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Abstract

Unmanned underwater vehicles (UUV) are important for industry, science and explora-
tion. A key step in increasing their autonomy and lowering costs is performing 6D pose
estimation on objects it interacts with. This report details pose estimation methods and
the process of creating a dataset for training neural networks. Footage captured in the
sea using a ROV is annotated with segmentation masks and poses. This is made public
along with the tools developed to create it. The dataset appears to be unique in its kind,
similar datasets were made in pools and also not published. Further, the dataset is used
to train Mask R-CNN for 2D object detection.
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Chapter 1

Introduction

1.1 Problem Statement

There is a large and growing number of inspection and interaction tasks in underwater
environments [47]. Fish farming, public works, scientific discovery, the military and
petroleum industry all rely on underwater vehicles. For instance, oil wells are now
regularly established at depths far beyond the range of human divers. Underwater vehicles
are used to inspect and maintain aquaculture fish cages [2]. Scientists even intend to search
for life in extra-terrestrial ice-covered oceans and lakes [77]. These operations rely entirely
on underwater vehicles.

These vehicles can be manned or unmanned. Unmanned vehicles are either
autonomous or remotely operated. Remotely operated vehicles (ROVs) are tethered to
a subsea installation or dedicated surface ship, and operated by a pilot. Then there are
various degrees of autonomy between this and a vehicle operating without a tether or
any communication with the surface. A hybrid underwater vehicle (H-ROV) might be
configurable for both tethered and untethered operation.

Fully autonomous underwater vehicles (AUVs) are already used extensively for
surveillance, mapping the ocean floor, monitoring water or wildlife [32]. And there have
been several attempts to increase autonomy for intervention tasks since the 1990s [56, 60,
69, 70]. Some examples are connecting to or manipulating subsea panels or finding and
retrieving objects from the seabed.

Although a ROV might still be necessary for the complete operation, certain tasks may
be automated and consequently can reduce pilot fatigue. The pilot can issue tasks and
supervise the ROV instead of controlling every action. Such as changing the tooling on the
end effector of the robotic arm. If an operation could be done completely autonomously
there would also be no need for a tether. ROVs rely on the tether and this necessitates a
large and expensive supply ship with a tether management system. This expensive ship
is manned by a crew who are all at risk in adverse weather or when operating near ice
fields. Increasing autonomy has the potential to both decrease costs and increase safety.
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But to interact with an object it is a prerequisite to determine the distance to and
orientation of that object. This problem is called pose estimation. Previous UUV projects
have developed custom pose estimation methods that are very particular to the problem
they solve in their experimental demonstration. Meanwhile pose estimation for objects in
air is a very active field of research, driven by interest in autonomous vehicles, augmented
reality and collaborative robots. This project seeks to combine pose estimation and
tracking methods using template matching to make a system capable of manipulating a
wide variety of different objects in subsea operations.

Machine learning methods have been steadily out-competing traditional methods for
the past decade. The state-of-the-art pose estimation methods today are neural networks
[27]. However, these require massive amounts of data to train and there are few or none
publicly available datasets for underwater pose estimation. Although some projects have
applied machine learning techniques to UUVs [46, 49], these datasets were created in a
pool environment and not made public.

The goal of this project is to create a dataset for the purpose of training neural networks
to perform pose estimation. The dataset should be created in a way that does not require
prohibitively expensive laboratory equipment or novel specialty sensors. Further it should
be created in open water rather than a pool, as the poor visibility in a natural underwater
environment must be regarded as the main challenge.

Figure 1.1: The Blueye X3 observed from a secondary ROV.

1.2 Operationalization

Figure 1.2 can be used to illustrate a typical use case. It shows a wellhead panel used in the
oil and gas industry. ROV pilots need to interact with the valves and hot-stab connectors
using the mechanical gripper very skillfully. Because of water turbidity, distortions and
lack of depth perception this is very difficult. The goal here would be to use a simple
color camera to infer the relative position and distance from the panel. This information
could in turn also be used to automate the entire task.

Imaging sonar offer unique capabilities underwater, where visibility if often limited. No
doubt why many marine mammals rely on their biosonars. But sonar still lack the spatial
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Figure 1.2: Subsea panel. Image courtesy of IKM

resolution necessary for manipulation tasks. And acoustic sensors are also vulnerable to
noise in cluttered environments.

A pose estimation method for operational use should not rely on fiducial markers of
any kind. A fiducial is something placed in an image to act as a scale or point of reference.
In computer vision there are methods such as AprilTag [50, 78] and ArUco [20, 63] that
utilize 2D barcodes as fiducials. These methods can exploit the known geometry of the
barcode to estimate rotation and translation. Fiducials are commonly used in robotics for
pose estimation in navigation and manipulation tasks. But placing fiducials on everything
is impractical and sometimes impossible.

This project also only takes into consideration passive optical sensors, as opposed to
active. Active sensor can be fiducials emitting light, or cameras emitting light to work
as a 3D sensors. These use LiDAR (Light Detection And Ranging) or structured light to
capture 3D shapes directly. LiDAR has become widespread in robotics in recent years and
its use underwater have already been explored by several projects [24, 44, 52, 62, 65, 69].
There also appear to be commercial LiDARS available, but these appear to be intended
for surveying. Passive sensors are a cheaper and more elegant solution, and should be
perfectly sufficient for many tasks.

The focus is further constrained to methods using a single camera to the estimate the
pose of an object. Previous projects attempting to use stereo cameras underwater were
unsuccessful, despite significant effort in the design of the camera system [13, 38, 39, 41].
This project aims to test the techniques on ROV equipment without any special camera
setup.

There is also an important distinction between pose tracking and pose detection.
Tracking assumes a continuous video stream where the object moves little from frame
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to frame. These methods are fast, but rely on being initialized with a pose, and must
re-initialized every time tracking is lost. On the other hand, detection finds the pose from
a single image. Though these methods also sometimes rely on additional information such
as a bounding box. Detection is much more computationally heavy and it seems necessary
to use tracking and detection methods complementary to have a robust realtime system.

The system should primarily rely on a more efficient pose tracking algorithm and only
use pose detection whenever tracking is lost.

This report will evaluate methods that assume a 3D model of the desired object is
available. Having to rely on a 3D model might seem unpractical, but in reality most
objects an UUV might interact with are man made and created with computer-aided
design. In the reverse case, 3D scanning is now commonly available as a service. These
can create a model of pretty much any object with a normal surface, but might struggle
with highly reflective or opaque objects.

1.3 Research contribution

• There are to my knowledge no datasets for underwater pose estimation publicly
available. Similar datasets do exist, but are not published, and are made in indoor
pool environments. This is captured in the sea at two different days and locations
for varying visibility levels. This project details the making of such as a dataset,
published free to use at https://github.com/wehak/ROV-handle-DB (GNU General
Public License v3).

– The dataset comes ready to use annotated in the COCO format, appended
with ground truth pose.

– It includes all the raw footage and calibration images if any researchers wish
to utilize this.

– All the tools used to create the dataset from the raw footage is published, free
to use for anyone who wants to use a similar approach in creating their own
dataset.

– Finally it includes a Mask R-CNN model trained for object detection on the
data.

• The report includes a unique review of how intervention-AUV projects in the last
decade have done pose estimation.

• It outlines an architecture for at pose detection and tracking system combing existing
methods. It is intended to work for any kind of object with a CAD-model available.
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1.4 Overview

Chapter 2 highlights some general theoretical concepts relevant for the methods used later.
Section 2.1 describes the consequences water have on robot perception. In section 2.2 some
basic computer vision concepts are introduced. Further 2.3 present some mathematical
representations of motion and rotation, along with methods to manipulate them. Lastly
evaluation metrics for 2D object detection is discussed.

Chapter 3 maps out relevant research. Part 3.1 reviews pose estimation methods used
in water and UUV projects that have tried to perform autonomous intervention tasks.
In section 3.2 general pose estimation methods are discussed. Finally 3.3 present pose
datasets that have been created specifically to train and benchmark neural nets for pose
estimation.

Chapter 4 contains the methodology. Part 4.1 presents how I create a dataset for
pose estimation in water. Part 4.2 detail how it is used to train a neural net. Lastly 4.3
describes details on the implementation of the methods.

Results are presented in chapter 5 and further discussed in chapter 6. Chapter 7 sums
up the findings.
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Chapter 2

Background

2.1 Constraints in the underwater environment

2.1.1 Imaging and computer vision

The methods for pose estimation discussed in this paper primarily rely on regular cameras.
Pose estimation in air is a well studied subject in computer vision, but the same algorithms
work less reliably in water. Water affects light differently than in air. Generally, water
absorbs light very quickly, and different wavelengths are affected unevenly. As seen in
Figure 2.1 green and blue travels through water easier than other wavelengths. This in
turn results in the characteristic green and blue hue seen in most underwater images.

Figure 2.1: Water transparency as a function of wavelength [11]

Water will also contain a varying amount of suspended solids. These particles will
scatter light moving towards the camera in an effect called forward scattering. This
creates a blurring effect that reduce contrast, causing a varying degree of turbidity. In
deep water, larger particles known as “marine snow” (Figure 2.2b) may partially occlude
features and create a backward scatter effect. At these depths all natural light is gone, and
vehicles rely on artificial lighting coming from the machine itself. This light is reflected
in the marine snow, as illustrated in both figure 2.2a and 2.2b.
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(a) Backscatter effect [79] (b) Marine snow [67]

Figure 2.2: Noise in underwater images

Underwater images are also affected differently by refraction, as light travels more
slowly in water than in air. Light passing from air into the lens has a different refraction
index than light traveling from water into the lens. The camera housing on a deep water
vehicle may be several centimeters thick and made of different materials. This creates a
distortion that is largely range dependent and cannot be compensated for by using simple
camera calibration [34].

Popular RGB-D cameras like the Microsoft Kinect is widely used in robotics, but does
not work underwater. It relies on structured light in the infrared. As seen in figure 2.1,
these wavelengths are quickly absorbed in water.

