
 

 

A screening method for urban drainage zones 

Tiina M. Komulainen1   Tolli Lavrans Mørk1   Ali Riyad Al-Shiblawi1   Jakub Roemer1,2 
1Department of Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Norway, 

{tiina.komulainen, jakub.roemer}@oslomet.no 
2AGH University of Science and Technology, Poland 

 

 

 

 

 

Abstract 
Due to climate change, the storms have intensified 

leaving the urban drainage system and wastewater 

treatment plants hard to tackle with the large water 

quantities. In this study we develop a data-based 

screening method to identify which drainage zones 

would benefit most of blue-green infrastructure to avoid 

spilling of uncleaned water. First the precipitation and 

drainage zone flow rate data are pre-processed and de-

seasonalized to remove the flow rate due to consumer 

wastewater. Then, system identification is applied for 

the rain periods and transfer function parameters for first 

order plus time delay model are collected. The screening 

index is calculated from the transfer function model 

parameters. The results show that the system is very 

nonlinear, but the mean values for the screening index is 

statistically significantly different for the drainage zones 

included to this study. The screening index clearly 

separates the different types of drainage zones and gives 

a reasonable suggestion for which drainage zones 

should be considered further for implementation of 

blue-green infrastructure like nature-based solutions.  

Keywords: dynamic modeling, system 
identification, urban drainage system, nature-based 

solutions, blue-green infrastructure, flood risk 

mitigation. 

1 Introduction 

It is expected that the climate change is going to have 

increasing impact on urban water resources. Currently, 

for the most European regions the rainfall patterns and 

temperature regimes are changing (Field, 2014). 

Precipitation frequency and temporal distribution leads 

to shorter but more intense rainfall events. 

In rapidly expanding urbanization the urban 

drainage system and wastewater treatment plants are 

unprepared for treatment of large water quantities. This 

causes flooding in cities and disposal of uncleaned water 

to nearby sea/rivers/lakes. Flood damages the city 

buildings and polluted urban water systems have high 

economical and ecological consequences for the citizens 
and marine life (Leal Filho, 2019). 

In recent years the idea of nature-based solutions (NBS) 

has gained significant attention for storm water 

mitigation (Dolman, 2020, Kalsnes, 2019). Nature-

based solutions are blue-green infrastructures 

implemented at the human habitats (Somarakis, 2019). 

The main goal of NBS is to support sustainable and 

resilient city growth, mitigate climate change and 

restore the local ecosystem. Nature-based solutions can 

potentially be used for flood risk mitigation and water 

quantity and quality improvement. The principal of 

NBS lies in natural process of water evapotranspiration, 

phytoremediation and infiltration (Haase, 2015, 

Beloqui, 2020). Rainwater, instead of being transported 

directly into the storm channels grid, can be 

accumulated in NBS and slowly disposed hours or even 

days after the precipitation event. Thanks to this ability, 

the water runoff peak can be flattened and prolonged. 

Lowered runoff amplitude is easier to handle by 

wastewater treatment facilities, which makes the city 

more flooding resilient (Eisenberg 2018). 

There are many types of NBS dedicated to 

support surface water regulation function in the city 

areas. The most effective are arboretums, residential 

parks, green roofs (intensive/smart), detention ponds 

(dry), retention ponds (wet), biofilters and mounds 

(Somarakis, 2019, Eisenberg, 2018). Recently, green 

roofs have been implemented at Fossum Terrasse in 

Bærum. At the moment the constructed wetlands are 

built at Hovseterdalen in Oslo. 

1.1 Drainage zones and storm water 

problem 

A drainage zone is an area of land, forest, buildings, 

infrastructure and a subterranean urban drainage 

pipeline network that leads the rainwater and 

wastewater from households towards a joint urban water 

tunnel. The joint urban water tunnel collects water from 

the drainage zones in Oslo, Bærum and Asker 

municipalities and leads the water to the Veas 

wastewater treatment plant.  In Asker municipality the 

rainwater is flowing in its own pipelines whereas in 

many parts of Oslo and Bærum the rainwater and 

household water are flowing in the same subterranean 

pipelines. During heavy rain the joint urban water tunnel 
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can get filled up with water, and the excess uncleaned 

water will be spilled to the Oslo fjord. This is a major 

threat to the marine life the Oslo fjord and closes of 

beaches along the fjord. 

