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Abstract: Many data related problems involve handling multiple data streams of different types at
the same time. These problems are both complex and challenging, and researchers often end up using
only one modality or combining them via a late fusion based approach. To tackle this challenge, we
develop and investigate the usefulness of a novel deep learning method called tower networks. This
method is able to learn from multiple input data sources at once. We apply the tower network to
the problem of short-term temperature forecasting. First, we compare our method to a number of
meteorological baselines and simple statistical approaches. Further, we compare the tower network
with two core network architectures that are often used, namely the convolutional neural network
(CNN) and convolutional long short-term memory (convLSTM). The methods are compared for the
task of weather forecasting performance, and the deep learning methods are also compared in terms
of memory usage and training time. The tower network performs well in comparison both with the
meteorological baselines, and with the other core architectures. Compared with the state-of-the-art
operational Norwegian weather forecasting service, yr.no, the tower network has an overall 11%
smaller root mean squared forecasting error. For the core architectures, the tower network documents
competitive performance and proofs to be more robust compared to CNN and convLSTM models.

Keywords: tower network; temperature forecasting; video prediction; deep learning

1. Introduction

Weather prediction can be seen as a complex problem which often requires methods
that are able to incorporate different sources of data at the same time. This can include,
for example, satellite images and physical properties of the atmosphere, e.g., temperature,
moisture, pressure and wind. Most of the time, the different data sources have both time
and three spatial dimensions, and important interactions can happen on anything from
a global scale to a micro perspective, and might follow different cycles. A method and
resulting model that wants to achieve reasonably good results needs to understand all of
these complex interactions. Many of these interactions are of a chaotic nature, making them
very hard to predict [1].

Machine learning is currently one of the most common methods besides statistics
to make sense of these data. In particular, deep learning has become one of the most
popular methods, where part of the reason for this popularity is that deep learning allows
you to learn from large amounts of data without the problems of over-fitting or suffering
from high dimensional data, which often happen with classical machine learning methods.
Further, deep learning is very good at extracting features from data. Each layer in a neural
network can extract a different set of features, which eliminates the need for manual feature
engineering. These layers are also able to perceive features that are not apparent to the
human eye. Finally, more complex non-linear functions can usually be modelled by making
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the deep neural network deeper. One big disadvantage with the current development in
using deep learning is that most methods are complex, and often unnecessary modifica-
tions of base architectures that overfit on the specific dataset at hand. All these specific
attributes make deep learning specifically interesting for applications in connection to
remote sensing. For example, vessel detection from satellite images, weather forecasting or
climate change predictions.

To be able to handle the different types of data needed to solve the specific problem of
weather prediction, multimodal machine learning (looking at different data streams with
different properties at the same time) is needed. Multimodal deep learning is not very
common, although it has gained attraction recently based on the success of models such as
DALL-E that combine different modalities to perform specific tasks better than using only
a single modality. However, in the context of weather prediction, most of the proposed
work still focuses on single modalities.

Numerical Weather Prediction (NWP) models are commonly used in operational
weather forecasting nowadays. These are complex mathematical models that seek to mimic
the future conditions of the atmosphere on a three-dimensional grid using fundamental
rules of ordinary physics. For processes that are smaller than the resolution of the model
grid, the NWP models make several approximations. However, technological advance-
ments have made it possible to run these models with higher spatial resolution, resulting
in more detailed projections.

One of the essential facets of weather prediction is precipitation forecasting, which
has also been the focus of much of the work within deep learning aimed at weather fore-
casting. A pivotal paper from this genre is [2] who proposed the convolutional LSTM for
precipitation prediction for nowcasting—forecasts on a very short time horizon. Other
examples include [3] who applied multi-task convolutional networks to the same prob-
lem, and [4,5] who developed MetNet and its successor MetNet-2, respectively—highly
complex deep neural networks, which performed better than the physics-based models
currently operating in the United States. A body of work is also dedicated to precipitation
forecasting using UNets. Examples include [6] who used a UNET convolutional network
to perform high-resolution precipitation forecasting from radar images, ref. [7] who devel-
oped the Temporal Recurrent U-Net and [8] who introduced SmaAt-UNet, a UNet-based
convolutional neural network equipped with attention modules and depthwise-separable
convolutions.