2.1.2 Communication

High-speed communication based on electromagnetic radio waves has long since matured
to the point where it is taken for granted. Unfortunately it has never worked very well
underwater. Attenuation in water is very high and its range is extremely limited [51].
Instead acoustic telemetry is the norm. It has a range up to 20 km, is energy efficient
and low cost. On the downside latency is high and bandwidth very low. Data rates may
only reach upwards of 38.4 kb/s and is vulnerable to a range of different environmental
conditions [11]. This is totally insufficient for remotely controlling a robot via video.
Instead ROVs rely on a tether than can both supply power and provide a high-speed data
link.

2.1.3 Localization

Global navigation satellite systems (GNSS) is not directly available because of the high
attenuation of radio waves in water, but a position can be established with the aid of
acoustic positioning systems. The most common systems are long baseline (LBL), short
baseline (SBL) and ultra-short baseline (USBL) [11].

USBL allows two vehicles to establish their position in relation to each other without
deploying any beacons. A transceiver on one vehicle emits a ping and cause a transponder
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on the other vehicle to respond. By measuring the time from emitting the ping and
receiving a response, the transceiver can determine the range. The direction the response
is coming from can be measured with an array of transducers on the transceiver. If one of
the vehicles is a surface vehicle with a GNSS system, this can be used to indirectly infer
the position of a UUV with a transponder [11].

LBL and SBL both rely on a mesh of transceivers and determine the angle by
triangulation. SBL transceivers are wired together to a central hub, while LBL
transceivers work independently of each other. LBL can both be placed on the bottom
around the worksite or floating as bouys with GNSS.

The downside of acoustic positioning is the cost and their vulnerability to disturbances.
The speed of sound is affected by temperature, salinity and pressure, and the ocean
consists of layers of water with different characteristics. Waves are also deflected off
objects and cause multipathing, which would be a problem for any ROV navigating an
environment crowded with subsea structures.

In addition to aiding in manipulation of subsea panels, pose estimation can be a
valuable as a tool in localization. Robot localization is the problem of orientation and
position in relation to the world. Orientation is the rotation around the pitch, roll and yaw
axes. This can be found using a magnetometer and accelerometer. Finding the position
is much trickier. Establishing an exact position in relation to a known subsea structure
could correct for drift or greater uncertainty in other methods.

2.2 Computer vision

2.2.1 Photogrammetry

By applying photogrammetric techniques, features can be used to extract information
about the 3D structure of an object using 2D images. The pinhole camera model is used
as a basis. Light rays from the outside are assumed to pass through a infinitely small
focal point and onto a sensor. The model explain how 3D points in the world are mapped
onto the 2D image plane. The parameters of the model are divided into intrinsic and
extrinsic parameters.

The cameras intrinsic properties describes the lens distortion, how skewed the image is,
the cameras focal length and the pixel size in world units. This is acquired by performing
camera calibration using a checkerboard pattern.

The extrinsic parameters describe the position and orientation of the camera in the
world coordinate system. The intrinsic parameters describe how 3D points are mapped
into 2D points in the image plane. This process is lossy however and cannot easily be
reversed. The problem of finding the camera extrinsics based on camera intrics, the image
and assumptions of the 3D world is known as pose estimation.
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2.2.2 Pose estimation

With pose estimation the goal is to find the camera extrinsic properties, that is the rotation
and orientation of the camera in the world coordinate frame. In robotics the practical
problem is usually finding the pose of an object in the coordinate frame of the camera,
but this reversal is a trivial transformation. Pose estimation is crucial to enable robots
to interact with the environment. It can also be used to create an augmented reality
experience where 3D shapes are overlayed on the ROV pilot’s screen. These shapes can
be be annotated with properties such as distance to or the size of the target.

The classic technique is called perspective n-point and given at set of images it can
determine the pose of the camera with a little as three image features. That particular
variation is very brittle however, and in practice Szeliski [72] instead recommend using
perspective six-point and refine that with an outlier detection algorithm such as RANSAC.

2.2.3 Image features

Given a scene with good features to track, PnP and RANSAC works well. But common
feature detectors generally work less reliably under water [3]. Intuitively, features are
things that sticks out in an image and can act as a point of reference when seeing the
same scene from different angles. Features are a prerequisite for pose estimation and
stereo vision. The ideal feature is a piece of information that is unique and tied to a
specific thing in the image. Given a set of images of the same scene, the feature should
be identifiable in all of them.

Features that stand out to humans are typically large and complex objects and shapes;
A mountain silhouette, a door or a banana. Computer vision algorithms rely more on
tiny patches of the image or edges and corners [72].

The feature detector is the specific method of finding features. A simple keypoint
detector might be looking for an image patch with an extreme maximum. The suitability
of the feature would then be evaluated by comparing its quantified properties with its
neighborhood. Its suitability is primarily proportional to its uniqueness [72].

Other properties is invariance to changes in scale, rotation or luminosity. This would
depend on the type of detector used. Detectors also consider different classes of features,
the most common being keypoints, corner, edges or ridges.

Some common detectors are SIFT, SURF, ORB, Hessian or difference of Gaussian.
These features are "hand-crafted" in that they are not machine learning methods. The
algorithm relies only on the information in the image. Machine learning feature descriptors
learn to extract features from the training data, and applies this experience to the
interpretation of a new image. A convolutional neural net (CNN) is any type of neural
net that use convolution in its layers. Convolution is a mathematical operation on two
matrices where a small matrix called a kernel slides or convolve across the bigger matrix.
The output depends on the properties of the kernel and parameters to the convolution
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operation, but generally it will reduce a large matrix into a smaller matrix. The purpose
is typically to compact an image to a "feature map" that contains higher level features
instead of just individual pixels. Convolution has been used for a long time in computer
vision, for instance for performing Sobel or Canny edge detection. The difference in
CNNs is that the algorithm learns to adapt the kernel itself. Dai et al. [14] compare
features created by different CNNs and find they outperform traditional hand-crafted
feature descriptors.

Structure from motion is a related technique for finding the 3D position of features.
This can be used to create a sparse 3D reconstruction of an object when viewed from
multiple angles.

Stereo vision

Stereo vision works because an object imaged by two cameras with overlapping views will
be slightly offset in each, and this offset is inversely proportional to the distance from the
cameras. Techniques that match the type of features described above are called sparse
stereo matching. The converse is dense stereo matching that match pixel-to-pixel. Sparse
stereo has some utility if the desire is to limit the number of matches to more robust
features [72]. This could for instance be edge-type features, that are more prominent in
underwater images of subsea structures. Subsea structures are often without texture and
have a uniform color, which could make matching keypoint features difficult. Yet another
alternative is image segmentation based techniques.

Stereo-vision can be used to gauge depth, but is generally harder to use under water.
It will depend on the quality of the features it is tracking. Even if two identical cameras
are calibrated perfectly, turbidity or floating particles may affect light hitting each camera
differently.

The output of stereo matching is a 2D depth map of the original image. Given many
images of the same scene, multi-view stereo techniques can be used to create dense 3D
models of objects [72]. The 3D representation can be a point cloud, mesh or voxels. These
are obviously valuable for robot navigation, but also more complex and computationally
intensive than basic stereo vision or feature-based pose estimation.

2.2.4 3D sensors

LiDAR ("Light Detection And Ranging") and structured light sensors are capable of
detecting 3D shapes directly, instead of restoring them from 2D images.

LiDAR works by sending a laser beams at a point in the scene and measuring the time
it takes to return. These are used in the MERBOTS (section 3.1.4) and SEAVENTION
projects (section 3.1.8).
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The sensor used in SEAVENTION is called UTOFIA and is developed specifically for
underwater use [44]. It integrates data from both a LiDAR and a regular camera. The
range measurements are range-gated, meaning laser beams that bounce off particles too
close to the camera are ignored. This has the effect of filtering out backscatter close to
the camera. By increasing both laser beam intensity and the range-gate parameter, the
instrument is capable of looking further ahead. The image from the regular camera is
also enhanced using the depth map created by the LiDAR.

Structured light techniques project geometric patterns onto the scene and infer the
shape of objects by how the shapes are distorted. Rishold et at [62] explores its use for
underwater robotic perception.

Structured light generally offers greater spatial resolution and higher framerates than
LiDAR alternatives, but at the cost of lower range.

2.3 Describing poses

There are many different mathematical representations of motion, each with their pros
and cons. All methods described in this project describe rigid bodies. A rigid body can
be a geometric primitive such as a cube or sphere, but also a complex 3D model. The
point is that is does not take deformation into consideration. Rigid bodies would be a
good starting point for viewing plants and creatures as well, as these could be modelled
as several rigid bodies linked by joints.

Axis-aligned orientations are most intuitive when describing an object’s orientation
relative to the camera frame. These Euler angles α, β and γ correspond to rotation
around the x, y and z axis [74]. When describing 3D motion these are typically called
roll, pitch and yaw.

Figure 2.3: Euler angles in maritime terms

When the rotation is considered one axis at a time, rotation around each axis can be
describes by the matrices below.
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Rx(α) =

1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)



Ry(β) =

 cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)



Rz(γ) =

cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


Euler’s rule tell us that the dot product of these three matrices correspond to a rotation

matrix. The rotation matrix is a transformation from one coordinate system to another.
A rigid body in an image can be seen as a coordinate frame with a rotation around the x,
y and z axis, along with a position expressed in x, y and z coordinates. These 6 degrees of
freedom define its pose in the reference frame of the camera. Mathematically the rotation
is expressed as a rotation matrix R.

R(α, β, γ) = Rx(α)Ry(β)Rz(γ) ∈ R3x3

This describes one frame’s rotation is relation to another, but not their relative position.

Position or translation is expressed as a vector t =
[
tx ty tz

]T
. Rotation and translation

is combined into a homogeneous transformation matrix T that act as a transform of both
rotation and translation.

