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A B S T R A C T   

This study investigates approaches to evaluate prediction and correlation how significantly mechanical and 
natural ventilation rate and local weather conditions affect the actual ventilation performance of a residential 
building using Artificial Neural Network (ANN) algorithms: Feedforward networks and Layer recurrent neural 
networks. In order to evaluate the ventilation performance in a residential building, an impact factor was 
determined for these measured datasets. This study selected two residential apartments in Switzerland and 
measured indoor carbon dioxide concentration and volatile organic compound levels, façade opening ratio, 
mechanical ventilation rates, and indoor temperature and humidity ratio between July 2019 and June 2020. The 
results described that ANN models illustrate performance in predicting ventilation performance and indoor air 
quality using mechanical and natural ventilation systems in a residential apartment. Both algorithms have 
presented relatively lower average error rates, 3.36– 6.12 % in the analysis results. The results presented that the 
two ANN models using the Levenberg-Marquardt Back Propagation (LMBP) algorithm have good agreements 
with actual data measured. The accuracy differences were 0.18-1.89 for the average error rates, 0.13–0.78 for the 
Coefficient of Variation of the Root Mean Square Error (CVRMSE) and 0.07–0.35 for the Normalized Mean Bias 
Error (NMBE). Through impact factor analysis, mechanical ventilation system mainly dominates the impact of 
indoor ventilation performance, and other surrounding environments also had significantly affected the resi-
dential building. However, the natural ventilation system has limitations to largely influence the ventilation 
performance in the building because occupants have difficulties adjusting ventilation rates in extreme weather 
conditions or early morning and nighttime. And these elements could not affect indoor air quality independently. 
These ANN methods are helpful in analyzing input parameters how each element factor can influence indoor air 
quality in a residential building. The proposed ANN methods can utilize to predict the performance as reliable 
approaches.   

1. Introduction 

Natural ventilation (NV) effectively saves energy using a passive 
design strategy as a natural air conditioning system and improves indoor 
air quality to supply fresh outdoor air in moderate weather conditions 
without thermal and mechanical energy demands (Tantasavasdi et al., 
2001). However, this strategy has limitations in that the passive system 
performance is significantly affected by surrounding environmental 

conditions. Therefore, its utilization is limited in extreme hot or cold 
weather, polluted air, or high environmental noise (Kim et al., 2018; 
Ren et al., 2022). And occupants also have difficulties adjusting a 
favorable amount of airflow using window airing in variable outdoor 
environmental conditions. Due to these applicable limitations, many 
buildings have preferred to use Mechanical Ventilation (MV) systems. 
MV system has been widely used in commercial and residential build-
ings to improve indoor air quality and thermal comfort (Kang et al., 
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2022; Liu et al., 2021a, 2021b). In moderate conditions such as inter-
mediate seasons, this system can use an economizer to save Heating, 
Ventilation and Air Condition (HVAC) demand. Many works of litera-
ture (Baldini et al., 2014; Fu et al., 2021a; Kim & Baldini, 2016; Park & 
Jeong, 2017) have presented the ventilation performance using NV and 
MV systems in buildings. And they also described the effect of airflow 
rate, surrounding weather conditions on the actual ventilation perfor-
mance and indoor air quality in buildings. 

Using Artificial Neural Network (ANN) modeling, some studies (Cao 
& Ren, 2018; Masood & Ahmad, 2021; Ren & Cao, 2020; Tian et al., 
2021) have presented methods to predict ventilation performance in 
buildings. In ventilation performance and indoor air quality prediction, 
the main issue involves establishing a data-driven mathematical model 
for the prediction. Ventilation performance and indoor air quality in 
buildings are influenced by many factors such as temperature and hu-
midity ratio difference between indoor and outdoor environment, win-
dows and doors opening ratio, outdoor wind speed, and airflow ratio of 
MV system. In a building using an MV system such as a constant air 
volume (CAV) system, the supply airflow rate is generally fixed, and 
therefore, the surrounding outdoor environment does not significantly 
affect the actual indoor ventilation performance. However, using the NV 
system, the façade opening ratio, and local weather parameters can in-
fluence the natural ventilation performance and indoor air quality. This 
study presents ventilation performance and indoor air quality of two 
case studies in residential buildings: one uses both MV and NV systems, 
and the other uses only NV systems. And this study, as a sensitivity 
analysis explores the prediction of how significantly the elements, MV 
system, windows and doors opening ratio, and local environments 
impact the ventilation performance and indoor air quality in a resi-
dential building. Variable data-driven algorithms, as ANNs have been 
proposed for predicting energy consumption and indoor air quality. 
Current studies have proposed variable predicting methodologies of 
developing algorithms, such as regression, statistical methods, support 
vector machines (SVM), a multilayer neural network. Compared to 
conventional statistical methods, ANN algorithms’ results have pre-
sented better prediction performance and accuracy and brought forward 
the analyzing effectively (Liu et al., 2021b; Shao et al., 2020). 