1.2 Problem statement and research 

questions  

More targeted efforts are needed to reduce disposal of 

uncleaned water to the Oslo Fjord during heavy storms. 

The Veas wastewater treatment plant and municipalities 

at Oslo, Bærum and Asker have challenged researchers 

at OsloMet to develop a screening method that can 

pinpoint drainage zones which have the greatest 

influence to the excess water into the Veas tunnel during 

rainy periods.  

We aim to develop a screening method based on 

dynamic characterization of the drainage zones using 

collected time series. The screening method should 

illustrate which drainage zones could benefit most of 

blue-green infrastructures by slowing down the water 

flow through the drainage zone, and thereby flattening 

the flow profile into the tunnel. 

Our research questions are: RQ1: Is it possible to 

approximate the dynamic behavior of water flow 

through a drainage zone with a simple time-series 

model? RQ2: Can the drainage zones be classified using 

an index based on the dynamic model parameters?  

Table 1. Bærum drainage zones with precipitation 

stations, number of inhabitants and maximum values 

for precipitation and flow sensors. 

Draina

ge 

zone 

Precipitation 

station 

Per-

sons 

Max 

precipitati

on [mm] 

Max 

flow 

[L/s] 

Bjørne

-gård 

Gjettum_II 914 15.4 92.2 

Sør-

aasen 

Aurevann 2882 8.9 208.7 

Evjeba

kken 

Gjettum_II 2072 15.4 250.8 

Jar Øvrevoll 8497 6.0 341.8 

Sand-

vika 

Bærum_kom

munegården 

9264 12.3 435.9 

Ha-

mang 

Økeriveien, 

Bærums_vær

k,Øvre_Topp

enhaug,Gjett

um_II 

34582 17.0 915.1 

Sta-

bekk 

Storøya 9358 6.1 966.5 

 

 

Figure 1. Drainage zones (blue text) and precipitation 

stations (black text) in Bærum municipality. The joint 

urban water tunnel (red line) is built along the coast. 

1.3 Scope of the study, Bærum municipality 

The scope of this case study is the urban drainage system 

in Bærum, because the data set for this area is more 

complete than data sets collected for Oslo and Asker 

municipalities. The drainage zones, the precipitation 

stations, the number of inhabitants and the maximum 

values for the precipitation and flow measurements are 

given in Table 1 and Figure 1. The drainage zones 

omitted from this study due to missing data are 

Engervann, Fossveien, Fornebu, Skallum Skytterdalen, 

Slependen, and Tanum.  

Rainwater is measured at precipitation stations, 

located in different drainage zones. Some drainage 

zones do not have its own precipitation station, and 

therefore, the closest precipitation measurement is used 

to estimate the rain fall in this zone. The rainwater and 

wastewater from one drainage zone are led into an inlet 

point to the joint urban drainage tunnel. The flow 

measurement device is installed at this inlet point. 

2 Modeling of urban drainage 

systems 

Hydrology refers to water, its occurrence, distribution, 

circulation as well as its physical and chemical 

properties (Marshal, 2013). Hydrological phenomena 

like rainfall, interception, infiltration, transportation, 

evaporation or storage are components of water cycle. 

There are many hydrologic models trying to represent 

water behavior. These models can be divided into three 

categories, depending on used parameters and physical 

principles applied (Devia, 2015). 

First group consists of empirical models representing 

a data-driven approach. Water behavior modeling is 
based on finding relations between input (usually 

rainfall) and output (water runoff) without taking into 
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account actual the complex physics. The second group 

covers parametric-based models. These models try to 

represent the water runoff behavior with a multi-

parameter equations. The parameters are usually 

obtained empirically and calibrated for each specific 

case. The physically based models are the third group. 