T =

[
R t

0T 1

]
=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 ∈ R4x4

Homogeneous transformation matrices and rotation matrices typically have a subscript to
tell us for which frames they can transform. If it transforms our model M in the camera C
frame the subscript would be Tcm. Rotation and transformation matrices have the happy
property that T−1

cm = Tmc meaning the choice of reference is usually arbitrary [74].

If describing motion a homogeneous transformation matrix captures the transform
from one frame to the next. This link means that the trajectory is a sequence of transforms

Tcm(tk), tk ∈ R, k = 0, ..., l,
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And because transformation matrices have the other happy property that

TabTbc = Tac

The trajectory can be described as

Tcm(tl) = Tcc(tl, tl−1)...Tcc(t3, t2)Tcc(t2, t1)Tcm(t1)

And give us the transform at any timestep k.
While all these happy properties make the homogeneous transformation matrix a

convenient representation, it is not the most efficient computationally. The matrix has
16 numbers, but they are constrained such that it really only has 6 degrees of freedom.
This matters in real time systems. Instead rotation can be represented as twist T . T is
a vector with angular w and linear v velocity in all three axes.

T =

[
w

v

]
=

[
ω1, ω2, ω3, v1, v2, v3

]
∈ R6

Rotation is also described Rodriguez vectors (axis-angle representation). Here a three
part vector describe the magnitude of rotation around a given axis. Rotation can also
be represented as quaternions. Quaternions is a type of complex numbers system and is
defined at the quotient of to vectors in 3D space.

Axis-angle vectors and quaternions are not very intuitive representations of rotation,
but more efficient than the homogeneous transformation matrix and more practical than
Euler angles. For Euler angles rotating around X, Y and then Z yield a different rotation
than Z, Y and then X. It can also suffer from singularities or "gimbal lock" where a degree
of freedom is lost.

2.4 Accuracy metrics

The most fundamental metrics in machine learning are precision and recall. Precision is
how many of you prediction are accurate. Recall is how many of the positives you are
able to identify out of all actual positives.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

In the case of 2D object detection the goal is to draw bounding boxes around classes of
objects in an image. Here accuracy is measured by the Intersection over Union (IoU). In
figure 2.4a the blue square represent the predicted bounding box and red is the ground
truth of the category "cat". The union is the area of both squares, while the intersection
is the overlapping area. A perfect prediction would give a IoU of 1.0. In benchmarking

13



0.5 is generally the threshold between a true or false positive.

(a) IoU with ground truth in red and
prediction in blue

(b) Example of a precision-recall curve
(COCO website)

Here precision is the fraction how many of your classifications are correct. Recall is
a measure of many you did right out of all possible classifications. There is a trade-off
between the two. If you didn’t care about false positives, had a low classification threshold
and classified everything as positive then recall would be perfect, but accuracy very low.
If you classify some as negative for accuracy, then you risk recall decreasing. In a good
model both precision and recall are high. If plotted against each other the area under the
curve should be as large as possible. This is the Average Precision (AP) and is calculated
of each category. When averaged over all the different categories you have the mean
Average Precision (mAP) which the most important metric for image classifiers.
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Chapter 3

Literature review

3.1 Pose estimation in water

AUVs are already hugely important for gathering data in underwater environments. In
oceanography their low cost and high endurance makes it possible to record very long
time-series data that would otherwise be too expensive. Scientists can monitor areas and
study the changes that would not be seen in data from a single mission [32]. This role
could be enhanced further if they are able to interact the environment. Interaction is also
the key for increased in use industrial application such as aquaculture or oil and gas.

Ridao et al. [59] summarize the earliest development of intervention AUVs (I-AUV).
It began in the 1990s with projects focusing on development of the manipulator arm.
Early examples are ODIN and OTTER. Most notably AMADEUS [8] and UNION [61].
AMADEUS was focused on developing a mechanical gripper and its control framework.
UNION breaks down an imagined intervention mission into separate tasks and prototypes
solutions to each. Cameras are discussed alongside other sensor types like laser and sonar.
For instance, they simulate a scenario where the robot automatically follows a pipe using
computer vision. Other computer vision techniques are mentioned as well, but they do
not demonstrate any uses.

3.1.1 SWIMMER (1999-2001)

SWIMMER [18] represent the first field trial of a I-AUV. Their vehicle could autonomously
navigate to and dock with a subsea structure. The SWIMMER vehicle carried a regular
ROV on board and acted as the tether management system once docked. The dock would
have a fibre connection and the pilot could control the ROV from onshore. Once deployed
it did not need a supply vessel and was intended as a cost-saving concept. Long-range
navigation was done using a mix of dead reckoning and acoustic beacons. Perception for
the final docking maneuver relied on a custom sonar system and utilized no computer
vision.
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3.1.2 ALIVE (2001-2004)

SWIMMER’s sister-project ALIVE performed a docking and valve-turning operation [17].
Their intention was to dock autonomously with a panel not specifically designed for AUVs.
They used sonar and grayscale video to navigate the robot to within 10 cm of the panel
and clasped onto rails intended for ROVs (figure 3.1). Sonar is used for pose estimation
in the initial approach to the panel and video is used for the final part.

Figure 3.1: ALIVE docking and manipulation. Image from Zereik et al. [81]

Image features are extracted in three steps. First it performs Canny edge detection.
The edges are then used to create a contour map. Third, circles are detected on the
contour map. The circles represent the valves on the panel and is used for the pose
estimation. The data is repeatedly matched with a CAD model of the panel until error
is minimized. The authors present data showing that the method appears to be robust
within 1.25-1.5 meters of the target. They mention that this method has "constraints",
but nothing specific other than the limited field of view of 100 degrees. Finally, this pose
estimate is fused with the estimate from the sonar module.

3.1.3 SAUVIM (1997-2009)

SAUVIM was a separate I-AUV project that performed a sea trial of a search and recovery
mission, locating an object on the ocean floor and hooking a cable to it [43]. Their
computer vision pipeline first performed Canny edge detection on a color image and then
circle extraction on top of this. Two white balls were attached to the target and acted
as fiducials. Because their size was known the pose could be estimated based on the size
and position of the circles

3.1.4 GIRONA500

GIRONA500 is a I-AUV platform rather than a specific project. The platform appear to
have spawned from the RAUVI project and capabilities have been added by later projects
such as TRIDENT, TRITON and PANDORA [59]. GIRONA500 weighs less than 200 kg
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and is much lighter than the UUVs used in previous projects. The ALIVE UUV weighed
3.5 ton and SAUVIM 6 ton. GIRONA500 also utilized an almost ready made manipulator
arm, rather than going through a separate development process like AMADEUS. Most
notably, the visual perception system of GIRONA500 is more elaborate than any of the
previous projects. It is developed with three types of missions in mind.

1. Subsea-panel docking and fixed-base manipulation. The UUV uses only vision to
track the panel and valves. The mission starts with the panel inside the field of
view of UUV. Detection happens by template matching where the algorithm knows
a priori what the panel looks like. Features are extracted from both the template
and video stream and mapped to each other. Their relative pose is estimated using
this mapping. Specifically they use the ORB feature extractor [64].

2. Free floating manipulation by learning. This was demonstrated by Carrera et al. [7]
who perform a valve-turning operation in a pool environment. The authors adapt a
learning by demonstration algorithm which learns from observing a ROV pilot. To
detect the subsea panel they appear to use the same visual perception method as
for fixed-base manipulation.

3. Search and recovery of an item. The UUV must survey an area for a certain object.
Then it performs a maneuver to recover the object from the seafloor.

The visual perception system is implemented using ROS as middleware. It is a separate
node publishing various topics. So is arm control along with UUV navigation, guidance
and control. They all run independently as nodes and communicate using topics. This
also means the visual system can run on separate hardware and improve system speed.

RAUVI (2009-2011)

The RAUVI project demonstrated an item recovery operation similar to SAUVIM.
RAUVI however also added a surveying stage to the operation. This was then tested
in a pool environment [58].

In the survey stage of the operation the goal was to locate the target on the ocean
floor. The robot would move in a search pattern over the target area. It had two partially
overlapping cameras in the front, one facing forward and the other downward. Only the
downward facing camera was used to aid with the navigation. Using a novel algorithm
it created a photo mosaic as the robot went along [19, 37]. Features were extracted from
each frame and tracked from image to image so they could be stitched together. This was
particularly useful whenever the robot crossed its previous path. Then the features could
be used for a global localization estimate and correct for drift in the navigational system.

The cameras were also used to track the target in the intervention stage of the
operation. The object they retrieved in their demonstration was a bright red box
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resembling a flight data recorder. The targeting system was intended to be able to detect
by texture, feature or color, but what they demonstrate is detection by color. For station
keeping, a visual odometer module is able to extract features using SURF that act as a
frame of reference.

In future work they mention their visual perception system cannot control for all
degrees of freedom in station keeping. The visual localization also lacks full integration
with inertial and acoustic systems.

TRIDENT (2010-2012)

RAUVI evolved into the TRIDENT project. The intervention-capable AUV was paired
with an autonomous surface craft (ASC). The ASC would carry the I-AUV to site and
assist in surveying the ocean floor [66]. In TRIDENT the visual perception system also
appear to have matured into the "Fugu-f" system. Fugu-f is a system intended to be
a complete visual navigation suite for UUVs performing a search and recovery mission
[3]. It uses dual stereo cameras and is adaptable so to be mounted on different types of
vehicles. It performs target pose estimation, as well as feature-based visual odometry and
real-time 3D reconstruction in point cloud.

During the survey stage of the mission, the Fugu-f enabled UUV would scan the
ocean floor. Once it returns to the ship, a operator can highlight a desired target in the
images. For target detection and pose estimation during recovery, the UUV will search for
features identified in the survey images. Experiments are carried out on two different kinds
of features. The first method is color based. Some preprosessing is performed and the
object identified by its signature in a hue and saturation histogram. The other method
uses features extracted using the ORB algorithm. The method of feature extraction
through color proved to the most robust method during trials. Both worked in the pool,
but the method based on ORB-features failed in the sea trial [3].