In particular, the ANN methods are some of the main algorithms 
currently used to predict electricity consumption in buildings (Carrera 
et al., 2021; Gellert et al., 2022; Kim et al., 2019a, 2020b; Ye & Kim, 
2018; Li et al., 2022a, 2022b). ANNs provide the function and structure 
of biochemical reactions in human brains by performing nonlinear 
processing. ANNs are self-learning systems and can constantly adjust 
their approach to adapt to variable environments when processing many 
types of information (Hsu, 2015; Kalogirou, 2000; Kumar et al., 2013; 
Werbos, 1975). Therefore, ANNs have been widely used in pattern 
recognition to forecast changes in processes, improve accuracy, opti-
mize decision making, and other tasks. One of the main advantages of 
neural network algorithms is that they can memorize training infor-
mation and self-learning, optimizing the information and knowledge 
factors that impact the testing results. Self-adaptability is the most 
crucial factor of ANN algorithms to influence the results’ accuracy 
compared to conventional algorithms (Ahmad et al., 2017; Hao et al., 
2013; Neto & Fiorelli, 2008; Zorzetto et al., 2000). Therefore, recently 
ANNs have illustrated a significant methodology in predicting IAQ and 
air ventilation performance in buildings (Ashtiani et al., 2014; Li et al., 
2022a; Martínez-Comesaña et al., 2021; Tian et al., 2021). 

Previous studies have described indoor air quality using ANNs al-
gorithms; however, this study newly proposes the prediction of novel 
ventilation performance using ANNs in a residential building, and il-
lustrates how the actual elements, windows and doors opening ratio, 
local weather condition, indoor thermal condition, and airflow rate from 
MV system are correlated with indoor air quality and ventilation per-
formance. And how each parameter significantly affects indoor air 
quality in a residential building located in Switzerland. As a sensitivity 
analysis, the proposed predictive control strategy is based on two ANNs, 

a layered recurrent neural network, and feed-forward neural network 
algorithms. We explored the utilization of impact factors demonstrated 
with ANNs’ training and outputs using input parameters, i.e., airflow 
rate from MV system, windows and doors opening ratio, and weather 
parameters such as temperature, humidity ratio, wind speed, and pre-
dicted the actual indoor air quality of a residential building with these 
two ANN approaches. 

The four main objectives of this research are:  

■ Analysis of the variation in airflow rate from MV system, windows 
and doors opening ratio, indoor thermal condition and local weather 
data based on experimental data in a residential building.  

■ Prediction of indoor air quality in a residential building using two 
ANN algorithms: a feed-forward neural network algorithms and 
layered recurrent neural network as a comparative analysis.  

■ Investigation of the impact of parameters’ correlation of airflow rates 
from MV system, windows and doors opening ratio, indoor thermal 
condition, and weather conditions which are temperature, humidity 
ratio, and wind speed on ventilation performance and indoor air 
quality with sensitivity analysis.  

■ Application of the predictive analysis in the natural and mechanical 
ventilation systems. 

