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Abstract 
 
 

 
In this thesis, we employ a difference-in-differences approach to estimate the 

price effect of quick clay landslide risk on dwellings and the price effect of quick 

clay landslide occurrences on both dwellings at risk and not at risk of quick clay 

landslides. The price effects are estimated by including a dummy variable for 

being at risk of quick clay landslides and controlling for housing characteristics, 

unobserved time effects, and location effects. The estimations are based upon 

transactional data for dwellings within municipals that are either the place of the 

event, nearby municipalities, or remote municipalities. This thesis has included 

three such events: the quick clay landslide in Alta, 2020; Lyngen, 2010; and 

Gjerdrum, 2020. There are indications and evidence of price discounts for 

dwellings at risk. However, we also find contradictive results, giving us reasons 

for questioning the validity of the results. For the prices of dwellings after a quick 

clay landslide, we find similar results. However, the findings for the Gjerdrum 

case clearly indicates an additional negative price effect on dwellings at risk after 

landslide events compared to dwellings not at risk, which may be due to a 

salience effect of such events. 
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1. Introduction 
There is no denying that the economic consequences a household is potentially 

exposed to may be vast in the event of a quick clay landslide; from here on 

interchangeable with the abbreviation QCL. According to Flavin & Yamashita (2002), 

dwellings are considered to count for the most significant fraction of the household`s 

assets. In addition to housing being one, if not the most important investment most 

households make in their life, Norway has a relatively high amount of dwellings built 

on areas with quick clay according to Mordt et al. (2021), attributing some 

exogenous risk. In the Norwegian housing market, there is a tendency toward a 

preference for households owning their dwelling rather than renting (Langberg, 

2016). In 2016, 84.4% of Norwegians lived in households where they owned their 

dwelling compared to countries such as Switzerland with 44.5%, Germany with 

52.5%, and Austria with 57.2% of their population owning their own home. Since 

2016 the tendency has become weaker, and in 2021 the reported percentage was 

7.4% (SSB, 2022). 

 

Moreover, pre-existing papers studying the effect of a natural disaster on housing 

prices indicate (a) a lasting, (b) a short-term drop-in, or (c) no significant effect on 

housing prices regionally after such events as landslides, and floods, when housing 

areas are exposed to damages. In the pre-existing papers, there are different results 

in how the prices are affected by the event, but we expect there may be a long-term 

consequence for housing prices for all dwellings built on quick clay, not only those in 

the proximity of the event. However, it is essential to notice that though we do expect 

similar results, pre-existing papers primarily consist of analyses on housing prices 

when exposed to exogenous shocks in the forms of other natural disasters, such as 

forest fires, earthquakes, and floods. There is far less publicized research conducted 

for landslides, hereunder QCLs. One possible explanation for changes in price in the 

event of a natural disaster been revealed by Garnache (2020) and Naoi et al. (2009), 

a paper we will discuss in detail later, where they point out salience as a plausible 

explanation of why the prices changes after such events. Salience can, according to 

Taylor and Thompson (1982, p.175), be defined as “…the phenomenon that when 

one’s attention is differentially directed to one portion on the environment rather than 

to others, the information contained in that portion will receive disproportionate 

weighing in subsequent judgments”. From here, we can interpret salience regarding 
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our thesis as a noteworthy and visible change in the perception of the risk the 

households are exposed to. Another way we can look at it is if the attitude towards 

the risk of damages to housing if the event was to occur is being updated as they are 

reminded what the risk entails. 

 

In this thesis, we conduct a difference-in-differences (DD) approach like the designs 

employed by the likes of Kiel and Matheson (2018) and Kim et al. (2017) to assess: 

(a) whether there is a price effect for dwellings at risk of a QCL, (b) whether there is 

a price effect for dwellings at risk of a QCL after the occurrence of a QCL, and (c) 

whether there is a price effect for dwellings not at risk of a QCL after the occurrence 

of a QCL. The two prior research papers, among others, will be discussed in detail in 

section 2 of this thesis. For the remainder of the thesis, we will focus on three QCLs, 

selected from Norway`s long history of QCLs. Each case will be treated separately 

and give us a more detailed indication of how the housing market responds to such 

events. An introduction to each of the landslides can be found in section 1.2. 

 

This thesis contributes to the literature in two ways. First and foremost, with essential 

insights into the effects of being at risk and how a QCL affect Norwegian 

homeowners' assets, measured in the price of dwellings. We think the insights from 

this thesis may be of great use to inform entities such as homeowners, policymakers, 

and insurance companies about different mechanisms regarding housing prices and 

the perception of being at risk of a QCL. This additional information may contribute to 

home buyers' decisions regarding purchasing and the timing of entering the housing 

market, and the areas they may choose to purchase a home. 

 

When a dwelling is up for sale, the seller is, by law, obligated to inform the buyers 

about all the information that may be considered significant knowledge about the 

property in question (Fæste, 2017). In addition to the obligation to inform, there are 

publicly available maps from NVE over risk areas in Norway. Regardless of this, we 

think that households, specifically private buyers in the housing market, do not tend 

to focus on whether their present or future home is at risk of a QCL but rather on 

more visible and tangible attributes. Therefore, we hope this thesis will contribute to 

making households more aware of the risk that comes with such housing attributes 

as we study. Regarding the policymakers, we think the thesis can contribute to the 
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discussion of whether there is a need for more strict and better implementation of 

such policies within areas consisting of quick clay sediments. According to Botzen et 

al. (2019), such policies may also help mitigate the impacts of such events on both 

the economy and society. Secondly, this thesis is based upon a larger dataset than 

most pre-existing papers on similar topics.  

  

Probably one of the most important sources of bias when estimating price changes 

in the housing market is that there are price effects based on where the dwellings 

are located. An extreme example of this is rapidly climbing and expensive dwellings  

in cities like Oslo and relatively more inexpensive dwellings in rural areas. This 

challenge is dealt with by controlling for location-specific effects by including a 

dummy variable for postcodes. 

 

As the three cases are analysed separately, we also present the results of these 

analyses separately in section 6. For this reason, there are mixed results across the 

three cases, which might be somewhat surprising, as we expect the markets to 

behave similarly. The most significant differences in results are between the case of 

Gjerdrum, which shows expected results of there being a price discount for dwellings 

at risk of QCLs up to approximately 76,000 NOK and indicates that these prices drop 

further after a QCL. Somewhat surprisingly, dwellings not at risk also see a drop in 

prices after a QCL. Contrary to this, results indicate that dwellings at risk included in 

the Alta and Lyngen cases experience a price premium of approximately 70,000 and 

300,000 NOK, respectively. We find it reasonable to believe that there are amenity 

effects that create bias in these estimates. Furthermore, we present results of a drop 

in sales volume per quarter for dwellings at risk for all three cases, which curbs the 

results of the price effects. 

  

After the QCLs in Lyngen, Alta, and Gjerdrum, policies for building on sediments with 

quick clay have been up for debate by both local and national newspapers. There 

are many reasons, whereas we believe that the seriousness of the landslide in 

Gjerdrum plays a considerable role. More of this will be covered in section 1.2. It is 

also important to point out that not all areas are mapped, so there might be larger 

areas with sediments such as quick clay that we are not familiar with, hence areas 

where we do not know whether the policies should be implemented. 
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In the event of a landslide, the households may have secured their monetary value 

by getting their assets replaced by the insurance company. In addition to the 

insurance companies offering their products to the households, they also hold an 

important humanitarian role when such events occur. For example, the Norwegian 

insurance company Fremtind played a considerable role in the community 

experiencing loss in the aftermath of the landslide in Gjerdrum (Fremtind, 2020). 

They sent out representatives to help the people affected by the landslides find a 

place to stay after being evacuated, report the damages to the insurance company, 

and guide them during a difficult time.  

  

We need to point out that the impact on households' economies of such events goes 

beyond the economic framework addressed in this thesis. In addition, it is vital to 

remember and consider that the people affected by such events may experience 

losses beyond their economies. Worst-case scenarios, such as the QCL in 

Gjerdrum, show the extent of the importance of the subject, especially for the likes of 

the policymakers. 

 

1.1. A general introduction to quick clay 
According to the Norwegian Geotechnical Institute, also known as NGI, quick clay is 

a specific type of clay mainly found in Norway and Sweden. Even though quick clay 

is also found in other regions, such as Finland, Canada, Russia, and Alaska, it is not 

as common as in the two Scandinavian countries (NGI, n.d.a). The report publicized 

after the examinations of the landslide in Gjerdrum also revealed that the risk of 

quick clay in general in Norway is much more present than what we, as a society, 

should accept (NOU 2022:3, 2022). The name, “Quick clay“, derives from the clay’s 

trait, being that the clay collapses and starts flowing like a liquid when overloaded, 

both naturally and by man-made actions (Spjeldnæs, 2021).  

The clay itself is found below marine level, which is defined by “the present elevation 

of where the sea level was at end of the last ice age” (NGI, n.d.a). Today the marine 

level is measured at about 220 meters above the current sea level.  When the ice 

melted, tiny clay particles flowed with the melted water and sedimented in the marine 

environment and got mixed in with saltwater along the seashore. As the salt water 

mixed with the clay and the other sediments, the salt made the clay particles form a 

highly unstable structure, later known as quick clay. The process of how quick clay 
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came to be formed can be part of the explanation of why quick clay is primarily found 

in countries in or close to Scandinavia, as Scandinavian countries were covered in 

an ice layer that was about 3000 meters, about 20 000 years ago. 

 

After the more significant QCL in Rissa in Trøndelag, demanding one life and 

creating considerable material damage in 1978, NVE started with national mapping 

to identify areas that could be more prone to more significant QCLs. NVE wanted to 

map these areas to prioritize better how to secure areas for erosion and reduce the 

risk of a landslide being triggered (NVE, 2021). In addition to better prioritizing and 

reduction in risk, the municipalities and other entities will benefit from having a better 

tool at their hands when planning for building dwellings and other infrastructural 

construction. The mapping consists of the degree of danger, measured in the 

probability of a landslide, consequences of a landslide, and degree of risk of a QCL, 

which is measured by the two latter means of measure (NGI, n.d.b).  

 

At first, the methods developed were adapted to identify the more significant and 

most dense masses of marine clays, primarily in Trøndelag and the eastern regions 

of Norway, the regions being most prone to QCLs at the time (NVE, n.d.). Even 

though the purpose of these maps was to identify the areas where there is a more 

significant risk of a larger QCL to occur, there are still areas below marine level that 

have not yet been mapped. Therefore, the Norwegian Water Resource and Energy 

Directorate advise people to be cautious when below marine level. There is also 

important to remember that these mappings of areas with a risk of quick-clay 

landslides do not exclude the outlying areas. 

 

1.2. A general introduction to each case 
For this thesis, we have chosen three cases of QCLs. When selecting the cases for 

our analysis, we studied the list of QCLs in Norway found on NGI's website (NGI, 

n.d.  The criteria were that the landslide had a significant size, that at least one 

dwelling was affected by the masses, and that the landslide happened within the last 

15 years.  

 

The first QCL we include in this thesis is the large QCL by the coast at Solhov in 

Lyngseidet, Norway, on the 3rd of September in 2010. The landslide did not result in 



 

6 

fatalities, but the landslides' immense forces took two houses. There was 

immediately initiated a rescue operation, where one 60-year-old man was rescued 

through the loft window at sea. The man did not get severe injuries. In addition, 

people living in neighbouring houses were evacuated (Tiltnes, 2010).  After the 

landslide, it was concluded that man-made actions were the cause of the landslide to 

occur (Matre et al., 2010). Reportedly, at least 1000m3 masses of rock were dumped 

on a new industrial property by the seashore without permission from the municipal. 

The entities involved disagreed on whether the permission was given orally, but such 

permission was never given as a formal approval. In addition to the new industrial 

area, there had also been the construction of a new nursing home, road work, and 

leakage from water soil in the nearby area. Even though all these events were part of 

the explanation for why the landslide occurred, the dumping of the rock by the 

seashore is, according to the reports by NVE, Jernbaneverket, & Statens vegvesen, 

the triggering cause (NVE et al., 2013, p. 15). The event and circumstances were 

covered both by national and local media after the event.   

 

The second landslide is the large QCL at Kråknes in Alta, Norway the third of June 

2020. Fortunately, the landslide did not result in any fatalities, but the landslides' 

immense forces took eight buildings. The landslide was about 650 meters and 40 

meters in height (NVE, 04.06.2020). After the landslide in Alta, the examination of 

the events conducted by the Norwegian Water Resources and Energy Directorate, 

more commonly known as NVE, found that man-made actions were one of the main 

reasons for the landslide to occur (NVE, 2021). In 2015, one of the residences 

conducted construction for their cabin and dumped 80 truckloads of rock on their 

property. The dumping, in addition to several days of intense melting of snow in the 

area are said to be the reasons for the landslide to occur. The event and 

circumstances were covered both by national and local media after the event.   

 

The third and final landslide included in this thesis is the massive QCL in Ask in 

Gjerdrum, Norway on the 30th of December in 2020. Large areas in Ask were 

evacuated instantly, and over 1600 people were affected by the landslide in total, 

eighter by the landslide itself or through the evacuation. A thorough rescue operation 

was initiated in a short amount of time, but unfortunately, as many as ten people 

died. The QCL in Gjerdrum is one of the worst cases throughout history. In February 
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2022, Gjerdrum municipal was charged by the police for not following the Act relating 

to protection against natural damage, stating that the Norwegian municipalities are 

obligated to take precautions against natural perils (Gjerdrum Kommune, 2022). In 

this case, the police claim that the municipality did not have systems for receiving 

alerts, seeing a connection between the many alerts received, and that they did not 

initiate measures to avoid erosion in the nearby water stream. The erosion in 

Tistilbekken is said to be the causative reason for the quick clay not being able to 

hold its solid state (Gjerdrum Kommune, 2022). In addition to being one of the most 

catastrophic QCLs throughout the country's history and has been a highly publicized 

event for the last one and a half years.  

 

The circumstances for why the three landslides occurred when they did may imply 

that the policies for building on sediments such as quick clay are not well constructed 

or implemented. Also, the municipalities' tendency to presumably not act by the law 

is alarming.  

 

The rest of the thesis is structured as follows: section 2 will be a review of similar, 

pre-existing research. Section 3 will discuss the econometric strategies, theoretical 

background, and foundations for the DD design. Section 4 will describe the initial 

data, how the data was trimmed, and then a final description of the trimmed data. 

Section 5 presents the empirical conditions for answering the research question, 

while section 6 presents the results from our DD approach. The results are to be 

found in table 6.1-6.9. Also, we will discuss the results and the possible mechanisms 

that potentially can explain the estimates in this section, while we will conclude the 

conducted research in section 7. The thesis's maps, models, figures, and tables 

follow a section-based structure. For example, each map, model, figure, and figure in 

section 3 will be named with the numeric 3.X. 

For maps in the Appendices, see appendices A. Maps. For tables in the appendices, 

see appendices B. General summary statistics.  
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2. Literature Review  
Because quick clay is not the most common sediment of foundation measured on a 

world basis, the research on housing prices and quick clay is scarce, if not more or 

less non-existing, especially not regarding the Norwegian housing market. For the 

literature review, we have therefore chosen studies with similar traits, hence studies 

on changes in housing prices before and after a natural disaster. The review of the 

pre-existing literature follows a chronological order from 2009 to 2017.  

 

The first paper we want to highlight was written by Naoi, Seko & Sumita (2009), who 

studied the effect on housing prices of earthquake risk before and after massive 

earthquakes. Their approach utilised a DD approach using an earthquake risk 

probability variable that interacted with a post-earthquake dummy variable in a 

hedonic price regression model. The post-quake dummy has the following 

specification “...equals one if an earthquake event occurred in the previous year and 

zero otherwise.” (Naoi et al., 2009, p. 665). The earthquake risk variable contains the 

probability of an earthquake occurrence “... with a given seismic intensity at a fairly 

disaggregated geographical level (1km x 1km grid cells).” (Naoi et al., 2009, p.661). 

When conducting their study, they chose not to include all the data for earthquake 

occurrence probability by dropping all risk measures for earthquakes with a ground 

motion less than seismic intensity 6. By annualising the provided 30-year occurrence 

probability and aggregating the data to construct city-level probabilities, the authors 

argue that this result in an earthquake risk variable approaching heterogeneity (Naoi 

et al., 2009, p. 661). Also, the models include time dummy variables to control for 

“...unobserved time-varying effects that change year by year such as housing market 

changes after the earthquake.” (Naoi et al., 2009, p. 665).  

 

In total they estimated four baseline models, which did not include the 

distinguishment between observations before and after the earthquake. Out of these 

four, there were two models attributed to renter holds, and two models for 

homeowners, from which there is one OLS model for each, and an additional OLS 

model where they control for respondent fixed effects. The effects that are controlled 

for are characteristics of the survey respondents that yielded the dataset, “...and 

dummy variables for housing types, prefectures, and city-sizes...” (Naoi et al., 2009, 

p. 665). The OLS model for renter households shows that there are results that 
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indicate “...that earthquake probability has a significant negative effect on housing 

rents” with -10,49% (Naoi et al., 2009, p. 665). In contrast, the FE model for renter 

households indicates negative results that are not statistically significant. For 

homeowners, the OLS model indicates adverse effects on the price of the dwellings, 

but only the FE model shows a negative coefficient that is statistically significant with 

-9,6% (Naoi et al., 2009, p. 665).   

Following, the regression analysis of the estimated hedonic regression model with 

the DD approach shows significantly negative results on housing prices attributed to 

the interacted term in the model. “This suggests that massive quakes in 

neighbouring cities/towns changed the perception of earthquake risk for renter 

households and homeowners.” (Naoi et al., 2009, p. 665). Overall, the average rent 

prices were reduced by 16%, with a fall of 13% in housing values. Also, there was a 

0.2% increase in the annual earthquake probability in the post-quake period. The 

authors argue that the most plausible interpretation of the results “... is that 

households are initially unaware of, or at least, underestimate the earthquake risk in 

the pre-quake period.”. Following this initial interpretation, renter households and 

homeowners dramatically adjust their perception of earthquake risk after a massive 

earthquake in neighbouring cities/towns. This interpretation is made because of the 

combination of the negative coefficient of the interaction term (DD) and the indication 

of a non-significant negative coefficient of the earthquake risk variable. (Naoi et al., 

2009, 665-666).  

 

The second paper was written by Atreya, Ferreira & Kriesel (2013), who used a 

spatial DD model to estimate the effect of flood(s) on prices for houses. Similar 

spatial DD approaches have also been utilised by Bin and Landry (2012) and Kousky 

(2010), among others, to investigate the “information effects of a natural disaster” 

(Atreya, et al., 2013, p. 582). The idea of using this method is to determine the effect 

of the flood on property prices. Two dummy variables were incorporated into their 

model to measure flood risk: one for the 100-year floodplain and one for the 500-

year floodplain. This risk is captured by floodplain location, and thus, the treatment 

group are properties that fall within the floodplains, and the control group is the 

properties outside the floodplains. The definition of treatment and control group 

found in this paper is quite similar to how we define the treatment and control groups 

for this thesis, presented in detail in section 5.1. Their model uses a dummy variable 
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to indicate whether a sale occurred after the flood. In this case, the flood occurred in 

1994, after the Flint River overran, which caused a major flood in southwestern 

Georgia. Using this setup, the researchers create interaction terms between the risk 

variables and the after-flood dummy to examine the effect of the flood on property 

prices in the area studied. The spatial element for this model was introduced by 

accounting for “...spatial dependence among neighbouring properties via a 

combination of spatial lagging of the dependent variable and correcting for 

autocorrelation in the error term.” (Atreya et al., 2013, p. 578). We resign from 

explaining this further, as this is something we will not incorporate in our thesis.  