In the recovery stage, the UUV will approach the target while extracting features.
Once it has a set of features, the pose is estimated by translating the survey-stage image
such that it matches the current. This works by assuming images captured in the survey
stage are orthogonal to the seabed and the altitude is known. The pose estimation is
performed using a perspective n-point algorithm [3].

TRITON (2012-2014)

This project demonstrated docking with a subsea panel and performing a fixed-base
manipulation task. This is similar to the ALIVE project, but performed with a
GIRONA500 UUV in a pool environment. The manipulation task was both turning a
valve and couple/decouple a connector [53].

The docking and manipulation was done using visual perception. Similar to earlier
projects it was assumed the AUV had approached the panel using some means of acoustic
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perception. Once the panel is in view, template matching was used to do pose estimation.
The AUV knew beforehand what the panel looked like. It used the ORB method for
feature extraction on both the template of the panel and images coming form the camera.
When it had detected a sufficient amount of features, the pose of the object could be
calculated.

This pose estimation was also used in the localization module of the AUV. Localization
relied primarily on a Doppler velocity log (DVL), attitude and heading reference system,
and depth sensor. With a fix on a known object such the subsea panel, this point would
then used as a landmark. This fix is what served as a reference in the docking maneuver.

The valves and connector was detected using two different methods. The valves has
to be turned 90 degrees and it was necessary to know their orientation. A stereo camera
was placed so it would directly face the panel once docked. The three tips of T-shaped
valves were painted in a distinct color. This color was then detected by the cameras and
each point triangulated.

On the connector an alternate method was used. An ARToolkit marker was placed on
a known location close to the base of the connector. The authors report this method was
more robust than the color detection used for the valves. Color detection required tuning
as lighting conditions changed, even in the pool environment [53].

MERBOTS (2015-2017)

This project explored multi-robot collaboration and was the evolution of TRIDENT
(section 3.1.4. It was aimed at a search and recovery mission for underwater archaeology.
The system was intended to navigate an unknown and unstructured environment and pick
up various artifacts

An AUV would initially map the target area alongside a ASC contributing global
positioning through a USBL connection. This data would then be used to generate a
3D map of the area. In the second stage a H-ROV would be deployed to perform an
intervention task with the AUV monitoring [65].

The project was split into subprojects MARMANIP, ARCHROV and SUPERION. As
part of ARCHROV, Palomer et al [52] explore the use of a underwater laser scanner as
sensor for manipulation tasks. The instrument works like a LiDAR and has sufficient speed
and precision to be used in a manipulation tasks. Using a GIRONA500 they demonstrate
picking up an amphora in a pool environment.

The SUPERION subproject was responsible for perception during the survey and
intervention task. While the H-ROV manipulates the target object, the AUV hovers in
place above to provide a alternative vantage point. The pose of the target in relation to
the AUV is detected in the point cloud using Iterative Closest Point [57]. The coordinates
of the target in the image plane are then sent to the second stage responsible for the AUV
velocity control.
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TWINBOT 2018-2020

This project explores using collaborating lightweight I-AUVs to do construction tasks
[56]. The work mainly focuses on the control problem of coordinating two robots, but
pose estimation is briefly mentioned. This is limited to the scenario they test in a pool
environment. Two UUVs lift a yellow pole, do some maneuvering and put it back in place.

In each frame, the pole is separated from the background by image segmentation in
the HSV color space. Lines are fitted on top the segmented image to define a contour.
Black stripes marks the spot where the pole should be grasped. As the dimensions of
the pole and the black stripes are known beforehand, the size of this spot can be used to
estimate the distance to the target.

As part of the TWINBOT project, Himri et al [24] also explore using a laser scanner.
Object recognition and pose estimation is performed in the resulting point cloud. This
is part of a SLAM algorithm where the pose estimate localize the robot in relation to
recognized objects.

3.1.5 MARIS (2015-2018)

This project aimed at integrating technologies into a versatile I-AUV for the offshore
industry, scientific exploration, and search and recovery. Goals included: guidance and
control of a floating object, grasping and manipulation of objects, robot cooperation using
underwater wireless communication, mission planning and lastly, object detection with
pose estimation [9].

The various subsystems in the software architecture use ROS to interface it with
each other. Some systems are fully implemented as ROS nodes, for instance the visual
perception system. Other systems like the vehicle or gripper control run independently
of ROS, but is bridged to a shell ROS node that acts as a interface [68].

The authors primarily emphasize developments relating to control in their summary
of the project. Particularly the task priority system and manipulator arm. Their stereo
camera rig is a notable element in the visual perception system. But to do pose estimation
they use a type of template matching, similar to previous projects [68].

The visual perception system in MARIS is presented in [38, 39]. They investigate
stereo-vision techniques capable of pose estimation without prior knowledge of the target.
But apparently the accuracy and speed of this algorithm was insufficient for object
grasping. Instead they rely on some prior knowledge about their target. They put special
emphasis on detection and pose estimation of pipes. Pipes are very relevant for real world
applications in offshore industry. But they are hard to detect accurately because of the
lack of texture detail or corners. They are instead tracked using features that are more
reliably detected in an underwater environment.

Man-made objects are identified by their contour of mostly straight edges and color
uniformity. Color is detected by first performing the grey-world method of white

20



balancing. As the color of their target is known beforehand, it is easily detected if the
white-balancing is successful.

Analysis is done in the hue-saturation-value (HSV) color space, which simplifies the
process. In the HSV space, color ("hue") is a separate layer from brightness ("value").
This makes discrimination based on color more robust to differences in lighting conditions.
Shapes are identified using a histogram of oriented gradients. Man-made objects appear
as spikes in the histogram because they are generally made up of straight lines.

For pose estimation, a Sobel filter is applied on the image to extract edges. The edges
of the pipe are identified on the resulting contour map. To average out noise, edges are
tracked from frame to frame by a alpha-beta filter. The contour of the cylinder is a plane
tangent to the camera. The planes are intersected to find the pipe’s axis of symmetry. The
ends of the pipe are used as frame of reference. With these assumptions pose estimation
can be done with both mono and stereo vision, with stereo being slight more resistant to
noise. This was tested in a pool environment, both in day and at night [38, 68].

Their system is more robust to occlusion than previous projects where manipulators
had to stay out of the field of view. The kinematic system already knows the position
of the manipulators. This information is translated into the visual system and is used to
mask the area of the image where the arm is. This way, they can avoid a potential source
of errors [68].

The authors suggest the method is transferable to other object givens a few conditions:

1. Target color must be distinct and detectable under varying lighting conditions.

2. Its shape must be regular so that contours can be geometrically defined.

3. It is a template matching technique and so the exact geometry must be known
beforehand.

3.1.6 DexROV (2015-2018)

The DexROV ("Effective Dexterous ROV Operations in Presence of Communications
Latencies") goal was to improve teleoperation of ROVs. Normally the staff controlling
the ROV are on board the ship that deployed it. It would be cheaper to have these people
on land, but remote operation is difficult because of bandwidth limitations and latency
issues caused by satellite communication. Their idea was to let the staff on shore interact
with a simulator environment and have the system translate this into high-level commands
sent to the ROV. The ROV works in a semi-autonomous mode where it receives high-level
commands from shore and has to translate this into low-level control on its own [1].

The basis of the perception system is a stereo camera rig that can be deployed with two
or three cameras. Camera calibration is key in stereo vision, and the project developed a
method for this they call the pinax-model [41]. It is intended for underwater cameras in
housings with flat lenses and allows the calibration to be done in air.
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The output of the stereo system is converted into a 3D occupancy grid. This is
represented as a ochtree in the open source library OctoMap [29]. OctoMap also exist
as a ROS package. The OctoMap data is integrated with the DVL and IMU data in a
extended Kalman filter and used to aid in localization.

The voxels in the grid occupancy map is colored using information from the cameras.
Given a set of observations of the same voxel, the one with the brightest color is selected.
This guarantees each voxel was colored based on the image where the scene was best lit or
camera closest [42]. They also explore using the dark channel prior method [21] for haze
removal, adapted for underwater environments. But this has a high computational cost
and the effect of dehazing is very varying. They do not test how it affect any computer
vision algorithms [40].

The ROV can also perform semi-autonomous manipulation of a subsea panel. The
spatial resolution of the 3D occupancy grid map is at best 2 cm. To do pose estimation
of small parts on the panel they use an alternative set of methods. The algorithm knows
beforehand the CAD model of the panel, and it is additionally outfitted with fiducial
markers. Based on this, it selects regions of interest (ROI) containing a single circular
handle (figure 3.2 a). The ROI is cropped from the current frame of the camera feed (b).
An ellipse is then fitted on top of the handle using [33] (c). Inside the ellipse it performs
Canny edge detection and Hough transform to identify the most dominant regular angle
(d). To improve reliability, both cameras do this independently and the angle is averaged
from one frame to the next [1, 48].

Their desire is to project real life conditions into the simulator environment. The
simulator is intended to be the interface for the ROV pilot, but it is also used to validate
subsystems of the complete DexROV system during development. As seen if figure 3.2
e-h, they perform the same pose estimation inside the simulator for validation.

The simulator can also aid in other stages of development. It can interact with either
real or simulated subsystems. As each subsystem is developed independently, teams can
test their subsystem on the complete system even though other compotents are incomplete
[48]. To enhance the realism of the simulator, they also explore methods to project the
current real world visibility into the simulator [16].

3.1.7 EU ROBUST (2016-present)

The goal of this project is to survey the seabed for mineral resources using I-AUVs [69].
The AUV must have some intervention capability in order to do in situ analysis of rock
samples using laser-induced breakdown spectroscopy (LIBS). The task requires the AUV
to identify potential rock samples, land in front of it and bring the LIBS instrument into
close proximity with the sample.

