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Collaborative learning with block-based programming: investigating human-
centered artificial intelligence in education
Renate Andersen a, Anders I. Mørch b and Kristina Torine Litherlandb

aDept. of Primary and Secondary Teacher Education, Oslo Metropolitan University, Oslo, Norway; bDepartment of Education, University of
Oslo, Oslo, Norway

ABSTRACT
In this article, we investigate human-centered artificial intelligence (HCAI) in an educational
context where pupils used block-based programming in small groups to solve tasks given by
the teacher. We used a design-based research approach in which we, together with the
teachers, created a maker space for explorative science learning and organised teaching
interventions wherein the pupils met online three hours a week for 16 weeks for an entire
school year. Due to COVID-19, data were collected through Zoom, with collaborative learning
situations captured through screen sharing and online communication using webcams. We
employed three data analysis techniques: interaction analysis, visual artifact analysis, and
thematic analysis. We developed an analytical framework for integration using thematic coding
that combined concepts from computer-supported collaborative learning (CSCL) and domain-
oriented design environments. We report the following findings: 1) Three types of rules
between design units were identified with visual artifact analysis: latent, generic, and domain-
specific rules; 2) two types of CSCL artifacts (technology and discussions) were intertwined and
developed in parallel, along with a computer-based scaffolding scenario that offloads domain-
specific scaffolding from humans to computers.
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1. Introduction

Markoff (2016) wrote a popular book about the compli-
cated and evolving relations between humans and com-
puters since the birth of artificial intelligence (AI) in the
1950s to today’s embedded computers. In the book,
Markoff asks how we should balance what computers
can do for us (AI) and what they can help us do our-
selves (intelligent augmentation [IA]). Google auto-
mated driving and the Apple personal assistant (Siri)
are examples of AI and IA, respectively. Our focus is
on the IA end of the spectrum.We postulate that knowl-
edge-based rules can support educational researchers to
conduct empirical analyses, while IA software can help
learners reach their educational goals by reducing the
burden for teachers. According to Yang et al. (2021)
public opinion about AI is changing from predomi-
nantly technology-oriented to humanity-oriented appli-
cations. This view is echoed by the United Nations
Educational, Scientific and Cultural Organization
(UNESCO) (2022), whose mandate is to focus on
human-centered approaches to AI. UNESCO (2022)
identified three main areas of AI and education as par-
ticularly relevant: 1) learning with AI (e.g. the use of AI-
empowered tools in classrooms), 2) learning about AI

(AI technologies and techniques), and 3) preparing for
AI (e.g. enabling citizens to better understand the
potential impact of AI on human lives). Our focus is
on learning with AI. In this section, we describe the
related work on which our study is based: 1) compu-
ter-supported collaborative learning, 2) block-based
programming, 3) physical computing in education, 4)
end-user development and domain-oriented design
environments, and 5) human-centered AI in education.
Each of these fields are relevant as they complement
each other and in total provides a rich perspective for
exploring processes of collaborative learning in a pro-
gramming context and how it can be explored in the
light of HCAI in education.

Due to space limitations, the literature review does
not examine the research fields but rather focuses on
studies at the intersection of at least two of these
fields. We used Google Scholar to identify central
articles. Using snowballing, we screened for relevant
references in the initial articles and repeated the process.
To limit the number of articles, we narrowed our
inquiry to the most recently published articles. In
addition, we included classics—the canons—which
motivated the direction of our work. When searching
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in the journals and proceedings we used a combination
of the keywords listed above, including ‘block-based
programming in education,’ ‘computer-supported col-
laborative learning,’ ‘smart things creation in edu-
cation,’ and ‘physical computing in education.’ The
literature review is not exhaustive but offers insight
into the current research landscape, especially regarding
HCAI in education in connection with end-user
development.

1.1. Computer-supported collaborative learning

CSCL is a research field focused on understanding how
people learn together using digital tools, following the
assumption that these tools improve the quality of the
learning process (Stahl, Koschmann, and Suthers
2006). CSCL researchers have explored how computers
can enable students to learn collaboratively in small
groups, leading them to share knowledge (Stahl 2006)
as a step toward individual learning and achievement
at the group interaction level. Artifacts are central in
CSCL and play several roles in CSCL settings:

1. They can be technological artifacts supporting com-
munication and collaboration,

2. They can structure the representations that groups of
students use when creating shared understandings,

3. They canbe instructional artifacts (e.g. teachingmodels,
inquiry scaffolds like sentence openers, and scripts),

4. They can be the result of group efforts oriented toward
the co-construction of an artifact, such as a visual arti-
fact, technology design, or project report, and

5. The process might result in a knowledge artifact (e.g.
a learning design or a roleplay video) (Stahl et al.
2014).

In our research, we focus on two types of CSCL arti-
facts that are the result of group efforts, which we refer
to as technological and discursive objects. We use the
terms visual artifact instead of technology object in
some situations. The double naming is due to our
dual focus on the empirical analysis of technological
objects and a method for analysis of those objects (visual
artifact analysis). The terms artifacts and objects are also
used interchangeably.

Research methods from the social sciences are com-
monly used in CSCL to capture group interaction.
One common method is interaction analysis (see
Methods section). A goal in CSCL is to understand col-
laborative knowledge construction as it develops from
multiple individuals’ personal understandings to a
shared understanding through information sharing,
positioning, and negotiating multiple perspectives and

interests. Following Stahl (2006), we use the terms
shared perspective or group cognition in referring to
collaboratively constructed knowledge.

In CSCL contexts, learners can be either physically
co-located or distributed in an online learning environ-
ment, but learning is always developed through the col-
laborative creation of shared artifacts (Lipponen,
Hakkarainen, and Paavola 2004). Therefore, CSCL is
understood as a process involving 1) learner interaction,
2) information sharing, 3) joint meaning making, and 4)
the creation of shared artifacts (Andersen 2019; Stahl,
Koschmann, and Suthers 2006). In this study, we
employ CSCL as a perspective to focus on small group
learning in schools, where students are active creators
of visual artifacts (physical and digital). The term
‘mutual development’ refers to a process in which differ-
ent stakeholders collaboratively co-create shared arti-
facts (Andersen 2019; Andersen and Mørch 2009), like
the participants in our intervention. Scaffolding is a
key concept in CSCL (Rienties et al. 2012). Vogel et al.
(2022) explored how adaptable scaffolding of math-
ematical argumentation could be supported by a tech-
nological tool, investigating the role of self-regulation
while being scaffolded by CSCL scripts and examples.
Serrano-Cámara et al. (2014) studied how students
become motivated to learn programming concepts in
a CSCL setting. Another study investigated how colla-
borative learning through pair programming can
improve pupils’ programming and computational
thinking skills (Echeverría, Cobos, and Morales 2019).

1.2. Block-based programming: an overview

There is a growing recognition that computing is an
essential skill for all students to master, and conse-
quently block-based programming and computer
science courses have entered school curricula in many
countries (Mørch, Litherland, and Andersen 2019;
Weintrop and Wilensky 2017). Block-based program-
ming relates to visual programming, which became a
niche area of programming language research in the
mid-1980s, following the invention of graphical user
interfaces. Two pioneering visual programming
environments were Fabrik (Ingalls et al. 1988) and
BLOX (Kopache and Glinert 1988), which made it easier
for non-expert and disabled users to learn textual pro-
gramming (Smalltalk, Pascal, or C) using direct
manipulation interfaces (drag-and-drop programme
structures analogous to solving a jigsaw puzzle or build-
ing with LEGO). Corral, Fronza, and Pahl (2021) pre-
sented a recent overview of block-based programming
as a tool during the past 10 years. They defined block-
based programming as languages and tools that allow
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non-professional users to create working software pro-
ducts with little knowledge of the structure and syntax
of a regular programming language. One of their argu-
ments is that block-based programming democratises
software development by enabling the creation of soft-
ware products by non-expert programmers, from
elementary school pupils who create software products
as part of their education to professionals.