Their principle of operation is based on modeling 

physics behind hydrological processes. The water 

dynamics is usually represented with differential 

equations. 

2.1 Physically based approach 

MIKE SHE is one of the most widely used physically 

based hydrological models (Ma, 2016).  The principle of 

operation lies in dividing the watershed into a unit grid 

horizontally for discrete calculations of complex terrain. 

The relationship between the ecohydrological processes 

(precipitation, evaporation etc.) and water runoff is 

calculated through continuity and motion equations 

(Zhou, 2013). The MIKE SHE contains three modules: 

water body motion module, water quality module and 

water balance tool, as well as several submodules, 

including snow melting module, overland flow module, 

rivers and lakes module, evapotranspiration module, 

unsaturated flow module and saturated flow module. 

The accurate calculations require selection of proper set 

of modules. It is a complex and challenging task 

depending on multidisciplinary skills. 

2.2 Parameter based approach 

SWIMM model is one of well-recognized parameter-

based models used for dynamic rainfall-runoff 

simulation (Rossman, 2015). It can be used for single 

event as well as for long-term simulations. The modeled 

land area is divided into subcatchment areas, which are 

characterized by different the soil types and ground 

covers. The SWIMM model collects the subcatchment 

areas that generate rainwater runoffs as a result of 

precipitation. The SWIMM model then simulates the 

water transportation through pipes and channels. Water 

storage and treatment devices (pumps and regulators) 

can be also implemented. The SWIMM can model both 

runoff quantity and quality, separately for each 

subcatchment area, pipe or channel. 

2.3 Data-driven approach with system 

identification 

System identification is a data-driven method to create 

models from time-series data (Ljung, 1999). The system 

identification toolbox in Matlab uses subspace 

algorithm to identify parameters for models with pre-

defined structures such as transfer functions, state-space 

models and many more.  

2.4 The idea for simplified modeling for 

urban drainage zone 

In order to develop a simple screening method, we need 

to characterize the dynamic behavior between 

precipitation and flow. We assume that the hydrological 

system, i.e. the soil and built infrastructure, in a drainage 

zone can be approximated as a first order transfer 

function system. Further we assume that the hydraulic 

system, i.e. the water flow through the subterranean 

pipelines in a drainage zone, can be approximated as 

plug-flow. This gives us a first order plus time delay 

(FOPTD) transfer function model structure between 

precipitation P(s) and flow F(s) to the joint urban 

drainage tunnel: 

𝐹(𝑠) =
𝐾𝑝

𝑇𝑝𝑠+1
∙ 𝑒−𝑇𝑑𝑠 ∙ 𝑃(𝑠) (1) 

Where Kp is the process gain, Tp is the time constant and 

Td is the time delay. 

2.5 The idea for screening method for urban 

drainage zones 

Assume that the drainage zones can be modeled with 

FOPTD system and the dynamic characteristics of the 

precipitation are similar to a pulse signal. Then, the 

rainwater flow from each drainage zone will be a pulse 

response. Further, assume that these pulse responses 

from each the drainage zone can be summed up using 

the principle of superposition. The total flow profile into 

the joint urban water tunnel is then the sum of the flow 

profiles from each drainage zone.  

Now, the drainage zone with the largest process gain 

and the shortest time delay and shortest time constant, 

will have the sharpest flow profile that contributes most 

to the problem of overflow in the joint urban water 

tunnel.  

We suggest to construct the screening index for 

drainage zone i, Si, as follows:  

𝑆𝑖 =
𝐾𝑝𝑖

𝑇𝑝𝑖+𝑇𝑑𝑖
  (2) 

Drainage zones with high Si have most aggressive 

flow profile whereas drainage zones with low Si index 

have smoother flow profile. 

Constructing blue-green infrastructure to drainage 

zones with high Si would flatten the total flow curve into 

the joint urban water tunnel. Thus, inhibiting the sharp 

flow peaks into the tunnel that forces the excess water 

to the Oslo fjord. 