Temperature forecasting has also been receiving increasing attention from the deep
learning community in recent years, with a wide range of approaches being explored. For
example, ref. [9] applied a deep neural network with Stacked Denoising Auto-Encoders to
historical temperature observations, ref. [10] explored the use of stacked LSTMs and [11]
took the convolutional LSTM networks introduced by [2] and applied them in a tem-
perature forecasting context. Ref. [12] performed a comparison between Stochastic Ad-
versarial Video Prediction [13], Generative Adversarial Networks [14] and Variational
Auto-Encoders [15]. An extensive review of neural networks used in temperature fore-
casting between 2005 and 2020 was performed by [16], with some of the more recent
examples cited including [17] who compared a support vector machine, an artificial neu-
ral network and a time series based recurrent neural network, ref. [18] who compared
a multi-layer perceptron, long short term memory network (LSTM) and a combination
of convolutional neural network and LSTM and [19] who tackled this spatio-temporal
problem using convolutional recurrent neural networks.

It is possible to imagine a variety of approaches to incorporating machine learning into
weather forecasting or even the NWP models themselves. Most of the sources referenced
above concern themselves with the post-processing of NWP model output. A few have
sought to replace the NWP models entirely. The goal of this study is to approach the
weather forecasting challenge as a multimodal data analysis problem by employing a
new, lightweight deep learning method to improve short-term temperature forecasts using
NWP model output merged with historical observations. The advantage with the new
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architecture is that it is designed as a base architecture similar to LSTM, etc, and that it can
be expanded in the future with more complex designs. In deep learning, multimodal data
processing has not been thoroughly investigated. The majority of methods employ early or
late fusion for analysis, which involves merging the characteristics before analyzing them,
or analyzing them independently and then combining them. Both methods have their own
set of advantages and disadvantages.

In [20] we started exploring the possibilities of a new core architecture for multi-
modal data analysis with the use case of weather prediction. This article builds upon this
preliminary work.

The problem of temperature forecasting is totally dominated by different complex
variants of CNN and ConvLSTM [16]. There are some exceptions, such as, for example,
Gong et al. ([12]) who suggested the stochastic adversarial video prediction model. How-
ever, adversarial methods and other more recent methods are far larger and far more
challenging to train than the tower networks presented here. In addition, these methods are
often very complex and overfitted on the specific dataset they are developed for and they
are not realistic to smaller datasets or to datasets with rather short time horizons, like the
dataset used in this paper (2014–2018). To tackle this, we propose a new core architecture
that is light weight and is easier to train and compare to the other core architectures in the
domain, which are CNN and ConvLSTMs.

Specifically, we have added more and extensively extended experiments, new algo-
rithms for comparison and new visualizations of the predictions. Besides demonstrating
the usefulness of the proposed method we also show that it is more robust than the other
methods. In addition, it is important to point out that the proposed architectures can also
be used for any other multi modal data problem.

2. Materials and Methods
2.1. Data

Two datasets are used in this paper. The first is a set of 5 years of hourly 2 m air
temperature observations from a dense network of official and quality controlled citizen
weather stations interpolated to a grid with 1 × 1 km spatial resolution. More information
about this dataset can be found in [21]. We have five years of data, covering a period from
2014 to 2018. The full grid covers all of Norway, however, a smaller subset of 40 × 40 grid
points centered around Oslo has been used throughout this work. This area, shown in
Figure 1, contains both an urban environment, forest and part of the Oslofjord inlet, with
altitudes ranging from 0 to 647 above sea level.

a
 b


Figure 1. (a) The geographical area used in this work, shown as an empty, black square centered
around Oslo on a map of Scandinavia. (b) The topography of the area used.The Oslo fjord inlet can
be seen towards the bottom of the image.