With increased access to online programming
environments since the millennium, visual program-
ming has reached non-professional communities
through hobbies and entertainment (e.g. creating
video games and animations). Further innovations in
user interfaces for editing code, software tools, and
environments that run in the browser are important
success factors (Resnick et al. 2009). Another success
factor is the availability of an online repository of
examples (source code and applications) created by
peers. Today, block-based programming environments
typically serve as students’ introduction to the practice
of programming (Weintrop and Wilensky 2017).
Scratch is one of the most popular block-based pro-
gramming languages (Brennan and Resnick 2012;
Resnick et al. 2009; Zhang and Nouri 2019). It is
known to ‘lower the floor’ to programming. Other
block-based programming languages, such as Alice
(Utting et al. 2010), are used by older students for sol-
ving problems in, for example, science, technology,
engineering, and mathematics (STEM) topics (Zhang
and Nouri 2019), and have been used to create special-
ised block-based languages, such as Robot Blockly for
industrial robotics (Weintrop et al. 2017). Older and
pioneering block-based environments include Boxer
and AgentSheets, for physics education and computer
science education, respectively (diSessa and Abelson
1986; Repenning, Ioannidou, and Zola 2000).

1.2.1. Block-based programming in education
Weintrop and Wilensky (2017) emphasise that block-
based programming is a useful programming language
to use in an educational context, as it has several key fea-
tures that differentiate it from text-based programming
and other visual programming languages. Most notable
is the jigsaw-puzzle-piece metaphor, which is used to
provide visual cues to the learner about which com-
mands to use. The main advantage of block-based pro-
gramming is that it reduces pupils’ challenges in
learning programming language syntax and renders
programming more accessible to novices (Sengupta
et al. 2013). Other researchers have highlighted micro-
worlds and puzzles as metaphors connected with
block-based programming and explored the potential
of teaching introductory programming from a design

science perspective, focusing on design guidelines and
data analysis methods that can be used for designing
and improving block-based programming (Pelánek
and Effenberger 2022). Namli and Aybek (2022) inves-
tigated the effect of block-based programming and
unplugged coding on fifth graders’ computational
thinking skills, self-efficacy, and academic performance.
The study included 82 fifth graders in middle school.
The authors concluded that block-based programming
activities had a moderate effect on computational think-
ing skills. Jiang et al. (2022) explored the programming
trajectories, postulating that block-based programming
languages provide effective scaffolding for K–12 stu-
dents to learn computational thinking. Their main
finding was identifying four different roles of block-
based programming learners in school: quitters, approa-
chers, solvers, and knowers.

In this study, we used Microsoft’s MakeCode for a
micro:bit, a block-based programming environment
used with a small computer (micro:bit). Combined,
Microsoft MakeCode and micro:bit provide an accessi-
ble high-level programming environment for embedded
devices without sacrificing performance and efficiency
(Devine et al. 2019). Programming a micro:bit with
MakeCode also allows learners to design and pro-
gramme physical components, such as servo motors,
sensors, actuators, and lamps, which are components
of a makerspace. These components can form part of
more complex visual artifacts composed of software
and hardware.

1.3. Physical computing in education

Physical computing involves the design and compo-
sition of interactive objects and enables students to
develop concrete, tangible real-world products (Przy-
bylla and Romeike 2014). Accordingly, physical com-
puting can be used in computer science education to
provide students with interesting and motivating access
to different topics areas of the subject (Przybylla and
Romeike 2014). In our case, this is realised by Micro-
soft’s MakeCode (Devine et al. 2019) with a physical
micro:bit board connected to different physical com-
ponents. Sarı et al. (2022) studied physical computing
in an educational setting, combining hardware such as
sensors, LEDs, and servo motors with programming
activities, such as problem-solving, algorithm creation,
and code writing. They found that STEM-focused phys-
ical computing activities developed teacher students’
computational thinking skills (Sarı et al. 2022).

Smart-thing design is a term used to capture the entire
design process of enhancing everyday things, like toys,
with computing devices and software capabilities,
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emerging from the field of ‘Internet of Things’ (IoT).
Smart things are defined as autonomous physical/digital
objects augmented with sensing, processing, and network
capabilities (Kortuem et al. 2010). These smart things can
sense, log, and interpret what is happening with them-
selves and the world, act on their own, intercommunicate
with each other, and exchange information with people
(Kortuem et al. 2010). Root, Heuten, and Boll (2019)
designed a card-based teaching approach, Maker Cards,
using the physical computing device Calliope (an IoT
platform) to give children instructions for the hardware
and software to help them make their own meaningful
artifacts through programming. Gennari et al. (2022) pre-
sented a study of a toolkit for smart-thing design with
children that included a card-based board game for chil-
dren, the aim of which is to engage and enable children to
design smart things. In the field of interaction design with
children, a group of researchers inspired by Papert’s ideas
on constructionism have developed materials-based con-
struction kits for children (Eisenberg 2005), supported by
design principles (Resnick and Silverman 2005), histori-
cal review and analysis (Blikstein 2013), and empirical
studies (Sheriff et al. 2017). A study was carried out to
promote children’s initiative, positive risk taking, and
procedural thinking, all in the context of their bedrooms
(Sheriff et al. 2017). The researchers found that inter-
action with a mechanical construction kit can empower
children to develop curiosity about the mechanical
world around them, think about risk taking as a poten-
tially positive experience, and think more critically
about initiative in the smart home era (Sheriff et al. 2017).

1.4. End-user development and domain-oriented
design environments

End-user development (EUD) refers to a set of methods
and techniques that allow people who are nonprofes-
sional software developers to create or modify a soft-
ware artifact (Lieberman et al. 2006), in contrast to
the technical development carried out by trained pro-
grammers and software engineers (Batalas et al. 2021).
It includes, among others, visual programming (Repen-
ning, Ioannidou, and Zola 2000) and domain-oriented
design environments (Fischer 1994). EUD researchers
have developed tools and environments and tested
them in laboratories, organisations, and homes (Fogli,
Peroni, and Stefini 2017). We study EUD in educational
institutions (schools).

We argue that the usefulness of EUD environments in
educational settings can be assessed based on accessibil-
ity, flexibility, and purpose. Accessibilitymeans the extent
to which the EUD environment provides a gentle slope to
modification and programming (Mørch and Zhu 2013;

Wulf and Golombek 2001). Flexibility refers to the extent
to which the tools have a low threshold and high ceiling,
allowing many interesting artifacts to be created (Repen-
ning, Ioannidou, and Zola 2000; Resnick et al. 2009;
Weintrop et al. 2017). Furthermore, accessibility and
flexibility should be measured against purpose (e.g. sol-
ving technical problems, practicing computational think-
ing, or learning STEM topics) (Li et al. 2019). Our aim is
to understand block-based programming as a tool for
explorative learning of STEM topics.