3 Materials and methods 

3.1 Data collection 

The data was collected from Bærum municipality during 

January 2018 – December 2019 using resolution of 10 

minutes. The data consists of precipitation 
measurements in [mm] at the 11 precipitation stations 

and flow rate measurements in [L/s] at the Veas tunnel 

inlet points from the drainage zones.  
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3.2 Software tools 

Matlab R2021a with system identification toolbox was 

used for data pre-processing and modeling. 

3.3 Data pre-treatment 

The dataset contains flow rate and precipitation 

measurements collected by several stations in Bearum 

municipality. Some of the drainage zones do not have a 

measuring station. Thus, the first data pre-treatment step 

was to assign the closest precipitation measurement to 

those areas which do not have their own station. In the 

next step, all winter months (November-April) were 

excluded from further processing. Snow melting impact 

is hard to evaluate and including winter months could 

affect further modelling. In the next step, data were 

synchronized in the manner that flow rate measurement 

sampling was changed from 1/minute to 1/10minutes.  

3.4 Removal of seasonal trends 

The joint urban drainage tunnel collects stormwater, but 

also municipal wastewater. The municipal wastewater 

flow with daily and weekly variation had to be removed 

to improve the data quality for modeling. In the first 

step, the data was split into four quarters: May 2018 to 

June 2018, August 2018 to October 2018, May 2019 to 

June 2019 and August 2019 to October 2019. In the next 

step, a full no-rain week was manually selected from 

each period. It was assumed that no-rain week is a good 

representation of municipal wastewater production. 

Lastly, for each period, no-rain week was subtracted 

from the data. 

3.5 Selection of data for modeling 

After data pre-treatment and removal of seasonal trends, 

the rain periods were chosen manually. It was decided 

that only periods at least 2 hours long will be taken into 

account for further analysis. 

3.6 System identification procedure 

System identification toolbox was used to calculate the 

dynamic parameters of each drainage zone. The first 

order transfer function with delay was chosen (2). 

Parameters were calculated independently for each rain 

period. Initial result assessment shows that some of 

calculates parameters has non-physical values. 

Therefore, all the transfer functions with very large Kp 

or very large Tp were removed, as these are seen not 

sensible considering the geographical distances between 

the drainage zones and the joint urban water tunnel. 

Transfer functions with negative Kp were also removed 

as these are seen physically impossible. 

3.7 Screening index and statistical analysis 

The screening index was calculated based on the transfer 
function parameters Kp, Tp and Td for each of the rain 

periods in each of the drainage zones. The box plots 

were prepared for each drainage zone. The screening 

indices were then imported to SPSS, and the null 

hypothesis of equal means between the different 

drainage zones was tested with Student T-test. 

3.8 Multivariate correlation analysis 

Multivariate analysis was applied to find linear 

corrections between the transfer function model 

parameters (Kp, Tp and Td) and features extracted from 

the precipitation data (total accumulated precipitation 

during rain shower, maximum precipitation, and 

duration between rain showers). The Matlab Statistics 

and Machine Learning toolbox, Regression Learner App 

with different linear regression models, regression trees 

and support vector machines were used. 

4 Results 

This section shortly presents the results for data pre-

processing and system identification, and the results for 

the proposed screening index. 

4.1 Results for system identification 

The characterization of the system dynamic model 

parameters Kp, Tp and Td for the different drainage 

zones are given in Table 2. The box plots are given in 

Figure 2 for the process gains, Kp, Figure 3 for the time 

constants Tp and Figure 4 for the time delays Td.  

The results for process gain Kp between precipitation 

and tunnel inlet flow rate seem reasonable; Large 

drainage zones like Sandvika, Hamang, Stabekk 

“harvest” more rain and therefore they have larger 

process gains than small drainage zones like Bjørnegård 

and Evjebakken.  

The results for time delay Tp between precipitation 

and tunnel inlet flow rate seem reasonable; rain seeps 

faster through drainage zones with lots of buildings, 

roads and infrastructure like Sandvika than drainage 

zones with lots of private houses, parks and forest like 

Hamang. 