The model was applied to a dataset of property sales data in Doughtery County from 

1985 to 2004 (Atreya et al., 2013, p. 585-586). The results show a weak significant 

finding of a 9% price discount on the properties within the 100-year floodplain before 

the 1994 flood, which was not the case for the properties within the 500-year 

floodplain. Based on their findings, they argue that the buyers of the properties within 

the 500-year floodplain were not aware of the flood risk; thus, the prices were not 

discounted. For a model with a linear time decay function right after the flood, the 

properties in the 100-year floodplain experience a 32% discount in price. This 

discount is calculated from a 9% baseline discount estimate from property within a 

floodplain, which means the flood attributes a 23% discount. (Atreya et al., 2013, p. 

589). The flood risk time decay function shows statistically significant results for the 

discount decaying rapidly. After four years, the price discount vanishes before it 

turns positive nine years after the flood (Atreya et al., 2013, p. 593).  

 

Third, we have chosen a paper written by Kiel and Matheson (2018), where we are 

introduced to a hedonic pricing model with an incorporated DD approach for 

dwellings in a multitude of risk levels for forest fires. Their paper conducts a study of 

the Fourmile-Lefthand Canyon Forest fire, spreading September 2010, on housing 

prices in vulnerable neighbouring areas that were not directly affected by the fire. 

They approach their research using a DD method, hence examining housing prices 

across a treatment and a control group before and after a given event. This method 

is employed by including dummy variables for the four risk levels and a dummy that 

is equal to one if the observation was made after the forest fire. Their research is  
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based on a trimmed data set containing 9377 single-family housing transactions 

between January 2009 and April 2012 in Boulder County, where all homes were 

bought from the Warren Group. Their level of risk variable has four values: “very 

high”, “high”, “medium”, and “low”. 

 

Kiel & Matheson (2018) created a general model using a hedonic pricing approach 

for their estimations. The general model was later used to specify two different 

models, which will be discussed later in this thesis. This model consisted of variables 

for housing characteristics such as the age of the dwelling, which includes age2, the 

number of bathrooms and bedrooms, lot acreage, and the square footage of the 

home’s living area. Their model also includes neighbourhood characteristics based 

on where the dwelling is located with included variables such as the percentage of 

the population living in what is defined as poverty, the composition of the population 

and a dummy variable for what city in which the dwelling is located. The specification 

of the risk of exposure to a forest fire for the given dwelling was denoted using 

dummy variables for low, medium, high, or very high risk. They also included a 

dummy with a similar specification to those presented earlier – the dummy 

containing the value 1 when the transaction is registered after the forest fire, but 0 if 

not.  

 

In their model, Kiel & Matheson (2018) controlled for the level of risk within each 

area. We found this practically impossible for our thesis due to the time constraints 

as it would take an ambitious amount of work. There are feasible ways of doing this 

by plotting all the coordinates from the dataset, cross-referencing these with the NVE 

Quick clay map, and categorising each observation across five different levels of 

risk. In addition to the time constraint, this could also lead to us ending up with a 

smaller sub dataset when conducting the DD approach. Further, they use the 

general model described above to create two different models, where model 1 

groups together all dwellings with a risk dummy that is equal to one if the risk level 

for the given dwelling is above low; hence in the categories “very high”, “high”, and 

“medium”, and zero otherwise. The results of model 1 suggest a fall in prices for 

dwellings in risky areas. Dwellings in risky areas seems to sell for 5.6% less than 

Dwellings in non-risky areas; else held constant. However, the statistics are not 

statistically significant. If taking the negative interaction term between risk and after 
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into account, the results show that dwellings in risky areas sold for around another 

5% less after the fire. In similarity to the latter discussed coefficient, this did not yield 

a statistically significant result, but it still does suggest a change in the perception of 

risk after the event. 

 

In model 2, the risk measures were included by making dummy variables for each 

level of risk instead, meaning they in had the dummy variables: “very high risk”, “high 

risk”, “medium risk”, and “low risk”, where the low-risk variable served as the omitted 

variable in the regression model. This model found that dwellings in the very high-

risk area show a statistically significant impact on the sales of dwellings, estimating 

that the dwellings in this area sold for a 17.5% higher price than dwellings in the low-

risk area. On average, the dwellings in the medium risk area also show a statistically 

significant change, as they sell for 7.9% less than the dwellings in low-risk areas. 

Also, the dwellings in high-risk areas are likely to see a reduction in prices by 8.7% 

compared to those in low-risk areas. However, the results are not statistically 

significant when controlling for other aspects of the dwelling and neighbourhood 

effects. The conclusion is that there is no impact on prices by being in the high-risk 

area. After the fire, dwellings in the very high-risk area saw a reduction in sales 

prices of 21.9% compared to those in the low-risk area. This measure is statistically 

significant. However, this seems a little suspicious as only 0.36% (~34 homes) have 

this specification.  

 

One issue that may arise when not having an extensive number of observations is 

that the estimations are statistically significant, while they may still be biased. Having 

few observations when estimating coefficients for an Ordinary Least Square model 

yields higher uncertainty as less observations are included when the coefficients are 

estimated (Tufte, 2020). Because the sample size for the data used in our thesis is 

bigger than the sample size for similar, pre-existing research, we do not deem this is 

a likely problem for us. Regarding the significant change in sale price at 21.9% for 

the very high-risk areas compared to the low-risk areas, they had 17 observations 

before and 17 observations after the event. Meanwhile, the estimators indicate a 

significant drop in prices following the event in interest. Neither of the other tests 

performed across the risk classifications yielded any results indicating a significant 
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difference in housing prices. We deem it strange that the only significant result is 

yielded from the smallest sample within their data. 

 

From their study, we want to point out that the dwellings included in their data 

sample were not affected directly by the fire but rather dwellings located in the fire's 

proximity. This is important for us because we deem dwellings at risk of a QCL as 

directly affected by the event, as the dwellings taken by the landslides cannot be 

sold, hence not part of the transactional data. A crucial error within this paper is Kiel 

and Matheson's (2018) omitting of the assessment of whether the data included in 

the treatment and control group fulfilled the requirements for the parallel trend's 

assumption, also known as the common trends’ assumption. Not having included an 

assessment for this assumption leaves us with many questions regarding their work, 

as this is the most central assumption and prerequisite to employing a DD approach. 

Did the two groups follow a similar trend before the fires, or did one group's trend 

over time deviate from the other in the first place? If the trends were to deviate, the 

estimators would no longer measure the price effects of the event. We will discuss 

the theoretical background of this assumption further in detail in section 3.1.1  

 

The fourth and final paper in our literature review is written by Kim, Park, Yoon, and 

Cho (2017), who conducted a study on housing prices utilising a similar approach to 

the previously presented literature. Their paper aimed to determine whether the 

landslide in Woomyeon National Park (WNP) in Seoul, South Korea, influenced 

housing prices for dwellings located within 1 kilometre from the park. The study 

found that the dwellings located close to the national park, defined by 1 km, fell by 

11.3% after the landslide in July 2011 (Kim et al., 2017) 

 

Their model estimated the logarithmic transformation of the transaction price, 

adjusting for trends with the housing market index for Seocho-gu, one of the 25 

districts that constitute south Korea’s capital Seoul, with monthly time variables. For 

estimating the logarithmic transformation of the price, they included a variable for 

housing characteristics such as usage area, first floor, age, and squared age. Their 

model also included location characteristics such as distance to the closest school 

and subway, a dummy variable representing each month, a dummy variable for the 

dwelling's distance from WNP, which measures both hazard and amenity effects of 
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the WNP, and time dummies for measuring short-term and long-term effects of the 

landslide in interaction with the dummy for distance. The short-term effects are 

measured with a variable that contains the value 1 if the transaction is registered 

between August 2011 and July 2012 and 0 if not. The long-term measures were 

interpreted with the dummy containing the value 1 if the transaction is registered 

after August 2012 and 0 if not.  

 

We found certain treats to their study quite interesting when reading their work. First 

off, their study only included 5,758 housing transactions from 2008 to 2014 and for 

dwellings within 1km of the WNP. Another interesting detail is that their study 

contained data fulfilling the assumption of homogeneity within the type of dwelling 

included. For fulfilling the assumption, the dataset only contained transactions across 

212 apartment complexes, hence high-rise condominiums, and multifamily housing 

with five stories or more. For our thesis, we will control for the housing type, hence 

fulfilling the same assumption. Their study also found the parallel trends assumption 

to be fulfilled for their chosen treatment and control group, indicating that the effect of 

different time trends is minimal.  
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3. Theory 
This section will dig further into the different theories and frameworks that we will use 

to build our models and estimate how a QCL affects housing prices. First, we will 

introduce you to the econometric theory for the DD method and what assumptions 

need to be fulfilled. Next, we will look at the theory for hedonic pricing and how this 

can be useful for this thesis. We will also investigate market efficiency and discuss 

how this is relevant to the housing market.   

 

3.1.  Difference-in-Differences 
A DD model is an approach to fixed effects estimation, which lets us investigate the 

regressor or variable of interest when this varies at an aggregate or group level 

(Angrist & Pischke, 2009, p. 227). This method is applied to sets of groups, where 

certain groups are exposed to a treatment of interest and other groups are not, 

making this the perfect suit for our thesis (Angrist & Krueger, 1999, p. 21). For 

example, a treatment may be a landslide impacting a particular region in a country, 

such as a municipality, or smaller areas within a municipality. 

Running a DD model is feasible when the treatment is as-if randomly assigned, 

conditional on some observed control variables, such as the size of an apartment 

(Stock & Watson, 2020, p.492). If we are to conduct a DD model, we can do this by 

using regression estimation. This is accomplished by using two dummy variables in 

the regression for the treatment and control groups, where the dummy takes the 

value of 1 for the treatment group and 0 for the control group. The second dummy to 

be included in the model is a time dummy that takes the value of 1 if the observation 

takes place after the event we are interested in, in our case, the three landslides. 

This variable will have a value of 0 if the observation is registered before the 

treatment. (Wooldridge, 2018, p. 436) apply this method in a regression equation 

that we have altered to match better for this thesis. To do so more intuitively, let us 

say that we are to make a simple DD model for a landslide in Gjerdrum. We can then 

specify model 3.1 

 

Model 3.1: A simple DD model for a landslide in Gjerdrum municipal 

𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 = 𝛽0 + 𝛿0𝑎𝑓𝑡𝑒𝑟𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 + 𝛽1𝐿𝑅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 +  𝛿1𝑎𝑓𝑡𝑒𝑟𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 ⋅  𝐿𝑅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚  +

𝜖𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚  
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Using the reasoning of Wooldridge (2018, p. 436), we can say that  𝐿𝑅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 is the 

dummy variable denoting the treatment group, being sold dwellings in Gjerdrum at 

risk of QCLs. 𝑎𝑓𝑡𝑒𝑟𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 is the time dummy, which equals one if the observation is 

registered after the event, in this case the landslide in Gjerdrum, which is the time of 

treatment. Following this model, the interaction term 𝛿1𝑎𝑓𝑡𝑒𝑟𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 ⋅  𝐿𝑅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚  

denotes the observations from Gjerdrum built on quick clay sold after the landslide. 

 

Taking advantage of a regression approach will, according to Angrist and Pischke 

(2009, p.233-234), allow us to estimate the DD estimates and standard errors, as 

well as it will make it easy for us to include several control groups, such as 

municipals and additional periods. This will be especially useful in our model as we 

want to include several control variables. Using this method, we can then analyse 

the data by comparing differences by a regression that includes the treatment 

indicator and control variables, such as housing characteristics like usage area, 

building age, etc. The differences estimator is then According to Stock & Watson 

(2020, p.476-477) “the difference in the sample averages for the treatment and 

control groups”. These differences can be computed by regressing the outcome 

variable, 𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 on the binary treatment dummy 𝐿𝑅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚. Further, by including 

control variables that help explain the variation in 𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 the standard error of the 

regression is reduced, allowing us to obtain more precise estimations. To include 

these control variables, they must be pre-treatment individual characteristics and the 

treatment dummy, 𝐿𝑅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚, must be randomly assigned, so that the error term, 

𝜖𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚, satisfies the conditional mean independence condition. 

 

By using the DD approach, we can estimate the effect of changes in, for example, 

the economic environment or changes in government policy. Such changes in the 

economic environment may be external or exogenous events such as landslides. 

The practical usefulness has made the method a widespread approach within 

econometric research in the last fifty years or so (Angrist & Krueger, 1999, p. 21). 

Thus, we can estimate the treatment effect, precisely the effect of a QCL on dwelling 

prices. Similar cases have been presented in various studies, like the papers 

included in the literature review. Here, the researchers analysed data on dwellings 

from natural experiments caused by exogenous events; hence they conducted what 
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is known as a natural experiment (Rosenzweig & Wolpin, 2000, p. 828). If such an 

event were to occur, two groups would be exposed: a control group and a treatment 

group. Thus, we have one group that has been impacted by the event, referred to as 

the treatment group, and another group that the event has not impacted, that we will 

refer to as the control group. The two groups have not been randomly chosen for our 

thesis, as we stated must be the case earlier. Therefore, there may be systematic 

differences between the two groups, which must be controlled for later. To control for 

these systematic differences, we include data from before and after the exogenous 

event; hence we have four groups to consider: the control group before and after the 

event, and the treatment group before and after the event (Kiel & Matheson, 2018, 

p.5).  

 

To better explain how the logic of the DD approach works, we can utilize model 3.1 

and create the following example. Suppose there are two groups and two time 

periods. In the first period, neither group is exposed to a treatment. In the second 

period, however, one group is exposed to a treatment, whereas the other group is 

not (Schwerdt & Woessman, 2020, p.13).  

 

Let us say we have transactional data on housing prices from two municipalities over 

a two-year period, where the first observation is registered at the beginning of 2020, 

and the last observation is registered on the last day in 2021. The period averages 

can then be arranged quarterly and monthly accordingly.  

Let us say a QCL occurred in one of these municipalities 1st of January in year two. 

We now have two periods which in this case yields 𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚2020, 𝑎𝑛𝑑 𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚2021 

where the first denotes the price for observations recorded before the landslide, and 

the second denotes the price for the period after the landslide occurred. At the same 

time, we have the treatment group, with observations within the municipality where 

the QCL occurred, and the control group for observations within the municipal where 

there was no landslide. Alternatively, we can define the treatment group as sold 

dwellings built on or at risk of being affected by the landslide within both 

municipalities and the control group as sold dwellings that are considered not to 

have any risk of the landslide being attributed to them within both municipalities. 

From here, we can use DD estimation to estimate the different effects of the 
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landslide on housing prices for the two groups, using the general regression 

equation from Model 3.1. 

In model 3.1,  𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚 is the outcome variable of interest, and  is the DD 

estimator, which measures the effect of the exogenous event (Wooldridge, 2018, p. 

434).  

When conducting the DD approach, we want to estimate the parameter , which in 

the standard approach can be done in two ways: firstly, we can compute the 

differences in averages between the treatment and control groups in each time- 

period, and then difference the results over time. Alternatively, we can compute the 

averages over time for each treatment and control group and then difference these 

changes (Wooldridge, pg. 434, 2018). The two alternatives to conducting the 

standard approach of the DD estimator are illustrated in table 13.3, found in 

Wooldridge (2018, p.435)   

 

For the first alternative, we compute the differences in averages between the 

treatment and control groups in each period, and then differencing the results over 

time, hence resulting in the model presented below.  

 

Model 3.2: Averages between treatment and control group for each period 

𝛿1 = (𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2021,𝑇 − 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2021,𝐶) − (𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2020,𝑇 − 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2020,𝐶) 

 

Where 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2021,𝑇  and 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2021,𝐶 is the average of the outcome variable of 

interest in 2021, for the treatment (T) and control group (C), and 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2020,𝑇  and 

𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2020,𝐶 is the average of the outcome variable of interest in 2020, for the 

treatment (T) and control group (C).  

 

 

By simply rearranging the equation above, we can get the following equation found 

in model 3.3, which by construction, yields two different interpretations of the DD 

estimator, with the same estimate of 𝛿1. 
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Model 3.3: Averages between periods between the treatment and control group 

𝛿1 = (𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2021,𝑇 − 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2020,𝑇) − (𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2021,𝐶 − 𝑃̅𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚_2020,𝐶) 

 

 

3.1.1. Parallel Trends Assumption 
There may be an issue with fulfilling the parallel trends assumption regarding a two-

group, two-period DD setup. This assumption says that any trends in the outcome 

variable, 𝑃𝐺𝑗𝑒𝑟𝑑𝑟𝑢𝑚, will trend at the same rate in the absence of the event of our 

interest. A threat to the identification strategy used when conducting a DD will arise 

by violating this assumption. The reason for this is that the DD estimate is simply the 

difference in the estimated trends for the treatment and control groups. Of course, 

there may be fundamental differences between the control and treatment groups 

because of differences in areas, housing charachteristics, etc., within the municipals. 

If the assumption holds, we can interpret the difference in trends between the groups 

as the actual difference induced by the treatment. To investigate whether the parallel 

trends assumption holds, one would need data on several periods (Angrist & 

Pischke, 2009, p. 231). As multiple periods of data are needed, there are multiple 

points in time with data that we can draw a fitted line between, which deems the 

trend line. To check whether this assumption holds for our data before conducting 

the DD approach, we can plot the linear group trends together and see if the trend 

lines are parallel before the given event. If this is the case, the assumption holds. In 

addition, such plots can also be used to visualize the price changes, both before and 

after the event, by looking at how the trend lines for the treatment and control group 

shift. This approach to assessing whether the treatment and control groups follow a 

parallel trend over time will be conducted in section 5.2. 

 

3.2. Hedonic Pricing 
It is natural to include control variables in the DD regression approach to include 

variables on housing attributes, akin to the essence of a hedonic pricing approach, 

which is commonly used in combination with a DD model. 

When it comes to assigning prices to or valuating different goods, such as housing, 

there are many ways to go. One of the advanced methods to evaluate or appraise 

real estate presented by Pagourtzi et al. (2003) is hedonic pricing. Early 

contributions to the theory of hedonic prices come from Sherwin Rosen (1974). He 
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defines hedonic prices as “the implicit prices of attributes”. Rosen also goes further 

into detail by saying that hedonic prices “are revealed to economic agents from 

observed prices of differentiated products and the specific amounts of characteristics 

associated with them” (Rosen, 1974, p.34).  

By utilizing a hedonic pricing approach, one can decompose attributes, such as the 

number of rooms, square feet, age of the housing, and lot size, to better analyse 

housing prices by examining the effect of these attributes on the price of the 

housings. Typical attributes for housings are variables such as type of housing, the 

number of rooms, size, building materials, etc. Using an approach to a hedonic 

pricing model to estimate housing prices, we can analyse attributes which does not 

have an observable market price by itself (Pagourtzi et al., 2003, p.395-396).  

 

According to Selim (2009, p. 2844), most studies conducted on the pricing of the 

housing market are based on a multiple regression analysis. The definition of a 

multiple regression analysis is simplified by Braut and Dahlum (2021) as a statistical 

method of describing the coherence between one or more independent variables 

and a dependent variable (Braut & Dahlum, 2021) and is, therefore, an appropriate 

method to use if the case is a straightforward estimation between the price of the 

dwelling in question and its various characteristics. Though this seems like an 

appropriate method for the purpose of this thesis, the method have been subject to 

criticism for potential problems because of the model’s assumptions and estimation 

of supply and demand, market segmentation, choice of independent variables, and 

so on (Selim, 2009, p.2844). 

 

 

Following the likes of Chau and Chin (2002), there are several key assumptions of 

applying hedonic pricing theory to the housing market. First, one assumes the 

housing product is homogeneous, which seems a little unnatural given the 

heterogeneous nature of the product. In terms of attributes, housing can be 

differentiated by considerations such as locational, structural or neighbourhood 

factors, in line with what we saw in the pre-existing papers. In addition to these 

attributes, the housing can be differentiated by other criteria such as type of housing 

(Chau & Chin, 2002, p.6). Even though this assumption seems unnatural at first, we 

approach the issue of variety in the housing product by introducing control variables 
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within our model for housing characteristics, such as housing age, living area, plot 

area, etc. For more details on included variables for our models, see section 5.3. 