The second dataset comes from an NWP model. The data are originally on a grid with
a spatial resolution of 2.5 × 2.5 km [22], but have been regridded to the same 1 × 1 km grid
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as the gridded observations. The NWP data cover the same time period as the observational
data, and the temporal resolution is hourly, however, fresh forecasts are only available four
times a day, at 00, 06, 12 and 18 UTC.

From both datasets, we have altitude and land area fraction. It is well known that tem-
perature generally decreases with increased altitude, and that there are often considerable
differences in air temperature between land and over open water. These topographical
data might be used to bridge discrepancies between the two datasets. In the second part of
the work, we use these additional data as well as the day of the year as auxiliary predictors
in the models.

While interpolated to the same grid in order to facilitate joining, the two datasets
are fundamentally quite different. The NWP data are a gridded simulation of future
states of the atmosphere, based on mathematical equations solved in space and time. The
observations are point data—measurements from weather stations spread out irregularly
in space.

From February 2018, we also have access to the official temperature forecasts from
yr.no, a weather forecasting website and app hosted by the Norwegian government-owned
national broadcasting corporation (NRK) and the Norwegian Meteorological Institute. The
yr.no forecasts are based on the aforementioned NWP model data, but have gone through
various forms of post-processing, and thus represent the state-of-the-art when it comes to
weather forecasting.

Data and code can be made available upon request.

2.2. Models

The object of this work is the prediction of temperature from 1 to 6 h into the future.
The work is twofold. Firstly, we investigate the usefulness of what we call the tower
network from a weather forecasting perspective. Secondly, we compare the tower network
to similar and state-of-the-art machine learning approaches.

The primary focus of this paper is a new deep learning model architecture called
the tower network. The basic concept of this type of neural network is that it is built up
of so-called “towers”—stacks of convolutional layers, batch normalization layers, max
pooling and activation layers (see Figure 2). In theory, each tower should learn a slightly
different view on the input data. These different views are achieved by varying the stride
and/or kernel size in the convolutional layers. Different stride lengths were included in
the experiments, which would allow for more efficient computations or downsampling,
and we wanted to explore how this would impact the prediction performance [23]. Output
from the towers is sent to a concatenation layer and finally to a convolutional layer. The
motivation for testing these networks on a weather forecasting problem is that the weather
is determined by relationships on several different spatial and temporal scales which makes
it a very good use case for testing the new architecture we propose. These relationships are
something one might hope to capture through the different views learned by the towers.

A modified version of the tower network is also tested, in which NWP data are
provided directly to the concatenation layer (see dashed lines in Figure 2). Since the
observations are historical and the NWP data are predictions of the future, the combination
of these data is not necessarily completely straightforward. Layers equivalent to another
tower are therefore added between the concatenation layer and the final convolutional
layer to give this modified model the chance to combine the data in a meaningful way.

The tower networks are compared against a first order autoregressive model, AR(1)
which is a traditional statistical approach, in which the observation Xt at time t can be
expressed in terms of the observation in the previous time step in the following way:

Xt = C + ϕXt−1 + εt

where C is a constant, ϕ is a regression parameter and εt is white noise. The AR(1) is trained
and evaluated in each grid point separately.
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Figure 2. Network architecture for the normal and the modified tower network. The observational
data have the dimensions 40 × 40 × 12, and the NWP data 40 × 40 × 6. The specific parameters used
in this work are listed in Table 1.

Table 1. All network parameters for the tower networks in the first part of the work.