They trained a convolutional neural net (CNN) to identify maganese nodules on the
seafloor. The architecture name was "YOLOv3-tiny" and is fast enough to run real time
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Figure 3.2: How pose estimation is performed by [48]

on a NVIDIA Jetson NX2 on board the AUV. The network draws a bounding box around
each candidate and assigns a probability to it. Once a maganese nodule sample was
identified, the AUV would land in front of it. This maneuver was achieved by holding the
object in center view while decreasing altitude [69].

To do pose estimation of the sample they relied on a laser scanner to produce a
point cloud. The nodules were identified in the point cloud using information from stereo
cameras. The laser produced very good point clouds in the pool trials, but in the ocean
it performed poorly. The sea trial was performed in shallow water, but the laser was
not designed to work in sunlight. Additionally, they reported that particles in the water
caused backward scattering of the laser beam, generating false points in the cloud [69].

Their fallback strategy was to use the stereo cameras for pose estimation. The CNN
would draw a bounding box around the nodule on images from both cameras. The center
point of the bounding box was then regarded as the target. Using both images, they could
triangulate the position of the nodule, move the arm over and sample it with the LIBS
instrument [69].
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3.1.8 SEAVENTION (2018-2021)

This Norwegian project explores mission planning, perception and augmented reality for
autonomous underwater operations [70]. As part of this, Nielsen et al. [49] use the
PoseNet architecture [31] attempt to do end-to-end neural network 6 DoF pose estimation
of a mock-up subsea panel connector in a pool environment. Training data is labeled using
a system that relies on fiducials to visually track the ROV while it hovers in front of the
mock-up. Accuracy is good on average, but suffers from outliers they suspect come from
errors in the training data. It is also uncertain how well generalizes to new environments.
Testing and training was collected from just two sessions with varying water turbidity. To
track a different object it would have to be retrained, but could possibily utilize transfer
learning.

Kedir et al. [46] also use a end-to-end neural net to perform pose estimation, but their
net seem tailor-made for the UTOFIA sensor described in section 2.2.4. They also use
fiducials as ground-truth, but as shown in figure 3.3 use a extra camera above the surface
to detect fiducials as well. The UTOFIA sensor under water is rigidly attached to the
camera over water with a 1 meter rod. Both capture frames of a poster that extends both
above and below the water surface. Knowing the extrinsics of both cameras they can
use rigid transforms to infer the position of the UTOFIA sensor, even in highly turbid
waters. Their dataset is created in a pool environment where they can control the level
of turbidity by dissolving clay in the water and measure it by recording the water’s light
absorption.

Figure 3.3: The setup used by Kedir et al. to capture fiducial pose estimates used as
ground truth.

The neural net use the EfficientNet CNN architecture to create a feature map of
both the depth and RGB image produced by UTOFIA. This is fed into a bi-directional
feature pyramid (BiFPN) layer. Four separate networks each interpret the BiFPN to solve
different tasks. One each for object detection, bounding boxes, rotation and translation.
This was trained using roughly 30000 images captured at different turbidity levels. Their
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sensor fusion approach give an average 6.49 cm translation error and 2.59 degree rotation
error.

3.1.9 Other projects

Park et al [54] demonstrate pose estimation by template matching, integrated into a
navigation system that use it to update its position. The CAD-model is projected onto
the image and the moving edges algorithm [4] used for feature extraction. With this
method they demonstrate circling and manipulating a mock-up subsea panel in a pool
environment.

Cui et al [13] develop a stereo-vision system for picking sea urchins. They use a CNN
to draw bounding boxes on the urchins and do feature extraction at each corner. If the
corners of the bounding box in each stereo image have matching features it is a pair, and
the object is tracked in the following frames using kernelized correlation filter [23]. Focus
is on the accuracy of the detection and tracking, and they do not report on the accuracy
of the pose estimate.

3.2 Pose estimation in air

3.2.1 Pose detection benchmarks

Pose estimation in air has been a very active field research in past decade. Many of
the most successful methods were recently all benchmarked on a unified dataset in the
BOP challenges. BOP stands for Benchmark for 6D Object Pose estimation and is a
competition held in 2018, 2019 and 2020 [26, 27]. There is also an upcoming 2022
challenge. In the 2020 challenge eleven existing datasets were collected and offered to
participants in a unified format, together with an evaluation metric. The competition
encourage methods that don’t use real training images. Methods should rely only on
the 3D model and artificially generated renders of that model. This is because of the
challenges in creating datasets, further discussed in in part 3.3.1.

Unfortunately most methods they benchmark somehow rely on images with a depth
channel, captured by a 2.5D camera. RGB-D methods are difficult to use underwater.
Widely available depth cameras use structured light to determine the distance to each
pixel. But these does not work in water, which quickly absorbs the infrared light used
for ranging. Only speciality RGB-D cameras such as UTOFIA can work underwater [44].
UTOFIA fuses data from a LiDAR and a regular camera to create a RGB-D image, but
is not commercially available.

However the contestant in third place in 2020 is a method using purely RGB images.
It is a variation of the same architecture that won the competition, that also added a
pose refinement step relying on the depth channel. The method is named CosyPose [35]
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and is described further in part 3.2.2. It also performed best when Yu-Wei Chao et al.
evaluated it on their DexYCB dataset [10]. The only method that came close was the
DeepIM variant using RGB-D.

A final remark about BOP is that it evaluates different categories of pose estimation
methods, and only in 2020 did the learning-based methods jump to the top of the
leaderboard. In previous years point pair methods working on 3D point clouds were
dominant. These relied heavily on the RGB-D images, whereas learning-based methods
tend to rely on RGB only. The success of learning-based methods is credited to a special
rendering tool made available to contestants by the BOP creators.

The tool is called BlenderProc4BOP [15] and produces photorealistic images of 3D
models that are used to train deep neural nets. The BOP team made available 50,000
renders of objects in the seven datasets that were used for evaluation. Comparison of
results after training with both BlenderProc4BOP and traditional "render and paste"
methods show very significant improvement [27]. For instance, the accuracy of CosyPose
improved by 57.9 absolute percent on one particular dataset (T-LESS [28]). Figure 3.4
show a comparison of the rendering methods. BlenderProc4BOP images are in the bottom
and are obviously more realistic than the old renders.

Figure 3.4: Old renders in the top row, new renders on in the bottom

A generic version of BlenderProc [15] is available on GitHub. It is a actively maintained
project made specifically to create training images for various neural net architectures.
As the name implies, its backend in the popular open source rendering software Blender.
Blender is very much capable of creating underwater scenes, and both it and BlenderProc
could be adapted to create training images.

26



3.2.2 Pose detection neural nets

These networks first use a separate object detection or instance segmentation network to
identify a region of interest in the image. Object detection is drawing bounding boxes
on each object belonging to a category. Instance segmentation draw a mask over each
separate instance of an object in that category by classifying every pixel in the image.

The pose detection networks then generally use some kind of feature extractor like
CNNs to find keypoints. Some also try to find a mix of different features, like HybridPose
[71] which searches for keypoints and feature concepts like edge vectors and symmetry
correspondance.

On the output of the feature detector is typically separate neural nets that each predict
the translation and rotation of an object, but the methods vary slightly. For instance
PoseCNN [80] directly regress a quaternion representation of rotation from image features.
But for translation utilize the pinhole camera model: It only guesses the distance Z to
the object center. From this they can infer the X and Y position via the camera model.

Most methods focus on the problem where there is single input image. CosyPose is a
framework for detecting one pose from multiple views. With this approach they won the
2020 BOP Challenge as best overall method. It assumes it is given a set of images and
a set of 3D models of objects in those images. It then first performs rough single view
single object pose detection on all objects in all images. Then in the second stage these
error-prone estimates are filtered, leaving only those that are consistent across images.
This step is key, and the name CosyPose is a play on the word COnSistencY. In the final
third step pose refinement is performed on the remaining estimates [35].

Exploiting information of the same object across several images make the method
more robust and able to outperform singe view single pose methods. It might also a good
fit in robotic applications, as multiple frames can be sampled from the UUV video feed
over time.

The method was trained on 1 million synthetically generated images per dataset in
the original paper, with each dataset containing 20-30 objects [35]. Roughly 50000 images
per object. The method was trained again for the BOP Challenge [27], which in addition
used BlenderProc images that improved results further.

Pix2Pose [55] was much less successful in the BOP challenge than CosyPose, but might
still be a particularly good fit for use under water. CosyPosy rely on image features
extracted by a CNN; the network tries to find correspondences between real life and
a textured model. Typical subsea equipment has very little features however, and the
CAD-models are generally designed without textures.

Pix2Pose instead works with textureless models and so belong to a different lineage
of neural nets. It automatically generate a texture by using the X, Y and Z coordinate
of that pixel’s position. Because the RGB color space is a three element representation
of color, RGB can also be used to visualize how Pix2Pose encode every pixel in XYZ
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coordinate system. Figure 3.5 show model that is render such that pixel position in the X
direction is expressed as "redness", Y-direction as "greenness" and so on. A generative-
adverserial network is trained to create the coordinate-as-color images and after some
error correction PnP and RANSAC is used to infer the 3D position of each pixel from
their position in the 2D plane.

Figure 3.5: Visualization of how Pix2Pose automatically generate textures.

3.3 Pose estimation datasets

3.3.1 General considerations

For pose estimation in air the most commonly used dataset is LINEMOD created by
Hinterstoiser et al. [25]. But this was not intended as a benchmark and has several
biases. The creators of the BOP benchmarking framework [26] criticize LINEMOD for
having constant lighting, targets that are unoccluded and always centered in the camera
frame. These are some considerations when creating a new dataset.

Other factors emphasized by Kastman et al. [30] is including objects that has no 3D
model and should not be tracked. The dataset should have objects that deviate slightly
from their 3D model, as would be expected in real life. The dataset should also have
multiple instances of the same object. There should be both CAD-designed products that
are machined or 3D printed, and objects 3D scanned physically.

Most appear to include between 15-30 objects in a few different scenes. The
HomebrewDB dataset [30] recorded each scene one time with a handheld camera and
two times using a turntable, varying the camera angle between 35 and 45 degrees.