According to Tufte (2020), the issue is that heteroscedasticity may lead to a 

reportedly lower standard errors, the reason being the underestimation of the 

uncertainty of the estimators. Regarding heteroscedasticity there is also important to 

consider the different degrees of seriousness of the problem. For example, 

specification error, such as omitting less relevant exploratory variables or 

interactions between independent variables, is less of a problem compared to 

omitting highly relevant exploratory variables, include outlier or use the wrong 

functional form. We also want to point out that conducting a regression analysis of 

any kind, such as DD approach used in this thesis, would not be ideal if the housing 

product had perfect homogeneity. Regarding the DD approaches conducted in this 

thesis, there are certain things we have not been able to control for. Examples of 

such variables can be the standard of the dwelling, and more specific location 

characteristics as what view the dwelling have, and whether the dwelling is located 

nearby schools, malls, etc.   

 

Secondly, the housing market is assumed to be operated as a perfectly competitive 

market, where there are numerous buyers and sellers. This assumption is according 

to Chau & Chin (2002, p.6) justified as no individual buyer or seller can affect the 

price of the properties. 

 

A third assumption for the hedonic pricing model for the housing market is the 

assumption of complete freedom in entering or exiting the market for both buyers 

and sellers. There are no such things as legislation, requirements, or restrictions for 

the housing market, except for each individual’s budget constraints that set an upper 

limit for what housings can be bought. It is also assumed that the buyers and sellers 

have perfect information about the housing product and the pricing (Chau & Chin, 

2002, p.6). When we look at this assumption given this thesis research question, it is 

fair to assume so. By doing some research on the mapping of quick clay in Norway, 

we can say that information on whether the dwelling in question is built on a quick 

clay is publicly available. Also, as mentioned earlier, sellers are obligated to inform of 

such information by law.  Although the information is available, it does not 
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necessarily mean that the buyers are searching for this information, hence, they may 

not be aware of such risk. 

 

Finally, it is assumed that for the hedonic price model to work, the market must be in 

equilibrium, and that there are no interrelationships between the implicit prices of the 

attributes of the housing product (Chau & Chin, 2002, p.6). 

 

 

3.3. Market Efficiency 
In a perfect world, we would expect the housing market always to reflect all the 

available information in the market. This means that the dwellings would always be 

priced in the market at the point where the market deems it fair, given the information 

about the dwelling in question. Such information might be housing characteristics, 

such as size, the number of rooms, integrated air conditioning or not, if there is a 

garage attached to the house, etc. However, all information also includes things that 

might appear less apparent, obvious, or salient, such as the fact that a building might 

be built on a foundation consisting of quick clay. This inherently faces the area that 

the building is built on with a degree of risk; will there be a landslide, and the scope 

of the damages the landslide will cause. If this information and all other information 

in the market are reflected in the housing market, it means that the housing market is 

efficient. Given findings in pre-existing papers indicating that the housing market is 

inefficient, we find it reasonable to expect that the risk factor of QCLs is not fully 

reflected in the selling prices of the homes. Thus, we do expect that there will be an 

effect on prices for these dwellings following a QCL. 

 

Market efficiency was first widely popularized by Fama (1970), whom he presents 

that the market efficiency hypothesis “…states that the prices in the market should 

always fully reflect available information…” (Fama, 1970, p. 383). If a market would 

behave in such a way, it would, for many theorists, be considered a theoretically 

“perfect world”-scenario upon which to work upon. If a market is efficient, the prices 

year-to-year should follow a random walk pattern. If this is the case, the price 

development will show that the price changes will not be followed by a price change 

in the same direction in the subsequent year. Alternatively, this shows there is no 

time structure in the development of housing prices. Although this hypothesis is 
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mainly considered when talking about financial markets, you can also consider the 

efficiency of other markets, such as the housing market. 

 

In the case of housing market efficiency, Case and Shiller (1989, p.125), among 

others, hypothesized that the market for single-family homes is inefficient. They 

approached this by looking at dwellings sold twice that also had no obvious quality 

change and had conventional mortgages applied for purchases. Their data consisted 

of sales between 1970 and 1986 in Atlanta, Chicago, Dallas, and San 

Francisco/Oakland. In total, this added up to 39,210 observations used in the paper.  

 

Their estimations were accomplished by undertaking a three-step weighted least 

squares procedure, first consisting of constructing the Weighted Repeated Sales 

index. Then, the price changes for each quarter in the index were then tested to see 

whether there was a random walk pattern. (Case & Shiller, 1989, p.125-128). This 

was accomplished by producing “…estimates and standard errors for an index of 

housing prices by regressing, using ordinary least squares, the change in log price of 

each dwelling on a set of dummy variables, one dummy for each time period in the 

sample except for the first.” (Case & Shiller, 1989, p.126). Through their research 

they found that prior housing prices tend to predict changes in pricing in the same 

direction for the following period. However, they were not able to definitively prove 

whether the housing market is efficient or not (Case & Shiller, 1989, p.135).  

 

Since there has been further research on the issue, Pollkowski and Ray (1997) 

pointed out that recent papers indicating that housing markets are not informationally 

efficient. They point out three prior research projects that all point out this fact: (a) 

Rayburn, Devaney, and Evans (1987), (b) Case and Shiller (1989), and (c) 

Guntermann and Norrbin (1991). These results indicate that housing prices do not 

always reflect all publicly available information; hence the housing market is deemed 

inefficient. Pollkowski and Ray’s contribution to the research extends the subject of 

research by investigating the diffusion of price changes. More specifically, they 

investigated “…whether housing prices in one location or for one type of housing can 

be predicted not only by its own history but also by housing price changes in other 

locations or for other housing types.” (Pollowski & Ray, 1997, p.107). 
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Considering this market efficiency issue for the housing market in Norway, Larsen 

and Weum (2018) presented their paper regarding this topic. The study was 

conducted by replicating Case and Shiller’s efficiency test, which is described earlier 

in this section, on housing data in Oslo, Norway. The method is applied to 9,513 

pairs of dwellings sold by the OBOS between the third quarter of 1991 and the fourth 

quarter of 2002; that was sold two times or less, without reporting errors that are 

bigger than 20 square meters, and without implausible transaction prices. Their 

study found characteristics indicating that the Norwegian housing market is 

inefficient. For this thesis, an efficient market would mean that the housing prices will 

not be affected by events such as QCLs. As this thesis aims to measure salience, 

hence whether the perception of risk is updates when a landslide occurs, we would 

have nothing to update in an efficient market. As the household withholds all 

information regarding the housing product, the event will not be as much of a 

surprise as if the market is deemed inefficient.  
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4. Introduction of the data 
To answer the research question of this thesis and underlying research questions, 

we first and foremost need the right set of data. The data presented in this section 

were collected by Eiendomsverdi AS, a Norwegian limited liability company 

developing and supplying the Norwegian residential real estate market with 

information tools and systems for estimating market value on properties, both on 

individual units and for portfolios (Eiendomsverdi, 2022). Eiendomsverdi will from 

hereon be referred to as EV. The initial data consist of Norwegian housing 

transactional data. Even though we got the data through EV, the data is collected 

from selected other data suppliers such as Finn.no, Eiendom Norge, and several real 

estate agencies in Norway. Therefore, the data collected for this thesis is not 

supplied from the primary source but part of a more extensive collection of data to 

which we were given access to parts of this data.  

 

The data contains observations of sold dwellings within two different periods. The 

sample data for the period 2007 to 2021 for the municipalities found in the more 

northern region of Norway, being part of the two QCL cases Alta and Lyngseidet. For 

the municipalities in the more southern regions of Norway, in this thesis, part of the 

data for the QCL in Gjerdrum, we have data from 2015 to 2021. The first observation 

in the initial dataset is registered as sold 01.01.2007, whilst the last observation is 

registered as sold 31.12.2021. As the thesis is studying the price effects of a QCL, 

the study is dependent upon a time variable, in which the variable sales date will 

serve the purpose of. All the tidying of the dataset has been conducted in RStudio3, 

while the DD estimations have been conducted in Stata4. 

 

The initial dataset contained 163,713 observations across 21 variables. The data 

included the transaction-related variables sales date and sales price including 

common debt. In addition, the data contains variables that are related to the property 

being sold. These variables are housing id, name of the municipality, postcode, type 

of housing, size of the usage area, measured in square meters, built year, and type 

of ownership.  

 
 
3 For the tidying and trimming of the data in RStudio we used the packages: tidyverse and readxl 
  
4 STATA v.16. 
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For this thesis, EV also provided a variable for each of the two risk types: Risk of 

QCL and risk of general landslide. The two variables will be used in this thesis to 

differentiate between sales of dwellings at risk of a QCL and dwellings not at risk of a 

QCL. This will be discussed more in detail in section 4.1. These are dummy 

variables and are thus not structured to interpret different levels of risk in the same 

way as the risk areas that we can locate in the risk area map from NVE, which is 

defined by the degree of risk on a scale from one to six. In addition to variables that 

will be included in the models created in section 5.3, the dataset included variables 

for the longitude and latitude for the sold units. This will be at much help when we 

create maps for visualization of the data. 

 

For Alta and Lyngen, we have 42,666 observations in total within the timeframe 2007 

and 2021, whilst we, for the Gjerdrum case, have 121,047 observations within the 

timeframe 2015 to 2021.  

 

There were collected data on a total of 43 municipals, which are grouped into three 

categories, depending on the case in question. For Alta and Lyngen, there are 15 

municipalities included in each dataset, while there are 21 municipalities in the data 

given for the Gjerdrum case. At the beginning of writing this thesis, we initially 

wanted to conduct a spatial DD, which will be discussed further in section 7.1. The 

municipalities were therefor chosen based on both location; hence if the municipality 

is located remote or nearby the municipality where the landslides occurred, and 

whether the municipals had any registered risk areas.  

 

 

4.1. Deleting and creating new variables 
When initiating the data cleaning, we decided to drop some variables from the 

dataset as these would not contribute to the regression model or the DD estimations. 

In addition to variables not contributing, there is also a need to include and create 

certain variables that are not part of the initial dataset. This section will give a quick 

overview of the deleted and created variables and why these variables are vital for 

the further process.  
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First off, the variable floor from the initial dataset is not clearly defined. For 

apartments, the floor variable represents which floor the apartment is located, but for 

apartments that consist of more than one floor, we can think that the apartment 

would either be registered as floor 1 or 2, 3 or 4 etc. For other types of housings, we 

think that the variable might measure how many floors there are. For example, for a 

two-floored house, the value would be equal to 2. This would be problematic if we 

included this variable in our dataset as the variable’s values are not correctly 

registered and specified relative across the different housing types, hence being 

ambiguous. We, therefore, decided to not use this as a variable in the estimations of 

the DD estimator. 

 

When all variables deemed not valuable have been deleted, we created a dummy 

variable based on the municipalities where the QCLs occurred, closely located 

municipalities, and remote municipalities. This will be very useful when creating the 

maps as we want to differentiate for more detailed maps for each group.  

 

Next, we created dummies for each owner type, housing type, and for the two types 

of risk: QCL and other landslides. For the remainder of this thesis, we assume that 

all sold dwellings at risk of both quick clay and other landslides in the dataset are 

dwellings at risk of QCLs. We do this because we, for one, have a low number of 

observations consisting of dwellings at risk of a QCLs. Second, we do know that 

more minor landslides, could potentially be registered as other types of landslides, 

such as landslides composed of deposits (A. F. Berg, personal communication, 

February 18, 2022). Also, in addition to the errors in registration of type of landslide, 

we also think the two potential events will deem a similar response regarding the 

housing prices due to their similar exogenous traits. Further mentions of QCLs are 

therefore interchangeable with landslides.  

 

For the construction year, we decided to split the dummies into four. The first dummy 

is assigned the value 1 if the dwelling was built before 1950, whereas the second 

dummy includes housing built between 1950 and 1979. The third dummy denotes 

housing built between 1980 and 1999, whereas the fourth and last dummy denotes 

all dwellings built After 1999. The creation of these dummies is based on Anundsen 

and Røed Larsen`s (2018) interpretation of how to deal with the uncertainty 
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regarding registration errors for the dwelling’s construction year. These dummies 

also distinct between dwellings with different characteristics in terms of housing age 

and dwellings built with different standards. Next, we created dummies where the 

value is 1 if the date of the registered sales is set after each of the cases selected for 

this thesis. The three dummies After Gjerdrum, After Alta and After Lyngen will be 

helpful as this distinct between sales registered before and after each of the cases, 

making it easy to compare trends before and after the landslides. We also created a 

new variable returning the price per square meter. This will allow us to eliminate 

transactions where the price per square meter is unusually high later in the tidying of 

the data. 

 

Furthermore, it is reasonable to control for unobserved time-effects, such as 

seasonality, which is overcome by creating a variable for each quarter and year, 

based on the date variable. 

 

 

4.2. Method of trimming 
Upon receiving the data from EV, we can see that the data is not registered without 

flaws that can be problematic and thus need to be dealt with before conducting 

estimations of the DD estimators in STATA.  

 

For a starter, the dataset contains observations with randomly missing values in one 

or more of the variables included. In addition to some missing values within certain 

observations, the dataset also contains observations where there are registered 

values that we consider beyond what is plausible and logical. 

 

4.2.1. Removing Observations 
In most cases, when given a dataset for research purposes, there are values and 

observations we deem as problematic. The steps conducted and the number of 

observations removed for each step are summed up in Table 4.1. 

In the first step, within the process of removing observations, we removed all 

observations that do not have any information; hence outputted as NA within the 

dataset. We removed these values for the following variables: sales price, usage 

area, construction year, type of ownership and type of housing. 
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During our checks of the unique values within each variable, we found that the 

dataset included the four owner types: contractual leasehold flats (CLF), limited 

liability housing company flats (LLHCF), detached houses, semi-detached houses, 

apartments, and townhouses. Of these types of ownerships, contractual leasehold 

flats and limited liability housing company flats are not part of what we consider to be 

a typical transaction in the housing market. We the therefore chose to remove these 

observations from the dataset. 

 

4.2.2. Dealing with problematic values 
As part of the tidying, we first investigated whether there was a need for repairing 

randomly missing values within any observations. As we started this process, we 

found that none of the repeated Housing IDs had omitted values that other 

observations with the same Housing ID included.   

 

In our dataset, we did have some registered values that we deem problematic. For 

usage area we found observations in our data returning the value zero. Having zero-

values can be a problem as it is non-intuitive that a dwelling does not have any 

usage area. We also removed all observations where the variable construction Year 

was equal to zero, as the value zero implies that the dwelling was built 2022 years 

ago, which we deem highly improbable. We deem these data as wrongly registered, 

in the same way of observations returning the value NA, in sales price, usage area, 

and postcode as these would influence the results presented in section 6 of this 

thesis. 
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Table 4.15:  Summary of each step in the tidying of the dataset. 

Step Description of step 

taken 

N of 

observations 

N removed 

observations 

Removed in % 

0 Initial dataset  163,713 0 0% 

1 NA’s selling price 162,893 820 0.501% 

2 NA’s postcode 163,890 3 0.002% 

3 NA’s size 160,566 2,324 1.427% 

4 NA’s year of 

construction 

160,135 431 0.269% 

5 Size = 0 159,865 270 0.169% 

6 Year of 

construction = 0 

159,850 15 0.094% 

7 

Sum 

CLF & LLHCF 159,061 789 0.494% 

2.842% 

 

 

4.3. Creating separate datasets for each case 
Before we can load our dataset into Stata and conduct a regression based on our 

data, we split the data into three different datasets. The datasets are divided based 

on the three QCLs.  

 

Within these datasets, we must further trim the data. The data still contains some 

extreme values, even though these are deemed as reliable registered data. We 

looked further into the potential outliers to approach a more normal distribution. For 

dealing with these observations, we decided to use upper and lower quantile values 

as a measure to cut the two-sided tales in the data distributions. During this step, we 

tested different percentages for the quantiles to ensure that the data within the 

variables approached normal distribution. After a closer study of the data 

distributions before and after the cut-offs, we ended up with a cut-off of the lower 1% 

and the upper 1% for the variable’s sales price, usage area, and price per square 

meter. We trimmed all the variables within the same trimming to keep as many 

observations as possible while still deleting the most extreme and outlying 

 
5 Table 4.1 sums up in what way the trimming that was completed affected the dataset regarding the number of 

observations. This trimming was executed for the complete dataset and therefore there’s no information on how 
these affected the each of the datasets presented in section 4.3. In this table, CLF is an abbreviated term for 
Contractual Leasehold Flat, while LLHCF is an abbreviated term for Limited Liability Housing Company Flat. 
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observations. In Table 4.2, there is a summary for each dataset following the 

trimming. 

 

Table 4.26: Summary before and after trimming with quantiles. 

Case Obs. before 

casewise 

trimming 

Obs. after 

casewise 

trimming 

Change in % Obs. before 

in % 

Obs. after in 

% 

Initial 

dataset 

159,061 159,061 0% 100% 100% 

Gjerdrum 119,384 113,325 5.1% 75% 71% 

Alta 16,766 15,870 5.3% 11% 10% 

Lyngen 33,279 31,750 4.6% 21% 20% 

 
 
 

4.3.1. Description of the final data - Gjerdrum 
Before trimming for each case, there was 119,384 observations in the dataset 

regarding the Gjerdrum case, while a trimming of 1% in each of the variables listed 

led to a total of 113,325 observations in the final dataset This is equivalent to a cut-

off by approximately 5.07%.  

 

The dataset consists of 95,761 observations before the landslide, and 17,564 

observations after the landslide in 2020. In total there are 4,738 observations, 

yielding that 4.18% of dwellings within the dataset are at risk of a QCL. Of these 

3,999 are registered before the landslide, and 739 is registered after the landslide. 

The observations that are not at risk of a QCL are distributed with 91,762 before the 

landslide and 16,825 after the landslide. For the Gjerdrum dataset, none of the sold 

dwellings were registered as dwellings at risk of other landslides. Summary statistics 

for some of the control variables in the dataset are presented in Table 4.3. For a 

more detailed overview of the distribution of sold dwellings across the 22 municipals, 

please see appendices B.1.A – B.1.D. 

 
6 Obs is an abbreviation for observations, Obs before in % returns the share of observations before the trimming 
percentagewise of the initial dataset, and Obs after in % returns the share of observations after the trimming 
percentagewise of the initial dataset. 
The casewise trimming was conducted by deleting all observations within the lower 1% and the upper 1% for the 
variable’s sales price, usage area, and price per square meter. The same limit was utilised for all three cases. 
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Table 4.3: Summary statistics for critical variables in Gjerdrum dataset. 

      

VARIABLES N mean sd min max 

      

Selling price 113,325 3,205,284 1,391,789 1,007,723 8,900,000 

Size in square meters 113,325 119 61 31.00 334 

Year of construction 113,325 1976 32 1599 2022 

Selling price per square 

meter 

113,325 30,438 12,691 9,671 73,577 

      

 

 

Next, we want to introduce the first map within this thesis. We have created maps to 

visualize the spread of the sold dwellings. In the case of Map 4.1, we have plotted all 

sold dwellings for all municipals in the Gjerdrum case. For this and the remainder of 

the maps in this thesis, including those in the appendix, the mapped area consists of 

municipals included in the case, or the specified area(s) of interest. For a more 

detailed map over Gjerdrum case, see Map 4.4 or map A.1.A – A.1.G in the 

appendices. The map consists of plotting of the sold dwellings in each dataset 

represented in red, and mapping of the risk areas in grey. In addition, the map also 

includes a heatmap, which visualize the probability of an observation to be in within 

the certain area, hence, the darker the colour, the bigger probability there is. Lastly, 

the place of event for each case is marked with yellow on the map.  

 

For a more detailed view of the data using ggplot2, we have decided to split the 

municipals within each case into the four groups: municipal of the event, municipals 

in proximity of the municipal of the event, remote located municipals, and all 

municipals within the cases. Within the Gjerdrum case there are 21 municipals, as 

mentioned earlier, which is included in the maps that are presented in this thesis, 

excluding the maps in the appendix. The list of included municipalities and the 

number of observations for each of them for the Gjerdrum case cases can be found 

in appendix B.1.A These municipalities are grouped by the number of sold dwellings, 
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whether they are at risk or not, and sold dwellings before or after the landslide event 

in Gjerdrum. Corresponding tables for the Alta case can be found in appendix B.2.A 

and B.2.D, and for the Lyngen case refer to appendix B.3.A and B.3.D. 