Filters 1 Filters 2 Kernel
Size 1

Kernel
Size 2 Strides

Tower 1 Basic block 1 64 32 8 3 1, 1
Basic block 2 64 32 3 3 1, 1
Residual blocks 64 32 3 3 1, 1
Transposed 2D 64 - 4 - 2, 2

Tower 2 Basic block 1 64 32 8 3 1, 2
Basic block 2 64 32 3 3 1, 2
Residual blocks 64 32 3 3 1, 1
Transposed 2D 64 - 4 - 2, 8

Tower 3 Basic block 1 64 32 8 3 1, 4
Basic block 2 64 32 3 3 1, 4
Residual blocks 64 32 3 3 1, 1
Transposed 2D 64 - 4 - 2, 20

Tower 4 Basic block 1 64 32 8 3 1, 1
Basic block 2 64 32 3 3 1, 1
Residual blocks 64 32 3 3 1, 1
Transposed 2D 64 - 4 - 2, 2

Final convolutional layer 6 - 8 - -

In the second part of the work, the strengths and weaknesses of the tower network
are explored in comparison with two other machine learning approaches. The first is the
convolutional neural network (CNN). As one of the cornerstones of deep learning for image
processing, the CNN is an obvious choice for this comparison. It is a relatively simple,
but powerful approach, and might give an indication of whether or not a more complex
network is really needed for the prediction problem at hand.

The convolutional LSTM (convLSTM) has long been among the top performing deep
learning approaches used for video prediction, and is thus a good representative of state-
of-the-art deep learning methods, as well as an example of methods previously explored
within the context of weather forecasting [2,11].
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3. Results

Since there is five years of data, 2014–2016 are used for training, 2017 is used for
validation, and 2018 for testing. The validation data are used in the training phase, to
monitor the improvement of the models and to choose the appropriate stopping time.
Testing data are data never before seen by the models, on which the models are finally
tested. It is the results of these tests that are used in the comparison of models. Each sample
of input data consists of 6 + 6 h of temperature observations and 6 h of NWP temperature
forecasts. Figure 3 shows the structure of a sample: the observations that are used are from
the input times, while the NWP forecasts correspond to the output times. In order to avoid
the issue of diurnal trends that occur in temperature data, the model predicts for the same
6 h of every day, namely from 13 UTC to 18 UTC. The NWP data used are from the 12 UTC
production time.

01 07 13 19

Input times
Output times

Hour of day (UTC)

Day before
forecast
Day of

forecast

Figure 3. One sample of observation data. Historical observations are observations from the input
times, shown here in yellow. The NWP data are forecast data valid in the output times, here shown
in orange.

The data from yr.no are available only from 19 February 2018, so for comparisons
with yr.no, the period from 19 February 2018 to 31 December 2018 is used in the evaluation.

3.1. Comparison 1: Weather Forecasting Baselines

In this first part of the work, three versions of the tower network are evaluated: one
is trained solely on observational data, and is referred to as the observation based tower
network, the second is trained solely on NWP model data, and is referred to as the NWP
based tower network, and the third uses both types of input data, and is referred to as the
multimodal tower network. The main reason for these experiments is to get a better and
deeper understanding of the tower networks themselves and how different parameters
affect the performance.

The parameters used in the tower networks are shown in Table 1. The training was
done with Adam (adaptive moment estimation) as the optimizer, mean squared error as the
loss function, a batch size of ten, and the number of epochs chosen using early stopping.

The tower networks are compared to persistence, which is a common baseline in short
term weather forecasting. Persistence is the idea that the weather does not change, and this
hypothesis often performs quite well on very short time horizons. In this work, the last
observation in each grid point has been used as a forecast for the following 6 h.

Furthermore, the tower networks are compared to the raw NWP forecasts (the forecasts
used as input to the networks), and the data from yr.no, which are the best available post-
processed versions of the same data.

Lastly, a first-order autoregressive model has been trained on the temperature obser-
vations, in order to show whether the use of a neural network adds value beyond what can
be achieved with a simple yet effective statistical method.