Occlusion was not a consideration when pose estimation methods were less mature, but
in recent years it has become an important research focus. This is only for pose estimation
in air though. Even the most recent projects exploring pose estimation underwater [49, 54]
does not consider occlusion. Li et al. [36] also show that DNN architectures can be trained
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on datasets where occlusion is added artificially to training data without occlusions. Hence
having occluded objects might only be a secondary concern in a new underwater dataset.

3.3.2 Ground truth

Using a robotic arm

Articulated robot arms have also been to used to create pose estimation datasets. By
using rigid body kinematics, the position and orientation of the end effector in relation
to the base is very precisely known. However only speciality robotic arms would work
underwater and the project does not have access to one.

Fiducial markers

As seen in figure 3.6 this method is used to generate several of the datasets that are being
used to train and evaluate pose estimation methods in air.

Figure 3.6: HomebrewedDB [30], IC-MI [73], Linemod-Occluded [5, 6], T-LESS [28]

Henriksen et al. [22] investigated the accuracy of pose estimation using AprilTag in
water. They performed an experiment in a pool with a separate tracking system that
could act as ground truth. They found that the accuracy of the translation estimate
was within a few millimeters. The yaw error rotation was reported to be less than one
degree. These results encourage an attempt to use fiducials to generate an underwater
pose estimation dataset.

Pose estimation with fiducials estimates rotation and translation of the tag in the
camera reference frame. But the objective is know the rotation and translation of the
object placed on the board. There is no obvious way of knowing the pose of this object in
relation to any marker on the board. This matters for template matching methods that
output the pose in the coordinate system of the object model.

Only HomebrewedDB [30] present a method for aligning the camera frame with the
object model frame. But this method relies on RGB-D data to create a dense point-cloud.

Using acoustic positioning

Acoustic position is used by many [22, 49] for tests in indoor pools, but there does not
any product any accurate tracking available for use outdoors. OceanLab has a short
baseline underwater positioning system called "Waterlinked Underwater GPS G2". But
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this appears to be designed for rough positioning at sea, with an estimated error of
1 meter at 100 meter range. This makes it too unreliable for this application, where
accuracy should preferably be with a centimeter.
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Chapter 4

Methodology

4.1 Dataset creation

To create the dataset I rely on a template-based pose tracking method called RBOT. This
need to be initialized with a pose however, as it cannot detect without one scratch. To
do this I use fiducial pose detection from OpenCV. The OpenCV pose detection is also
used a sanity-check of the pose from RBOT once initialized.

Figure 4.1: Both RBOT and the fidual pose estimator search the raw frame (left) and
estimate poses. If the fiducial pose (large arrrows) and RBOT pose (pink model) align
the frame is saved a binary mask (right).

The pose of the target model can be found by circling it with fiducials of a known
size. Because the position of each tag in relation to the poster center is known, rigid body
transforms can be used to find the pose of a target model. The poster used is shown
in figure 4.2 with figure 4.3 showing the scale. Each tag is 14 x 14 cm. A large size is
necessary for robust detection at range underwater when visibility it poor. The rings and
dots in the center represent where targets should be bolted in place.

Generally RBOT has a good precision, that is it generates poses that are smooth and
consistent. However its accuracy depend on the accuracy of the initial pose. Fiducial pose
estimation has decent accuracy when averaged across many frames, but poor precision.
Poses estimates has a large spread and looks jumpy when viewed in sequence as a video.
To achieve both accuracy and precision the two methods are used in tandem, where the
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Figure 4.2: Poster with fiducials
and sockets for models.

Figure 4.3: The poster with a
human for scale

pose created by RBOT is set as ground truth only if it aligns with the fiducial pose
estimate of that frame. That is, the pose is accepted as ground truth if both methods
verify it. The rough process is illustrated in figure 4.1. In the center image the fiducial
pose is drawn with large arrows and the RBOT pose as a pink model. If they align the
resulting binary mask is saved. The contour of the binary mask is extracted and saved as
polygon coordinates along with the raw frame.

To be a verified pose the rotation and translation error must be within certain limits.
The limits used here are presented in table 4.1. If greater precision is required the
percentage of valid images would obviously decrease. The parameters used here is a
compromise between how much raw material is available and how many images I would
need to train a neural net.

Rotation Translation
X 4° X 5 cm
Y 4° Y 5 cm
Z 4° Z 10 cm

Table 4.1: Pose correspondence limits

4.1.1 Fiducial pose detection

The pose of each tag is extracted with generic functions from OpenCV that return the
rotation and translation vectors describing each tag. These detect all square shapes in
the image and look for a QR-code corresponding with a fiducial dictionary inside that
square. If a square is recognized the algorithm knows beforehand both the size of fiducial
and the camera intrinsics. With this information it can solve for the pose using PnP and
RANSAC. The output describes the rotation and translation of each tag in the frame of
reference of the camera. The implementation details are described further in 4.3.2.
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Rigid body transformations

Rigid body transformations are used to convert the pose estimate of each fiducial
tag to every model. The output of this process is illustrated in figure 4.4a.
Here, the reference frames with short arrows are poses directly from OpenCV
estimatePoseSingleMarkers(). The reference frames with longer arrows are
transformed into the frame of the model in question. Orientation of the X, Y and Z
axis depend on how the model was drawn in Fusion 360.

Object in the scene Frame ID
The ROV camera c

The pose of the fiducial tag t
Origin is the center of the poster o
The pose of the relevant model m

Table 4.2: Frames in the scene

The relevant frames are summarized in table 4.2 and illustrated in figure 4.4b. What
we are interested in is the pose of the model in the frame of the camera Tcm. But what
we have is the pose of the fiducial tag in the frame of camera Tct.

Because we know precisely how everything on the poster is laid out, we also have the
pose of the origin in the frame of the fiducial tag Tto, and the pose of the model in the
frame of the origin Tom. Using the properties of the homogeneous transformation matrix
we can take the dot product so that

Tcm = TctTtoTom

MODEL_BASE_DISPERSION from table 4.5 is important when defining the transform-
ation from the image center to either of the four peripheral models sockets. This describes
the diameter of a circle around the origin. The center of each socket is placed at the four
corners of this circle. Using the Pythagorean theorem we find that the displacement in
both the X and Y direction is

MODEL_BASE_DISPERSION/2√
2

=
300/2√

2
= 106.07mm

The transformation from origin to the fishtail handle then is

T =


0 −1 0 0.106

1 0 0 0.106

0 0 1 0

0 0 0 1


The rotation element of the matrix reflect how the model is oriented relative to the

origin, whereas the transformation vector show the model is moved 0.106 meters in the
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(a) Reference frames with short arrows are from OpenCV directly, long arrows are transformed.

(b) The frame of the (c)amera, fiducial (t)ag, (o)rigin and (m)odel.
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X and Y direction.

Pedestals

The shackle and ducky figure have the added element of being mounted on pedestals.
This adds a transform in the Z direction as well. For the shackle for instance, this is 90
mm, as seen in figure 4.5. And so the tranformation matrix is

T =


0 −1 0 −0.106

1 0 0 0.106

0 −1 0 0.09

0 0 0 1



Figure 4.5: Distance from the model origin to pedestal base. The the origin of the model
is shown as a red, green and blue frame.

The pedestals were necessary only because the models did not naturally feature a base.
The models used by template matching algorithms does not feature this pedestal. As the
pedestal is white, it blends into the white background on the poster and is ignored. A
similar method was used on the duck model.

Outlier detection

The OpenCV fiducial pose estimation works by identifying squares with a valid QR code
in the middle. The method is prone to error if the corners of the squares are occluded.
It might still detect a square with a valid QR-code, but the estimated corner coordinates
are wrong. Because the size and orientation of the square is used to determine the pose,
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this results in a wrong estimate, as illustrated in figure 4.6. Here the bottom left corner
of square on right is occluded by the duck. Resulting in a pose estimate that is wrong.

Figure 4.6: OpenCV incorrectly detect corner, resulting in a erroneous pose.

Because the poster has many fiducial tags transformed into a pose of its center, outliers
can be removed based on that average. Assuming the majority of estimates are correct,
outliers are removed based on their difference from the average. For every frame, the
average and standard deviation of each element in the translation vector is calculated. If
any element is greater than two standard deviations from the average, the pose is classified
as an outlier.

Calculating the average of the translation vector is straightforward, but the rotation
vector is not. Translation simply represent position in meters perpendicular to the image
plane (Z-axis) or along the image plane (X and Y). The rotation vector encode rotation
along the XYZ axis and averaging it can create singularities. Instead rotation is averaged
using a method from Markley et a. (2007) [45]. Given a list of quaternions, this method
sums the dot product of each quaternion and its transpose as a 4x4 matrix. The resulting
averaged quaternion is the eigenvector of this matrix. Outliers are sorted based on the
translation vector only, but only inliers are included in the average rotation presented at
the pose of the model.

Fiducial dictionary

ArUco and AprilTag comes with several different "dictonaries" that can translate a 2D
barcode into a fiducial. These comes in sizes of 4x4 to 10x10, where the integer indicates
the number or cells in the matrix. Figure 4.7 shows examples of tags in different sizes.

The detection rate of different dictionaries were tested in air with the purpose of
determining which one was most suitable for underwater tests. For testing in air it
is sufficient to print the tags using a normal printer. The tags are placed in the
same arrangement that would be used in a pose estimation dataset, with space for
the target object in the center. Results are presented in section 5.1.2 and show that
"APRILTAG_16h5" is most suited.
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Figure 4.7: 4x4, 5x5, 6x6 and 7x7 ArUco tags

4.1.2 Template-based pose tracking

RBOT builds on a lineage of region-based pose tracking methods. These essentially work
by first performing image segmentation to separate the object from the background. Then
it project an artificial silhouette of the prior 3D model onto the segmented image. This
silhouette is rendered in different poses to find the best fit. The silhouette of the best fit
is in turn used to inform the segmentation process in the next frame of the appearance of
the target. This loop relies on being given an initial pose to start the process [74, 75].