 

Map 4.17: Spread of sold dwellings for Gjerdrum case 

 

 

4.3.2.  Description of the final data - Alta 
Before trimming for each case, there was 16,766 observations in the dataset 

regarding the Alta case, while a trimming of 1% in each of the variables listed led to 

a total of 15,870 observations in the final dataset. This is equivalent to a cut-off by 

approximately 4.84%.  

 

 

 
7 This map visualises the spread of the sold dwellings for all 21 municipals in the Gjerdrum case. For a list over 
the municipals see appendix B.1.A For this and the remainder of the maps in this thesis, including the appendix, 
the mapped area consists of municipals included in the case, or the area of interest. For a more detailed map see 
map 4.4 or see map A.1.A – A.1.G in the appendices. Sold dwellings are plotted in red. For all maps in section 4 
of this thesis, including the interactive map, the risk zones only include the areas at risk of the risk quick clay 
landslide, as defined by NVE, and not by the assumption for this thesis. Risk areas for other landslides are not 
included as the maps for these were separated for each scenario, hence it would be too time consuming to plot. 
The heatmap is created by using density.2D. The heatmap therefor returns the probability of an observation to be 
in within the certain area, hence, the darker the colour, the bigger probability there is. The place of event is 
marked with yellow on the map. 
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The dataset consists of 13,700 observations before the landslide, and 2,170 

observations after the landslide in 2020. In total there are 1,039 observations of 

dwellings at risk of a QCL, yielding that 6.55% of the dwellings within the dataset are 

at risk. Of these 906 are registered before the landslide, and 133 are registered after 

the landslide.  The observations that are at risk of a QCL are distributed with 12,794 

before the landslide and 2,037 after the landslide. Because we now include other 

landslides in what we define as quick clay for the remainder of this thesis, we want to 

point out that 728 observations were registered as sold dwellings at risk of QCL as 

the initial risk, while 311 observations were registered as sold dwellings at risk of 

other landslides. We present summary statistics for some of the control variables in 

the dataset in Table 4.4. For a more detailed overview of the distribution of sold 

dwellings across the 22 municipals, please see appendices B.2.A – B.2.D. 

 

 

Table 4.4. Summary statistics for critical variables in Alta dataset 

      

VARIABLES N mean sd min max 

      

Selling price 15,870 2,294,147 889,376 580,000 5,500,000 

Size in square meters 15,870 133.00 59.79 38 323 

Year of construction 15,870 1974 21.32 1,840 2021 

Selling price per square meter 15,870 19,748 8,976 4,251 49,161 

      

 

 

Next, we want to visualize the spread of the sold dwellings within the Alta case. In  

 

 

Map 4.2, we have plotted all sold dwellings in all 15 municipals. This map gives the 

same visualization as discussed in Map 4.1: Spread of sold dwellings for Gjerdrum 

case 
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Map 4.28: Spread of sold dwellings for Alta case. 

 

 

4.3.3. Description of the final data – Lyngen  
Before trimming for each case, there was 33,279 observations in the dataset 

regarding the Lyngen case, while a trimming of 1% in each of the variables listed led 

to a total of 31,717 observations left in the final dataset. This is equivalent to a cut-off 

by approximately 4.7%.  

 

The dataset consists of 27,081 observations before the landslide, and 4,636 

observations after the landslide in 2010. In total there are 6,539 observations with 

dwellings at risk of a QCL, yielding that 20.62% of the dwellings are at risk. Of these 

742 are registered before the landslide and 5,797 are registered after the landslide. 

The observations that are not registered with a risk of quick clay are distributed with 

3,894 before the landslide and 21,284 after the landslide.  

 
8 Map 4.2 visualises the spread of the sold dwellings for all 15 municipals in the Alta case. For a list of the 
municipals, see appendix B.2.A. The mapped area consists of municipals included in the case, or the area of 
interest. For a more detailed map for the Alta case, see map 4.4 or see map A.2.A – A.2.G in the appendices. 
Sold dwellings are plotted din red, while the risk areas for quick clay are defined in the same way as in footnote 7, 
are the areas with a light grey colour.  The heatmap is created by using density.2D. The heatmap therefor returns 
the probability of an observation to be in within the certain area, hence, the darker the colour, the bigger 
probability there is. The place of event is marked with yellow on the map. 
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Because we now include other landslides in what we define as quick clay for the 

remainder of this thesis, we want to point out that 1,502 observations were 

registered as sold dwellings at risk of QCL as the initial risk, while 5,037 

observations were registered as sold dwellings at risk of other landslides. We 

present summary statistics for some of the control variables in the dataset in Table 

4.5. For a more detailed overview of the distribution of sold dwellings across the 22 

municipals, please see appendices B.3.A – B.3.D. 

 

 

Table 4.5: Summary statistics for critical variables in Lyngen dataset 

      

VARIABLES N mean sd min max 

      

Selling price 31,717 2,905,000 1,302,000 686,633 7,800,000 

Size in square meters 31,717 116.4 61.34 31 320 

Year of construction 31,717 1979 25.70 1697 2021 

Price per square 

meter 

31,717 29,900 14,734 4,660 71,429 

      

 

 

Next, we want to visualize the spread of the sold dwellings within the Lyngen case. 

In Map 4.39, we have plotted all sold dwellings in all 15 municipals. This map gives 

the same visualization as discussed in map 4.1. 

 

 

 

 

 

 
9 Map 4.3 visualises the spread of the sold dwellings for all municipals in the Lyngen case. For this and the 

remainder of the maps in this thesis, including the appendices, the mapped area consists of municipals included 
in the case, or the area of interest. For a more detailed map see map 4.4 or see map A.2.A – A.2.G in the 
appendices. Sold dwellings are plotted din red, while the risk areas for quick clay are defined in the same way as 
in footnote 7, are the areas with a light grey colour. The heatmap is created by using density.2D. The heatmap 
therefor returns the probability of an observation to be in within the certain area, hence, the darker the colour, the 
bigger probability there is. The place of event is marked with yellow on the map. 
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Map 4.3: Spread of sold dwellings for Lyngen case. 

 

Map 4.410: Click the picture for an Interactive map that visualises the dataset 

 

 
10 To enter the interactive map, please click the picture. The interactive map will open in a new tab in your 
browser, but it may take some time depending on the Rpubs server. The map includes features such as having 
three different types of map layers, as well as a search function for checking the risk of quick clay in any area of 
your interest. The map also gives options for visualising the spread of observations with a heatmap, a cluster for 
all sales, and clusters for sold dwellings within the treatment and control groups for each case. The cluster only 
returns a polygon in which the sold dwellings that are grouped can be located within rather than exposing their 
exact location The map is created from map files created and published publicly by NVE and GeoNorge.   
 
“tomato” coloured area = Gjerdrum + closely located municipals in Gjerdrum case. Blue = Alta + closely located 
municipals in Alta case. Pink = Lyngen + closely located municipals in Lyngen case. Brown = municipals defined 
as remotely located for all cases. Municipals located below Gjerdrum on the map belong to the Gjerdrum case; 
meanwhile, those above belong to Alta & Lyngen. 

https://rpubs.com/robinant/QuickClayCases
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5. Empirical conditions 
 

5.1. Treatment and control groups 
When conducting a DD approach, we first and foremost need to define our treatment 

and control group. As mentioned in section 1, this thesis aims at assessing whether 

the landslides influence dwellings at, and dwellings not at risk of a QCL after the 

three selected QCLs. In addition to this, we attempt to assess if there is a general 

price effect for dwellings that are at risk of such events. To be able to assess what 

we sought out for, the dwellings built on quick clay, and therefore has the risk 

element of a QCL, are the group of dwellings that are affected by a landslide, i.e., the 

treatment group. Thus, the treatment group should intuitively be the sold dwellings at 

a risk of quick clay. The control group is then sold dwellings that are not at risk of a 

QCL. For example, we can estimate a model with the hedonic pricing aspect of 

dwellings in Gjerdrum. If the trend charts for the treatment group and the control 

group seem to follow a similar pattern over time, we can assume they also would 

follow each other into the future, given there is no treatment intervention, i.e., 

landslide. As mentioned in the theory section of this thesis, this is one of the most 

crucial assumptions and criteria to fulfil when conducting a DD.   

 

When we test whether an event is affecting the housing prices, we need to be certain 

that these patterns would follow each other also in the future, given that the event we 

are interested in would not occur. As mentioned in section 4.1, we have chosen to 

treat the two types of risk that were reported in the initial dataset as one, hence the 

risk off QCL. As a result of this, dwellings at risk of a QCL and dwellings at risk of a 

general landslide are both included in what we define as our treatment group. 

Regarding this assumption, we want to point out that there were zero sold dwellings 

in the Gjerdrum case at risk of other types of landslides, hence for the Gjerdrum 

case, all sold dwellings included in the treatment group is at risk of a QCL regardless 

of this assumption.  

 

Because the chosen treatment group is defined by sold dwelling at risk of a QCL; 

hence the control group is sold dwellings not at a risk. The treatment and control 

groups therefore follow the same distribution as mentioned in section 4.3.1, 4.3.2, 

and 4.3.3. With this definition, Map 5.1 yields a visualisation of the spread of 
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observations within the treatment and control group for the Gjerdrum case. The 

same goes for the treatment and control group in the Alta and Lyngen case; hence 

Map 5.2 and Map 5.3 yield the same visualisation. In addition, we refer to appendix 

A.1.F, A.1.G, A.2.F, A.2.G, A.3.F, and A.3.G for maps that visualises the spread of 

the sold dwellings, included in the treatment and control group, both before and after 

the event.  

 

 

 

 

Map 5.111: Spread of sold dwellings in treatment (red) and control groups 
(cyan) for Gjerdrum. 

 

 

 

 

 
11 Map 5.1 is a visualisation of dwellings included in our defined treatment and control groups for the Gjerdrum 
case, where the included municipals are visualised in the colour “green”. Sold dwellings that are part of the 
treatment group is plotted in red, while the sold dwellings that are part of the control groups for Gjerdrum is 
plotted in cyan. The risk areas for quick clay risk areas are defined in the same way as in footnote 7, are the 
areas with a light grey colour.  The place of event (landslide) is plotted in yellow. The distribution between the two 
can be found in section 4.3.1. 
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Map 5.212:  Spread of sold dwellings in treatment (red) and control groups (cyan) for Alta. 

 

Map 5.313. Spread of sold dwellings in treatment (red) and control groups (cyan) for Lyngen 

 

 
12 Map 5.2 is a visualisation of dwellings included in our defined treatment and control groups for the Alta case, 
where the included municipals are visualised in the colour “green”. Sold dwellings that are part of the treatment 
group is plotted in red, while the sold dwellings that are part of the control groups for Gjerdrum is plotted in cyan. 
The risk areas for quick clay are defined in the same way as in footnote 7, are the areas with a light grey colour 
The place of event (landslide) is plotted in yellow. The distribution between the two can be found in section 4.3.2 
13 Map 5.3 is a visualisation of dwellings included in our defined treatment and control groups for the Lyngen 
case, where the included municipals are visualised in the colour “green”. Sold dwellings that are part of the 
treatment group is plotted in red, while the sold dwellings that are part of the control groups for Gjerdrum is 
plotted in cyan. The risk areas for quick clay are defined in the same way as in footnote 7, are the areas with a 
light grey colour. The place of event (landslide) is plotted in yellow. The distribution between the two can be found 
in section 4.3.3. 
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5.2. Visual inspection of parallel trends 
To assess whether the parallel trend assumptions hold or not, we can plot trend lines 

by predicting values of the selling prices, based on a hedonic price regression 

model. In the trend plots, depicted in figures 5.1.-5.3., we plot the observations on 

selling prices on the quarterly date. The selling prices of the dwellings for each case 

area will be depicted on the y-axis of the plots presented, while the time variable of 

choice is the quarterly dates attributed to the x-axis. Our main objective here is to 

determine whether the trends between the treatment and control groups before the 

treatment date are parallel or not. The linear trend lines are yielded by estimating the 

regression, by utilising Model 5.1, four times. By estimating the model four times, 

there are imposed different conditions on the model, such as if the sale of the 

dwelling is registered before or after the given landslide and whether the dwellings 

are at risk of QCLs, the two conditions combined yield four identical regression 

models with four different sets of conditions that draw the trend lines. The regression 

is thus estimated for (1) the control group before the given landslide, (2) the control 

group after the given landslide, (3) the treatment group before the given landslide, 

and (4) the treatment group after the given landslide. 

 

 

Model 5.1: Estimating linear trend lines to check for parallel trends 

𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝑠𝑖𝑧𝑒𝑖 + 𝛽2𝑏𝑒𝑡𝑤𝑒𝑒𝑛1950𝑎1979𝑖 + 𝛽3𝑏𝑒𝑡𝑤𝑒𝑒𝑛1980𝑎1999𝑖 +

𝛽4𝑎𝑓𝑡𝑒𝑟1999𝑖 + 𝛽5𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑦𝑝𝑒𝑖 + 𝛽6𝑜𝑤𝑛𝑒𝑟𝑡𝑦𝑝𝑒𝑖 +  𝛽7𝑞𝑑𝑎𝑡𝑒𝑖 +  𝜀𝑖   

 

where 𝑃𝑖𝑡 is the selling price of the dwelling of property i at time t,  𝑠𝑖𝑧𝑒𝑖 is the floor 

size in square meters of the dwelling, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛1950𝑎1979𝑖 is a dummy indicating if 

the dwelling was built between 1950 and 1979, 𝑏𝑒𝑡𝑤𝑒𝑒𝑛1980𝑎1999𝑖 is a dummy 

indicating if the dwelling was built between 1980 and 1999, 𝑎𝑓𝑡𝑒𝑟1999𝑖 is a dummy 

indicating if the dwelling was built after 1999, 𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑦𝑝𝑒𝑖 denoted what type of 

housing the dwelling is (detached house, apartment, townhouse or semi-detached 

house), 𝑜𝑤𝑛𝑒𝑟𝑡𝑦𝑝𝑒𝑖 denotes whether the dwelling is owned through a housing 

association or is a freehold ownership, 𝑞𝑑𝑎𝑡𝑒𝑖, denotes the quarter and year the 

dwelling was sold. 
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Utilising model 5.1, we estimate values of the dependent variable, selling price, using 

the ordinary least squares (OLS) method and fitting a linear line through the 

observations of the selling price based on the time of sale using the quarterly dates. 

OLS fits the values of the dependent variable by minimizing the sum of squared 

residuals. The residuals are the difference between the actual values of the 

observations on the variables in question, and the predicted values of the variables. 

 

The plot beneath shows some of the scattered values of selling prices for the 

dwellings in the Gjerdrum case area and period, where the orange triangles are the 

observations of the treatment group, and the blue dots are the observations of the 

control group. Not all observations are scattered as it would clutter the plot area by 

having many plotted observations on top of each other. To avoid such, we used the 

jitter function in STATA when generating the plot. This function “...adds spherical 

random noise to the data before plotting.” (stata.com, n.d, p.16). Due to the 

approach of plotting observations this way, there will occur plotted observations for 

selling prices initially do not exist within the dataset. The vertical red line is drawn 

when the landslide occurred, hence the treatment date. This line is drawn to indicate 

the two time periods for each trend line, yielding Figure 5.1. The figure shows jittered 

values of sales price for each quarter. The values of the observations on sales price 

are presented on the y-axis, while each quarterly date is shown on the x-axis. The 

white line is the estimated trend line for the control group, while the red one is for the 

treatment group. 
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Figure 5.114: Parallel trends plot Gjerdrum case. 

 

 

 

We can see that the trend lines for the selling prices of the dwellings before the 

treatment date are, in fact, parallel and close to coinciding. Thus, we conclude that 

the parallel trend assumption holds. Looking at the plot, we can see a positive trend, 

as expected under normal circumstances. Also, the prices on dwellings within the 

treatment group are lower than those in the control group before the treatment, in 

line with our expectations. After the treatment, we see a drop in prices for the control 

group before the trend relatively rapidly climbs compared to before the treatment. 

We see a slight jump in prices for the treatment group, but a positive slacker trend 

compared to before the treatment and compared to the control group after the 

treatment. 

 

 

 

 

 
14 For a more comprehensive overview of what municipals that are included and the distribution of sold dwellings 
for the treatment and control group, see appendix B.1.B. The landslide in Gjerdrum occurred 30th of December 
2020, which is marked in the figure by xline. 



 

44 

Figure 5.2 yields the same plot, but for the data included in the Alta dataset. Like in 

Similar to Figure 5.1, Figure 5.2 shows jittered values of the sales price for each 

quarter, in which the values of sales price are on the y-axis and each quarterly date 

are on the x-axis. The estimated trend lines are white for the control group and red 

for the treatment group. 

 

Figure 5.215: Parallel trends plot for Alta case 

 

 

Here, the trend lines before the treatment are again close to coinciding, but with the 

prices of the treatment group being marginally lower than those of the control group. 

Dwellings in both groups sees a growth in prices before the landslide. 

Again, the trend lines are parallel, and we conclude that the parallel trend 

assumption holds. After the landslide, however, the control group experiences a 

slight drop in prices, but with a more rapid growth rate, such that the prices exceed 

those of before the landslide. The treatment group's prices after the treatment 

continues to trend at approximately the level in which it did before the landslide. 

. 

 
15 For a more comprehensive overview of what municipals that are included and the distribution of sold dwellings 
for the treatment and control group, see appendix B.2.B. The landslide in Alta occurred June third, 2020, which is 
marked in the figure by xline. 
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Again, Figure 5.3 yields the same plot as the previous parallel trend’s plots, but for 

Lyngen case area over time. Once again, the plot area depicts jittered values of 

sales price for each quarter, whilst the values of sales price are given on the y-axis, 

and each quarterly date is shown on the x-axis. The white line is the trend line for the 

control group, while the red line is the trend line for the treatment group. 

 

Figure 5.316. Parallel trends plot for Lyngen case 

 

 

For the Lyngen case area, we see a plot quite different from the previously 

presented plots for the Alta and Gjerdrum case areas. Here, the treatment group has 

higher prices than the control group, both before and after the treatment date. Also, 

the trends are interesting. For these dwellings, the trend of the prices is negative 

before the treatment date and are not entirely parallel to each other. Although there 

are differences in the trends, they are approximately parallel. We, therefore, choose 

not to reject the parallel trends assumption and will move on with our analysis in the 

results section without any further manipulation of the data. Curiously, the trend for 

both groups turn around after the treatment date and is thus positive. However, 

 
16 For a more comprehensive overview, see appendix B.3.B. The landslide in Alta occurred June third, 2020, 
which is marked in the figure by xline. 
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again, the trends are very close to perfectly parallel, with the treatment group having 

higher prices than the control group. 

 

Interestingly, we have found different trends and reactions in prices after the 

treatment date between our three case areas. The most significant differences 

between the cases are found in the Lyngen case, compared to those of the Gjerdrum 

and Alta cases, even if the resulting trends of the latter cases are similar. Although 

these differences are interesting, we will not pursue further research into what 

causes these differences. Neither will we further investigate what causes the trends 

in the pricing of the dwellings. Through the visual analysis of the parallel trends, we 

have deemed that the parallel trends assumptions for all three cases holds, and 

thus, we can continue our analysis of the results without further implications. 

 

5.3. Specification of the models 
Our interest in this thesis is to estimate the effect on selling prices of being at risk of 

quick clay and its changes after a landslide in relative proximity. To approach this, 

we estimated 18 regression models, out of which six models are estimated for each 

case (Alta, Lyngen, Gjerdrum). Out of these six models, three models aim to 

estimate the baseline results for the effect on prices for dwellings at risk of a QCL.  