Figure 4 shows the root mean squared error (RMSE) of each model, averaged over
times and locations, for each forecast hour. For the first two hours, persistence and the
autoregressive model, AR(1), have the best performance, but their error rapidly grows and
they perform the worst at the end of the 6 h period. This behaviour is unsurprising, since
both models rely heavily on the last observation. The observation based tower network
shows signs of the same trend, beginning with a small RMSE, that grows with time.
However, the RMSE is neither as small at the beginning of the period nor as large at the
end as that of persistence or AR(1). These findings suggest that the use of a neural network
extracts more information from the observations than a simple statistical approach. It is,
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however, interesting that the tower network is not able to achieve the same performance in
the first two hours.

Figure 4. Root mean squared error of the tested models and meteorological baselines averaged over
the spatial grid.

The RMSE of the NWP forecasts exhibits a very different behaviour. It starts out
quite large and decreases over time, while its overall shape is relatively flat. The NWP
model combines information about initial conditions with an approximation of the be-
haviour of the atmosphere, and can therefore provide reliable predictions on a much longer
horizon than persistence. The NWP based tower network adds little to no value to the
raw NWP, suggesting that there is not a great deal of untapped potential in the NWP
forecasts themselves.

The multimodal tower network is overall the best performer in this comparison.
It cannot compete with persistence for the first 2 h, but has a relatively small RMSE for the
whole 6 h period. The performance of the multimodal tower network compared with the
networks trained only on historical observations or NWP model data indicates that the
combination of these two data types gives more valuable insight than using them separately.

Finally, yr.no is included in this comparison since these are the data that the average
person will see when they check the weather forecast on their phone. The weather forecasts
on yr.no are optimized with respect to other criteria than simply RMSE, and thus it would
be an oversimplification to say that the multimodal tower network is better. However, the
multimodal tower network performs better in this test, which is a strong indication of its
quality and potential as a post-processing technique.

While scores like the RMSE can give a relatively good indication of the quality of
weather forecasts, there is also a need for the forecasts to look and behave realistically
in space. Figure 5 shows the ground truth and predictions for the coldest day in the test
dataset. This day was chosen not only as an example of the predictions in general, but also
as an instance of something other than the average case. Since the models are optimized
with respect to mean squared error, an unwanted side effect might be poorer performance
in the less common, more extreme cases. In Figure 5, the ground truth shows a day that
starts out at temperatures between −6 and approximately −11 degrees, and then becomes
cooler over the course of the forecast period. Persistence, AR(1) and the observation based
tower network all predict the temperatures of hour 1 quite well, but fail to capture the
decrease in temperatures. It is also striking that the observation based tower network has
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far less detail than persistence and AR(1). The NWP, on the other hand, generally has the
correct temperature development, but it is easy to see that it has been interpolated from a
much coarser grid, and thus lacks the finer details of the other models. While the NWP
based tower network appears smoother than the raw NWP, many of the finer features
are not well represented. Both the multimodal tower network and yr.no successfully
forecast the temperature decrease, as well as pinpointing areas with particularly high or
low temperatures better than the other models.

1 2 3 4 5 6

G
ro

un
d 

tr
ut

h
Pe

rs
ist

en
ce

N
W

P
A

R
(1

)
O

bs
er

va
tio

n-
ba

se
d

to
we

r 
ne

tw
or

k
N

W
P-

ba
se

d
to

we
r 

ne
tw

or
k

M
ul

tim
od

al
to

we
r 

ne
tw

or
k

yr
.n

o

-16
-14
-12
-10
-8
-6

Temperature (C)

Figure 5. Example of temperature forecasts from the different models with the ground truth for
reference. Each row corresponds to a model, and each column to an hour.

3.2. Comparison 2: Deep Learning Approaches

In the second part of the work, the tower network was compared to the relatively
simple but powerful CNN, and state-of-the-art in video and also weather prediction: the
convLSTM. In this continuation of the work, we also tested the use of input data related to
topography and time of year. It is important to point out that we are not aiming to compare
specific variations of basic architectures like [16,24–26] on different datasets but rather want
to compare to the basic architectures themselves. In addition, these methods usually have a
lot of parameters and will result in over-fitting on our dataset with a short time horizon.