Domain-oriented design environments (DODE) rep-
resent a special area of EUD, which we have adopted in
our research as a conceptual framework for the future of
block-based programming. The three basic components
of DODEs are 1) a construction kit with a set of building
blocks (design units [DUs]) for creating visual artifacts,
2) an argumentation component that provides access to
the design principles of the visual artifacts (referred to as
the artifacts’ design rationale), and 3) a critiquing com-
ponent that analyzes a visual artifact according to a set
of knowledge-based rules (Fischer 1994; Fischer et al.
1996). When a design rule is violated, the critiquing
component provides feedback to the user with a link
to the argumentation (design rationale) for the rule.

DODEs have several applications to education,
including:

1. Supporting the creation of an artifact with a con-
struction kit,

2. Signalling potential breakdowns with a critiquing
component, and

3. Supporting the exploration of argumentation and
design rationale.

Artifacts created with a DODE are externalizations of
the designers’ thoughts (Bruner 1996; Fischer 1994). A
common denominator of DODEs and block-based pro-
gramming is component-based design where the user of
a computational design environment interacts with the
visual components selected from a palette of parts and
then combined and modified in a work area (2D or
3D editor). However, most block-based programming
environments lack the support of knowledge-based
rules and methods and tools for using the rules. These
features provide the means for scaffolding and design
rationale (argumentation for rules). For example, if we
were able to identify structural relations between the
components of an educational makerspace (software
and hardware), rules would allow for scaffolding. We
focus on how empirical researchers can analyze the arti-
facts with rules, and we provide a scenario showing how
the rules can be applied in automated scaffolding.
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1.5. Human-centered AI in education

Shneiderman (2020) defined human-centered AI
(HCAI) as a promising direction for designing AI sys-
tems that support human self-efficacy, promote creativ-
ity, clarify responsibility, and facilitate social
participation. Furthermore, he identifies three ways
HCAI can put humans at the centre of design thinking:
1) acknowledging a two-dimensional HCAI framework
with high levels of both human control and automation,
2) a shift to empowering people away from descriptions
of intelligent autonomous systems and toward expla-
nations of powerful tool-like applications, 3) a govern-
ance structure that describes how software engineering
teams can develop more reliable AI systems. Fischer
(2021) suggests that EUD and AI should be integrated,
and he identifies several areas of HCAI that intersect
with the aims of EUD (empowering end users rather
than replacing them), including IA, explainable AI
(XAI), democratising AI, ethics and trust, common
ground, and shared understanding. The latter two
areas overlap with research topics in CSCL (Stahl 2016).

Yang et al. (2021) argued that AI can evolve into
HCAI by developing AI from a human perspective con-
sidering human conditions and contexts, particularly
focusing on how AI technology can enable different
forms of human performance. They explored how AI
can be used to evaluate new design methods, tools
that can advance AI research, education policy, and
practice, with an overarching aim to leverage AI’s
potential to educate, train, and improve the perform-
ance of humans rather than doing interesting things
for them. According to Yang et al. (2021), the shifting
of AI research toward creating HCAI designs that con-
sider human conditions and have a human-oriented
approach should be seen to augment (rather than
replace) human intelligence with machine intelligence.

HCAI in education can be approached, for example,
with an AI-enabled conversational robot (chatbot), AI-
enabled personalisation, smart content provisioning,
learning pathway guidance, learning design support
for teachers, course recommendation for students, intel-
ligent assessment, evaluation of course essays (Mørch
et al. 2017), automatic question generation, and AI-
enabled plagiarism detection (Yang et al. 2021). In this
article, we explore the use of HCAI in the context of
1) visual artifact analysis and 2) automated scaffolding
by an AI-enabled conversational robot (chatbot) in a
physical computing STEM context.

Although AI in education is often touted as an emer-
ging field in educational technology, many educators are
uncertain about how to take full pedagogical advantage
of the technology in the classroom. Akinwalere and

Ivanov (2022) presented examples of introducing AI
in higher education, discussing its possibilities and
risks. Our empirical findings address challenges and
opportunities for K–12 education.

1.6. Rationale and research questions

In block-based programming, syntax is validated
through the automated connection of blocks but there
are no built-in mechanisms that support the user in
combining blocks to reach personally meaningful or
educational goals. Our approach to HCAI involves
two ways of applying knowledge-based rules: by edu-
cational researchers in visual artifact analysis and for
designing scenarios in which pupils interact with auto-
mated scaffolding in block-based programming.

Accordingly, we ask the following research questions:

How can empirical researchers take advantage of HCAI
in education by using knowledge-based rules in block-
based programming environments to 1) analyze CSCL
artifacts using visual artifact analysis (RQ1) and 2) pro-
pose scenarios of computer-based (automated)
scaffolding (RQ2)?

In sum, our related work draws on different aspects that
make out the research questions. We focus on block-
based programming in a collaborative context in
which pupils use a physical micro:bit for solving subject
specific tasks in class. Following this, we explore how
this can be taken one step further by applying auto-
mated scaffolding or HCAI to offload teacher’s work-
load described in a scenario. We address these
questions in this article, which is organised as follows.
In section 2, we present our research methods. This
includes a description of the pupils and their selection,
the educational task and setting, the data collection
techniques, and the analytical framework for analyzing
the data. We illustrate the materials (software and hard-
ware) used in the classroom. In section 3, we present the
study results, including a method for empirically analyz-
ing visual artifacts using rules and for proposing com-
puter-based scaffolding scenarios. Finally, we discuss
our results, answering the RQs and comparing our
findings with those in related works.

2. Materials and methods

2.1. Analytical framework

We analyzed the empirical data on pupils’ group inter-
actions in computer-mediated settings in science edu-
cation from two perspectives: 1) research analysis of
collaborative learning processes and artifacts and 2)
requirement analysis to identify opportunities for
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computer-based scaffolding using HCAI. We created an
analytical framework to facilitate this endeavour, par-
ticularly to understand the intertwining of discursive
(group interaction) and visual (programming, making)
activities. The concepts in the analytical framework
are derived from central topics in CSCL and EUD. We
used these concepts in an integrated effort as thematic
codes to make sense of the empirical data in our analy-
sis. The analytical framework builds on previous work
(Andersen, Mørch, and Litherland 2021) but is
extended by detailing various rules in the visual arti-
facts. Our aim is to understand the collaborative learn-
ing of knowledge and skills in specific STEM domains
(e.g. math, biology, and physics) when block-based pro-
gramming is used as a method. From the CSCL perspec-
tive, we highlight the collaborative learning process and
the common artifacts that are created (Stahl, Kosch-
mann, and Suthers 2006). Additionally, from the per-
spective of EUD, we draw on the concept of DODEs
(Fischer 1994), which allows us to define knowledge-
based rules as relations between design units (DUs).
Combining these concepts from two different research
traditions, computer science and social science, pro-
vides a group interaction perspective on domain-
oriented design environments, which, to the best of
our knowledge, is novel. The analytical framework is
presented in Table 1.

Personal perspective is the understanding an individ-
ual contributes during group work. Information sharing
occurs when the participants share their personal per-
spectives. It is a central element of collaborative learn-
ing, as it starts all other meaning-making processes
(Stahl 2006). Negotiation occurs when the group begins
to establish a shared perspective through which they
construct and maintain a common understanding of
the task and its solution. Individual group members
must negotiate multiple personal perspectives to create
one that can be shared and to affirm that the meaning
is, in fact, shared (Stahl 2016). According to Stahl

(2016), group cognition is a goal of collaborative learn-
ing and occurs when multiple people participate in
coherent interactions leading to cognitive accomplish-
ments that are best analyzed, at least in part, at the
group level, rather than attributing contributions and
agency entirely to individual minds. Scaffolding is a
metaphor in the collaborative learning context, describ-
ing how teachers and experienced peers offer temporary
support structures to assist learners in developing new
understandings, concepts, and abilities by providing
feedback and support (Hammond and Gibbons 2005).