Formally a video is a sequence of images Ic(tk) where tk ∈ R, k = 0, ..., l and Ic(tl) is
the current frame. The method will calculate a sequence of homogeneous transformation
matrices T (tk) to form a trajectory. It always assumes that T (tl−1) is known and calculate
T (tl) = ∆TT (tl−1). Here ∆T is the exponential of the twist ∆T = exp(T ). Using
the twist is particular to RBOT compared to previous region-based methods. It allows
more efficient optimization of the cost-function using a Gauss-Newton strategy instead of
gradient decent [75].

The cost-function is an expression of how well the projected silhouette fits the actual
estimated one. The cost is calculated as

E(T ) = −
∑
x∈Ω

log(He(Φ(x(T )))P f (x) + (1−He(Φ(x(T ))))P b(x))

Here x is a pixel in Ic and Pf (x) or Pb(x) determine the probability of it being either
foreground (target) or background. P (x) is the extension to segmenting based on local
histograms rather than global.

Φ(x(T )) is a level-set method that define the contour of the projected 3D model prior.
It’s the squared euclidean distance between a pixel x and the closest pixel in the contour
map. Being negative for foreground pixels and positive for background pixels. Figure 4.8
show Φ(x) applied to a contour C where 0 defines the border between foreground and
background. This is finally wrapped by a smoothed Heaviside step function He that’s ≈ 1

for negative Φ (foreground) and ≈ 0 for positive Φ (background).
The functions Pf (x) and Pb(x) rely on a model P (y|Mf ) of the foreground and

P (y|Mb) of the background to calculate the membership of a pixel. Here y = I(x). The
models are 32-bit RGB color histograms of local regions around a projection of a model
vertex X. Figure 4.9 show examples of vertex Xi being projected onto the image in the
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Figure 4.8: The Φ(x) level-set method applied on a rendered silhouette

center. The final segmentation mask on the right is the pixel-wise background-probability
subtracted from the foreground-probability.

Figure 4.9: Illustration of temporally consistent local histograms. The small circles in the
center image represent Ωi.

A pixels probability of belonging to a certain region Ωi is calculated as

Pf i(x) =
P (y|Mf i)

ηf iP (y|Mf i) + ηbiP (y|Mbi)

ηf i =
∑
x∈Ωi

He(Φ(x)), ηbi =
∑
x∈Ωi

1−He(Φ(x))

The method then assumes the previous segmentation mask is correct and updates the
histogram models based on that mask. For the foreground model

P (y|Mf i) = (1− αf )P
tl−1(y|Mfi) + αfP

t1(y|Mfi)

With α being a learning rate between 0.1 and 0.2 determined experimentally.
For the final cost function

P f (x) =
1∑n

i=1 Bi(x)

n∑
i=1

Pf i(x)Bi(x)

where Bi(x) is special masking function that is 0 for pixels not belonging to region Ωi

38



and 1 otherwise.
If tracking is lost RBOT also has a strategy for performing pose detection. From

a polyhedron with 20 faces (icosahedron) centered on the 3D model, 12 view ports are
created from the corner vertices. Each view port is rotated four times and scaled in three
different sizes. This results in 12 ∗ 4 ∗ 3 = 144 base templates. These are searched for in
a down scaled version of the image using a sliding window search. If a match is found it
will begin a pose refinement strategy using less course poses and larger images.

4.1.3 Poster

The poster is generated using a custom python script that can easily change the size and
layout of tags. The script takes a number of arguments, listed in table 4.5. These in
turn change how the poster will look, illustrated in figure 4.10. Two different outputs are
illustrated in figure 4.11 and 4.12.

The poster has 4 ∗ n − 4 fiducials tags and one or five "sockets" where models can
be placed. Each tag has a unique ID and the distance between each tag and the image
center is precisely known. This is stored in millimeters in a separate JSON text file
created simultaneously with the poster. This makes the metrics easily accessible to any
other software that will utilize the data.

Figure 4.10: Illustration of how parameters affect the poster
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Figure 4.11: A generated poster
with 3 fiducials on each side and a
single socket.

Figure 4.12: Another generated
poster with 15 fiducials on each side
and five sockets.

4.1.4 Models

The poster used in testing was populated with five different 3D models designed in
Autodesk Fusion 360. These models were made to resemble realistic UUV "targets"
such as shackles and handles.

The models were drawn on the basis of pictures and technical drawings from real
manufacturers. Although the models used in this test will vary slightly from the real
products, the difference is negligible, as seen in figure 4.14 and 4.15. The benefit of using
self-made models is that these can easily be 3D printed to create a perfect replica for the
template matching algorithm.

For template detection methods, the number of vertices matter for the performance.
This is particularly true for RBOT with its region-based based approach, where it
calculates histograms of regions around randomly sampled vertices. The number of
vertices for each model is shown in table 4.3. The simplest model is the T-handle with
790 vertices. The most complex is the shackle with 7317. A maximum of 7000 vertices is
recommended for RBOT.

Table 4.3: Model data

Vertices Faces Size [MB]
D-handle 2312 4640 0,49
T-handle 790 1592 0,178
Fishtail 2588 5192 0,538
Shackle 7317 14615 1,5
Ducky 5482 10960 2,8
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Figure 4.13: All models, rendered side-by-side in Fusion 360.

4.1.5 Underwater footage

ROV

A Blueye X3 was used to capture all the images. This is a mini-ROV intended primarily
for inspection tasks. The image sensor is a Sony IMX290, a 1/2.8 inch Exmor R CMOS
with 1920x1080 resolution at 30 FPS. The lens is fixed focus, with a minimum distance
of roughly 20 cm. It has a 115°field of view.

Length 485 mm Sensor Sony IMX290
Width 257 mm Resolution 1080 @ 30 FPS
Height 354 mm Field of view 115°
Weight 9 kg Fixed focus

Rated depth 305 m

Table 4.4: Blueye X3 specifications

The camera on board can be tilted up and down and this varies throughout the
recording to make sure objects are captured from as many angles as possible. Similarly
the lights vary in intensity from maximum to off.
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Figure 4.14: A real fishtail handle
made by the manufacturer Green-
pin.

Figure 4.15: 3D printed fishtail
handle drawn in Autodesk Fusion
360.

Figure 4.16: Blueye promotional pictures

Calibration

Camera calibration was performed in a water tank at Oceanlab, shown in figure 4.17.
Calibration was performed under water because the refractive index of air is 1.000 and
the index of saline water (3% NaCl) is 1.338.

The lab has a freshwater tank big enough to hold both the calibration pattern and
ROV. This was preferred to capturing images outside. Foremost because the ROV could
be held by hand and a good collection of calibration images be collected systematically.
An added benefit was the increased visibility, both in terms of lighting and turbidity. The
downside is the difference in the refraction index of fresh and brackish water, but this is
negligible (1.338 vs. 1.333) for the purpose of this test and out-weighted by the benefits
of the tank.
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Figure 4.17: Blueye X3 during camera calibration in the indoor tank.

Location

The poster was filmed on two different days and two different locations. All recordings
were done at approximately 8 meters depth. Recordings were made at Filipstad dock near
Oceanlab, shown in figure A.1. The two locations are roughly 100 meters apart. Figure
1.1 show the ROV filming at location 2.

Figure 4.18: Visibility conditions at the two different locations

In total 64 minutes of raw footage were recorded from these locations. 49 minutes from
location 1 and 15 minutes from location 2. In the data that is published with annotations
13 minutes are from location 1 and 8 minutes are from location 2. What varies between
them is mostly the level of visibility. There is significantly more suspended solids in water
at location 1, as seen in figure 4.18.

4.1.6 Labeling

Labeling is done in the COCO format for convenience. There are no universal standards
for neither 2D detection or 3D pose detection datasets.

For 2D detection I have used COCO because it is widespread and can be read by
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many libraries. The datasets are transformed into the COCO format using the scripts
detailed in 4.3.3. This is also perform some data cleaning, removing images where the
mask touches the outer boundary of the image. The result is a new folder containing
images and a JSON-file containing all relevant information about the dataset, including
object categories, masks and bounding boxes for each image. Figure 4.19 show a raw
image from the dataset with annotation information drawn onto it.

Figure 4.19: A image from the dataset with annotation information drawn on top.

For 3D detection the most widespread is the BOP format, but there is currently no
script to this dataset to BOP. Instead the pose is added as a homogeneous transformation
matrix "T" to the COCO annotations.

4.2 Training a pose estimator

The next step to realize the envisioned framework would be to a train a suitable neural
network to perform pose estimation. I have trained a 2D instance segmentation network
on the dataset, but no pose detection method due to time constraints. A 2D object
detection or instance segmentation method is a necessary first step to use most pose
estimation networks.

2D object detection

As mentioned in section 3.2, pose detection network generally take only a cropped region
of interest as input. For this project Mask R-CNN is trained to find segmentation masks
on the newly created dataset. To avoid having to train the network from scratch, transfer
learning it utilized. Transfer learning is doing training on top of a already trained model.
Typically, the last few layers of a model is reset and trained again, but the first layers in
the pipeline reuse old weights. The benefit is that training require much less computation
and training images. A neural net learn to extract image features through many different
layers. The most fundamental feature-extraction properties are typically very general. In
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this particular case transfer learning is performed on top a model trained on the official
COCO dataset.

In this project I have used the "official" Mask R-CNN implementation from https:
//github.com/matterport/Mask_RCNN. Having a dataset annotated in the COCO format
simplifies training somewhat, but it is still necessary to create a custom class that acts
as the interface between the network and your dataset. This class is based on the
template class Config from the repository and handles loading the image files along
with annotations. Further details are given in section 4.3.4.

3D pose estimation

While there are ready made implementations of methods available, these all require some
work to use. The first step is how the data is structured and annotated. The BOP
competition offers a template for this that I would most likely have used.