The architecture of the CNN is shown in Figure 6 and the convLSTM is shown in
Figure 7. Since the data have been interpolated (in the case of the observations) and
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regridded (in the case of the NWP model data) to the same grid, it is technically possible to
combine them in different ways.

In the case of the CNN, we have simply stacked all of the different inputs—observations,
NWP data and auxiliary information—into 40 × 40 × 24 tensors. For the convLSTM, we
have taken advantage of the possibility of having channels, and treated observations from
the day prior to prediction, observations from the day of prediction and NWP data as three
separate channels. A sample of these data has the shape 6 × 40 × 40 × 3. The auxiliary data
were not used in this model because they did not appear to improve the performance of
the convLSTM.

With the introduction of the auxiliary data, and the new data structures for the CNN
and convLSTM, we also decided to re-examine the tower network architecture. We found
that for the tower network, stacking observations and NWP data, like in the case of the
CNN, and keeping the auxiliary data separate, produced the best predictions. See the new
architecture in Figure 8, with corresponding parameter values in Table 2. The parameters
of Tower 1* are the same as the parameters of Tower 1.

Table 2. All network parameters for the tower networks in the second part of the work.

Filters 1 Filters 2 Kernel
Size 1

Kernel
Size 2 Stride

Tower 1 Basic block 1 64 32 8 3 1
Basic block 2 64 32 3 3 1
Residual blocks 64 32 3 3 1
Transposed 2D 64 - 4 - 2

Tower 2 Basic block 1 64 32 8 3 2
Basic block 2 64 32 3 3 2
Residual blocks 64 32 3 3 1
Transposed 2D 64 - 4 - 8

Tower 3 Basic block 1 64 32 8 3 4
Basic block 2 64 32 3 3 4
Residual blocks 64 32 3 3 1
Transposed 2D 64 - 4 - 20

Tower 4 Basic block 1 64 32 8 3 1
Basic block 2 64 32 3 3 1
Residual blocks 64 32 3 3 1
Transposed 2D 64 - 4 - 2

Final convolutional layer 6 - 8 - -

The three approaches were compared in terms of RMSE, training time and memory
usage. In order to get a robust comparison, 15 realizations of each model were trained,
i.e., 15 CNNs, 15 convLSTMs, and 15 tower networks. For each realization, training time,
maximum memory usage and RMSE on the test data were recorded.

Figure 9 shows a box plot of the RMSE of the 15 realizations of each model, according
to forecast hour. What is most striking about this figure is how the error of the CNNs
and tower networks start out small and become larger, while the error of the convLSTMs
behaves very differently, starting out quite large and ending up approximately the same
as the other models, with no statistically significant difference between models for the
last 3 h. The CNNs have the overall smallest errors, and among the tower networks,
there is an outlier whose performance is consistently far worse than any other model. In
general, however, the CNNs and the tower networks perform similarly to one another,
and the difference between them is not statistically significant. The variability between
the convLSTMs is quite small, relative to the other two models. This small variability, in
combination with the generally larger errors for the first few hours, suggests that something
slightly different is learned by these networks.
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2D Convolutional layer (64, 3, 1) 

ReLU Activation

2D Convolutional layer (64, 3, 1)

ReLU Activation

Batch normalization

Batch normalization

2D Convolutional layer (32, 3, 1) 

ReLU Activation

2D Convolutional layer (32, 3, 1)

ReLU Activation

Batch normalization

Batch normalization

2D Convolutional layer (6, 3, 1)

Input

Output

Figure 6. Network architecture for the CNN. The input data are made up of historical observations,
NWP forecasts and auxiliary inputs such as land area fraction and altitude. The inputs are stacked,
with the resulting dimensions being 40 × 40 × 24.
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2D convLSTM (32, 3, return_sequences, 

padding same) 

2D convLSTM (32, 3, return_sequences, 

padding same) 

Batch normalization

Batch normalization

2D convLSTM (1, 3, return_sequences, 

padding same) 

Input

Output

2D convLSTM (64, 3, return_sequences, 

padding same) 

