1L ) ) / d e l t 1 ;

51 be taL = −( a0L / a1L ) ;

52 sdL= s d l * ( ( 2 * l o g (1+ a1L ) ) / ( a1L *(2+ a1L )* d e l t 1 ) ) ˆ ( 1 / 2 ) ; s

53

54 % E s t i m a t i n g t h e s i z e o f up and down moves :

55 uH=exp ( sdH* s q r t ( d e l t 2 ) ) ;

56 uL=exp ( sdL * s q r t ( d e l t 2 ) ) ;

57 dH=exp ( −sdH* s q r t ( d e l t 2 ) ) ;

58 dL=exp ( − sdL * s q r t ( d e l t 2 ) ) ;

59 u =[ uH , uL ] ;

60 d =[ dH , dL ] ;

61

62 % E s t i m a t i n g t h e r i s k − n e u t u r a l Be ta
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63 BetaRNH=BetaRNP* s q r t ( ( d e l t 1 / d e l t 2 ) * ( ( 1 − exp ( −2* a l f a H * d e l t 2 ) ) /

64 (1 − exp ( −2* a l f a H * d e l t 1 ) ) ) ) ;

65 BetaRNL=BetaRNP* s q r t ( ( d e l t 1 / d e l t 2 ) * ( ( 1 − exp ( −2* a l f a L * d e l t 2 ) ) /

66 (1 − exp ( −2* a l f a L * d e l t 1 ) ) ) ) ;

67

68 % C a l c u l a t i n g t h e up move r i s k − n e u t u r a l c o r r e c t i o n

69 % c o n s t a n t :

70 RNpH=(MRP* d e l t 2 *BetaRNH ) / ( uH−dH ) ;

71 RNpL=(MRP* d e l t 2 *BetaRNL ) / ( uL−dL ) ;

72

73 % C a l c u l a t e t h e d i s c o u n t f a c t o r DF

74 DF= exp ( ( R) * ( d e l t 2 ) ) ;

75

76 % Number o f r e g i m e s

77 Nsigma = l e n g t h ( s igma ) ;

78

79 % C a l c u l a t e t h e c o m p l e x i t y o f t h e t r e e

80 NLeaves= nchoosek ( Nsteps −1+(2* Nsigma ) , (2* Nsigma ) − 1 ) ;

81

82 % Adding c o n t i n u a t i o n v a l u e and p r i c e i n t h e t r e e wi th e a r l y

83 % e x e r c i s e v e c t o r s

84 CH= z e r o s ( NLeaves , Ns t e ps + 1 ) ;

85 CL= z e r o s ( NLeaves , Ns t e ps + 1 ) ;
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86 S= z e r o s ( NLeaves , Ns t e ps + 1 ) ;

87 B= ones ( NLeaves , 1 ) ;

88 EH= z e r o s ( Ns t e ps +1 , 1 ) ;

89 EL= z e r o s ( Ns t e ps +1 , 1 ) ;

90

91 % Adding t h e r e s t o f t h e m a t r i c e s wi th one s t e p l e s s

92 % t h e n Nleaves

93 NLeaves1= nchoosek ( Nsteps −2+(2* Nsigma ) , (2* Nsigma ) − 1 ) ;

94

95 puH= z e r o s ( NLeaves1 , Ns t e ps ) ;

96 puL= z e r o s ( NLeaves1 , Ns t e ps ) ;

97 pdH= z e r o s ( NLeaves1 , Ns t e ps ) ;

98 pdL= z e r o s ( NLeaves1 , Ns t e ps ) ;

99 ph i1 = z e r o s ( NLeaves1 , Ns t e ps ) ;

100 FH= z e r o s ( NLeaves1 , Ns t e ps ) ;

101 FL= z e r o s ( NLeaves1 , Ns t e ps ) ;

102 psiH= z e r o s ( NLeaves1 , Ns t e ps ) ;

103 ps iL = z e r o s ( NLeaves1 , Ns t e ps ) ;

104 CVH= z e r o s ( NLeaves1 , Ns t e ps ) ;

105 CVL= z e r o s ( NLeaves1 , Ns t e ps ) ;

106

107 % ad d in g t h e movements v e c t o r :

108 ud= [ u d ] ;
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109

110 % O b t a i n i n g t h e powers o f t h e movements v a l u e f o r t h e l e a v e s

111 [ Nmatr ix ] = m u l t i n o m i a l p o w e r s r e c u r s i v e ( Nsteps , Nsigma * 2 ) ;

112

113 % Compute t h e p r i c e and t h e o p t i o n v a l u e s i n t h e l e a v e