2. Ventilation performance and indoor air quality prediction 
models 

ANN models are widely used in experimental data-driven analysis 
and prediction modeling in built environment research areas because it 
is derived by the human brain (Hsu, 2015; Singh et al., 2007; Xu et al., 
2015). And this study selected two algorithms: a feed-forward percep-
tion neural network and recurrent neural network. Currently a popular 
model is a feed-forward perception neural network that is trained using 
error back-propagation algorithms. However, to reduce local minima, 
improve training speed, minimize overfitting problems, and design 
optimal network structure, other algorithms such as genetic algorithms 
recurrent and conjugate gradient algorithms are also suggested (Brezak 
et al., 2012; Karim & Rivera, 1992; Moore et al., 1991; Taver et al., 
2015). These algorithms have their advantages and disadvantages for 
training and predicting results. Feed-forward back propagation 
modeling has illustrated good accuracy; however, the performance can 
be affected by recurrence pattern and reusing inputs and outputs. 
Therefore, the two neural networks have been performed for these 
reasons. 

2.1. Feed-forward neural networks (FFNN) 

A feed-forward neural network comprises three layers, respectively: 
the input, hidden, and output layers (Amber et al., 2015; Li et al., 2015; 
Moore et al., 1991; Ye & Kim, 2018). Each layer connects at least one 
neuron operating in parallel and responds independently to each layer. 
Fig. 1 shows an example of the feed-forward neural network models. 

As presented in Fig. 1, X1, X2,…, Xn are the input elements in the 
input layer that can impact ventilation performance and indoor air 
quality in a building, such as an airflow rate of MV system, windows, and 
doors opening ratio, indoor temperature, indoor humidity ratio, and 
outdoor weather parameters. Y1, Y2, … Yn are the output nodes corre-
sponding to the algorithm using input and hidden nodes to predict in-
door air quality. 

The output node of the hidden vector is as follows (Brezak et al., 
2012; Lek & Guégan, 1999; Yu et al., 2008): 

oj = f

(
∑n

i=1
wijxi+wN+1,j

)

j = 1, 2,…, l (1)  

where f is a function, wij is the weight in the hidden layer, and n is the 
number of input nodes, and d is the threshold of each node 
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The output node of the output vector is as follows (Ekici & Aksoy, 
2009; Neto & Fiorelli, 2008): 

Yk = f

(
∑l

j=1
ojwjk +wN+1,k

)

k = 1, 2,…,m (2)  

wjk is the weight in the output layer, l is the number of the hidden layers, 
and m is the number of output nodes. 

Each connection between neurons has a weight value associated with 
it. 

2.2. Recurrent neural network (RNN) 

Compared to a feed-forward neural network, recurrent neural 
network (RNN), the connection of each neuron is allowed to feedback 
between the layers for the training process. Therefore, it has the po-
tential for data pattern recognition and compression. The feedback 
process refines inputs to improve the accuracy of the result outputs using 
estimated outputs to refine the input data (Brezak et al., 2012; Cossu 
et al., 2021; Karim & Rivera, 1992; Kurnaz & Demir, 2022; Moore et al., 
1991). 

The equations presenting an RNN algorithm are shown as follows 
(Karim & Rivera, 1992; Moore et al., 1991): 

yt = g(ht) (3)  

ht = f
(
xt, ht− 1) (4)  

x,y, and h are the input, output, and hidden layer at time step t, 
respectively. 

Fig. 2 illustrates an example of the recurrent neural network models 
The Levenberg-Marquardt Back-propagation (LMBP) algorithm was 

selected to design functions using feed-forward and recurrent neural 
network training methods. Recently it has been well known alternative 

approach to the Gauss-Newton method for creating the minimum of 
squares of nonlinear functions (Bocheng Zhong et al., 2015; Ye & Kim, 
2018). 

Compared to other algorithms such as the conjugate gradient 
method, and Quasi-Newton method in the nonlinear training, LMBP 
algorithm is one of the quick training functions. Some studies have re-
ported that LMBP has better maintained performance and stability in 
neural networks, and the network converges effectively; however, it 
requires more hardware memories and system performance than other 
algorithms (Kim et al., 2020a; Lek & Guégan, 1999; Wong et al., 2010). 
The two neural network training and prediction processes applied in this 
study are illustrated in Fig. 3. 

This study collected data of the indoor air quality, windows and 
doors opening ratio, temperature, humidity ratio, and wind speed at a 
residential building in Büren, Switzerland. The multi-family apartment 
was built in 2017. And the building consists of four layers: two floors, an 
attic, and a basement. The first and second floor has two apartments, of 
which the left apartment have 80 m2 surface area, and the right-side 
apartment has 113 m2 surface area. 