DODEs are computational environments whose
value is not restricted to the design of software artifacts
(Fischer 1994). Based on DODEs, we adopted the con-
cept of DUs, which are the basic objects in the design
environment (i.e. the smallest units that designers
manipulate during a design process). DUs can be
specific domain objects referring to elements of an
assignment given by a teacher as well as objects that
are more technical or general in nature. In this context,
they are the hardware (microcontrollers and physical
things) and software objects (code blocks) users interact
with when they create things and programme them in a
makerspace. We refer to DU configurations as visual
artifacts or technical objects (Andersen, Mørch, and
Litherland 2021). They are distinguished from discur-
sive (CSCL) objects, which are composed of oral or tex-
tual utterances that contribute to shared understanding.
Rules are relations between two or more DUs and define
the knowledge embedded in a visual artifact or technical
object. These rules can be identified through visual arti-
fact analysis (section 3.1). Examples are previous sol-
utions (software and hardware) that can be reused in
new designs. We broadly interpret the concept of
examples to include aspects of testing and refining a
first version of something that is almost finished.

2.2. Research design and methods

In the following section, we present the research design
and specifics of the data collection and analysis. As the
intervention described below was executed during the
COVID-19 pandemic, all classes were held remotely
using a video conferencing platform (Zoom).

The project employed a design-based research (DBR)
approach, which involves collaboration between differ-
ent stakeholders in the design and implementation of
educational interventions, seeking to contribute to the
development of both theory and practice (McKenney
and Reeves 2018). Hence, the participating teachers
and pupils did not act as ‘informants’ per se but as part-
ners in the design and execution of the project, as
detailed below. As opposed to lab-based approaches,

Table 1. Analytical framework: A set of concepts derived from
CSCL and DODEs.
Analytic concepts derived from
CSCL Analytic concepts derived from DODEs

1. Personal perspective 1. DU (separate building blocks to be
combined with other DUs to form more
complex designs)

2. Information sharing (from
me to you)

2. Rule (relation between two or more
DUs).

3. Negotiation (you and I
decide what to focus on)

3. Example (complete design for reuse)

4. Group cognition (shared
meaning/perspective)

5. Scaffolding (help from
teacher/senior peer)
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where pedagogical theories are tested in isolation from a
general context, DBR interventions are executed ‘in
context’ through iterative development (Hoadley
2002). The data used in this paper were collected over
the course of an academic year.

Research Design. The DBR intervention comprised a
series of 16 three-hour science classes developed with
the aim of supporting gifted pupils in learning acceler-
ated science content using block-based programming
as part of a makerspace. The students were randomly
divided into six groups, and a teacher was assigned to
each group. Each group completed all 16 classes. Tea-
chers in upper secondary schools taught the classes
while the students were still enrolled in lower secondary
schools. These more qualified teachers were required to
support the goal of accelerated learning, as the interven-
tion covered learning goals from upper secondary
schools. The teachers started each online class with tra-
ditional introductions to the scientific topic of the day,
followed by introductions to any relevant technical
materials (physical or digital) necessary for individual
or group tasks. This included showing the students
examples of MakeCode scripts they might apply. The
teachers divided the class into groups (breakout rooms
in Zoom) comprising three to four pupils, where they
worked on practical assignments employing program-
ming skills and content knowledge just introduced by
the teacher. The pupils were free to solve the tasks crea-
tively in any reasonable way they chose. As the students
worked remotely, they were encouraged by the teachers
and researchers to share their screens, communicate
using voice and text chat, and point to their project
with their web cameras. The concept of design in DBR
(design as intervention) is different from that in
DODEs (design as creation). Thus, we use the concept
of design from the perspectives of both behavioural
science and information technology (computer science).

Participants in the Study. The participants in the
research project are gifted children who were selected
based on several checklists indicating their interest
and ability in addition to meetings with the pedagogi-
cal-psychological service in the municipality. The par-
ticipants were ability tested by certified psychologists
with WISC-V (95% IQ > 120) to ensure that they were
defined as gifted. Mönks and Katzko (2005) defined gift-
edness as the individual potential for exceptional or out-
standing achievements in one or more domains, which
reflects the concern for practical, educational issues in a
developmental context. Renzulli (1978), one of the pio-
neers and most well-known researchers in the field,
defined gifted children based on a three-ring model of
gifted behaviours consisting of three types of human
traits that are dynamically dependent on each other:

1) task engagement, 2) task persistence, and 3) creativ-
ity. It should be emphasised that defining giftedness in
children requires multiple qualities and not just a high
IQ score. These key qualities include motivation, high
self-esteem, and creativity (Reis and Renzulli 2004).

Building on Renzulli (1978), Mönks (1992) proposed
the ‘multifactor model,’ adding an education dimension
by focusing on school, peers, and friends as factors to be
considered for understanding gifted behaviour in a
school context. Later research suggested two different
educational approaches to adaptive education for gifted
pupils (Freeman 1999): acceleration and enrichment.
Acceleration means increasing the tempo of the learning
process by moving pupils to a higher level, an older age
group, or compacting the material they must learn.
Enrichment involves going into more depth about a
specific topic to be learned. Our intervention involved
aspects of acceleration and enrichment. The compe-
tence goals of the learning design were 3–5 years
above the pupils’ academic year, and we focused on
creating exploratory and open-ended tasks where the
pupils had many alternatives for task completion and
could work together.

A core principle of gifted education is individualisa-
tion and differentiation (Mönks and Katzko 2005).
Therefore, we wanted to create learning designs for a
much-needed learning programme in which gifted chil-
dren would be motivated to participate. Our unit of
analysis is collaborative learning (group interaction)
and exploratory learning using programming for adap-
tive learning in a STEM classroom. Furthermore, pro-
gramming has become a central topic that educational
policymakers argue all students should learn (Bocconi,
Chioccariello, and Earp 2018). Current research
explores how programming can be integrated into
school subjects and the implications of doing so. Gifted
children provide a good starting point for an explorative
study of programming in STEM since they are motiv-
ated to participate and need adaptive education. We
studied the visible emerging social practices that we
could capture with video recording of the pupils when
they were collaborating, implying that the background
of the children is not the focus of the study.

Data Collection. The collection of empirical data in
this study was a complicated process that was only poss-
ible through collaboration with the participating stu-
dents and teachers. Five researchers and one assistant
participated in the data collection. Students, teachers,
and one or more researchers and/or assistants were all
synchronously present in the three-hour online Zoom
classes, which were recorded by the researchers. No
data in this paper involved physical co-presence; all
classes were online. Except for classes where the
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students completed pre- and post-tests (not included in
the scope of this article), parts of all classes were
recorded, focusing on active group work sessions. For
these recordings to successfully capture a maker space
on a computer screen, the students and teachers had
to digitally share their materials with the researchers
and the class, using webcam and voice/text chat. We
see this as a conceptual shift from research on students
(and teachers) to research with students (and teachers).
The students and teachers did not record themselves but
were essential in making decisions about what and when
they wanted to share content in the recordings. The
researchers were present during the online classes and
sometimes proposed that the students shared materials
or explained their thinking verbally. This data collection
approach is referred to as participant observation, where
the observers are sometimes also participants (Jordan
and Henderson 1995). Using this method, we collected
approximately 70 h of screen recordings. Prior to the
intervention, all participants’ parents/guardians signed
a written consent form with information about the pro-
ject, including data collection and storage. All collected
data were stored using the highest level of security
offered for sensitive research data. Additionally, all
names used in this paper were pseudonyms. The study
was approved by the Norwegian Centre for Research
Data.