114 % nodes a t t h e m a t u r i t y

115 f o r h =1: NLeaves

116 f o r j =1 : 4

117 B( h ) = ud ( j ) ˆ ( Nmatr ix ( h ,5 − j ) ) *B( h ) ;

118 end

119 S ( h , 1 ) = S0 * B( h ) ;

120 end

121 CH( : , 1 ) = o p t t y p e *max (K−S ( : , 1 ) ,0 )+(1 − o p t t y p e )* max ( S ( : , 1 ) −K , 0 ) ;

122 CL ( : , 1 ) =CH ( : , 1 ) ;

123

124 % t h e l a s t v a l u e o f t h e e a r l y e x e r c i s e boundary i s a lways

125 % e q u a l t o t h e s t r i k e

126 EH( Ns t ep s +1)=K;

127 EL ( Ns t ep s +1)=K;

128

129 % V a r i a b l e s f o r h o l d i n g t h e e a r l y e x e r c i s e v a l u e s a t each

130 % l e v e l

131 eH= z e r o s ( NLeaves + 1 , 1 ) ;
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132 eL= z e r o s ( NLeaves + 1 , 1 ) ;

133

134 %S t a r t i n g t h e backward r e c u r s i o n :

135 f o r n =1: Ns t ep s

136

137 %Number o f nodes a t c u r r e n t t ime s t e p :

138 Nnodes= nchoosek ( Nsteps −1−n +(2* Nsigma ) , (2* Nsigma ) − 1 ) ;

139

140 %Number o f nodes a t t ime s t e p a f t e r t h e c u r r e n t :

141 Nleaves = nchoosek ( Nsteps −n +(2* Nsigma ) , (2* Nsigma ) − 1 ) ;

142

143 %Power m a t r i x t h a t c o r r e s p o n d i n g t o t h e t ime s t e p s above :

144 [ Nmatr ix ]= m u l t i n o m i a l p o w e r s r e c u r s i v e ( Ns t ep s +1−n ,

145 Nsigma * 2 ) ;

146 [ Nmatr i ]= m u l t i n o m i a l p o w e r s r e c u r s i v e ( Nsteps −n ,

147 Nsigma * 2 ) ;

148

149 B= ones ( Nnodes , 1 ) ;

150 f o r h =1: Nnodes

151 % B = movement f a c t o r s a c c u m u l a t i o n a t c u r r e n t node :

152 f o r j =1:4

153 B( h ) =ud ( ( j ) ) ˆ ( Nmatr i ( h , 5− j ) ) *B( h ) ;

154 end
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155

156 % S= e x p e c t e d v a l u e o f t h e a s s e t a t c u r r e n t node :

157 S ( h , n +1)= S0* B( h ) ;

158

159 % p h i = i n t r i n s i c v a l u e o f t h e o p t i o n a t c u r r e n t node .

160 ph i1 ( h , n )= o p t t y p e * (K−S ( h , n +1))+(1 − o p t t y p e )*

161 ( S ( h , n+1) −K ) ;

162

163 % C a l c u l a t e r i s k n e u t r u a l up move p r o b a b i l i t i e s f o r each

164 % node f o r h igh s t a t e ( puH ) and low s t a t e ( puH ) .

165 puH ( h , n ) = 0 . 5 + ( ( ( 1 − exp ( − a l f a H * d e l t 2 ) ) * ( betaH − l o g

166 ( S ( h , n + 1 ) ) ) ) / ( 2 * sdH* s q r t ( d e l t 2 ) ) ) −RNpH;

167 puL ( h , n ) = 0 . 5 + ( ( ( 1 − exp ( − a l f a L * d e l t 2 ) ) * ( betaL − l o g

168 ( S ( h , n + 1 ) ) ) ) / ( 2 * sdL * s q r t ( d e l t 2 ) ) ) −RNpL ;

169

170 % Adding uppe r and lower b o u n d a r i e s f o r t h e p r o b a b i l i t i e s .