Fig. 4 shows different family sizes occupying the two monitored 
apartments. Fig. 5 illustrates the technical installations of the ventilation 
system and sensors to check the airing ratio. A single person occupied 
the top left apartment, and two people occupied the bottom left apart-
ment. The top apartment is ventilated by only natural ventilation. The 
bottom apartment is mechanically ventilated with a Zehnder balanced 
ventilation unit, type ComfoAir Q350 which is equipped with an 
enthalpy exchanger that can transfer heat and moisture between the 
incoming and the outgoing air stream. The bottom apartment is 
constantly ventilated, and fresh air is supplied into each living room and 
bedroom by individual air ducts. The airflow rate of the MV system is 
110 m3/h. The MV system data were monitored via a KNK system 
following standards (EN 50090, ISO/IEC 14543) connected to the 
ComfoAir Q unit. This system (Model: Wisey AllSense, accuracy: ±0.1 o 

C, ± 1.5% RH, ± 1hPa) analyzes airflow rate, temperature, humidity 
ratio of all supply and exhaust air streams with sensors. CO2 and volatile 
organic compounds (VOCs) sensors (Model: Senseair Sunrise, accuracy: 
± 30 ppm, Model: BME680, accuracy status: Index for Air Quality, 0-3) 
analyzed the indoor air quality. Sensors are placed in each room. 
Moreover, the windows and doors opening ratio is monitored with the 
sensors (Model: DT35-B15251, accuracy: ± 10 mm) positioned at the 
envelope of the apartment. 

This study selected a residential apartment using both NV and MV 
system and collected a full year data (except for a few days) within 5 
minutes for the building’s opening ratio, mechanical ventilation rates, 
indoor and outdoor temperature and humidity ratio, wind speed indoor 
air quality (CO2 and VOCs level) between July 8, 2019, and June 30, 
2020. The experimental data were categorized into two groups: working 
days and non-working days because on non-working days, occupant 
ratio and behavior patterns are not regulated compared to the occupant 
patterns on working days; however, we used only the working days’ data 
to predict the indoor air quality because the non-working days’ data 

Fig. 1. Feed-forward neural network structure.  

Fig. 2. Recurrent neural network structure.  
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were relatively insufficient for training and testing. Data driven-ANNs 
analysis needs sufficient training data for learning which normally ac-
counts for 70-90% of total data collected (Giovanni & John, 2010; 
Kamlesh Shah et al., 2020; Lazrak et al., 2016; Lorenzo et al., 2015). Low 
training data numbers and fluctuated data can significantly increase 
error rates and the insufficient numbers’ data could not validate the 
results. 

Using ANN simulations as sensitivity analysis, this study investigated 
the impact of airflow rate of MV system, windows and doors opening 
ratio, temperature and humidity ratio, and local weather elements 
conditions on the indoor air quality. Moreover, the collected data (340 
days or 8160 hours) were randomly separated into training (200 
working days or 4800 hours) and test data (15 working days or 360 
hours). In the prediction methodology, this study provided the input 
nodes that influenced indoor air quality (CO2 and VOCs level) such as 
airflow rate of MV system, windows and doors opening ratio, the tem-
perature difference between indoor and outdoor (o C), humidity ratio 
difference between indoor and outdoor (g/kg), and wind speed (m/s). 
The collected data are presented in Figs. 6–10. In order to ascertain the 
number of hidden layers and nodes, this analysis used references 
(Amber et al., 2015; Tang Zhong, 2012; Ye & Kim, 2018). Figs. 6 and 7 

presents the annual outdoor temperature and humidity ratio at Büren in 
Switzerland. The summer season’s temperatures and humidity ratios 
were around 10-35 ◦C and 5-15 g/kg and the winter season’s data were 
about -5-12 ◦C and 2-7 g/kg. Fig. 8 illustrates the airflow rate of MV 
system. The ventilation system was designed as constant air volume 
control with a heat recovery unit. The actual supplied airflow rates were 
oscillated near 110 m3/h. Fig. 9 presents façade (windows and doors) 
opening ratios of two apartments. The opening ratios were affected by 
seasonal changes. In the summer season, the occupants relatively 
increased the opening ratios, but in the cold winter season, the occu-
pants decreased the opening ratios due to strong stack and buoyancy 
effect by high temperature difference between the indoor and outdoor 
condition. Especially the top apartment had constantly used the natural 
ventilation with the façade openings; however, the bottom apartment 
mainly used the mechanical ventilation, so that the numbers of façade 
opening usage were less than those of the top apartment. And Fig. 10 
shows the outdoor wind velocity, and the values were around 0-12 m/s. 
These collected data can influence the indoor CO2 concentration, and 
VOCs levels in Figs. 11 and 12. 