Data Analysis. The data were analyzed using a two-
step approach, combining thematic analysis (Braun
and Clarke 2012) and interaction analysis (Jordan and
Henderson 1995). We looked for instances of inter-
action informed by our analytical framework (top-
down) as well as for emergent themes from the data
material itself, known as an abductive approach (Reich-
ertz 2014). We emphasised both the participants’
‘voices’ as inductive and applied our analytical frame-
work, which is a top-town, deductive approach. The
group was our main unit of analysis. During the deduc-
tive (top-down) part of the analysis, we explored the
material and coded instances based on the framework.
The inductive (bottom-up) part of the analysis allowed
for the emergence of codes outside of the established
framework, such as block-based programming, collab-
oration, and programming integrated with the subject
material. Using the interaction analysis (Jordan and
Henderson 1995), we found selected episodes of data
to serve as examples of our findings and divided them
to analyze them in detail, focusing on the sequential
interaction and development of understanding or dis-
cursive objects. In practice, deductive and inductive
coding was performed individually and separately by
the authors. Before we came together and analyzed
extracts, each researcher had made a tentative selection

based on our research questions. During these data
workshops, we focused on the development and appli-
cation of the analytical framework and on any emergent
codes. The final selection of examples to include in the
paper was made by the first author. We show two
examples in section 3.2. Interaction analysis allows the
researcher to focus on the bottom-up perspective of
human interaction (talk, action) with other humans,
space, and objects/artifacts in the immediate environ-
ment (Jordan and Henderson 1995).

2.3. Materials and activities

We provided the pupils with a toolkit including the
different physical and digital materials they needed to
solve the tasks assigned by the teachers, and we refer
to the materials as DUs (Figure 1).

The data used in the study involved the following
subjects: mathematics, biology, and physics. The pupils
were given tasks to learn one or more domain-specific
concepts using a micro:bit (the physical controller)
and creating a block-based code connected to it to
solve domain-specific tasks assigned by the teacher.
MakeCode is a web-based environment that facilitates
block-based programming for writing the code that
controls the micro:bit (MakeCode 2021). One task
example is to make the micro:bit function as dice
(Figure 2; Andersen, Mørch, and Litherland 2021),
another is to make the micro:bit into a burglar alarm,
which we will study more in depth in section 3.

Methodological Limitations. Generalizability in quali-
tative research includes two components: purposive
sampling and theoretical sampling. In purposive
sampling, a case is chosen because it illustrates the fea-
ture or process of interest. In theoretical sampling, a
case is chosen based on a theory or perspective (Silver-
man 2005). In this article, purposive sampling was used
since we selected a case study that focused on how pro-
cesses of collaborative learning emerge when gifted
pupils work with block-based programming. It should
also be noted that the participants are gifted. Hence,
they have different special education needs and intellec-
tual backgrounds than non-gifted pupils in most class-
rooms, which may affect the generalizability of the
findings. We made this choice because the unit of analy-
sis in the study is the processes emerging between the
gifted pupils when using programming for solving sub-
ject specific tasks in class. This implies that the individ-
ual pupils are in the background, representing the
context of the interventions, but are not the unit of
analysis. The analysis focuses on representative CSCL
artifacts collaboratively created by the pupils in group
work.
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3. Results

The following research questions were addressed in this
article: How can empirical researchers take advantage of
HCAI in education using knowledge-based rules in
block-based programming environments to 1) analyze
CSCL artifacts using visual artifact analysis (RQ1) and
2) propose scenarios of computer-based (automated)
scaffolding (RQ2)? We have organised our results into
two sections. The first (3.1) addresses issues pertaining
to RQ1, and the second (3.2) addresses issues pertaining
to RQ2. The RQs are further elaborated in the discus-
sion section (section 4). RQ2 is also addressed in section
5 by analyzing a future scenario of computer-based
scaffolding that offloads domain-specific scaffolding
from humans to computers.

3.1. Identification of rules

Rules can be gleaned from visual artifacts by identifying
relations embedded within the artifact (i.e. as relations
between DUs). We provide two small examples to
demonstrate how we identified rules. The examples
are presented in Andersen, Mørch, and Litherland
(2021) but not profiled with the method we used here,
referred to as visual artifact analysis (VAA). The goal
of VAA is to identify embedded rules and types of
rules in visual CSCL artifacts and to complement inter-
action (verbal) analysis.

The rules can be gleaned by identifying the relations
between components (e.g. between the components that
form part of a subassembly and between the subassem-
bly and its constituent DUs). We identified multiple
rules from the visual artifacts shown in Figures 2 and
3 according to a set of characteristics, ranging from gen-
eral to specific. We named the rules latent, generic, and
domain specific. The following is an example of a gen-
eric rule: for the micro:bit to function as a die, you
shake the physical controller or push the ‘shake’ button

on the virtual controller (Figure 2, analogous to rolling).
This identifies the relation between the shake action/
button on the micro:bit (Figure 2, right image) and
the shake code block in MakeCode (Figure 2, left
image). Another rule is ‘blocks snap together to form
a sequence in an assembly’ (Figure 3, left image),
which is what happens when the programmer moves
two blocks that are syntactically compatible near each
other. This is an example of a latent (automated) rule.
Analyzing the relations between DUs in Figures 2 and
3, the following design operations for organising the
DUs to form visual artifacts can be identified, starting
with the most general (broad application) to the most
specific (relating to a specific domain, a task, or an exter-
nal object):

1. Composition (part/whole, making a DU part of a
higher-level DU; see three examples in Figures 2
and 3)

2. Sequencing (two blocks placed next to each other;
see examples in Figure 3)

3. Loops, conditionals (Figure 3), and event handlers
(Figure 2) as control mechanisms

4. Set and get operations (Figure 3)
5. Modelling an external object pertaining to a knowl-

edge domain or a task (e.g. ‘pick random’ (from
probability in mathematics) and values ‘1–6’ (model-
ling a die as a cube with a unique number for each
side) (Figure 2)

These design operations define relations between two
or more software blocks in MakeCode and the hardware
components in a makerspace, including micro:bits
(Figure 3), or between a software DU and a hardware
DU (Figures 2 and 3). The relations form part of the
rules. Furthermore, the following features differentiate
the rule types:

Figure 1. Left: The physical materials the pupils had access to and used in some of the assignments. Middle: micro:bit circuit board
with electronic components. Right: Three MakeCode programme blocks. We refer to each item (physical, digital, software) as a DU.
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. Latent rules are tacit (taken for granted, automated)
and general (applicable across multiple domains
and tasks). For example, composition and
sequencing.

. Generic rules are distinguished from latent rules by
being explicit (learners must be consciously aware
when choosing them) and feature generality. Most
programme constructs.

. Domain-specific rules are distinguished from the two
other types by being explicit and pertaining to a
specific domain or task. Specific functions, variable
names, and values.

3.2. Application of rules in empirical research

In this section, we present empirical data that illustrate
how the pupils we studied used the block-based code to
experiment and explore subject area topics in STEM
education. Each section is divided into four subsections:
1) contextualising the extract, 2) raw data (informants’
voices), 3) technology object (software and hardware
being composed), and 4) discursive object (a sequence
of utterances advancing the groups’ common under-
standings). The transcript notations we used include
the following symbols: ((text)): participants’ actions,
[text]: researchers’ clarifying comments, (.): long pause
in interaction, and… : pause in interaction. In all

extracts, one of the pupils shared their screen so that
the other pupils could see what they were working on.