171 puH ( puH<=0)=0;

172 puH ( puH>=1)=1;

173

174 puL ( puL<=0)=0;

175 puL ( puL>=1)=1;

176

177 % C a l c u l a t e down move p r o b a b i l i t i e s f o r each node f o r
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178 % high s t a t e ( puH ) and low s t a t e ( puH )

179 pdH ( h , n )=(1 −puH ( h , n ) ) ;

180 pdL ( h , n )=(1 − puL ( h , n ) ) ;

181

182 % In o r d e r t o i d e n t i f y t h e t r a n s i t i o n d i r e c t i o n t o t h e

183 % p r e v i o u s s t e p , s u b t r a c t powers o f t h e c u r r e n t node

184 % from t h e powers o f a l l t h e nodes i n t h e n e x t t ime s t e p ,

185 % t h e n i d e n t i f y t h e i n d i c e s o f t h e on ly 4 p o s i t i v e l y

186 % v a l u e d rows

187 Trans = bs x fu n (@(A, B) A−B , Nmatrix , Nmatr i ( h , : ) ) ;

188 [Row , ˜ ] = f i n d ( Trans <0) ;

189 Trans (Row , : ) = 0 ;

190 [ cc , ˜ ] = f i n d ( Trans = = 1 ) ;

191

192 cc= f l i p ( cc ) ;

193

194 %C a l c u l a t i n g t h e node c o n t i n u a t i o n v a l u e i n bo th s t a t e s by

195 %match ing t h e p r o b a b i l i t i e s a p p r o p r i a t e l y wi th t h e v a l u e s :

196 FH( h , n ) = ( puH ( h , n )*PM( 1 , 1 ) *CH( cc ( 1 ) , n ) ) + ( puL ( h , n )*PM( 1 , 2 )

197 *CL( cc ( 2 ) , n ) ) + ( pdH ( h , n )*PM( 1 , 1 ) *CH( cc ( 3 ) , n ) ) + ( pdL ( h , n )*

198 PM( 1 , 2 ) *CL( cc ( 4 ) , n ) ) ;

199 FL ( h , n ) = ( puH ( h , n )*PM( 2 , 1 ) *CH( cc ( 1 ) , n ) ) + ( puL ( h , n )*PM( 2 , 2 )

200 *CL( cc ( 2 ) , n ) ) + ( pdH ( h , n )*PM( 2 , 1 ) *CH( cc ( 3 ) , n ) ) + ( pdL ( h , n )*
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201 PM( 2 , 2 ) *CL( cc ( 4 ) , n ) ) ;

202

203 %p s i = C o n t i n u a t i o n v a l u e a t t h e nodes :

204 psiH ( h , n )= exp ( −R* d e l t 2 )*FH( h , n ) ;

205 ps iL ( h , n )= exp ( −R* d e l t 2 )* FL ( h , n ) ;

206

207 %Checking f o r e a r l y e x e r c i s e :

208 CH( h , n +1)=max ( ph i1 ( h , n ) , ps iH ( h , n ) ) ;

209 CL( h , n +1)=max ( ph i1 ( h , n ) , p s iL ( h , n ) ) ;

210

211 %save e a r l y e x e r c i s e v a l u e :

212 i f ph i1 ( h , n)>psiH ( h , n )

213 eH ( h )=CH( h , n + 1 ) ;

214 end

215 i f ph i1 ( h , n ) > ps iL ( h , n )

216 eL ( h )=CL( h , n + 1 ) ;

217 end

218

219 %C a l c u l a t i n g t h e i n v e s t m e n t o p t i o n v a l u e ( m i l l i o n s NOK)

220 %f o r each node , i n bo th s t a t e s .

221 CVH( h , n ) = (CH( h , n + 1 ) / ( S0 ) ) *NPV;

222 CVL( h , n ) = (CL( h , n + 1 ) / ( S0 ) ) *NPV;

223
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224 end

225

226 %F i l t e r i n g t h e minimum of t h e e a r l y e x e r c i s e v a l u e s :

227 eH ( eH==0)=NaN ;

228 eL ( eL ==0)=NaN ;

229 [ eeH , IH ]= min ( eH ) ;

230 [ eeL , IL ]= min ( eL ) ;

231 %Taking t h e s p o t p r i c e s t h a t c o r r e s p o n d s t o t h e minimum

232 %e a r l y e x e r c i s e v a l u e s :

233 EH( Ns t ep s +1−n )=S ( IH , n + 1 ) ;

234 EL ( Ns t ep s +1−n )=S ( IL , n + 1 ) ;

235

236 %F i l l i n g t h e emty v a l u e s o f t h e v e c t o r s E wi th z e r o s

237 i f i s e m p t y ( eeH ) | | i s n a n ( eeH )

238 EH( Ns t ep s +1−n ) = 0 ;

239 end

240 i f i s e m p t y ( eeL ) | | i s n a n ( eeL )

241 EL ( Ns t ep s +1−n ) = 0 ;

242 end

243

244 % R e s e t t h e v e c t o r s e f o r t h e n e x t round :

245 eH= z e r o s ( NLeaves + 1 , 1 ) ;