Figs. 11 and 12 show two apartments’ indoor air quality perfor-
mance. CO2 concentration level evaluates indoor air quality as a good 

Fig. 3. Training process for the artificial neural networks.  
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Fig. 4. A multi-family apartment in Büren (left) and plan view of the two apartments (right).  

Fig. 5. Technical installations of the building for heating and ventilation (left), a photoelectronic laser senor to detect windows and doors opening ratio (middle), a 
façade contact sensor. 

Fig. 6. Collected data: Outdoor temperature (340 days, July 2019, to June 2020).  
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indicator and is not the main air pollutant to influence human health in 
an indoor space (CEN 2004; ASTM Standard D6245-12, 2012). How-
ever, recent works of literature have described that CO2 could be a direct 
air pollutant and a small CO2 level increase affect occupants’ cognitive 
decision-making (Allen et al., 2016; Fu et al., 2021a, 2021b; Kim et al., 

2020a; Kim and Choi, 2019b; Satish et al., 2012; William et al., 2013). 
And VOCs as an internal air pollutant source in buildings have 
contributed to poor air quality and negatively impacted human health 
(Caron et al., 2020). Even small VOC concentrations can lead to dizzi-
ness, tiredness, and skin irritations (Caron et al., 2020; Yoon et al., 

Fig. 7. Collected data: Outdoor humidity ratio (340 days, July 2019, to June 2020).  

Fig. 8. Collected data: Supply airflow rate of MV system (340 days, July 2019, to June 2020).  

Fig. 9. Collected data: Windows and doors opening ratio of two apartments (340 days, July 2019, to June 2020).  

M.K. Kim et al.                                                                                                                                                                                                                                  



Sustainable Cities and Society 83 (2022) 103981

7

2010). In Fig. 11, the collected data shows that CO2 levels of the top 
apartment using only NV system overall higher air pollution value than 
those of the bottom apartment using both NV and the MV system. And 
the maximum CO2 levels were around 2000 ppm. Only a single person 
had lived in the top apartment and the tenant kept windows open 
slightly. We estimate that the small amount volume of air infiltration 
and the apartment space could be enough to dilute the indoor CO2 
concentration level below 2000 ppm. The results show that the MV 
system significantly impacts the indoor air quality because an NV system 
is limited to use at nighttime and in challenging weather conditions, 
especially the cold winter season in Switzerland. Hence, the MV system 
can maintain constant indoor quality in a building. 

2.3. Comparison impact analysis 

This study suggests evaluating the correlation performance among 
the input elements affecting indoor air quality in buildings. This study 
exploits a methodology using deep learnings to define an impact factor 
value (IFV). The differences of input elements and the output in the 

values illustrate the magnitude of impact, and positive and negative 
values of results present the directivity of the influence (Cha et al., 2021; 
Kim et al., 2020a, 2020b). 

For the calculation of the IFV, the process is illustrated as follows: 
after the training processes using two ANN algorithms (FFNN and RNN) 
are completed, each testing input parameter value is adjusted by 10% of 
its actual test input value to design new testing samples. The testing 
input value with 10% adjusting evaluated as an impact of each adjusting 
element since the analyzing impact value estimates a linear relationship 
between the actual test results and changed results (Cha et al., 2021; Kim 
et al., 2020a, 2020b, 2020c). The adjusted testing nodes calculate the 
new prediction results compared to an actual result value of how each 
element impacts the air quality prediction results. The aim of IFV pro-
cess is to evaluate how each element influences the results’ value. And 
based on the IFV process, we could categorize into the numerous 
collected elements for the ANNs analysis, whether it is crucial to predict 
the result or can be neglected for training. 

Finally, the level difference between the predicted and adjusted 
result values estimates the IFV value, and the results analyze indoor air 

Fig. 10. Weather data: Wind velocity (340 days, July 2019, to June 2020).  