 

Model 5.2: Estimating the baseline results 

𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝐿𝑅𝑖 + 𝛽2𝑠𝑖𝑧𝑒𝑖 + 𝛽3𝑏𝑒𝑡𝑤𝑒𝑒𝑛1950𝑎1979𝑖 + 𝛽4𝑏𝑒𝑡𝑤𝑒𝑒𝑛1980𝑎1999𝑖 +

𝛽5𝑎𝑓𝑡𝑒𝑟1999𝑖 + 𝛽6𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑦𝑝𝑒𝑖 + 𝛽7𝑜𝑤𝑛𝑒𝑟𝑡𝑦𝑝𝑒𝑖 + 𝜀𝑖  

 

Where we follow the same logic as with Model 5.1, but also includes the risk dummy, 

𝐿𝑅𝑖𝑡 (Landslide risk) in the model. The risk dummy denotes whether the dwelling is at 

risk of a QCL. To control for time trends and seasonality, we include the variable 

𝑞𝑑𝑎𝑡𝑒𝑖, which is treated as a dummy variable and indicates the quarter and year the 

dwelling was sold, yielding Model 5.3. 

 

Model 5.3: Estimating the baseline results, controlling for time trends and 
seasonality 

𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝐿𝑅𝑖 + 𝛽2𝑠𝑖𝑧𝑒𝑖 + 𝛽3𝑏𝑒𝑡𝑤𝑒𝑒𝑛1950𝑎1979𝑖 + 𝛽4𝑏𝑒𝑡𝑤𝑒𝑒𝑛1980𝑎1999𝑖 +

𝛽5𝑎𝑓𝑡𝑒𝑟1999𝑖 + 𝛽6𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑦𝑝𝑒𝑖 + 𝛽7𝑜𝑤𝑛𝑒𝑟𝑡𝑦𝑝𝑒𝑖 + 𝛽8𝑞𝑑𝑎𝑡𝑒𝑖 + 𝜀𝑖  
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Further, we extend the model by including the dummy 𝑝𝑜𝑠𝑡𝑐𝑜𝑑𝑒𝑖𝑡, which indicate 

which area the dwelling is located, based on the areas post code. By including the 

post code dummy, we control for location-specific effect in Model 5.4. 

 

Model 5.4: Estimating the baseline results, controlling for time trends, 
seasonality, and location specific effects 

𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝐿𝑅𝑖 + 𝛽2𝑠𝑖𝑧𝑒𝑖 + 𝛽3𝑏𝑒𝑡𝑤𝑒𝑒𝑛1950𝑎1979𝑖 + 𝛽4𝑏𝑒𝑡𝑤𝑒𝑒𝑛1980𝑎1999𝑖 +

𝛽5𝑎𝑓𝑡𝑒𝑟1999𝑖 + 𝛽6𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑦𝑝𝑒𝑖 + 𝛽7𝑜𝑤𝑛𝑒𝑟𝑡𝑦𝑝𝑒𝑖 + 𝛽8𝑞𝑑𝑎𝑡𝑒𝑖 + 𝛽9𝑝𝑜𝑠𝑡𝑐𝑜𝑑𝑒𝑖 + 𝜀𝑖  

 

By also including the variable 𝑎𝑓𝑡𝑒𝑟𝑖𝑡, which is a dummy that equals one if the sale 

happened after the given landslide. Also, by including the interaction term between 

the landslide risk dummy, 𝐿𝑅𝑖𝑡, the post-landslide dummy, 𝑎𝑓𝑡𝑒𝑟𝑖𝑡, we can estimate 

the DD effect, which measures the effect of the landslide on housing prices. Then, 

we estimate yet another three models for each case, in an identical fashion, for the 

exception of the inclusion of the post-landslide dummy and the interaction term, 

yielding in Model 5.5, 5.6, and 5.7 

 

Model 5.5: DD estimations by including after dummy and its interaction with 
𝑳𝑹𝒊 

𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝐿𝑅𝑖 + 𝛿0𝑎𝑓𝑡𝑒𝑟𝑖𝑡 + 𝛿1𝐿𝑅𝑖 ⋅ 𝑎𝑓𝑡𝑒𝑟𝑖𝑡 + 𝛽2𝑠𝑖𝑧𝑒𝑖 + 𝛽3𝑏𝑒𝑡𝑤𝑒𝑒𝑛1950𝑎1979𝑖 +

𝛽4𝑏𝑒𝑡𝑤𝑒𝑒𝑛1980𝑎1999𝑖 + 𝛽5𝑎𝑓𝑡𝑒𝑟1999𝑖 + 𝛽6𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑦𝑝𝑒𝑖 + 𝛽7𝑜𝑤𝑛𝑒𝑟𝑡𝑦𝑝𝑒𝑖 + 𝜀𝑖  

 

In similarity with the inclusion of 𝑞𝑑𝑎𝑡𝑒𝑖to control for time trends and seasonality in 

model 5.3, we create model 5.6 by including 𝑞𝑑𝑎𝑡𝑒𝑖with model 5.5 as a base. We 

also create model 5.7 by including the 𝑞𝑑𝑎𝑡𝑒𝑖 and postcode dummy with model 5.5 

as a base. By creating these models, we can control for time trends and seasonality 

within the DD models, in addition to control for location specific effects within model 

5.7. 

 

As stated earlier, these six models will be estimated for each of the three cases in 

section 6. For the last three models, the coefficient of interest is 𝛿0, and  𝛿1. 𝛿0 will 

tell the price effect on dwellings that are not at risk after the given landslide, and 𝛿1 

tells the additional effect of the dwellings at risk after the given landslide 
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6.  Results 
In the following analyses, we will estimate and present the results of the above-

specified models. These six models will be conducted for each of our three cases: 

Gjerdrum, Alta, and Lyngen. Therefore, we have chosen to present the results for 

each case in individual sections. The analysis will not exclusively include the models 

we want to estimate but also a separate regression, where we attempt to investigate 

the cause of the effects found. In this regression model, we run models identical to 

Model 5.5, but with one exception: here, we use the sum of total sales in each 

quarter to help determine whether the effects on price stem from changes in 

demand.  

 

Furthermore, this will show whether there are demand effects that will curb the price 

effect attributed to the risk of QCLs. It is reasonable to believe through knowledge of 

the price mechanisms of supply and demand effects that the price effect of the risk 

will be curbed if there is a significant drop in sales, which is interchangeable with a 

drop in demand. These hypothetical drops in sales volume are probably attributable 

to the fact that the owners of the dwellings that wish to sell their houses will have 

challenges doing this because buyers are less willing to buy. 

 

 

6.1. Gjerdrum 
To start, we present the baseline results for Gjerdrum utilizing Model 5.2-5.4.  We do 

not distinguish whether the sale occurred before or after the given landslide in these 

models. Our interpretation of the results will then focus on the effect of being at risk 

of a QCL on prices by considering both the effects of the risk before and after a 

given QCL. 

 

The baseline results for Gjerdrum are summarized in Table 6.1. The coefficients of 

the regression results refer to the change in price measured in Norwegian kroner 

(NOK) following a one-unit increase of the given explanatory variable. 
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Table 6.117: Gjerdrum results 

 

 (5.2) (5.3) (5.4) 

VARIABLES Selling price Selling price Selling price 

    

Landslide risk (LR) -22,756 -24,351* -76,336*** 

 (14,696) (14,095) (12,643) 

Size in square meters 14,902*** 14,918*** 14,359*** 

 (96.10) (92.90) (72.91) 

Between1950a1979 -124,808*** -122,119*** -75,013*** 

 (11,103) (10,700) (8,715) 

Between1980a1999 288,315*** 297,770*** 319,056*** 

 (11,822) (11,382) (9,112) 

After1999 819,157*** 800,261*** 904,803*** 

 (11,287) (10,873) (9,507) 

Apartment 191,124*** 181,068*** -337,201*** 

 (12,902) (12,404) (9,761) 

Townhouse 247,655*** 226,177*** -165,572*** 

 (13,792) (13,046) (8,814) 

Semi-detached house -88,492*** -94,777*** -289,134*** 

 (12,926) (12,406) (8,622) 

Freehold ownership 158,734*** 145,444*** 94,582*** 

 (7,813) (7,495) (6,150) 

Constant 960,979*** 468,469*** 1,632,000*** 

 (20,227) (23,701) (33,785) 

Quarter dummy 

Postcode dummy 

No 

No 

Yes 

No 

Yes 

Yes 

Observations 113,325 113,325 113,325 

Adjusted R-squared 0.437 0.480 0.739 

 

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

 

We start off by considering the baseline results, which tell us about the effect on 

housing prices from the dwelling being built on quick clay. The results can be 

interpreted by considering the estimated regression coefficient 𝛽1 on the risk-dummy  

𝐿𝑅𝑖 (Landslide risk). This variable indicates whether the dwelling is built on quick clay 

and thus tells us the implicit price of there being a risk of a QCL for the dwelling.  

 
17 Table 6.1 utilizes model 5.2 – 5.4 for Gjerdrum. 
The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. However, these variables are important to control for effects such as time-trends, seasonality, and 
location-specific effects. The evaluation of the results of model 5.2-5.7, for all cases, will be centred around the 
variable Landslide Riskit (LR), as this is the variable of interest. LRit, measures the effect on price for dwellings 
being at risk of a quick clay landslide.  
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In all three models, the coefficient of the treatment is negative, but the results are not 

significant for Model 5.2. Still, it gives us an indication of there being a price effect on 

dwellings from being built on quick clay. Considering the changes in coefficients and 

standard errors when controlling for unobserved time effects and location-specific 

effects, by including the dummy variables for quarters and postcode, respectively, it 

seems a more negative price effect on dwellings is attributed to the risk of QCL. For 

Model 5.2 and Model 5.3, we see statistically significant negative results on the 

treatment coefficient on a 1% significance level. This tells us that, on average, there 

is between a 24,351 and 76,336 NOK discount on price for dwellings at risk of a 

QCL. Alternatively, this is the price effect of a QCL risk. This change in the 

coefficient and significance level is induced to there being controlled for previously 

unobserved effects attributed to certain areas, given the postcode of the area. These 

unobserved effects would prior to controlling for them attribute their effect to all the 

areas included in the model, which means that there likely are areas that are 

impacted to a low degree which create bias in the results, as it attributes a lower 

degree of impact to all areas included. 

 

Next, we extend the model by including the variable after, which indicates whether 

the sale occurred before or after the given QCL. This is done to determine the effect 

of a landslide on housing prices for dwellings built within or outside areas with quick 

clay. Finally, we consider the coefficient on the interaction term of our risk and 

treatment dummies to evaluate the effect on prices for dwellings built on quick clay 

after the given landslide. 

 

The regression results are summarized in Table 6.2. The interpretation of the 

coefficients follows the same logic as earlier. 
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Table 6.218: Gjerdrum DD 

 (5.5) (5.6) (5.7) 

VARIABLES Selling price Selling price Selling price 

    

Landslide risk (LR) -20,131 -22,511 -72,504*** 

 (15,297) (14,923) (13,285) 

After dummy 586,018*** -497,459*** -126,930* 

 (9,282) (161,753) (72,546) 

LR*after -11,601 -12,278 -24,364 

 (43,234) (43,122) (32,936) 

Size in square meters 14,919*** 14,918*** 14,359*** 

 (94.32) (92.90) (72.91) 

Between1950a1979 -116,957*** -122,148*** -75,043*** 

 (10,875) (10,700) (8,715) 

Between1980a1999 301,183*** 297,723*** 319,022*** 

 (11,578) (11,382) (9,113) 

After1999 818,785*** 800,223*** 904,754*** 

 (11,063) (10,873) (9,508) 

Apartment 179,862*** 181,101*** -337,208*** 

 (12,631) (12,404) (9,762) 

Townhouse 231,214*** 226,255*** -165,547*** 

 (13,387) (13,044) (8,814) 

Semi-detached house -93,563*** -94,740*** -289,128*** 

 (12,650) (12,407) (8,622) 

Freehold ownership 151,610*** 145,456*** 94,577*** 

 (7,656) (7,495) (6,150) 

Constant 874,681*** 468,403*** 1,632,000*** 

 (19,839) (23,700) (33,784) 

Quarter dummy 

Postcode dummy 

No 

No 

Yes 

No 

Yes 

Yes 

Observations 113,325 113,325 113,325 

Adjusted R-squared 0.460 0.480 0.739 

 

 

Notes: Robust standard errors in parentheses. ***, **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

 

The regression results on the after dummy is quite interesting. The estimated 

coefficient indicates the price effect on dwellings that were not built on quick clay 

after the Gjerdrum landslide. In the first model, while not controlling for time and 

location effects, there are significant results of the selling prices of these dwellings 

 
18 Table 6.2 utilizes model 5.5 – 5.7 for Gjerdrum. 

The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. However, are important to control for effects such as time-trends, seasonality, and location-specific 
effects. 
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being 586,018 NOK higher after the landslide. Because of the omitted control 

variables, these results may be biased, since there are probably unobserved time 

effects, such as price growth. Also, there may have been more sales occurring in 

more expensive areas, or there being a higher degree of sales in seasons that are 

more prone to higher demand and, thus, through market mechanisms, prices. Also, 

by omitting the quarterly variable, the estimation for sales price does not take the 

overall changes in price for the housing market into consideration.  

 

By controlling for unobserved time effects in model 5.6, the coefficient on after 

changes drastically. This model yields significant results of the prices on dwellings at 

no risk for QCLs being 497,459 NOK cheaper after the landslide than before. Of 

course, the potential bias of more sales of dwellings in more expensive areas still 

exists. By controlling for this effect, we obtain a significant negative coefficient by 

including a dummy-coded variable for postcodes. Hence, there are clear indications 

of a drop in housing prices in nearby areas after QCLs. 

 

The interaction term of the risk dummy and the after dummy indicates the average 

treatment effect or the difference in prices between the treatment and control groups 

after the landslide. All three models show a negative coefficient on this variable, 

which indicates that there may be an additional drop in prices for dwellings at risk of 

QCLs compared to those that do not face the risk. This effect may be attributed to 

the changes in risk perception, hence there is a salience effect from the event. 

Because of the severity of damages from the landslide, the latter may be a likely 

explanation to the effect. 

 

To further investigate what contributes to this possible effect, we will estimate an 

identical regression model to Model 5.5 but with the total sales volume in each 

quarter as the dependent variable. This is to help determine whether the price 

change is due to changes in demand or a change in homebuyers’ perception of risk. 

Also, as stated earlier in this section, will help determine whether the price effect of 

the QCL risk is curbed. These results are summarized in Table 6.3. 
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Table 6.319: Volume effects investigation 

  

VARIABLES Volume per 

quarter 

  

After dummy -0.716 

 (1.424) 

LR*after -371.8*** 

 (22.39) 

Size in square meters 0.000769 

 (0.00919) 

Between1950a1979 -0.379 

 (1.423) 

Between1980a1999 -0.224 

 (1.503) 

After1999 0.623 

 (1.562) 

Apartment -0.786 

 (1.372) 

Townhouse -1.619 

 (1.491) 

Semi-detached house 0.00248 

 (1.304) 

Freehold ownership -0.195 

 (1.174) 

Constant 3,524*** 

 (2.849) 

Quarter dummy 

Postcode dummy 

Yes 

Yes 

Observations 113,325 

Adjusted R-squared 0.986 

  

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

 

 

 

 

 

 
19 The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. Also, LR is omitted, since it gives little to no explanatory value, as there are less dwellings at risk than 
those that are not will cause there to be naturally fewer sales of dwellings at risk, compared to those that are not. 
However, they are important to control for effects such as time-trends, seasonality, and location-specific effects. 
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The regression on total number of dwellings sold per quarter yields negative 

coefficients on after, and the interaction term LR*after. Although only the coefficient 

of the interaction term is statistically significant, there are indications that the number 

of dwellings sold after the landslide occurred for those dwellings that are not at risk is 

also affected to some degree, given the negative coefficient of after. It also seems 

that there are even fewer sales of dwellings that are at risk of QCLs even before the 

landslide. To conclude, there seem to be a drop in sales volume or demand for 

dwellings with the risk of QCLs after the landslide occurred. This means, that, as 

stated in the start of the results section, the reduction in sales volume for dwellings at 

risk will cause the coefficient on the interaction term in Model 5.5-5.7 to be curbed, 

which means that the price effect attributed to dwellings at risk after the given 

landslide might be less significant if sales volume were held constant.  

 

 

6.2. Alta 
We will continue our analysis by considering the regression results for the Alta case. 

This will be done similarly to what was done earlier for the Gjerdrum case. First, we 

consider the baseline results, summarized in Table 6.4. 

 

All three models result in positive and statistically significant coefficients for the 

variable LR. So, contrary to our expectations, the prices of dwellings that are at risk 

do have evidence of being higher than those that are not at risk. It is challenging to 

intuitively explain what the cause of this may be, especially for the case of the model 

that has controlled for location effects by including the postcode dummy variable. 

Since we also controlled for the construction years for the dwellings, it is not 

reasonable to assume that the prices in areas with quick clay are higher because of 

newer homes. The discussion of this case continues further in section 6.4. 
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Table 6.420: Alta results 

 (5.2) (5.3) (5.4) 

VARIABLES Selling price Selling price Selling price 

    

Landslide risk (LR) 61,653** 47,239** 74,663*** 

 (24,505) (21,485) (19,909) 

Size in square meters 7,772*** 8,022*** 7,906*** 

 (166.2) (146.5) (115.2) 

Between1950a1979 84,013*** 94,061*** -21,798 

 (27,954) (24,873) (19,041) 

Between1980a1999 376,098*** 376,240*** 298,361*** 

 (29,033) (25,700) (20,230) 

After1999 973,151*** 910,184*** 758,837*** 

 (31,467) (27,654) (22,654) 

Apartment 7,699 72,547*** -276,460*** 

 (24,425) (20,972) (18,326) 

Townhouse 47,072* 1,397 -166,948*** 

 (27,819) (23,148) (19,252) 

Semi-detached house -44,866** -33,470* -281,728*** 

 (21,700) (18,082) (15,468) 

Freehold ownership -47,063*** 4,478 -71,527*** 

 (17,887) (15,032) (13,770) 

Constant 983,382*** 279,960*** 120,157* 

 (41,976) (63,917) (67,200) 

Quarter dummy 

Postcode dummy 

No 

No 

Yes 

No 

Yes 

Yes 

Observations 15,870 15,870 15,870 

Adjusted R-squared 0.325 0.513 0.704 

 

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

Now we extend the models by including the variable after and the interaction term 

between after and treat to investigate the effects on prices for dwellings in Alta and 

surrounding municipalities after the QCL in Alta. The results of these estimated 

regression models are summarized in Table 6.5. 

 

 

 
20 . Table 6.4 utilizes model 5.2 – 5.4 for Alta. 
The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. However, they are important to control for effects such as time-trends, seasonality, and location-specific 
effects. 
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Table 6.521: Alta results DD 

 (5.5) (5.6) (5.7) 

VARIABLES Selling price Selling price Selling price 

    

Landslide risk (LR) 73,894*** 49,515** 67,141*** 

 (25,173) (22,376) (20,844) 

After dummy 605,849*** -52,309 -93,454 

 (18,644) (81,496) (61,238) 

LR*after -61,019 -16,111 60,169 

 (73,995) (73,020) (48,631) 

Size in square meters 7,822*** 8,022*** 7,906*** 

 (161.0) (146.6) (115.2) 

Between1950a1979 76,793*** 94,156*** -21,391 

 (27,258) (24,874) (19,031) 

Between1980a1999 366,875*** 376,265*** 298,703*** 

 (28,254) (25,700) (20,223) 

After1999 947,892*** 910,226*** 758,949*** 

 (30,604) (27,653) (22,651) 

Apartment 35,371 72,439*** -276,531*** 

 (23,503) (20,976) (18,329) 

Townhouse 37,881 1,131 -167,188*** 

 (26,969) (23,153) (19,238) 

Semi-detached house -50,871** -33,333* -281,531*** 

 (20,563) (18,084) (15,471) 

Freehold ownership -32,195* 4,390 -71,401*** 

 (17,075) (15,036) (13,774) 

Constant 884,372*** 279,999*** 119,947* 

 

Quarter dummy 

(40,961) 

No 

(63,920) 

Yes 

(67,200) 

Yes 

Postcode dummy No No Yes 

Observations 15,870 15,870 15,870 

Adjusted R-squared 0.379 0.513 0.704 

 

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

We found that the results change dramatically between the three models for the Alta 

case. First, considering the coefficient for after, we see that Model 5.5 yields a 

statistically significant coefficient of 605,849, implying that prices of dwellings with no 

risk of QCLs increased by 605,849NOK after the landslide. After controlling for 

 
21 Table 6.5 utilizes models 5.5 – 5.7 for Alta. 

The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 

interest. However, are important to control for effects such as time-trends, seasonality, and location-specific 

effects.  
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unobserved time effects, the coefficient is now negative 52,309, although it is not 

statistically significant in model 5.6. After controlling for location effects, the after 

coefficient is -93,454 in model 5.7. Furthermore, the prices of dwellings at risk of 

QCLs have no significant changes after the landslide occurred, and the estimated 

regression coefficient on this variable is negative for Model 5.5.6 and 5.7, but 

positive for Model 5.5. 