Batch normalization

2D convLSTM (128, 3, return_sequences, 

padding same) 

Batch normalization

Figure 7. Network architecture for the convolutional LSTM. The input data are made up of historical
observations from the previous day, historical observations from the 6 h prior to the predicted times,
and NWP forecasts. These three inputs are treated like channels, such that the resulting dimensions
of the input data are 6 × 40 × 40 × 3.
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Concatenation

Tower 4

Output predictions

Convolutional layer

Tower 1*

Auxiliary Input

Tower 1 Tower 2 Tower 3

Primary Input

Figure 8. Network architecture for the tower network with primary input made up of stacked
observational and NWP data (40 × 40 × 18), and auxiliary input made up of land area fraction and
altitude from the observations and NWP data set, as well as sine and cosine values corresponding
to day of the year mapped to values between 0 and 2π (40 × 40 × 6). The construction of a tower
remains the same as what is shown in Figure 2.

Figure 10 shows the training time, in minutes, per epoch for each model. The convL-
STMs stand out as considerably slower than the two other models, which is also reflected
in the total training times, an overview of which can be found in Table 3. The CNN is
much quicker than the other models, using on average less than a minute per epoch. The
tower networks fall somewhere in between, much faster than convLSTM but not as quick
as CNN.

Table 3. Total training time in minutes.

Min Median Max

CNN 1.01 1.64 2.91
convLSTM 34.8 45.7 64.9
Tower network 16.3 21.9 32.0
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Figure 9. Boxplot showing the root mean squared error of the 15 realizations of each model, averaged
over the spatial grid.

Figure 10. Training time per epoch for the 15 realizations of CNN, convLSTM and tower network
in minutes.

When it comes to maximum memory utilized in training the models, shown as a violin
plot in Figure 11, there is considerable variability for all the models. However, the CNNs
consistently require more memory than the two other models, and the convLSTMs require
less than the other two. Here, it is worth mentioning that the CNNs and tower networks
were trained with altitude, land area fraction and day of the year as auxiliary inputs, while
the convLSTMs were not. This will have affected the memory usage.
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Figure 11. Violin plot of the memory (in GB) utilized when training the models. Each violin represents
the memory usage of 15 realizations of a model. From the left, there is CNN in red, convLSTM in
blue and the tower network in green.

Finally, we have looked at the validation error curves of the different models. These
curves are shown in Figure 12 as moving averages (n = 5), where we first averaged over
all realizations. Since early stopping has been used, the number of realizations is not
the same for all epochs, starting at 15 and declining as more realizations reach their final
epoch. In this figure, we see that the validation error decreases at first, before leveling
out, for all three models. This decrease happens more quickly for the convLSTMs than
for the tower networks. However, while the tower networks keep slowly improving, the
convLSTMs generally stop improving and we begin to see indications of over-fitting after
a few hundred epochs. The tower networks also appear to start over-fitting towards the
end. When it comes to the CNNs, their validation error initially decreases quickly, before
almost plateauing around the same value as that of the convLSTM, slowly edging their
way downwards.

Figure 12. Moving average with a window of 5 of the normalized validation error of each model as a
function of number of epochs. Values are averages for the 15 realizations of each model type.

In Figure 13, the best realization of each model (chosen on the basis of validation
error) is compared alongside the meteorological baselines from the first part of the work.
All three models outperform the raw NWP for every hour, as well as persistence from
approximately hour 3. The line showing the error of the convLSTM is conspicuously
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parallel with the line for the raw NWP, while the CNN and tower network are both on
par with, or outperforming, yr.no for every hour, approaching, but still nowhere near,
persistence in hour 1.

Figure 13. Comparison of the RMSE of the best realization of each neural network and meteorological
baselines, all averaged over the spatial grid.

We found it interesting that the convLSTM did not perform as well as the other models,
and a quick look at some of its predictions suggested that it might struggle with the finer
details—its resolution occasionally resembling that of the raw NWP. This issue was further
investigated through permutation feature importance measurements, a concept introduced
by [27] and generalized by [28].