Fig. 11. Collected data: CO2 concentrations at the living room and bedroom of two apartments (340 days, July 2019, to June 2020).  
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quality the performance in buildings (Cha et al., 2021). 

Impact factor value (IFV) =
ytest results with adding or subtracting 10% of sample − ytest results

ytest result

0.1
(11) 

This study also suggested the two methods, the coefficient of varia-
tion of the root mean square error (CVRMSE), and the normalized mean 
bias error (NMBE), to indicate an accuracy of the two algorithms. The 
equations are shown as follows (American Society of Heating, Refrig-
eration and Air Conditioning Engineers, 2002): 

CVRMSE (%) =

[
1
n

∑n
i=1(yi − yi)

2]1/2

y
× 100 (12)  

NMBE (%) =

∑n
i=1(yi − yi)
N × y

× 100 (13)  

3. Results 

This study evaluates the indoor air quality of a residential apartment 
with experimental methods in which the apartment has used both nat-
ural and mechanical ventilation systems. And this study also illustrates 
approaches to evaluate indoor air quality (CO2 concentration and VOC 
level) correlation how weather data parameters, temperature, humidity 

ratio, wind speed, windows and doors opening ratio, and mechanical 
ventilation rate impact the indoor air quality in residential buildings. 

This study exploits two ANN methods—FFNN and RNN algo-
rithm—to predict the indoor air quality profiles for two residential 
apartments in Büren, Switzerland. The models trained datasets of the 
temperature (◦C), and humidity ratio (g/kg), wind speed (m/s), win-
dows and doors opening ratio (%), and Mechanical ventilation rate (m3/ 
h). This study also illustrates the accuracy and error rate of two ANN 
models (FFNN and RNN). It evaluates how significantly input parame-
ters impact the actual indoor air quality in the building. Moreover, we 
can predict long-term indoor air quality performance using the ANN 
methods depending on the variation of weather conditions, the façade 
opening ratio, and the mechanical air ventilation rate. We evaluated the 
models’ performances with accuracy and error rates for various sce-
narios; the results are presented in Figs. 13–16, and Table 1. 

Overall, the two ANN models performed well for forecasting indoor 
air quality such as CO2 and VOC concentration levels of the residential 
apartment for the working days. Both models represented good perfor-
mance with higher accuracy and lower error rates to predict CO2 con-
centration level and no significant differences. The RNN model 
presented relatively higher accuracy rates and better accuracy to predict 
VOC concentration level. However, the overall prediction accuracy rate 
of CO2 pollutant levels at the living room is higher than those in the 
bedroom. This study estimated that other input elements, i.e., 

Fig. 12. Collected data: VOC levels at living rooms and bedrooms of two apartments (340 days, July 2019, to June 2020).  

Fig. 13. Prediction of Indoor CO2 concentration level of the two ANN models at a living room using both NV and MV system compared with actual values measured 
for working days. 

M.K. Kim et al.                                                                                                                                                                                                                                  



Sustainable Cities and Society 83 (2022) 103981

9

occupancy diversity factors, indoor activity level, room volume, could 
significantly impact the indoor air quality in the rooms. Accordingly, 
further study needs to observe the other elements that highly impact 
indoor air quality in residential buildings. 

Table 1 presents the average error rate, CVRMSE, and NMBE results. 
The results of CVRMSE and NMBE values using the two methods were no 

significant difference to predict CO2 concentration level. And at 
CVRMSE value, the FFNN prediction method predicting CO2 level has 
better accuracy and the lower value (0.13-0.53); however, the RNN 
method has a lower average error rate (3.18-5.49) than those of FFNN 
methods (3.36- 4.90). The RNN methods have a lower average error rate 
at VOC levels; however, there are no significant differences between 

Fig. 14. Prediction of Indoor CO2 concentration level of the two ANN models at a bedroom using both NV and MV system compared with actual values measured for 
working days. 

Fig. 15. Prediction of Indoor VOC level of the two ANN models at a living room using both NV and MV system compared with actual values measured for 
working days. 