3.2.1. Example 1: programming the micro:bit to
function as a burglar alarm
Contextualising the Extract: The data extract in Table 2
is derived from a class in which the pupils made the
micro:bit work as a burglar alarm by connecting differ-
ent physical and digital artifacts. The subject-specific
learning goals were derived from physics, covering
topics like electricity and conductibility. The pupils
used materials from the provided toolkit, such as tape
and aluminum foil, to create the micro:bit alarm. The
texts in parentheses are objects the pupils refer to or
act upon. William and Damien are working remotely
on their separate solutions to the burglar alarm in the
zoom breakout room. William is filming his project
with his web camera and talking about the issues he
has connecting the different physical parts. His class-
mate Damien is watching and commenting. The teacher
joins the breakout room mid-extract.

Technology Object. The development of the technol-
ogy object is partly shown in Figure 4 (two snapshots),
which is William’s version of the part of the device that
has three wired components—a micro:bit, a servo
motor, and a camera set inside a wooden frame

Figure 2. Visual artifact for simulating throwing dice by calling a random number function and displaying its values on a micro:bit
display. The visual artifact comprises four DUs, three software code blocks (left), and one hardware unit (micro:bit, right). The relations
between the DUs define three types of rules.

Figure 3. Visual (digital) artifact (left) with a micro:bit (right) for controlling audio in a simple burglar alarm.
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resembling a boat. The problem that led to this physical
configuration is an earlier configuration in which the
motor’s movement pushed the camera such that it was
lifted and stopped working. In turn 1.1, the relation
between two of the DUs is established (camera and
servo), which we interpret as a latent rule, meaning
that the connection is a result of trial and error by Wil-
liam rather than deliberation. Damien suggests another,
perhaps brute force, idea to connect the two devices by
taping them together. This should be considered an
application of a generic rule, as the act is justified
through several rounds of deliberation. William pre-
sents a generic rule between these two DUs when he
says that the camera needs to stand next to the burglar
alarm. In turn 1.5, the teacher tries to help William by
building on Damien’s previous suggestion (latent rule)
to use tape, which, by now, is a generic rule for how
to connect the camera to the burglar alarm.

Discursive Object. Referring to the conversation
unfolding in Table 2, Damien suggests an idea for solving

the problem with the servo motor and the camera, which
starts a collaborative inquiry process in which the group
begins to establish a shared perspective (Stahl 2016) by
William’s proposal of a personal perspective (a problem).
Damien suggests his idea for improvement to help and
scaffold William. Considering Damien’s idea, William
(in turn 1.3) responds by again sharing his personal per-
spective. Next (turn 1.4), Damien challenges William’s
statement, reflecting a negotiation process. Abruptly, in
turn 1.5 the teacher intervenes and provides a scaffold
by elaborating Damien’s idea about taping the whole
camera. Damien provides additional elaboration, and
they reach a tentative shared perspective (Stahl 2016).
Damien (turn 1.8) helps William by clarifying how the
idea the teachers suggested can be accomplished and,
thereby, provides a new scaffold. Thus, they affirm their
shared perspective in turn 1.9–1.11, which leads to an
agreement on how to solve it, referred to as group cogni-
tion (Stahl 2016).

Our data indicate that scaffolding is frequent on
different levels (latent, generic, and domain-specific)
by different actors (peer, teacher) to help the pupils
move forward and further their understanding of scien-
tific concepts. The next extract also shows examples of
peer and teacher scaffolding at the domain level and a
scenario of computer-based (automated) scaffolding.

3.2.2. Example 2: the burglar alarm is not working
Contextualising the Extract. This example is derived
from the same context as example 1 (programming a
burglar alarm) and occurred sometime after the first
example. Immediately prior to the extract in Table 3,
William shared his screen and explained the code and
how he created the burglar alarm by modifying the
code and discussing how to make the burglar alarm
sense movement by changing the axis parameter of
the accelerometer. The two pupils test and discuss
how the burglar alarm reacts to motion when the door
is opened, focusing on the acceleration value of the
motion sensor. They find that the motion detector is
not sensitive enough, and thus they discuss how to
change the code to make their device more sensitive
to the pupil’s door movement.

Technology Object. Figure 5 shows the MakeCode a
pupil created to control the burglar alarm by connecting
three different micro:bits to detect a door opening. The
code reflects the complexity of the programming process
in the number of relations established between the DUs,
which are numerous and can be gleaned from Figure 5
(and partly from Figure 4). The code connects the
micro:bits and the GoPro camera through wires, radio
signals, and the servomotor. The micro:bits built in the
accelerometer detect door motion, which is measured

Table 2. Relations between physical artifacts.
Turn Participant Utterance Analytical concept

1.1 William Okay, new problem. The
servo holds, but it’s lifting
the whole camera. How
should I connect the
camera [to the burglar
alarm]?

personal perspective,
design unit (2),
latent rule

1.2 Damien [70 s later] But the servo
should be taped on top of
the camera.

negotiation, design
unit (2), scaffolding,
latent rule

1.3 William On top of the camera? Yes,
but no, it has to be next to
it. I thought about it, but
this is the easiest way if I
just find a way to attach
the camera.

design unit (2),
personal
perspective, generic
rule

1.4 Damien But you don’t have any
support for the camera on
the one side, on your left
side of the camera.

negotiation

1.5 Teacher Can you take a piece of tape?
I’m thinking that if you put
a piece of tape—You know
you taped the other side
[of the camera], but if you
put a piece of tape across
the whole camera.

scaffolding, design
unit, generic rule

1.6 Damien Yes, that’s what I’m thinking
too.

shared perspective (2)

1.7 William Across the whole camera? design unit
1.8 Damien Start on top of the camera,

the part facing the ceiling,
and then you stick the tape
from there to the underside
of your ‘boat’ [the
foundation on which he is
building the burglar alarm].

scaffolding

1.9 William Yeah, so across the whole
screen at the top.

shared perspective (2)

1.10 Damien Yes.
1.11 Teacher Yes.
1.12 William I hadn’t thought of that.

Good if it works. ((tapes))
group cognition (3)
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by acceleration in milli-g (thousandths of the standard
gravity), and its value is added to a conditional block in
MakeCode. The pupil selects this code block to trigger
an alarm sound by connecting it with the ‘play tone’
block that is part of its subassembly. The example brings
latent, generic, and domain rules to the foreground. For
example, the pupil uses problem-solving as an implicit
rule that is part of the taken-for-granted process of sol-
ving science tasks in a classroom setting. Latent rules
are also evident in the composition and sequencing of
code blocks. This can be seen in the multiple subassem-
blies that are in the process of being included or excluded
in the overall execution and seen as alternative configur-
ations outside the main execution block in Figure 5 (see
the unused event handler blocks ‘on button pressed’ in
the left image of Figure 5, which simply displays a
count). Furthermore, generic rules define the different
wiring of physical components (Figure 4) and the choice
of logic for the programme execution using conditionals
and set operations (Figure 5). A domain rule is associated
with using the acceleration conditional (if) block, which is
also a key concept in Newtonian mechanics and part of
the physics topic taught (which also includes electricity).
When the pupils are confronted with programming
terms that also relate to domain-specific concepts, they
can connect theoretical concepts with practical activity,
which is one of the aims of educational makerspaces.