 

Similarly, to the results of the control group after the landslide, the coefficient of the 

interaction term change as we add additional controls. In Model 5.5, the coefficient is 

-61,019, which is the effect we expect to see. This price effect diminishes greatly by 

adding time effects but is still negative. Further adding location effects, the coefficient 

is no longer negative. Since these results are not statistically significant, it is 

unreasonable to conclude about the effects on prices for dwellings at risk of QCLs. 

We have no conclusive indications of what may cause these effects, but we found 

conclusive indications of higher prices for dwellings built on quick clay than those 

that are not. However, there are non-observed factors that the data does not 

capture, such as whether the dwellings at risk of QCLs are located in popular 

neighbourhoods, by a nature preserve, or if the dwellings’ view is stunning or 

spectacular. Similar measures of such amenity effects are discussed by Naoi (2009). 

As stated earlier, we will delve deeper into these effects in section 6.4. 

 

Again, we investigate the volume effects for the treatment group and the landslide by 

estimating the identical regression, with the total sales volume for each quarter as 

the dependent variable, instead of the selling prices, for which the results are 

summarized in Table 6.6. 
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Table 6.622: Volume effects 

 

  

VARIABLES Volume per 

quarter 

  

After dummy 1.528 

 (1.202) 

LR*after -62.64*** 

 (3.243) 

Size in square meters 0.00228 

 (0.00282) 

Between1950a1979 0.362 

 (0.576) 

Between1980a1999 0.207 

 (0.588) 

After1999 -0.0523 

 (0.675) 

Apartment 0.271 

 (0.504) 

Townhouse 0.461 

 (0.424) 

Semi-detached house 0.679 

 (0.443) 

Freehold ownership -0.0970 

 (0.419) 

Constant 120.3*** 

 (1.943) 

Quarter dummy 

Postcode dummy 

Yes 

Yes 

Observations 15,870 

Adjusted R-squared 0.977 

  

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

Similar to the case of Gjerdrum, we see that there are significant results indicating 

fewer sales by quarter for dwellings at risk of QCLs after the landslide. This is likely 

due to the supply for these dwellings being lower, as the seller are less willing to sell 

these dwellings at a loss, and therefore, rather waiting for the salience effects of the 

landslide to diminish. Alternatively, buyers are less willing to buy these dwellings, as 

 
22 The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. Also, LR is omitted, since it gives little to no explanatory value, as there are less dwellings at risk than 
those that are not will cause there to be naturally fewer sales of dwellings at risk, compared to those that are not. 
However, they are important to control for effects such as time-trends, seasonality, and location-specific effects. 
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their perception of the risk attributed to these dwellings have changed. This means 

that dwellings at risk may not be sold at all in the time period included in the dataset. 

As stated earlier in section 6, this probably causes an effect that curbs the effects on 

prices for dwellings at risk of landslides after the landslide occurred. 

 

6.3. Lyngen 
Finally, we will analyse the results of the last case, which is the case of Lyngen and 

its nearby municipals. The baseline results are presented in Table 6.7. 

 

Table 6.723: Lyngen results 

 (5.2) (5.3) (5.4) 

VARIABLES Selling price Selling price Selling price 

    

Landslide risk (LR) 312,367*** 253,215*** 104,790*** 

 (15,630) (13,581) (26,740) 

Size in square meters 12,998*** 13,575*** 13,267*** 

 (205.7) (189.4) (133.9) 

Between1950a1979 -162,509*** -178,759*** 588.2 

 (25,227) (22,484) (15,968) 

Between1980a1999 303,540*** 296,091*** 316,842*** 

 (25,918) (22,973) (16,787) 

After1999 782,313*** 639,833*** 519,704*** 

 (25,816) (22,620) (17,401) 

Apartment 739,716*** 808,996*** -123,365*** 

 (27,870) (25,097) (19,464) 

Townhouse 818,467*** 788,488*** 122,337*** 

 (36,919) (32,442) (22,333) 

Semi-detached house 605,149*** 646,122*** -85,339*** 

 (28,187) (24,877) (18,359) 

Freehold ownership 354,277*** 380,715*** 122,390*** 

 (13,904) (11,463) (10,925) 

Constant 372,027*** -522,379*** -1,153,000*** 

 (45,713) (68,540) (72,708) 

Quarter dummy 

Postcode dummy 

No 

No 

Yes 

No 

Yes 

Yes 

Observations 31,717 31,717 31,717 

Adjusted R-squared 0.290 0.453 0.745 

 

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 
23 The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 

interest. However, they are important to control for effects such as time-trends, seasonality, and location-specific 
effects. Table 6.7 utilizes model 5.2 – 5.4 for Lyngen. 
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The regression results for Lyngen are similar to the results we found for the Alta 

case earlier. The results indicate a statistically significant price premium for dwellings 

built on quick clay. By adding the same controls as for the two earlier cases, the total 

effect in NOK on the prices of the dwellings at risk of QCLs decreases. The biggest 

changes in the coefficient of LR occur when we add control for location effects by 

adding the variable postcode. Including postcode in our model induces a significantly 

lower estimated regression coefficient and increases the standard errors.  

 

Following the same course of the analysis, we turn to look at the effect of the 

landslide on housing prices by introducing the after dummy. Recall that estimates the 

price effect on dwellings not at risk after the landslide. Also Again, recall that this 

dummy equal one if the sale occurred after the landslide and zero if before. 

Furthermore, the interaction term between the variables after and LR is added to 

examine the additional price effect on the treatment group, alternatively the dwellings 

built on quick clay, and therefore at the price effect of the risk of QCLs after the 

landslide, compared to those not at risk. 

 

For Model 5.5, we find significant results of a drastic jump in prices for dwellings that 

are not at risk for QCLs after the landslide event in Lyngen. By adding controls for 

unobserved time effects, the after coefficient is no longer significant and changes 

from a positive value of approximately 1,000,000 in Model 5.5Model 5.4 to –99,058 

in model 5.6. This indicates that the general price growth in the housing market and 

that some periods induce bias in the estimated coefficient because of sales of 

relatively expensive homes in specific periods. By further adding controls for location 

effects, the after coefficient is positive again, however still not statistically significant.  

 

 

 

 

 

 

 

 

 



 

61 

Table 6.824: Lyngen results DD 

 (5.5) (5.6) (5.7) 

VARIABLES Selling price Selling price Selling price 

    

Landslide risk (LR) 296,164*** 296,697*** 55,931* 

 (27,107) (26,856) (33,355) 

After dummy 995,958*** -99,058 41,791 

 (14,150) (66,574) (53,658) 

LR*after -10,541 -49,533 56,439** 

 (31,518) (30,601) (24,773) 

Size in square meters 13,255*** 13,572*** 13,271*** 

 (197.3) (189.4) (133.9) 

Between1950a1979 -162,435*** -178,762*** 1,085 

 (23,867) (22,494) (15,964) 

Between1980a1999 314,354*** 295,948*** 317,248*** 

 (24,470) (22,980) (16,786) 

After1999 724,665*** 640,209*** 519,251*** 

 (24,354) (22,626) (17,408) 

Apartment 758,219*** 808,545*** -123,119*** 

 (26,575) (25,100) (19,465) 

Townhouse 823,074*** 787,865*** 122,728*** 

 (34,930) (32,443) (22,331) 

Semi-detached house 621,713*** 645,930*** -85,328*** 

 (26,642) (24,879) (18,358) 

Freehold ownership 388,584*** 380,716*** 122,005*** 

 (13,009) (11,460) (10,933) 

Constant -523,383*** -529,763*** -1.144e+06*** 

 (45,442) (68,866) (72,873) 

Quarter dummy 

Postcode dummy 

No 

No 

Yes 

No 

Yes 

Yes 

Observations 31,717 31,717 31,717 

Adjusted R-squared 0.361 0.453 0.745 

 

 

Notes: Robust standard errors in parentheses. *** , **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 

Considering the case of dwellings that are at risk, the resulting regression analysis 

yields negative but non-significant estimators of the coefficient of the interaction term 

in model 5.5 and 5.6. Again, by adding controls for location effects, this coefficient 

turns positive and is also statistically significant, as we did not expect. However, this 

does not mean that a landslide makes dwellings at risk more expensive. Again, this 

 
24 . Table 6.8 utilizes model 5.5 – 5.7 for Lyngen. 
The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. However, they are important to control for effects such as time-trends, seasonality, and location-specific 
effects. 
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estimates result may arise because of curbed effects following changes in sales 

volume for such dwellings. 

 

Again, estimating the effect on volume arising from the landslide, to determine 

whether there are curbing effects of the price changes. This is summarized in Table 

6.9. 

 

Table 6.925: Volume effects 

  

VARIABLES Volume per 

quarter 

  

After dummy 21.70*** 

 (2.115) 

LR*after -121.3*** 

 (2.274) 

Size in square meters -0.00247 

 (0.00418) 

Between1950a1979 0.498 

 (0.591) 

Between1980a1999 0.0705 

 (0.635) 

After1999 0.0695 

 (0.662) 

Apartment 0.950 

 (0.692) 

Townhouse 0.301 

 (0.850) 

Semi-detached house 0.641 

 (0.649) 

Freehold ownership 0.660 

 (0.580) 

Constant 218.2*** 

 (2.352) 

Quarter dummy 

Postcode dummy 

Yes 

Yes 

Observations 31,717 

Adjusted R-squared 0.972 

 

 

Notes: Robust standard errors in parentheses. ***, **, and *, indicate that the estimated 

regression coefficient is significant at the 0.01, 0.05, and 0.10 levels, respectively. 

 
25 The regression coefficients of qdate and postcode are omitted from all regression results as these are of no 
interest. Also, LR is omitted, since it gives little to no explanatory value, as there are less dwellings at risk than 
those that are not will cause there to be naturally fewer sales of dwellings at risk, compared to those that are not. 
However, they are important to control for effects such as time-trends, seasonality, and location-specific effects. 
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Looking at the regression results for the volume effects on housing purchases, there 

are findings of significance of the changes in sales volume for dwellings at risk and 

dwellings not at risk after the landslide. There is an increase in purchases of 

dwellings that are not at risk after the landslide and a quite dramatic drop in sales 

volume of dwellings at risk. Intuitively, this might indicate that people who buy homes 

in these areas choose to purchase dwellings that are not at risk, compared to those 

at risk, at a higher rate than before the landslide. These effects, again, plausibly curb 

the implicit price of QCL risk. 

 

6.4. Further discussion 
In this section of the thesis, we focus on summarising the results from the three 

different cases presented in the previous subsections of the section while comparing 

these to the results of the included reference articles from prior research. Also, we 

will discuss some of the empirical considerations we have not addressed earlier. 

Probably the most important source of bias in our model is that we do not include a 

scale of risk but rather just a dummy variable for all risk levels of QCLs. We can 

expect the negative price effect to be more substantial in areas with a higher 

reported degree of risk than in areas with lower risk. This effect was illustrated in Kiel 

and Matheson (2018), where they first estimated a model where all levels of risk over 

low risk were grouped in a dummy variable, which is similar to what we did. They 

report that housing sold in risky areas was sold for approximately 5.6% less than the 

housing in areas with no risk before the forest fire occurred, and housing in risky 

areas sold for an additional 4.5% less than housing in non-risky areas after the fire. 

However, none of these results was statistically significant, which is also 

recognisable in this thesis. By estimating the price effect of the four different levels of 

risk, they found significant evidence that dwellings in very high-risk areas saw a 

21.7% reduction in selling prices compared to dwellings in low-risk areas after the 

event. This clearly illustrates a major concern about statistical bias in the estimates 

for the price effect on dwellings in areas prone to QCLs compared to those that are 

not. Therefore, we highly recommend incorporating the six-scale (0-6) degree of 

QCL risk from NVE. Alternatively, one can address this issue by using distance from 

areas with quick clay, comparable to Kim, Park, Yoon, and Cho’s (2017) approach.  
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Recall that the estimated regression results of the variables of interest, LR, after, and 

their interaction term have yielded significantly different results across the three 

cases, Gjerdrum, Alta and Lyngen, that we included in the thesis. These results were 

far from expected, as prior research has quite consistent results for there being 

drops in prices for dwellings at risk following such natural disasters as landslides and 

so on. Although, these may cast light upon the possible fact that there may be 

significant differences in the risk perception and willingness to take a risk for buyers 

in different regions. In Model 5.2-5.5 for the Gjerdrum case, we find indications and 

possibly evidence of lower prices, or a price discount, on dwellings that are at risk of 

a QCL compared to those that are not. This aligns with our expectations and makes 

intuitively sense that there should be lower prices for these dwellings because of the 

added risk of landslides, holding all else constant.  

 

On the contrary, there is an indication and possible evidence of higher prices relative 

to dwellings not at risk for the dwellings at risk in the Alta and Lyngen case. Such 

estimates were found both before and after the given landslides for each of the three 

cases. This may indicate a higher degree of risk-averse behaviour from homebuyers 

in the Gjerdrum case than in Alta and Lyngen. Alternatively, recall that in earlier 

subsections of this section, we discussed that there might be some significant 

differences in the quality, and therefore prices, for dwellings at risk of landslides in 

the Alta and Lyngen regions that are not captured. Such unobserved effects are not 

captured in our regression models, which may create bias in the estimates. 

Intuitively, it does not make sense that home buyers want to pay a premium for a 

dwelling built on quick clay and, therefore, a higher degree of risk. What is sensible 

is the opposite of this case, which may indicate that there are some amenity effects 

like those in Kim et al. (2017). Suppose there is a price premium attributed to 

amenity effects. In that case, these are probably present because there are qualities 

such as living close to a nature park, nice views, etc. These effects might be 

captured by controlling for location-specific effects differently than we did. One can, 

for example, include additional controls for these effects, such as distance to the 

nearest bus stop, city size, and so on, such as in Naoi, Seko & Sumita (2009).  

Of course, there are probably different solutions to capturing this effect, such as 

using dummies for postcodes with three digits, yielding a higher degree of generality. 

There are also additional controls for housing characteristics, such as the number of 
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bathrooms, whether there is a balcony, and so on. Again, these are unobserved 

effects in our models that probably cause bias in the results. Naoi, Seko & Sumita 

(2009) also included fixed effects for the owners and renters of the dwellings in their 

analysis. This was probably included because their data were gathered through 

surveys rather than registered data. However, they show evidence that there are 

changes in the results based on controlling for these effects, including age, 

education, marital status, etc. This may contribute to the results because there might 

be differences in the subjective risk assessment of each home buyer compared to 

the objective risk measures provided by entities such as in this thesis, NVE. 

 Another thing to consider that may induce bias in the estimated results is the 

presence of other, unobserved risks, such as the risk of flooding and forest fires.  

Contrary to prior research, we used a linear price scale instead of a logarithmic one. 

In hindsight, the interpretation of the regression coefficients may have been more 

intuitive if we had used a logarithmic transformation of the selling prices as the 

dependent variable compared to the linear one used in this thesis. 

 

Further, we think that the analysis of the results will yield more convincing estimates 

when there has been a more extended period to gather data on housing sales from. 

The landslide happened recently in the Alta and Gjerdrum regions, so we only have 

data for approximately one and a half years for the Alta case and one year for the 

Gjerdrum case. This would also open the possibility of looking at short-term and 

long-term effects, such as in Kim et al. (2017).  

 

One of the most challenging issues was the definitions of the treatment and control 

groups. Our analysis is still of value, but by adjusting what areas are included in the 

groups, such as having dwellings at risk only in Gjerdrum and comparing these to 

dwellings that are not at risk in the neighbouring municipals.  

Contrary to our approach, one should consider omitting remote areas relative to the 

landslide event area or using only the remote areas in the control group. By omitting 

remote areas, one can further control for location effects by different means than 

using a postcode or municipal dummy. Nevertheless, this would only be appropriate 

if we sought to answer other research questions. Alternatively, the analysis can be 

altered to a spatial DD model, where you analyse the effects on price based on the 

centroid of the given landslide. This also seems like an intuitive solution to further 
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analysing the issue presented in this thesis. We found evidence that the prices for 

dwellings that are not at risk experience a reduction after landslides, which we saw 

for the cases Gjerdrum and Alta. This may be due to an association effect of such 

events, where home buyers change their perception of risk after a QCL occurs close 

by to housing that is not built on quick clay but close to areas of quick clay. As 

mentioned earlier, the idea was to extend our analysis by including a model for a 

spatial DD. However, given the time constraints on our project, we had to dismiss 

this idea. Using a spatial approach will give a more detailed insight into how the 

housing prices are affected by the landslides while considering what distance the 

dwelling is from the actual place of the event. One example of such a study is Atreya 

et al. (2013), discussed in the literature review in section 2.  

Another potential issue is the chosen municipals and periods to include in each case. 

There might be some spill-over effects for the Alta and Lyngen cases because the 

areas are quite close, and the neighbouring areas we chose to include are, of 

course, also close in distance. We also chose to include some of the same 

municipals for each of these two cases, which might be an issue. For lists of 

municipalities for each case, see appendix B.1.A, B.2.A, and B.3.A. 

Our analysis in section 6 included an investigation of the effects on sales volume for 

dwellings at risk and the effects on sales for dwellings before and after landslides. 

This was to help determine whether the effects on prices can be attributed to market 

effects, given the changes in sales volume, or to salience effects that change home 

buyers’ perception of risk. Although this gave some indication of the issue, we must 

consider that these effects may be strongly correlated. If homebuyers become more 

aware of the risk of QCLs and change their risk perception, it is not given that they 

would want to buy dwellings at risk at a discounted price. Instead, the buyers, or at 

least a fraction of the buyers, would potentially not want to buy. Subsequentially, we 

can expect to see a reduction in sales volume. Therefore, we can hypothesize that 

the reduction in sales volume is somewhat attributed to the salience effect.  

  

To further ensure our results are reliable and valid, we could have allocated more 

time to do robustness tests, but we have unfortunately not included this in our thesis. 

When all taken into consideration, several issues could have been dealt with 

throughout conducting this thesis. Fixing these issues could yield a more convincing 

result for later research. 
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7. Conclusion 
 
This thesis investigates the price effect of risk for QCLs on dwellings and the price 

effect on dwellings at risk and not at risk after a landslide in relative proximity. This 

was approached by estimating regression models with a DD design, which was 

formulated by adding an interaction term between a dummy variable for dwellings at 

risk of QCLs and a dummy for whether the housing sale occurred before or after the 

given QCL event. 

 

For the municipalities included in the Gjerdrum case we find evidence that the sold 

dwellings at risk are approximately 76,000 NOK cheaper than those not at risk. For a 

detailed list over the municipals included in the Gjerdrum case, see appendix B.2.A. 

Also, there are indications and evidence that the sold dwellings not at risk see a drop 

in prices of approximately between 126,000 and 497,000 NOK after the landslide in 

Gjerdrum occurred. This is probably due to association effects through the major 

news coverage on the QCL, which cause home buyers to have a lower willingness to 

pay for dwellings in these areas. Also, there are clear indications of further price 

drops for dwellings at risk after this landslide, attributed to salience effects, hence, 

changes in the perception of risk. If the market is efficient, this would not be the case 

since the price discount of the risk would always be reflected in the prices of 

dwellings at risk. Although the estimated results of the price changes for dwellings at 

risk of QCL are not statistically significant, we believe that this effect is curbed due to 

a drop in sales volume for these dwellings. Such effect indicates that the sellers are 

less willing to sell, given the loss they would face, or that buyers are less willing to 

move to these areas. 