Fig. 16. Prediction of Indoor VOC level of the two ANN models at a bedroom using both NV and MV system compared with actual values measured for working days.  
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CVRMSE and NMBE values. Thus, both algorithm methods predict in-
door air quality in a residential apartment and have good stability when 
indicating indoor air quality using the elements. However other methods 
and elements could be included for training and simulation to reduce the 
error rates. 

Figs. 17 and 18 illustrate a correlation and an impact of each average 
input factor in the two ANN methods, respectively. Mechanical venti-
lation rates strongly dominated the indoor air quality in both ANN 
methods. And the four other elements—temperature and humidity ratio 
difference and windows and doors opening ratio —also affected the 
actual indoor air quality. The other parameter—wind speed—had a 
slight impact on the air quality in the residential building. 

This study estimates that the natural ventilation system did not 
significantly impact indoor air quality compared to the MV system 
because in extreme weather conditions, especially a chilled winter sea-
son, occupants did not open the windows and doors. Therefore, other 
elements, such as temperature, humidity ratio, façade opening ratio and 
wind speed, did not significantly affect indoor air quality; however, only 
MV system was largely and independently responsible for the ventilation 
performance and actual indoor air quality. Figs. 11, and 12 show that the 
NV system cannot improve indoor air quality in the room by closing 
windows and doors. 

The elements for using the NV system, temperature and humidity 
level difference, façade opening ratio, and wind speed, also positively 
impacted the indoor air quality throughout the year, but not as much as 
the MV system had. Studies have described that each element for the NV 
system cannot solely or independently engage indoor air quality because 
each parameter needs to combine other aspects. For example, even 
though there is a high temperature or humidity level difference between 
indoor and outdoor thermal conditions, closing windows and doors 
could not improve indoor air quality. Inversely, in conditions with no 
temperature and humidity level differences, wide windows and doors 
opening ratio did not significantly affect the indoor air quality. Addi-
tionally, the opening positions are crucial for indoor air quality. Typi-
cally, occupants stayed in bedrooms at the nighttime. Small opening 
ratio in the living room has a limitation to improve the bedroom air 
quality at night. Therefore, relatively, predicting bedroom air quality 
has higher error rates compared to those of living room prediction. 

We estimate that airflow rates with the MV system significantly 

dominate ventilation performance and indoor air quality in the resi-
dential apartment; thus, the actual impact of NV systems is lower than 
that of the MV system. If it has no supply airflow rates from the MV 
system, the elements of NV system could affect much more than the 
results. The results have good agreement with the experimental data in 
Figs. 11 and 12. 

An interesting finding is that wind speed variation did not signifi-
cantly impact indoor air quality throughout the year. Still indoor air 
quality had a high sensitivity to temperature and humidity level dif-
ference, façade opening ratio, and mechanical ventilation rates. On this 
basis, further future studies should consider other input elements that 
can impact indoor air quality and ventilation performance, such as the 
occupant ratio, and behaviors, to determine correlations of the elements. 
This study used constant air volume system for MV system, and the MV 
system design did not consider the occupant rates and space zoning. The 
further studies need to provide the more detail effects with variable air 
ventilation strategies and occupant behavior pattern using a centralized 
or decentralized mechanical ventilation unit in residential buildings. 

The results indicated that the two ANN models could predict indoor 
air quality using the input elements in a residential apartment with 
relatively good accuracy and low error rates. The two ANN models using 
the LM-BP algorithm could predict indoor air quality in a residential 
building. And the differences in accuracy between the two ANN models 
are small; thus, the two ANN models could utilize for predicting indoor 
air quality and ventilation performance. Through impact factor analysis, 
the MV system was found to dominate the indoor air quality in the 
building strongly. Other elements, temperature, humidity ratio, win-
dows and doors opening ratio, and wind speed, also affect the results. 
The MV system has solely and independently influenced the indoor air 
quality; however, other elements have limitations to influence the re-
sults independently because the natural ventilation elements need to 
combine other sources with improving ventilation performance and 
indoor air quality. The components for natural ventilation systems 
steadily influenced the indoor air quality but not as much as the MV 
system. 

4. Discussions 

These methods effectively predict how each element impacts indoor 

Table 1 
Comparison of Performance of the ANNs.  