246 eL= z e r o s ( NLeaves + 1 , 1 ) ;
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247 end

248

249 %The v a l u e o f t h e e l e c t r i c i t y p r i c e o p t i o n a t t ime 0 :

250 ValueELH=CH( 1 , Ns t e ps + 1 ) ;

251 ValueELL=CL( 1 , Ns t e ps + 1 ) ;

252

253 %The v a l u e o f t h e o p t i o n on t h e i n v e s t m e n t a t t ime 0 :

254 V a l u e I n v e s t H =( ValueELH / S0 )*NPV;

255 V a l u e I n v e s t L =( ValueELL / S0 )*NPV;
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A.2 MATLAB Code function for powers

Our algorithm uses the following algorithm to find the movement factors for the matrices

at each time level. The algorithm is collected and directly quoted from: (Isaac, 2014)

1 f u n c t i o n [ Nmatr ix ] = m u l t i n o m i a l p o w e r s r e c u r s i v e ( pow , ndim )

2 % computes t h e m u l t i n o m i a l e x p a n s i o n of

3 % ( x 0 + x 1 + x 2 + . . . + x ndim ) ˆ pow

4 % Nmatr ix i s a m a t r i x o f powers

5 % Thi s i s e q u i v a l e n t t o f i n d i n g a l l m u l t i − i n d i c e s wi th norm=1

6 % Need a n o t h e r t h i n g t o c a l c u l a t e t h e c o e f f i c i e n t s , b u t t h a t

7 % i s easy r e c u r s i v e on d imens ion !

8 i f ndim ==1 ,

9 Nmatr ix = pow ;

10 e l s e

11 % r e c u r s e

12 Nmatr ix = [ ] ;

13 f o r pow on x1 = 0 : pow ,

14 % say we f i x t h e power i n t h e f i r s t d imens ion t o be

15 % ” pow on x1 ” ( 0 , 1 , 2 , . . . ) t h e n t h e p o s s i b l e t e r m s a r e

16 % a l l t e r m s f o r [ ( pow−pow on x1 ) , ndim −1]

17 [ newsubterms ] = m u l t i n o m i a l p o w e r s r e c u r s i v e

18 ( pow−pow on x1 , ndim − 1 ) ;
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19 % s t i c k on t h e power f o r t h e x1 p a r t and add t o Nmatr ix

20 Nmatr ix = [ Nmatr ix ; [ pow on x1 * ones

21 ( s i z e ( newsubterms , 1 ) , 1 ) , newsubterms ] ] ;

22 end

23 end
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A.3 STATA Commands

import excel, sheet(”elspot-prices-2013-daily-nok”) firstrow

rename Date date

rename Price price

tsset date, daily

gen ln price=ln(price)

reg d.ln price l1.ln price, robust

arima d.ln price l1.ln price

mswitch ar d.ln price, switch(l1.ln price) ar(0) varswitch

predict residH residL, residuals

rename Close price market

gen ln price market = ln(price market)

gen returnm = d1.(ln price market)

reg residH returnm, robust

reg residL returnm, robust
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A.4 STATA AR(1)

Figure A.1: Auto regression
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A.5 STATA ADF and PP test

Figure A.2: ADF test

Figure A.3: PPERRON test

Augmented dickey fuller and phillips-perron test
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A.6. STATA TEST FOR AUTOCORRELATION

A.6 STATA Test for Autocorrelation

Figure A.4: PAC graph
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A.7. STATA MARKOV SWITCHING MODEL

A.7 STATA Markov Switching Model

Figure A.5: Markov Switching Regression
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A.8 Quadrinomial Trees

Figure A.6: Price/Value tree

The price/value tree (UH , UL, DH , DL)forS(left)andNPV (right)fromn(0→4).
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Figure A.7: Option value electricity tree

C(i, n)Electricity: σ̂H(left) and σ̂L(right) for n(0→5). Estimated with matlab code from
(A.1)
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Figure A.8: Option value investment tree

C(i, n)Investment: σ̂H(left) and σ̂L(right) for n(0→5). Estimated with MATLAB code
from (A.1)
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Figure A.9: Early exercise boundaries for Investment

Early exercise boundaries Investment: σ̂H(left) and σ̂L(right) for n(1→5). Bold text =
optimal to exercise. Estimated with MATLAB code from (A.1)
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Figure A.10: Intrinsic Value Electricity price

Intrinsic value electricity price: σ̂H(left) and σ̂L(right) for n(1→5). Bold text = optimal to
exercise. Estimated with MATLAB code from (A.1)
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