 

Unlike the Gjerdrum case, we find that the prices of dwellings at risk of QCL, for Alta 

and the other municipals included in the case, have a higher price than those not at 

risk, which is unexpected. For a detailed list over the municipals for the Alta case, 

see appendix B.2.A. There are findings from all three models that are significant for 

this case, where the estimated results are that dwellings at risk are between 

approximately 47,000 and 74,000 NOK, more expensive than those not at risk. 

However, this does not mean that buyers are more willing to pay a premium for the 

risk. Instead, this is probably due to some unobserved amenity effects, making home 



 

68 

buyers willing to pay more to live in the areas facing risk. Such unobserved effects 

may be due to amenities such as a pleasant surrounding environment, great views, 

etc. Also, surprisingly, the resulting estimates of model 5.2 show indications of the 

prices of dwellings not at risk increasing by over 600,000 NOK after the landslides, 

which is unexpected, to say the least. However, we find indications that the prices 

drop following the QCL by adding controls. In model 5.3, the coefficient is -93,454. 

Although not significant, it indicates some association effects for homebuyers in 

these areas. The results for the dwellings at risk after the landslide are mixed 

between the models and have no significant results. Again, these results are 

probably of little value since there is a significant drop in the number of these 

dwellings following the landslide in Alta, which means that the price effect gets 

curbed. 

 

In similarity with the Alta case, the analysis of Lyngen, in addition to its surrounding 

and remote areas, tells us that at-risk dwellings have higher prices than those not at 

risk. These results are significant in all three models, and the price premium of at-risk 

dwellings is found to be between approximately 104,000 and 312,000 NOK higher 

than those not at risk. Again, this is probably due to amenity effects like those we 

hypothesize driving the price premium for the Alta case, which is unobserved. We 

also find evidence that the prices of at-risk dwellings further increase by 

approximately 56,000 NOK after the landslide event in Lyngen, 2010. However, 

before adding controls for postcodes, there are indications of the opposite – that the 

prices drop for these dwellings. We find no convincing estimates of the price 

changes for dwellings that are not at risk after the landslide. However, in model 5.2, 

there is a significant increase in prices of approximately 996,000 NOK. This effect is 

likely attributed to significant increases in housing prices in areas such as Tromsø, 

which induces bias in the model’s estimation. This is likely since the effect is no 

longer significant by adding controls for postcode and drops to an increase of 

approximate 40,000 NOK, which is also unexpected. This is in combination with the 

market effects contributing to the prices dropping for these dwellings, as the average 

sales volume drops significantly for a longer time (2010-2021), which makes the 

results even more unexpected. This may indicate that the amenity effects in the 

areas at risk for landslides are more substantial than the effects of the risk and 

market mechanisms. 
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Given the mixed results, we find it reasonable to think that changes in prices and, 

therefore, home buyers’ risk perception is correlated to the severity of the damages 

from the QCLs or likely the degree of risk, which both are not observed in our 

models. However, we have found an effect on prices both for the dwellings being at 

risk of QCLs and prices of dwellings after QCLs occur. 

 

7.1. Future research suggestions 
As we have discussed in section 6.4, several elements could be and should be 

conducted further in future research to research the subject of risk of and actual 

occurrences of QCLs’ effect on housing prices.  

  

First, we highly recommend using a scale with multiple levels of risk rather than just 

a dummy variable indicating whether there is a risk of QCLs, which is in line with 

prior research, such as in Atreya et al. (2013), Kiel & Matheson (2018), and Kim et 

al. (2017). In their paper, Kiel and Matheson (2018) even illustrate that this approach 

yields significant effects on the estimated results for the risk levels. The reason is 

that there may be lower effects on price for lower degrees of risk and more 

significant effects from larger degrees of risk, which are lost and curbed when only 

using a dummy for one level of risk.  

 

Secondly, it is fascinating to determine whether the possible price effects of landslide 

occurrences are short-term or last for a more extended period. This will cast light 

upon if there is a price effect after the damages are repaired and if risk perceptions 

change after a while, such that the salience effect dissipates. A similar approach was 

attempted by Kim et al. (2017) and will demand a more extended period of data after 

the landslide event. This means that the research should be conducted further into 

the future since the landslides in Alta and Gjerdrum occurred on June third, 2020, 

and December 30th, 2020, respectively. In this thesis 

 

Furthermore, approaching the model estimations using White heteroskedasticity 

robust standard errors may not be optimal. A more reasonable approach to control 

for heteroskedasticity could be conducted by using clustered standard errors. One 

could, for example, cluster by grouping the treatment and control group, different 
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types of housing, such as apartments or townhouses, or by clustering postcodes. 

Clustering the standard errors will, in contrary to white heteroskedasticity robust 

standard errors, take heteroskedasticity across the chosen group into consideration. 

Doing so would therefore lead to a more correct estimation of the standard errors.  

Finally, including additional control variables for location-specific effects to eliminate 

bias stemming from unobserved effects will plausibly yield more convincing 

estimates. Doing so, one could expect the results for at least the Alta and Lyngen 

cases to change drastically since we determined there might be some significant 

amenity effects that impose bias in our estimates. We believe controlling for 

population size, the sociodemographic composition of the neighbourhoods, 

distances to grocery stores, bus stops, nature parks, etc., might significantly 

contribute to more convincing estimates. 

 



 

71 

References 

Angrist, J. D., & Krueger, A. B. (1999). Empirical strategies in labor economics. In 

Handbook of labor economics (Vol. 3, pp. 1277–1366). Elsevier. 

Angrist, J. D., & Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s 

Companion. In Mostly Harmless Econometrics. Princeton University Press. 

https://doi.org/10.1515/9781400829828 

Anundsen, A. K., & Røed Larsen, E. (2018). Testing for micro-efficiency in the housing 

market. International Economic Review, 59(4), 2133–2162. 

https://doi.org/10.1111/iere.12332 

Atreya, A., Ferreira, S., & Kriesel, W. (2013). Forgetting the Flood? An Analysis of the 

Flood Risk Discount over Time. Land Economics, 89(4), 577–596. 

Berg, A. F. (2022, February 18). Registrering av kvikkleireskred [Personal 

communication]. 

Bin, O., & Landry, C. E. (2012). Changes in Implicit Flood Risk Premiums: Empirical 

Evidence from the Housing Market (SSRN Scholarly Paper No. 1850671). Social 

Science Research Network. https://doi.org/10.2139/ssrn.1850671 

Botzen, W. J. W., Deschenes, O., & Sanders, M. (2019). The Economic Impacts of 

Natural Disasters: A Review of Models and Empirical Studies. Review of 

Environmental Economics and Policy, 13(2), 167–188. 

https://doi.org/10.1093/reep/rez004 

Braut, G. S., & Dahlum, S. (2021). Regresjonsanalyse. In Store norske leksikon. 

http://snl.no/regresjonsanalyse 

Case, K. E., & Shiller, R. J. (1989). The Efficiency of the Market for Single-Family Homes. 

The American Economic Review, 79(1), 125–137. 

Chau, K. W., & Chin, T. L. (2002). A Critical Review of Literature on the Hedonic Price 

Model (SSRN Scholarly Paper No. 2073594). Social Science Research Network. 

https://papers.ssrn.com/abstract=2073594 

Eiendomsverdi AS. (n.d.). Retrieved 7 January 2022, from https://eiendomsverdi.no/ 

Fæste, M. (2017, August 23). Selgers opplysningsplikt ved salg av bolig. Huseierne. 

https://www.huseierne.no/boligbloggen/2017/opplysningsplikt-ved-salg-av-bolig/ 

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The 

Journal of Finance, 25(2), 383–417. 

https://doi.org/10.1515/9781400829828
https://doi.org/10.1111/iere.12332
https://doi.org/10.2139/ssrn.1850671
https://doi.org/10.1093/reep/rez004
http://snl.no/regresjonsanalyse
https://papers.ssrn.com/abstract=2073594
https://eiendomsverdi.no/
https://www.huseierne.no/boligbloggen/2017/opplysningsplikt-ved-salg-av-bolig/


 

72 

Flavin, M., & Yamashita, T. (2002). Owner-occupied housing and the composition of the 

household portfolio. American Economic Review, 92(1), 345–362. 

Fremtind. (2020, December 31). Skredet i Gjerdrum: Hjelp fra forsikringsselskapet. 

https://kommunikasjon.ntb.no/pressemelding/skredet-i-gjerdrum-hjelp-fra-

forsikringsselskapet?publisherId=17846913&releaseId=17898545 

Garnache, C. (2020). Risk Salience or Information Disclosure? The Effect of Climate-

Related Risks on the Residential Real Estate Market (SSRN Scholarly Paper No. 

3398404). Social Science Research Network. https://doi.org/10.2139/ssrn.3398404 

Gjerdrum Kommune. (n.d.). Alt om leirskredet i Gjerdrum. Retrieved 2 February 2022, 

from https://www.gjerdrum.kommune.no/virksomheter/alt-om-leirskredet/ 

Gjerdrum Kommune. (2022, February 2). Politiet sikter Gjerdrum kommune. 

https://www.gjerdrum.kommune.no/aktuelt/politiet-sikter-gjerdrum-kommune/ 

Kiel, K. A., & Matheson, V. A. (2018). The effect of natural disasters on housing prices: 

An examination of the Fourmile Canyon fire. Journal of Forest Economics, 33, 1–7. 

https://doi.org/10.1016/j.jfe.2018.09.002 

Kim, J., Park, J., Yoon, D. K., & Cho, G.-H. (2017). Amenity or hazard? The effects of 

landslide hazard on property value in Woomyeon Nature Park area, Korea. 

Landscape and Urban Planning, 157, 523–531. 

https://doi.org/10.1016/j.landurbplan.2016.07.012 

Kousky, C. (2010). Learning from Extreme Events: Risk Perceptions after the Flood. 

Land Economics, 86(3), 395–422. https://doi.org/10.3368/le.86.3.395 

Langberg, Ø. K. (2016, December 27). I dette landet har folk høy utdanning og mye 

penger. Likevel leier de bolig hele livet. 

https://www.aftenposten.no/verden/i/a9QAE/mens-nordmenn-er-besatt-av-aa-

kjoepe-egen-bolig-er-det-helt-vanlig-aa-leie-i-resten-av-det-rike-europa 

Matre, J., Framstad, A. P., Kippernes, G. A., & Skjeggestad, H. (2010, June 9). Ulovlig 

byggearbeid kan ha forårsaket skredet i Lyngen [Newspaper]. 

https://www.vg.no/i/zaVyb 

Mordt, H., Mikaelsen, K. S., & Tufan, Ø. (2021, January 2). Over 110.000 bor på 

kvikkleire i Norge. NRK. https://www.nrk.no/osloogviken/over-110.000-bor-pa-

kvikkleire-i-norge-1.15310161 

Naoi, M., Seko, M., & Sumita, K. (2009). Earthquake risk and housing prices in Japan: 

Evidence before and after massive earthquakes. Regional Science and Urban 

Economics, 39(6), 658–669. https://doi.org/10.1016/j.regsciurbeco.2009.08.002 

https://kommunikasjon.ntb.no/pressemelding/skredet-i-gjerdrum-hjelp-fra-forsikringsselskapet?publisherId=17846913&releaseId=17898545
https://kommunikasjon.ntb.no/pressemelding/skredet-i-gjerdrum-hjelp-fra-forsikringsselskapet?publisherId=17846913&releaseId=17898545
https://doi.org/10.2139/ssrn.3398404
https://www.gjerdrum.kommune.no/virksomheter/alt-om-leirskredet/
https://www.gjerdrum.kommune.no/aktuelt/politiet-sikter-gjerdrum-kommune/
https://doi.org/10.1016/j.jfe.2018.09.002
https://doi.org/10.1016/j.landurbplan.2016.07.012
https://doi.org/10.3368/le.86.3.395
https://www.aftenposten.no/verden/i/a9QAE/mens-nordmenn-er-besatt-av-aa-kjoepe-egen-bolig-er-det-helt-vanlig-aa-leie-i-resten-av-det-rike-europa
https://www.aftenposten.no/verden/i/a9QAE/mens-nordmenn-er-besatt-av-aa-kjoepe-egen-bolig-er-det-helt-vanlig-aa-leie-i-resten-av-det-rike-europa
https://www.vg.no/i/zaVyb
https://www.nrk.no/osloogviken/over-110.000-bor-pa-kvikkleire-i-norge-1.15310161
https://www.nrk.no/osloogviken/over-110.000-bor-pa-kvikkleire-i-norge-1.15310161
https://doi.org/10.1016/j.regsciurbeco.2009.08.002


 

73 

NGI. (n.d.-a). Kvikkleireskred i Norge. Norges Geotekniske Institutt (NGI). Retrieved 4 

February 2022, from 

https://www.ngi.no/Tjenester/Fagekspertise/Kvikkleireskred/Kvikkleireskred-i-Norge 

NGI. (n.d.-b). Quick clay landslides. Norwegian Geotechnical Institute (NGI). Retrieved 

24 January 2022, from https://www.ngi.no/eng/Services/Technical-expertise/Quick-

clay-landslides 

NGI, N. G. I. (n.d.-c). What is quick clay? Norwegian Geotechnical Institute (NGI). 

Retrieved 24 January 2022, from https://www.ngi.no/eng/Services/Technical-

expertise/Quick-clay-landslides/What-is-quick-clay 

NOU 2022: 3—På trygg grunn (NOU 2022:3; På trygg grunn, p. 270). (2022). Olje- og 

energidepartementet. https://www.regjeringen.no/no/dokumenter/nou-2022-

3/id2905694/ 

NVE. (2020, June 4). Kvikkleireskredet i Alta: NVE undersøker grunnforholdene. 

https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/kvikkleireskredet-i-alta-

nve-undersoker-grunnforholdene/ 

NVE. (2021a, March 16). Lav skråningsstabilitet og fyllingsarbeider årsak til 

kvikkleireskred i Alta kommune. https://www.nve.no/nytt-fra-nve/nyheter-skred-og-

vassdrag/lav-skraningsstabilitet-og-fyllingsarbeider-arsak-til-kvikkleireskred-i-alta-

kommune/ 

NVE. (2021b, May 1). Kartlegging av fareområder. https://www.nve.no/om-nve/spoer-

nve/om-kvikkleire/kartlegging-av-fareomrader/ 

NVE, Jernbaneverket, & Statens Vegvesen. (2013). Vurdering av kartleggingsgrunnlaget 

for kvikkleire i strandsonen. https://asp.bibliotekservice.no/nve/title.aspx?tkey=21300 

Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., & French, N. (2003). Real estate 

appraisal: A review of valuation methods. Journal of Property Investment & Finance. 

https://doi.org/10.1108/14635780310483656 

Røed Larsen, E., & Weum, S. (2008). Testing the efficiency of the Norwegian housing 

market. Journal of Urban Economics, 64(2), 510–517. 

Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure 

competition. Journal of Political Economy, 82(1), 34–55. 

Rosenzweig, M. R., & Wolpin, K. I. (2000). Natural ‘Natural Experiments’ in Economics. 

Journal of Economic Literature, 38(4), 827–874. https://doi.org/10.1257/jel.38.4.827 

Schwerdt, G., & Woessmann, L. (2020). Empirical methods in the economics of 

education. The Economics of Education, 3–20. https://doi.org/10.1016/B978-0-12-

815391-8.00001-X 

https://www.ngi.no/Tjenester/Fagekspertise/Kvikkleireskred/Kvikkleireskred-i-Norge
https://www.ngi.no/eng/Services/Technical-expertise/Quick-clay-landslides
https://www.ngi.no/eng/Services/Technical-expertise/Quick-clay-landslides
https://www.ngi.no/eng/Services/Technical-expertise/Quick-clay-landslides/What-is-quick-clay
https://www.ngi.no/eng/Services/Technical-expertise/Quick-clay-landslides/What-is-quick-clay
https://www.regjeringen.no/no/dokumenter/nou-2022-3/id2905694/
https://www.regjeringen.no/no/dokumenter/nou-2022-3/id2905694/
https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/kvikkleireskredet-i-alta-nve-undersoker-grunnforholdene/
https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/kvikkleireskredet-i-alta-nve-undersoker-grunnforholdene/
https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/lav-skraningsstabilitet-og-fyllingsarbeider-arsak-til-kvikkleireskred-i-alta-kommune/
https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/lav-skraningsstabilitet-og-fyllingsarbeider-arsak-til-kvikkleireskred-i-alta-kommune/
https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/lav-skraningsstabilitet-og-fyllingsarbeider-arsak-til-kvikkleireskred-i-alta-kommune/
https://www.nve.no/om-nve/spoer-nve/om-kvikkleire/kartlegging-av-fareomrader/
https://www.nve.no/om-nve/spoer-nve/om-kvikkleire/kartlegging-av-fareomrader/
https://asp.bibliotekservice.no/nve/title.aspx?tkey=21300
https://doi.org/10.1108/14635780310483656
https://doi.org/10.1257/jel.38.4.827
https://doi.org/10.1016/B978-0-12-815391-8.00001-X
https://doi.org/10.1016/B978-0-12-815391-8.00001-X


 

74 

Selim, H. (2009). Determinants of house prices in Turkey: Hedonic regression versus 

artificial neural network. Expert Systems with Applications, 36(2), 2843–2852. 

https://doi.org/10.1016/j.eswa.2008.01.044 

Shiller, R. J., & Pound, J. (1989). Survey evidence on diffusion of interest and information 

among investors. Journal of Economic Behavior & Organization, 12(1), 47–66. 

https://doi.org/10.1016/0167-2681(89)90076-0 

Spjeldnæs, N. (2021). Kvikkleire. In Store norske leksikon. http://snl.no/kvikkleire 

SSB. (2022, March 22). Boforhold, registerbasert. SSB. https://www.ssb.no/bygg-bolig-

og-eiendom/bolig-og-boforhold/statistikk/boforhold-registerbasert 

stata.com. (n.d.). Graph twoway scatter—Twoway scatterplots. Retrieved 15 May 2022, 

from https://www.stata.com/manuals13/g-2graphtwowayscatter.pdf 

Stock, J. H., & Watson, M. W. (2020). Introduction to econometrics 4th ed (4th ed.). 

Pearson Education Limited. 

Taylor, S. E., & Thompson, S. C. (19820101). Stalking the elusive. Psychological Review, 

89(2), 155–181. https://doi.org/10.1037/0033-295X.89.2.155 

Tiltnes, A. H. (2010, September 3). Her gikk raset. Nordlys. https://www.nordlys.no/1-79-

5277258 

Tufte, P. A. (2020, February 10). Statistiske metoder  -forelesning 02.10.2020. Multippel 

lineaer regresjon: Fallgruver, Oslo. 

Wooldridge, J. M. (2018). Introductory Econometrics: A Modern Approach (7th ed.). 

Cengage Learning inc. 