Discursive Object. The extract started out with Wil-
liam (turn 2.1) stating that the micro:bit does not
work; it only made a high beeping sound. This problem
triggered an understanding process, which eventually
led to a shared perspective on the task and group cogni-
tion, where all members shared the same perspective
(Stahl 2006) about acceleration as a physics topic (orig-
inating from the teacher’s perspective) as well as about
developing devices that work (originating from the
pupils’ perspectives). Consequently, Damien (turn 2.2)
asked what cut-off point the acceleration condition
was set to, after which a series of tests led them to a
shared understanding of the acceleration concept. This

understanding was sufficient for the programming pro-
cess, an iterative process of making and building under-
standing that led to group cognition (Stahl 2006) in turn
2.17. The discussion of the milli-g, which is the unit of
measure for the accelerator, reflects the domain-specific
knowledge connected to the physics task they were
working on. It is interesting that they connected the
learning of domain knowledge to the programming pro-
cess. This might be a strategy they employ when they
meet challenges and lack the necessary scaffolding.
The pupils discussed how to select the cut-off point
for the accelerometer condition to make the burglar
alarm work properly, and during this process, they
shared information and negotiated their ideas, some
of which were related to physics and others to collabor-
ation and problem-solving.

Scaffolding the Discourse. Damien’s response in turn
2.6 revealed that he did not know about the concept
of axes required for using the acceleration function in
MakeCode. Consequently, William explained how to
determine what axis he was using, thus peer scaffolding
(Hammond and Gibbons 2005). However, Damien
(turn 2.8) did not understand it, so he again asked
how to do this. This reveals that the pupils lacked the
background knowledge (generic or latent rules) of
how the accelerometer in the micro:bit works, which
could potentially connect with Newtonian mechanics
but could not be achieved by peer scaffolding alone.
The teacher (turn 2.9) intervened and asked Damien,
who had a working burglar alarm, if he used the z-
axis. This is another example of a scaffold (Hammond
and Gibbons 2005), in this case from the teacher, draw-
ing on Damien’s (lack of) pre-understanding. In turn
2.10, Damien again bailed out and switched the activity
to a more hands-on one (attaching the micro:bit to a
door), which turned out to be a game changer for lifting
the conversation to a higher (more theoretical) level. In
turn 2.11, a fictitious agent Jack addressed the issue
(Damien’s lack of knowledge of the z-axis) by explaining
through a simulated voice what an accelerometer is and

Figure 4. Two screenshots of the burglar alarm created by William, where the camera is taped (left); to the right we see how William
tests if the camera is attached to the burglar alarm when the servo motor starts (points with finger).
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how it has built in the z-, y, and x-axes. The teacher
intervened the second time in turn 2.19 to orient the
higher-level discussion toward domain knowledge by
explicitly invoking the concept of acceleration: ‘It
makes sense since it’s acceleration. If you open it [the
door] slowly and steadily, it doesn’t change. Then you
have zero acceleration’ [emphasis added]. This extract
is interesting in how the pupils used programming as
a method for learning Newtonian physics, and in
doing so, revealed the underlying implicit and explicit
rules that gradually became more specific as the stu-
dents’ orientations aligned with the teacher’s orien-
tations through scaffolding.

4. Discussion

In this section, we address RQ1 (analyze CSCL artifacts
using visual artifact analysis) by comparing our findings
with those obtained in the related work we surveyed in
section 1. RQ2 is addressed in Section 5.

4.1. Analyzing CSCL artifacts using visual artifact
analysis

Our interest in the visual artifact analysis of CSCL arti-
facts is based on 1) prior work in domain-oriented

Table 3. Relations between physical and digital artifacts.
Turn Person Utterance Analytical concept

2.1 William This is bad, it [the micro:
bit] is screaming
constantly.

design unit

2.2 Damien What acceleration do
you have, William?

information sharing

2.3 William It’s 200 milli-g, so it
might be too low?

personal
perspective,
negotiation

2.4 Damien Mine is at 500 milli-g. personal perspective
2.5 William Which axis are you

using?
design unit (small
DU)

2.6 Damien Eh, how am I supposed
to know!

2.7 William It tells you! In the same
place [block], it’s easy
to see. It says x, y, or z,
and then power, or—
what’s it called again?
Strength [force, see
Fig. 3]

generic rule,
domain-specific
rule, personal
perspective

2.8 Damien Eh, let me check. It says
… x. What should it
be?

design unit

2.9 Teacher Didn’t you use z,
Damien?

design unit (z);
latent rule

2.10 Damien I think z is best, but how
did you attach the
micro:bit to the door?

design units; generic
rule

2.11 Simulated Agent
Jack
(automated
scaffolding)

The micro:bit is
equipped with an
accelerometer, which
measures movement
along three axes: x
(movement from left
to right), y (movement
forward or backward),
and z (movement up
and down). There is a
variable for each axis,
which returns a
positive or negative
number that indicates
the milli-g forces.
When the
accelerometer
variable’s value is 0,
the forces pulling each
way on the axis are
equal. In the last
minute or so, I’ve
mainly registered
movement on the z-
axis.

design unit (3),
generic rule,
domain rule,
scaffolding

2.12 Damien Yes, I just taped mine
[the micro:bit] to the
door like this. ((shows
with camera?))

information sharing,
personal
perspective,
design units (2)

2.13 William But have you taped the
micro:bit to it [the
door]? It [the alarm]
didn’t work when I
tried.

negotiation; design
units (3)

2.14 Damien Yes, it worked. I taped it
like this and at a low-
turning radius and put
it close to the hinges in
a way. Also, I set it to
‘y’ and just made it a 1
so that it registers the
smallest of
movements. It’s taped

information sharing,
negotiation,
design units (4),
domain-specific
rule

(Continued )

Table 3. Continued.
Turn Person Utterance Analytical concept

firmly so it doesn’t
move unless someone
makes it move.

2.15 William Yeah, that’s good. Okay,
so it’s not beeping yet.
((has taped the micro:
bit to the door and
tests the design by
opening the door))

information sharing,
negotiation,
design units (4),
domain rule

2.16 Damien Is it beeping? ((hears
sound from micro:bit))
Yes!

negotiation, design
unit

2.17 William Yes, it’s working. But 500
mg was a little too
much maybe.

shared perspective,
example,
negotiation

2.18 Damien Yes. In my experience, it
was difficult [for the
micro:bit to detect
movement] if I opened
the door smoothly, but
if the door suddenly
stopped moving or as
soon as I closed it
again, it registered the
signals quite fast.

example, domain
rule, design unit
(2), shared
perspective

2.19 Teacher It makes sense since it’s
acceleration. If you
open it [door] slowly
and steadily, it doesn’t
change. Then you have
zero acceleration.

domain rule, design
unit, scaffolding

2.20 Damien Sure… group cognition
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design environments and end-user development
(Fischer et al. 1996) and 2) identifying a technique to
supplement verbal interaction analysis in CSCL research
(Jordan and Henderson 1995). Visual artifacts in
DODEs were kitchen designs composed of DUs (appli-
ances and cabinets) and rules for how the DUs should
be combined according to the kitchen design rules,
thus embedding domain knowledge in visual artifacts.
In this study, we proceeded by reverse engineering the
tangible results of a learning activity, whereby rules
were gleaned by decomposing visual (STEM) artifacts
into DUs and relations. Latent, general, and domain
rules were identified. Latent rules emerge as implicit
rules based on the tacit knowledge associated with the
participants’ experiences and prior knowledge (i.e.
learned in and out of school) and automated behaviour
in programming and making. Generic rules relate to the
conscious actions performed by pupils when they are
developing things and programming by composing
DUs. Domain rules are more specific and oriented
toward a knowledge domain, task, or learning goal.
We have focused on one domain concept as an example,
acceleration, which the pupils chose as a control mech-
anism to detect door motion so that the micro:bit could
function as a burglar alarm, triggered by accelerated
motion. This is one of the many possible solutions to
the task, and the two pupils we followed chose this
solution.