Figures 14–16 show feature importance as a function of hour for the three models. We
immediately see that same day observations are a far more important feature for the CNN
and the tower network than for the convLSTM. These findings support the theory that
the convLSTM relies heavily on the NWP data, while not making full use of the historical
observations. The CNN appears to place more value on previous day observations than the
tower network does. The CNN is also the network whose performance is the most affected
by feature perturbation.

Figure 14. Permutation feature importance of the best CNN, i.e., the error resulting from the permu-
tation of one parameter, leaving the remaining parameters untouched.
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Figure 15. Permutation feature importance of the best convLSTM, i.e., the error resulting from the
permutation of one parameter, leaving the remaining parameters untouched.

Figure 16. Permutation feature importance of the best tower network, i.e., the error resulting from
the permutation of one parameter, leaving the remaining parameters untouched.

4. Discussion

As exemplified in the previous section, the tower network performed well compared
to meteorological baselines and simple statistical approaches. In addition, we showed that
it also can complete with the current state of the art core architectures for the use case of
weather forecasting. The comparison with other deep learning core architectures revealed
a more nuanced picture, with the advantages of the tower network being less apparent. For
example, CNN was the indisputable winner of the comparison of training times, while the
convLSTM model required the least memory. With regards to both of these metrics, the
tower network performed better than one model, but worse than the other. From a pure
resource standpoint, there are no clear conclusions to be drawn, and depending on the
user’s requirements, any one method might be preferable to the others. However, training
time and memory usage are metrics of a secondary nature.

RMSE is what informs us of the forecasting performance of the models. In this
comparison, we saw that the performance of convLSTM in the first 3 h was considerably
worse than the CNN and tower networks, suggesting a disproportionate reliance on the
NWP data. This suspicion was further supported by the permutation feature importance
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measurements, which also revealed that the convLSTM, unlike the other two models
considered, valued previous day observations over same day observations. There was no
significant difference in RMSE between the CNNs and tower networks. However, studying
the permutation feature importance measurements for all 15 realizations of each of these
models revealed that permuting any one input data source had an overall greater impact
on the RMSE of the CNNs than on that of the tower networks, which might suggest a
greater robustness in the tower networks. This makes the tower networks a useful addition
to the other benchmarked core architectures and suggest that the tower networks are more
robust and generalizable. For future work, it would be interesting to explore how the tower
networks can replace the other two core architectures in more complex networks, and
how this influences the generalizability and robustness of these. In addition it would also
be interesting to test the tower networks with a variety of other data types and for other
use cases.

5. Conclusions

In this paper, we have seen an example of how deep learning can be useful in the
post-processing of weather forecasts, and produces results that are comparable to, and
often better than, traditional methods. Furthermore, we have compared three approaches,
the CNN, the convLSTM and the tower network. Each method had strengths and weak-
nesses: the CNN was quick and performed excellently, but was also memory intensive; the
convLSTM was slow to train, and did not perform quite as well, although it required the
least memory; and the tower network was quick, well performing and lightweight, but not
significantly better than the simpler, and quicker, CNN.

The first conclusion of this paper is that the proposed new core architecture is more
robust and generalizable than its currently used counterparts. The second conclusion is
that when using deep learning in weather forecasting, good results can be achieved with
computationally inexpensive methods, which suggests that most of the complex variations
in core architectures are most probably over-fitting or wasting unnecessary resources. The
third conclusion is that combining NWP data and historical observations as input to the
neural networks creates better results than using only one of these data types alone. We
have seen that with deep learning, we can effectively combine various data sources and,
crucially, we found that the benefit of combining the data was far greater than the advantage
of one method over another. In fact, all the methods considered in this paper perform
reasonably well when given this combined input.

For the new tower network introduced in this paper, the greatest advantage appears to
be its ability to extract the essential information from heterogeneous inputs, which would
be interesting to explore in future work and other domains.
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