 

 

 

https://doi.org/10.1016/j.eswa.2008.01.044
https://doi.org/10.1016/0167-2681(89)90076-0
http://snl.no/kvikkleire
https://www.ssb.no/bygg-bolig-og-eiendom/bolig-og-boforhold/statistikk/boforhold-registerbasert
https://www.ssb.no/bygg-bolig-og-eiendom/bolig-og-boforhold/statistikk/boforhold-registerbasert
https://www.stata.com/manuals13/g-2graphtwowayscatter.pdf
https://doi.org/10.1037/0033-295X.89.2.155
https://www.nordlys.no/1-79-5277258
https://www.nordlys.no/1-79-5277258


 

75 

Appendices 
 
 

A. Maps 

A.1. Gjerdrum case 
 

 

 

 

 

A.1.A26. Risk area map for Gjerdrum case

 

 

 

 

 

 

 
26 Appendix A.1.A visualises the risk areas for all included municipals for the Gjerdrum case in the colour 

“tomato”, while the black areas on the map represents the risk areas for quick clay landslide for all municipals in 
the Gjerdrum case. For all maps in appendix A.1, and the interactive map, the risk zones only include the areas 
at risk of the risk quick clay landslide, as defined by NVE, and not by the assumption for this thesis. Risk areas 
for other landslides are not included as the maps for these were separated for each scenario, hence it would be 
too time consuming to plot. The maps are created based on map data from GeoNorge and NVE (2022). 
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A.1.B27 Heatmap for Gjerdrum case 

 

 

 
27 Appendix A.1.B shows the included municipals for the Gjerdrum case in the colour “green”. The heatmaps are 

based on a density probability, hence the darker the area, the more probable it is that a random observation is 
located within the filled area. The risk areas for quick clay, with the same perquisitions as mentioned in footnote 
26, are the areas with a light grey colour.  The place of event (landslide) is plotted in yellow, while the plotting of 
sold dwellings, for the remainder of the maps, are represented in red, given that no other explanation is given for 
the map in question. For a map over all sold dwellings in the Gjerdrum case, see map 4.1 
 
For the remainder of the maps in appendix A.1, the municipals are separated into the three groups:  1) Municipal 
of the event, including the municipal Gjerdrum,  2) closely located municipalities, including the municipals 
Nittedal, Ullensaker, Nannestad, Lillestrøm, Lørenskog, Nes, Rælingen, Lunner, Hurdal, Eidsvoll, and 3) Remote 
located municipalities, including the municipals Kristiansand, Fredrikstad, Drammen, Sarpsborg, Skien, 
Arendal, Sandefjord, Tønsberg, Porsgrunn, Halden. 
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A.1.C Heatmap and spread of sold dwellings for Gjerdrum Municipal

 

A.1.D Heatmap and spread for sold dwellings for closely located municipalities 

for Gjerdrum case
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A.1.E Heatmap and spread of sold dwellings for remote located municipals for 

Gjerdrum case

 

A.1.F28 Spread of sold dwellings for treatment and control groups before the events. 

 

 
28 This map follows the same logic as Map 5.1: Spread of sold dwellings in treatment (red) and control groups 

(cyan) for Gjerdrum., where the red plots are representing sold dwellings in treatment group for Gjerdrum, after 

the event and the cyan plots are representing sold dwellings in control group for Gjerdrum, after the event. The 
same logic goes for map A.1.G, where the plots represent sold dwellings before the event. 
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A.1.G: Spread of sold dwellings for treatment and control groups after the 

events.  
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A.2. Alta case 
 

 

 

 

 

(A.2.A) Risk area map for Alta case29

 

 

 

 

 

 

 

 

 

 
29 
 Appendix A.2.A visualises all included municipals for the Alta case in the colour “tomato”, while the black areas 
on the map represents the risk areas for quick clay landslide for all municipalities. For all maps in appendix A.1, 
and the interactive map, the risk zones only include the areas at risk of the risk quick clay landslide, as defined by 
NVE, and not by the assumption for this thesis. Risk areas for other landslides are not included as the maps for 
these were separated for each scenario, hence it would be too time consuming to plot. The maps are created 
based on map data from GeoNorge and NVE (2022). 
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A.2.B30: Heatmap for Alta case

 

 

 

 

 

 
30 Appendix A.2.B visualises all municipals in the Alta case in the colour “green”. The heatmaps are based on a 
density probability, hence the darker the area, the more probable it is that a random observation is located within 
the filled area. The risk areas for quick clay, with the same perquisitions as mentioned in footnote 29, are the 
areas with a light grey colour.  The place of event (landslide) is plotted in yellow, while the plotting of sold 
dwellings, for the remainder of the maps, are represented in red, given that no other explanation is given for the 
map in question. For a map over all sold dwellings in the Alta case, see map 4.2 
 
For the remainder of the maps in appendix A.2, the municipals are separated into the three groups:  1) Municipal 
of the event, including the municipal Alta, 2) closely located municipalities, including the municipals Porsanger, 
Hammerfest, Kvænangen, Kautokeino, Karasjok, Loppa, Nordreisa, Hasvik, Skjervøy, and 3) Remote located 
municipalities, including the municipals Vefsn, Hemnes, Rana, Fauske, Sørfold 
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A.2.C: Heatmap and spread of sold dwellings for Alta Municipal

 

A.2.D: Heatmap and spread for sold dwellings for closely located 

municipalities for Alta case
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A.2.E31: Heatmap and spread of sold dwellings for remote located municipals for Alta 

case  

A.2.F32: Spread of sold dwellings for treatment and control groups before the event 

 

 
31 As the map would be distorted by marking the place of event on the maps for the remote located municipals 
the place of event is not plotted. 
32 This map follows the same logic as Map 5.2, where the red plots represent sold dwellings in treatment group 
for Alta, before the event, while the cyan plots are representing sold dwellings in control group for Alta, before the 
event. 
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A.2.G33: Spread of sold dwellings for treatment and control groups after the 

event. 

 

 

 

 

 

 

 

 

 

 

 
33 This map follows the same logic as Map 5.2, where the red plots represent sold dwellings in treatment group 

for Alta, after the event, while the cyan plots are representing sold dwellings in control group for Alta, after the 
event. 
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A.3. Lyngen case 
 

 

 

 

 

 

 

A.3.A34: Risk area map for Lyngen case 

 

 

 

 

 

 

 

 
34 Map A.3.A visualises all the included municipals in the Lyngen case in the colour “tomato”, while the black 
areas on the map represents the risk areas for quick clay landslide for all municipals in the Lyngen case. For all 
maps in appendix A.3, and the interactive map, the risk zones only include the areas at risk of the risk quick clay 
landslide, as defined by NVE, and not by the assumption for this thesis. Risk areas for other landslides are not 
included as the maps for these were separated for each scenario, hence it would be too time consuming to plot. 
The maps are created based on map data from GeoNorge and NVE (2022). 
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A.3.B35: Heatmap and spread of sold dwellings for Lyngen case

 

 

 
35 The map shows the included municipals for the Lyngen case in the colour “green”. The heatmaps are based on 
a density probability, hence the darker the area, the more probable it is that a random observation is located 
within the filled area. The risk areas for quick clay, with the same perquisitions as mentioned in footnote 34, are 
the areas with a light grey colour.  The place of event (landslide) is plotted in yellow, while the plotting of sold 
dwellings, for the remainder of the maps, are represented in red, given no other explanations or notes say 
otherwise. For a map over all sold dwellings in the Lyngen case, see map 4.3 
 
For the remainder of the maps in appendix A.3, the municipals are separated into the three groups:  1) Municipal 
of the event, including the municipal Lyngen,  2) closely located municipalities, including the municipals :  
Skjervøy, Kåfjord, Tromsø, Karlsøy, Storfjord, Loppa, Balsfjord, Hasvik, Senja, and 3) Remote located 
municipalities, including the municipals :  Skjervøy, Kåfjord, Tromsø, Karlsøy, Storfjord, Loppa, Balsfjord, 
Hasvik, Senja 
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A.3.C: Heatmap and spread of sold dwellings for Lyngen Municipal

 

A.3.D: Heatmap and spread for sold dwellings for closely located 

municipalities for Alta case
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A.3.E36: Heatmap and spread of sold dwellings for remote located municipals for Alta 

case 

 

A.3.F37: Spread of sold dwellings for treatment and control groups before the event 

 

 
36 As the map would be distorted by marking the place of event on the maps for the remote located municipals 
the place of event is not plotted. 
37 This map follows the same logic as Map 5.3. The red plots represent sold dwellings in the treatment group for 
Lyngen before the event, and the cyan plots represent sold dwellings in the control group for Lyngen before the 
event. 
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A.3.G38: Spread of sold dwellings for treatment and control groups after the 

event

 

 

 

 

 

 

 

 

 

 
38 This map follows the same logic as Map 5.3. The red plots represent sold dwellings in the treatment group for 
Lyngen after the event, and the cyan plots represent sold dwellings in the control group for Lyngen after the 
event.  
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B. General summary statistics 
 

B.1. Gjerdrum 
 
 

B.1.A: Table of observations for each municipal by after dummy for the 

Gjerdrum case 

 
After 

  

Municipal 0 1 Total 

Arendal 3355 688 4043 

Drammen 11631 2092 13723 

Eidsvoll 2404 443 2847 

Fredrikstad 7830 1472 9302 

Gjerdrum 596 81 677 

Halden 2817 509 3326 

Hurdal 177 38 215 

Kristiansand 11666 2284 13950 

Lillestrøm 9085 1531 10616 

Lunner 588 106 694 

Lørenskog 4291 780 5071 

Nannestad 1360 234 1594 

Nes 2041 393 2434 

Nittedal 2115 384 2499 

Porsgrunn 4060 691 4751 

Rælingen 2122 379 2501 

Sandefjord 6819 1227 8046 

Sarpsborg 5579 1096 6675 

Skien 6099 1091 7190 

Tønsberg 6702 1221 7923 

Ullensaker 4424 824 5248 

Total 95761 17564 113325 
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B.1.B: Table of observations for each municipal by risk dummy for the 

Gjerdrum case 

 
LR 

  

Municipal 0 1 Total 

Arendal 4036 7 4043 

Drammen 13069 654 13723 

Eidsvoll 2844 3 2847 

Fredrikstad 9008 294 9302 

Gjerdrum 365 312 677 

Halden 3326 0 3326 

Hurdal 215 0 215 

Kristiansand 13457 493 13950 

Lillestrøm 10035 581 10616 

Lunner 694 0 694 

Lørenskog 5071 0 5071 

Nannestad 1475 119 1594 

Nes 2320 114 2434 

Nittedal 2476 23 2499 

Porsgrunn 4526 225 4751 

Rælingen 2501 0 2501 

Sandefjord 7554 492 8046 

Sarpsborg 6427 248 6675 

Skien 6605 585 7190 

Tønsberg 7524 399 7923 

Ullensaker 5059 189 5248 

Total 108587 4738 113325 
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B.1.C: Table of observations per year by risk dummy for the Gjerdrum case 

 
LR 

   

Year 0 1 Total 

Ratio 

treat/total 

2015 14287 617 14904 0,041398282 

2016 14308 627 14935 0,041981922 

2017 14822 655 15477 0,042320863 

2018 15463 656 16119 0,040697314 

2019 15957 676 16633 0,040642097 

2020 16941 768 17709 0,043367779 

2021 16809 739 17548 0,042113061 

Total 108587 4738 113325 
 

 

 

 

 

E.1.D: Table of observations for each type of dwelling for the Gjerdrum case 

Housingtype Freq. Percent Cum. 

Detached house 38197 33,71 33,71 

Apartment 54403 48,01 81,71 

Townhouse 9479 8,36 90,09 

Semi-detached 

house 
11246 9,92 100 

Total 113325 100 
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B.2. Alta 
 

B.2.A: Table of observations for each municipal by after dummy for the Alta 

case 

 
 After 

  

Municipal 0 1 Total 

Alta 2781 465 3246 

Fauske 854 195 1049 

Hammerfest 2124 289 2413 

Hasvik 1 1 2 

Hemnes 339 65 404 

Karasjok 50 8 58 

Kautokeino 49 13 62 

Kvænangen 14 8 22 

Loppa 5 3 8 

Nordreisa 48 32 80 

Porsanger 215 44 259 

Rana 5089 670 5759 

Skjervøy 13 15 28 

Sørfold 74 29 103 

Vefsn 2044 333 2377 

Total 13700 2170 15870 
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B.2.B: Table of observations for each municipal by risk dummy for the Alta 

case 

 
LR 

  

Municipal 0 1 Total 

Alta 3068 178 3246 

Fauske 920 129 1049 

Hammerfest 2329 84 2413 

Hasvik 2 0 2 

Hemnes 398 6 404 

Karasjok 58 0 58 

Kautokeino 62 0 62 

Kvænangen 22 0 22 

Loppa 2 6 8 

Nordreisa 78 2 80 

Porsanger 259 0 259 

Rana 5355 404 5759 

Skjervøy 24 4 28 

Sørfold 65 38 103 

Vefsn 2189 188 2377 

Total 14831 1039 15870 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 

B.2.C: Table of observations per year by risk dummy for the Alta case 

 
      LR 

 

Year 0 1 Total 

Ratio 

treat/total 

2007 556 26 582 0,04467354 

2008 685 39 724 0,053867403 

2009 801 63 864 0,072916667 

2010 922 59 981 0,060142712 

2011 950 69 1019 0,067713445 

2012 1000 58 1058 0,054820416 

2013 887 66 953 0,069254984 

2014 1028 61 1089 0,056014692 

2015 1000 89 1089 0,081726354 

2016 1162 84 1246 0,06741573 

2017 1071 84 1155 0,072727273 

2018 1178 89 1267 0,070244672 

2019 1115 91 1206 0,075456053 

2020 1253 84 1337 0,062827225 

2021 1223 77 1300 0,059230769 

Total 14831 1039 15870 

 

B.2.D: Table of observations for each type of dwelling for the Alta case 

  

Housingtype Freq. Percent Cum. 

Detached house 7328 46,18 46,18 

Apartment 6187 38,99 85,16 

Townhouse 892 5,62 90,78 

Semi-detached 

house 
1463 9,22 100 

Total 15870 100 
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B.3. Lyngen 
 

  

B.3.A: Table of observations for each municipal by after dummy for the Lyngen 

case 

 After   

Municipal 0 1 Total 

Balsfjord 31 259 290 

Fauske 96 942 1038 

Hasvik 0 2 2 

Hemnes 45 341 386 

Karlsøy 11 119 130 

Kåfjord 1 19 20 

Loppa 0 7 7 

Lyngen 10 71 81 

Rana 1082 4780 5862 

Senja 157 928 1085 

Skjervøy 4 23 27 

Storfjord 4 37 41 

Sørfold 5 92 97 

Tromsø 2834 17388 20222 

Vefsn 356 2073 2429 

Total 4636 27081 31717 
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B.3.B: Table of observations for each municipal by risk dummy for the Lyngen 

case 

 Risk   

Municipal 0 1 Total 

Balsfjord 221 69 290 

Fauske 910 128 1038 

Hasvik 2 0 2 

Hemnes 380 6 386 

Karlsøy 130 0 130 

Kåfjord 7 13 20 

Loppa 1 6 7 

Lyngen 75 6 81 

Rana 5437 425 5862 

Senja 1036 49 1085 

Skjervøy 23 4 27 

Storfjord 35 6 41 

Sørfold 61 36 97 

Tromsø 14619 5603 20222 

Vefsn 2241 188 2429 

Total 25178 6539 31717 
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B.3.C: Table of observations per year by risk dummy for the Lyngen case 

 Treat    

Year 0 1 Total 

Ratio 

Treatment/total 

2007 841 177 1018 0,173870334 

2008 881 176 1057 0,166508988 

2009 1255 214 1469 0,145677332 

2010 1405 286 1691 0,169130692 

2011 1660 372 2032 0,183070866 

2012 1773 363 2136 0,16994382 

2013 1622 440 2062 0,213385063 

2014 1827 438 2265 0,193377483 

2015 1826 448 2274 0,197009675 

2016 2000 572 2572 0,222395023 

2017 1858 519 2377 0,218342448 

2018 2016 601 2617 0,229652274 

2019 1944 618 2562 0,241217799 

2020 2140 680 2820 0,241134752 

2021 2130 635 2765 0,22965642 

Total 25178 6539 31717 0,20616704 

  

 

 

 

B.3.D: Table of observations for each type of dwelling for the Lyngen case 

 

Housingtype Freq. Percent Cum. 

Detached house 9847 46,18 31,05 

Apartment 17073 38,99 84,88 

Townhouse 1468 5,62 89,5 

Semi-detached 

house 
3329 9,22 100 

Total 15870 100  
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C. Description of visualization of data with maps 
Even though the ambitions for the thesis were high, we did get coordinates as part of 

the data from EV. Even though the time constraint did not allow us to do a spatial 

DD, we still found it necessary and worthy to visualize the data through maps.   

For this, we again used Rstudio39. The combination allowed us to create interactive 

and non-interactive maps with different features and use cases.  

 

For the maps, we used two different websites. For maps regarding the risk areas 

concerning quick, we used NVE- kartdata. Getting the data directly from those who 

asses and is responsible for mapping the risk in Norway is undoubtedly a significant 

benefit as the data is reliable and up to date when downloading it. For mapping the 

different municipals that are part of each case, we downloaded a zip file including 

both municipals and counties. The file was downloaded from GeoNorge, and their 

catalogue consists of maps with different attributes. The map consists of municipals 

and counties cut according to the coastline and is based on municipals and counties 

from 2020. The files were downloaded in Geojson format using the following 

projection for all three maps:  EUREF89 UTM sone 33, 2d.  

For creating the maps, we first need to prepare the files so R can read the data 

within the file. First, we format the file into a utf8 format. These files are not initially 

formatted in utf8, a format that can read and write letters that are almost exclusively 

included in the Norwegian alphabet, such as Æ, Ø, and Å.  

 

When the file is formatted, we can go on to the next step in the process. When 

dealing with what R defines as SpatialPolygonsDataFrame, we need to know what 

information the Geojson file withholds.  

In step 4, we ask R to tell us what layers the dataset consists of. For example, the 

Geojson file with the data for quick clay risk zones in Norway has the layer 

“Skred_Kvikkleire”, which we want to visualize. Moving on to step 5, we need to 

know what kind of geomType the data is formatted with. Looking back at the last 

step, we can find the layer type through the R-output. In all three files, we can see 

that we are dealing with wkbPolygon. Wkb stands for Well-known Binary, while 

polygons are the outlines that represent the visualization of the risk zones and 

 
39 For creating maps for the thesis, we used the packages ggplot2, ggmap, leaflet.extras, dplyr, maps, mapproj, 
RColorBrewer and utf8. 
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municipals. If the Layer type were any different, we would need to replace 

“wkbPolygon” with the given type. In step number 6, we produce a dataset based on 

the geomType where all the information we need is included. In this case, we delete 

the data that is not needed for this thesis. Next up, we must format the projection of 

the maps to make them able to read longitudes and latitudes for the region we want 

to visualize. We did this by using the commands proj4string and spTransform.  

 

Next, we want to see what values the data consists of. For example, we can check 

unique values in the variables. In the mapping data for risk zones, we checked what 

municipals had a registered risk area. We found that the Municipal “Kåfjord”, was 

named “Gáivuotna” in the data over risk zones. We then had to rename this value to 

match the data registered in the other datasets.  

 

Next up, we had to make datasets that included a selection of municipals that match 

the selection we did with the transaction data from EV. This was reproduced for each 

case, for each composition of municipals within each case, that being the 

municipality where the landslide occurred, closely located or remote municipalities. 

Lastly, we did the same coding for the risk zones.  

Now that we have the datasets, we need to create map functions in R, we create a 

new dataset by hand. The data frame used for the popup information in the 

interactive map was created using the “tibble” function. The data was then manually 

plotted and consisted of information such as where the landslide occurred, in what 

municipal, what year, and at what date the landslide found place. To place it on the 

map, we had to manually find the longitude and latitude of the centroid of the 

landslide. This took a decent amount of time as I had to manually check whether the 

coordinates found matched where the landslides found place and make sure it was 

approximately in the centre of the landslide. For the interactive map, we also wanted 

a summary of each case to pop up for the viewer when interacting with the markers 

for each case. This was produced by mutating a new variable named popup info into 

the data frame we created earlier.  

 

Creating the interactive maps is, from this point, a straightforward process. Using 

leaflet, a web-based service, we can now create an interactive map with the features 
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and information we want it to have. The interactive maps will be available through a 

link in map 4.4.  

 

 

For maps included in the thesis and the appendix, we used the ggplot2 package to 

visualize the data. First, we must format the data so that the package can read the 

information. We do this by using the tidy function. We create new datasets with the 

same name as the earlier datasets in a different format. This makes it easier for us to 

know what datasets to get specific information from when working with leaflet and 

ggplot2. 

 

For creating maps for the thesis, we used the packages ggplot2, ggmap, 

leaflet.extras, dplyr, maps, mapproj, RColorBrewer and utf8. 

 