The results for time delay Td between precipitation 

and tunnel inlet flow rate seem reasonable; Drainage 

zones close to the joint urban water tunnel inlet like 

Sandvika and Stabekk have shorter time delay than 

drainage zones further away like Søraasen, Jar and 

Hamang.  

The standard deviation for all the dynamic 

parameters is high, which can also be observed from the 

box plots. This indicates that water flow through the 

urban drainage zone is a very nonlinear phenomenon. 

Two approaches to “linearize” the system were 

attempted. First, to preprocess the input data by taking 

an inverse of the precipitation data p(t)-1 before system 

identification, and second, by taking a square root of the 

precipitation data p(t)(1/2) before system identification. 

Both of these preprocessing approaches resulted in 

similar variation in the dynamic process parameters Kp, 

Tp and Td.  
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Table 2. Number of rain periods included N, average 

value and standard deviation for dynamic model 

parameters Kp, Tp and Td for the drainage zones. 

Draina

ge zone N 

Kp_

ave 

Kp

_std 

Tp_

ave 

Tp_

std 

Td_

ave 

Td_

std 

Bjørne

gård 63 5,5 3,9 35 82 54 97 

Søraase

n 61 392 907 439 925 86 105 

Evjeba

kken 71 127 159 172 439 25 61 

Jar 52 684 

116

4 480 

134

0 40 52 

Sandvi

ka 52 225 188 82 171 24 37 

Haman

g 69 511 868 409 721 39 51 

Stabek

k 61 765 810 178 227 26 52 

 

 

Figure 2. Box plots for identified process gain Kp in 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

 

 

Figure 3. Box plots for identified time constants Tp in 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

 

 

Figure 4. Box plots for identified time delays Td in 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

4.2 Results for multivariate analysis of the 

dynamic parameters 

In order to explain the variation in the dynamic 

parameters Kp, Tp and Td, different explanatory 

variables were constructed from the available data, i.e. 

the precipitation measurements. To characterize the rain 

intensity, two indicators for each rain period j were 

constructed: Maximum precipitation during the rain 

period Pmax,j, and total rain during the corresponding rain 

period Ptot,j. To characterize the water absorption 

capacity of the soil, one indicator was constructed, dry 

period before the rain period Tdry,j. 
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Linear regression models, regression trees and 

support vector machines in Matlab regression Learner 

app were applied to find linear correlations between 

dynamic parameters and constructed explanatory 

variables of the drainage zones, but no correlations with 

R2 index over 0,3 were found. It is suggested to find 

other explanatory variables to characterize the water 

flow through the drainage zone and to use nonlinear 

multivariate methods such as neural networks to find the 

correlation. 

4.3 Results for screening index 

The screening index was constructed using the 

identified dynamic process parameters Kp, Tp and Td for 

each drainage zone. The screening indices are presented 

in Figure 5 and the average values and standard 

deviations are given in Table 3. The standard deviation 

for the screening indices Si are much smaller than for 

the dynamic process parameters Kp, Tp and Td. The 

results for screening index Si seem logical, small 

drainage zones like Bjørnebård and Søråsen and 

drainage zones further away from the joint urban water 

tunnel like Hamang have smaller Si index, and therefore 

contribute less to the excess water in the joint urban 

water tunnel. Larger drainage zones close to the urban 

water tunnel like Sandvika and Stabekk have large Si 

index, and therefore contribute more to the excess water 

in the joint urban water tunnel. Based on the Screening 

index, we suggest that possibilities for blue-green 

infrastructure will further be investigated in these two 

drainage zones.  

SPSS was used to run t-test on equality of 

means between two drainage zones. The null hypothesis 

states that the means of two drainage zones are equal. 

Equal variances are not assumed. The decision criteria 

are: For a two-tailed test with n-2 degrees of freedom, 

the level of significance is 0.05. The results of the 

independent samples t-test are given in Table 4. As the 

t-test values are much higher than 1.96 or much lower 

than -1.96, the null hypothesis is proven false. Thus, the 

mean values for screening indices between the Bærum 

drainage zones are statistically significantly different. 