ANNs models Average error rate, % Coefficient of variation of the root mean square error (CVRMSE), % Normalized mean bias error (NMBE), % 

ANNs models Air Pollutant Living room Bedroom Living room Bedroom Living room Bedroom 

FFNN CO2 3.36 4.90 10.06 18.74 2.18 1.58 
RNN CO2 3.18 5.49 10.19 19.27 2.11 1.95 
FFNN VOC 6.12 6.47 16.70 19.86 3.47 0.19 
RNN VOC 4.72 4.53 16.42 20.64 3.82 0.07  

Fig. 17. Average impact factor values of input parameters to affect CO2 concentration level at a living room and bedroom of the two ANN models (T. difference: 
temperature difference, H. difference: humidity ratio difference, MV rate: mechanical ventilation rate, W&D opening ratio: windows and doors opening ratio). 
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air quality and how the ventilation system adjusts each element for 
occupants’ health and indoor air quality. Thus, these approaches could 
help understand the ventilation performance regarding short and long- 
term indoor air quality prediction. For example, ventilation perfor-
mances in a building could be changed in seasonal variations and 
climate change. The two deep learning ANN methods are reliable in 
predicting short and long-term indoor air quality in buildings using the 
elements. Future works should utilize these proposed ANN models with 
additional input elements such as occupant ratio and behaviors. Addi-
tional ANN models recently developed could be designed to improve the 
accuracy of the predictions and save simulation time. 

We found some limitations to be explored via future research in these 
results. This study selected a residential apartment to measure indoor air 
quality, temperature humidity ratio, façade opening ratio, and wind 
speed for working days. However, the accuracy and error rates of pre-
dicting indoor air quality on non-working days may differ because oc-
cupancy ratio and behaviors can significantly influence indoor air 
quality in a residential building. Future studies could consider another 
deep learning algorithm recently developed such as Generative Adver-
sarial Networks (GANs), Deep Belief Networks (DBNs), or Radial Basis 
Functional Networks (RBFNs) to compare the prediction accuracy and 
validations for forecasting indoor air quality. And future studies also 
would analyze correlations of indoor air quality with different ventila-
tion systems, seasonal changes, climate changes, and energy consump-
tion with ANNs algorithms. 

5. Conclusion 

This study proposed prediction strategies of ventilation performance 
in a residential building using two ANN methodologies, feed-forward 
neural network and recurrent neural network with an LM-BP algo-
rithm. These were designed with input elements, temperature, humidity 
ratio, windows and doors opening ratio, mechanical ventilation rate and 
wind speed to predict the indoor air quality. This study evaluated the 
predicting performance of two ANN methods using a training data set 
and compared the forecasting results simulated with actual experi-
mental indoor air quality data tested for the residential building. The 
results illustrated that both ANN models are stable and accurate in 
predicting indoor air quality and ventilation performance in the build-
ing. This study also proposed a novel analysis strategy for how tem-
perature, humidity ratio, windows and doors opening ratio, mechanical 
ventilation rate, and wind speed are correlated with indoor air quality in 
a residential apartment. And how these correlations of each element 
significantly influence indoor air quality. 

This study evaluated the predicting performance of two ANN algo-
rithms using a training dataset process and test set process. The pre-
dicting results were analyzed and compared with actual measured 
indoor air quality values, CO2 concentration, and VOC levels. The results 
presented that the two ANN models using the LMBP algorithm have 

good agreements with actual data measured. The accuracy differences 
were small at 0.18-1.89 for the average error rates, 0.13–0.78 for the 
CVRMSE, and 0.07–0.35 for the NMBE. By analyzing the impact factor of 
the five input elements, this study indicated that the mechanical venti-
lation rates strongly dominated the actual indoor air quality, CO2 con-
centration level, and VOC levels in the residential building. And other 
natural ventilation factors, temperature and humidity ratio, windows 
and doors opening ratio, and wind speed considerably impact the re-
sults, but the impacts are relatively smaller than the MV system had. MV 
system factor can significantly dominate indoor air quality solely and 
independently; however, the other factors need to combine to influence 
the indoor air quality. Thus, the elements for using natural ventilation 
systems have a limitation to independently improving indoor air quality. 
We briefly recommended setting up an MV system to effectively improve 
indoor air quality in a residential building because other elements need 
to consider surrounding boundary conditions. 
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