4.2. Visual artifact analysis extends and
complements interaction analysis

What we learned from our visual artifact analysis that
we could not obtain from the interaction analysis is

associated with two trajectories of development: a tech-
nology object and a discursive object. The former
depends primarily on VAA, while the latter depends
on interaction analysis. We consider both important
for understanding the pupils’ collaborative learning, as
two different CSCL artifacts that complement and
refer to each other during the learning process. On
one hand, our visual artifacts are mediating artifacts,
such as the artifacts used in interaction analysis (e.g.
deictic references). On the other hand, visual artifacts
are dynamic entities; they are objects that evolve with
their own logic (from a simple to a more complex visual
artifact, involving various rules that define relations
between the DUs as they form part of subassemblies)
(Fischer et al. 1996). This is different from the logic of
developing understanding in verbal discourse (from
personal to shared perspectives) (Stahl 2006). This
implies that visual artifacts are an evolving context for
verbal discourse; thus, the two objects (technology vs.
discourse) define separate but interdependent trajec-
tories that evolve in parallel.

5. Directions for further work

In this section we discuss RQ2 (propose scenarios of
computer-based (automated) scaffolding).

The underlying rationale for suggesting automated
scaffolding prompts with the micro:bit is that we believe
IA and HCAI can be useful for teachers to offload their
work, implying that automation will not lead to AI
(replacement). In a programming class, a teacher is sup-
posed to help up to 25 pupils simultaneously, which can
be a daunting task or, at best, an exercise in prioritisa-
tion. We focused on simulating what an intelligent

Figure 5. Parts of the code developed by one of the students to interact with the micro:bit-controlled door alarm.
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assistant can provide in terms of scaffolding by giving
examples of useful information. The technical
implementation is outside the scope of our work as edu-
cational researchers and is a direction for further work.

It would be quite helpful to the teachers if the micro:
bit could have built-in sensors that provide immediate
feedback to the pupils during their programming pro-
cess in the future. Affordances built into the technology
can indicate actions for domain expert end users to per-
form useful tasks. An illustrative example is when play-
ing with a train construction kit as a child—where each
train had different magnets connected to their ends. If
you combined the cars with the right magnets (positive
and negative), they would ‘click’ and connect, resulting
in a long train of carriages. If you tried to connect two
carriages that were not compatible, the objects would
signal this by their magnets’ opposing forces. The mag-
nets can be seen as a built-in affordance that provides
information about how to connect the train carriages.
Moreover, they provide an entry point to the physics
of electromagnetism, where a skilled teacher can align
students’ trajectories of hands-on making and building
understanding into a new path of focused understand-
ing enabled by scaffolding.

We sought to identify how an intelligent agent, Jack,
can provide automated assistance to the learners based
on detecting ‘broken’ rules. Some situations in which
HCAI can help the teacher include a pupil trying to con-
nect two parts that are not compatible (e.g. the micro:bit
could change its colour to red). Another example is pro-
viding scaffolding for using radio signals in the micro:
bit to connect two microcontrollers. One of the control-
lers could signal a working line by blinking a green light.
Our hypothesis is that by making the physical com-
ponents more intelligent through built-in affordances
and automated feedback, they could function as
scaffolds and make it easier for the teacher to help the
students who are struggling and need elaborated help.
In addition, many teachers often lack detailed program-
ming knowledge. The development of AI support sys-
tems requires careful consideration of the task
requirements and finding the right balance of teacher
assistance and automated help.

6. Summary and conclusions

We addressed how can empirical researchers take
advantage of knowledge-based rules in block-based pro-
gramming environments to analyze CSCL artifacts
using visual artifact analysis (RQ1) and proposed scen-
arios of computer-based (automated) scaffolding (RQ2)
by analyzing two visual artifacts in terms of extracting
rules (section 3.1) and presenting and analyzing the

development of more complex visual artifacts that
explored the application of the rules (section 3.2). In
summary, we report the following findings.

. Three types of rules were identified between the DUs
with VA: latent, generic, and domain-specific rules,

. Two types of CSCL artifacts (technology and discus-
sions) intertwine and develop in parallel,

. A scenario of computer-based scaffolding that
offloads domain-specific scaffolding from humans
to computers.

We identified three types of rules using visual artifact
analysis. Three types of rules were identified and named:
latent (tacit everyday understanding), generic (explicit
everyday understanding), and domain-specific (explicit
scientific concepts). We used the rules as analytical con-
cepts in the empirical analysis of two verbal data extracts
(examples 1–2) and in the development of discursive
objects (represented in verbal transcripts). The occur-
rences of rules were identified in the direct or indirect
mentions of relations between DUs by the participants.
Links to the corresponding visual artifacts are shown as
image snapshots in the figures. A more comprehensive
series of successive snapshots would reveal a more
detailed process by depicting the increased complexity
of adding DUs and subassemblies during the making
process, allowing for finer-grained VA and better con-
textualisation of the discursive object. This is part of
future work, which also includes testing whether the
rules are also relevant in another domain.

With the combination of VA and interaction analy-
sis, two types of CSCL artifacts emerged: technology
and discursive objects. The snapshots that comprise
the evolution of the technology object were more
specifically related to the visual, technical, and physical
characteristics of the micro:bit and how to connect it
with related components. In contrast, the discussions
connected to the discursive objects were more general
and focused on creating a shared understanding of
how to solve the task, collaborate with peers, solve tech-
nical problems, and involve domain (physics) knowl-
edge by using scientific concepts (e.g. acceleration).
The latter was, to a larger extent, dependent on the tea-
cher’s (or more capable peers) scaffolding to increase
task completion accuracy.

We suggested a seamless transition to computer-
based (automated) scaffolding in the form of simulating
a teacher’s behaviour as a facilitator in a makerspace.
Automated scaffolding in a classroom setting has great
potential for helping teachers when many pupils ask
for help of different types, for example, to augment
human decision-making and provide timely feedback.
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However, there are also negative consequences. One
issue is that makerspaces and knowledge-based rules,
to a large extent, are contradictory terms (makerspaces
are problem-solving spaces for technology enthusiasts
and scaffolded bottom-up by peers and not imposed
top-down by rules). Second, teachers may have little
time in a classroom with 25 pupils, although 25 micro:
bits may come handy. Additional help will be needed
to resolve technical difficulties because teachers often
do not have detailed programming knowledge.

Regarding limitations, our study included partici-
pants who were drawn from a pool of gifted students.
In educational research, it often is assumed that gener-
alisations cannot be drawn from a small case study or
small sample of case studies (Silverman 2005). If this
study had been conducted in a classroom with non-
gifted pupils, the outcome might have been different.
However, our exploratory study allowed us to develop
new hypotheses and a new research method for edu-
cational makerspaces. As such, the findings may have
implications for how teachers plan and design future
teaching lessons when using block-based programming
integrated in a subject. It also provides an example of
how HCAI can profit from such learning designs.
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