Table 3. Number of rain periods included N, average 

value and standard deviation screening index Si for 

the different drainage zones. 

Drainage zone N Si_ave Si_std 

Bjørnegård 63 0,3 0,3 

Søraasen 61 0,7 0,7 

Evjebakken 71 1,3 0,9 

Jar 52 2,2 1,7 

Sandvika 52 3,0 1,6 

Hamang 69 1,2 0,8 

Stabekk 61 4,3 1,5 

  

Figure 5. Box plot of the proposed screening index Si for 

drainage zones Bjørnegård, Søraasen, Evjebakken, Jar, 

Sandvika, Hamang, Stabekk. 

Table 4. T-test results for null hypothesis testing 

equality of means between drainage zones. 

Draina

ge 

zone1 

Drain

age 

zone2 

t df 2-tail 

sig. 

Mean 

diff 

Std 

diff 

Bjørne-

gård 

Søraa

sen 

-5,1 78 0,000 -0,48 0,09 

Søraase

n 

Evjeb

akken 

-4,2 129 0,000 -0,58 0,13 

Evjeba

kken 

Jar  -3,7 71 0,000 -0,93 0,25 

Jar Sand-

vika 

-2,5 102 0,016 -0,79 0,32 

Sandvi

ka 

Hama

ng 

7,3 71 0,000 1,8 0,25 

Haman

g 

Stabe

kk 

-14 90 0,000 -3,1 0,22 

Stabek

k 

Bjørn

e-

gård 

20 64 0,000 4,1 0,20 

Stabek

k 

Sand

vika 

4,5 106 0,000 1,27 0,30 

5 Discussion 

This is study is first stage in modeling of nature-based 

solutions at urban drainage zones. To answer our first 

research question (RQ1), we applied system 

identification to the available, pre-processed and de-

seasonalized data sets consisting of precipitation and 

drainage zone outlet flow rates. We conclude that it is 

possible to approximate the dynamic behavior of water 

flow through a drainage zone with first order plus time 

delay transfer function model. The model parameters 
highly nonlinear, and dependent on explanatory 

variables that were not included into the data collected. 
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To answer our second research question (RQ2), we 

introduced a screening index calculated with the 

dynamic parameters of transfer function model. The 

screening index was applied to all the rain periods at all 

of the drainage zones. The mean values of the screening 

index were statistically significantly different from each 

other. The classification of the drainage zones to high 

contributing and low contributing areas was based on 

the size of screening index. Small areas and areas far 

away got relatively small indices whereas large areas 

close to the water inlet point got relatively high indices. 

We conclude that the drainage zones can be classified 

using the proposed screening index. The drainage zones 

with high screening index should be considered for 

construction of blue-green infrastructure like NBS to 

avoid water spill to Oslo fjord. 

6 Conclusions and further work 

This study is a proof of concept that the available 

measurements, precipitation and drainage zone outlet 

flow rates, are enough to create a screening index that 

can separate the flow profiles of the different drainage 

zones according to their contribution to the excess water 

in the joint urban drainage tunnel. The simple dynamic 

modeling method with screening index is less accurate 

than traditional physically based and parameter based 

modeling methods, but a much faster and more cost-

effective method to classify the drainage zones. 

We suggest to continue the work by collecting data 

for the rest of the drainage zones in Bærum and the 

drainage zones in Oslo, and repeating the analysis for 

these drainage zones. As this is a data-driven approach, 

it is suggested that the method will be applied for large 

amounts of data, i.e. long time series of at least one year. 

The next goal in the project is dynamic modeling of 

the different NBS approaches and testing of the effect of 

NBS for the Bærum and Oslo drainage zones. We are 

suggesting to create a simple NBS model that can 

evaluate the performance of the NBS for a certain size 

and type of drainage zones. Further we propose to apply 

multi-criteria analysis to consider the effect for excess 

water and the costs for building and maintaining the 

NBS at high risk drainage zones. 
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