Secondly this training requires significantly more computing resources than transfer
learning of Mask R-CNN. The methods reviewed generally use large GPU clusters running
for hours and days to train a competitive model for benchmarking. Oceanlab has a
computer with a Geforce RTX 3090 that could most likely have been used. Alternatively
a cloud computing service like Amazon Web Services.

4.3 Implementation details

4.3.1 Poster generator

The poster is generated by generate_fiducial_poster.py included in the
appendix and Github repository. Parameters are detailed in table 4.5 and illustrated
in figure 4.10. The user specifies everything in millimeters and sets the desired resolution
(DPI). The script handles all conversions to make sure the end product is true to scale.
The poster is first created as a raster image, as the script relies on a function from
OpenCV to generate fiducials and this outputs raster images. But in order to be printed
accurately to scale the poster must be converted to vector graphics. Professional printers
will only guarantee that prints are to scale if vector graphics is used. Vector graphics
is fundamentally different format than raster graphics. It stores graphics as geometric
shapes defined by their coordinates on a Cartesian plane. This conversion is performed
automatically using the open source tool Potrace. The accuracy of the conversion is
verified in vector graphics editing software such as Inkscape.

4.3.2 Fiducial pose estimator

A C++ implementation of RBOT by the author is available on GitHub under the GNU
public license. This implementation is used as a basis for creating the hybrid fiducial
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Table 4.5: Fiducial poster script parameters

Parameter Description Default

N_TAGS Number of tags on each side 4

TAG_SIZE Size of the fiducial 140 mm

TAG_KEY What fiducial dictionary to use APRILTAG_16h5

MARGIN_SIZE Distance between fiducials 30 mm

HOLE_DISTANCE Model screw hole distance
from model base 24 mm

HOLE_DIAMETER Size of dot marking screw hole 1 mm
MODEL_BASE
_DIAMETER

Size of the outline marking the
model base 70 mm

MODEL_BASE
_DISPERSION

If five sockets, distance of
model socket from center 300 mm

FIVE_SOCKETS One or five sockets True

LINE_THICKNESS Line thickness 1 mm

BORDERSIZE Thickness or poster crop border 0.2 mm

font_scale Font size 30

DPI Dots per inch 1440

pose estimator. The main.cpp is heavily modified, but mainly does function calls to the
library. Otherwise it is almost unchanged. The only difference is a change to model.cpp
to shift the reported pose of a model to its origin, as to match how the fiducial pose
estimator does. The RBOT default is to report the pose of a model from its 3D bounding
box center.

A flowchart of how RBOT and fiducials are used to extract poses is given in figure
4.20. A configuration file in the JSON format specifies details such as what model to
track, which video to use and where to save the data. For each frame in the video both
RBOT and the fiducial pose estimator will attempt to get the pose of a selected model.
If the poses are roughly equal then both the raw frame and binary segmentation mask
is saved. The segmentation mask is created using the function renderSilhouette()

inside RBOT that utilize its 3D rendering engine to mask a silhouette without shading on
top of a black image. If there is a mismatch between the poses then no images are saved,
but the pose estimates are still logged. If there has been 10 consecutive pose mismatches
then it will attempt to reset RBOT to the pose produced by the fiducial pose estimator.

RBOT is implemented in C++ which necessitates that the fiducial pose estimator must
be as well. This is the code in the fiducial_pose folder in the GitHub repository.
The pose estimator is a class and its flowchart is seen in figure 4.21. To initialize it
needs JSON files containing camera intrinsics, measurements of the poster (created by
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generate_fiducial_poster.py) and what fiducial dictionary to use. It then creates
an array the Tto transformation matrices for each tag.

For each frame detectMarkers() takes the current image frame as input and
returns a list containing the corner coordinates of detected of markers and their ID.
This is further given to estimatePoseSingleMarkers() which return translation
and rotation vectors that is transformed into the transformation matrix Tct describing
the pose of each tag. Each tag is then transformed in the model pose using the method
described in section 4.1.1. After this it will do the outlier detection method described in
section 4.1.1. The inliers are averaged and it returns a new pose object containing the
transformation matrix Tcm and the number of fiducials detected in the current frame.

All files in the folder fiducial_pose is custom except json.hpp. JSON files are
read using the open-source library "JSON for modern C++".

4.3.3 Dataset annotation

Dataset files are handled and annotated using the scripts in the dataset folder.
make_coco.py will parse the output of the fiducial pose estimator and create a dataset
annotated in the COCO format, slighty alterted to accommodate pose detection. This is
done by using the binary segment mask created by the RBOT 3D engine. This contour is
tracked by OpenCV findContours() which returns a list of pixel coordinates forming
a polygon in the shape of the mask. By default this is then converted to a different binary
mask in the run-length encoding format using the pycocotools library. Alternatively
the script can also output the polygon coordinates as segment mask. The script will also
add the saved pose to the annotation. This is not part of the official COCO format, which
is designed with 2D object detection in mind.

split_coco.py will take a dataset saved in the COCO format and split samples
of it into fractions. The purpose is to create a train, validation and test set used to
evaluate and train neural networks. The size of each is set as parameters to the script.
The last script unify_coco.py will join two or more COCO datasets into a unified set.
Old image filenames are lost as it will create new ones, 1000000+i for images in the first
series, 2000000+i for images in the second and so on.

4.3.4 Training Mask R-CNN

The implentation I use require that the Config class in coco.py is customized to
handle loading of images and annotations, running training and evaluation. The result is
the handles.py script.

The script was modified for transfer learning by excluding layers "mrcnn_class_logits",
"mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask" when loading COCO weights. Fur-
ther training was restricted to the top layers of network.
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Figure 4.20: A flowchart of
main.cpp

Figure 4.21: A flowchart of how the
fiducialPoseDetector class
works.
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Other changes were mostly setting directories and changing hyperparameters such as
number of categories and training duration. Function headers and calls also had to be
changed as many had parameters that are specific to the COCO-dataset. Specifically calls
to use special subsets of COCO based on year.

Training was done using CPU only for roughly six hours. 30 epochs with 60 iterations
each.

4.4 System specifications

All testing and training was performed on a "Dell XPS 15 9500" laptop, specifications in
table 4.6.

Table 4.6: System specifications of laptop used for testing and training.

Specifications
Intel Core i7-10750H
2x8GB DDR4-2933MHz
NVIDIA GeForce GTX 1650 Ti 4GB
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Chapter 5

Results

Results are reported with poses of the shackle and duck model. While they worked well
on plain RBOT, they no longer work when paired with the fiducial pose detector. Most
likely because it takes up too much memory and the operating system kills the process
automatically. This might work on a more powerful computer, but I have not been able
to test it.

5.1 Dataset

5.1.1 Fiducial pose estimate accuracy

Transforming all pose estimates into the poster center show a certain spread even in air.
In water the spread is generally worse, and dependant on visibility conditions. This is
shown in 5.1 where the transformed poses are drawn on the image frame. As a frame
of reference, the base of the model is 7 cm in diameter. While these images are only
snapshots, the general tendency is a spread a of a few centimeters. Rotation is harder to
gauge, but is clearly "wobbly" when frames are viewed in sequence.

Figure 5.1: All transformed poses drawn onto the image frame. Frames with short lines
represent individual transformed fiducial poses. The frame with long lines represent the
average.
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Table 5.1 and 5.2 summarize the deviation in translation and rotation between the
fiducial poses and RBOT. Rotation is represented as Euler angles in degrees. In each cell
the median is on the left and standard deviation on the right. The fishtail for location 1
is left out because of errors in the data. Deviation here is defined as

Terror = Tfiducial − TRBOT

Figure 5.2 show five minutes of translation and rotation pose estimates from location
1. Blank spaces are where either pose estimation method draws a blank.

It appears that translation is fairly consistent in the image plane, that is the X and Y
axis. In the Z-axis, representing distance to, the fiducial markers generally overestimate
in comparison to RBOT. A difference in 5 centimeters is consistent between the locations.
This is even larger for the T-handle which might be harder for RBOT to track due to its
small size and simple shape.

For rotation along the X-axis spread is much greater than either Y og Z. Again the
T-handle appear to be harder to track than the D-handle or Fishtail.

Table 5.1: Summary of metrics from location 1

Translation [cm] Rotation [degree]
X Y Z X Y Z

D-handle -1.0 6.7 -0.0 4.0 5.2 20.4 -6.0 114.1 0.9 6.8 1.8 22.0
T-handle -1.2 7.8 1.8 6.0 11.6 18.3 -23.5 100.0 1.7 9.7 2.5 23.7

Table 5.2: Summary of metrics from location 2

Translation [cm] Rotation [degree]
X Y Z X Y Z

D-handle 1.5 8.3 -0.3 2.1 6.3 11.4 -2.9 39.9 -0.8 5.2 1.5 15.5
Fishtail 2.5 12.4 -0.9 3.7 8.0 15.7 -7.3 54.7 -1.5 7.8 2.8 18.9
T-handle 1.4 9.3 0.5 3.2 17.9 29.4 -27.3 98.1 -4.9 13.3 3.9 25.3
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Figure 5.2: The deviation in translation and rotation between RBOT and fiducials for
the D-handle at location 1.
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5.1.2 Fiducial dictionary

Figure 5.3: Frame 100, 300 and 500 from experiment #5

Tests were also made to determine the fiducial dictionary with the best detection rate.
Figure 5.3 show frames from the video used in experiment #1. A4 sheets with different
dictionaries was printed using a normal laser printer. These were hung on a wall and
filmed while the camera moved backwards.

Results from the test is presented in figure 5.4. On the y-axis is the number of detected
tags. The x-axis is cropped to the interval where detection rate started to decline and
reached zero. The x-axis unit is the frame number in the video, but also reflect increasing
distance from the tags.

Figure 5.4: Number of detected tags over time in experiment #5

Mean detection rates from the six trials are presented in table 5.3. "APRILTAG_16h5"
appear to be the most robust, closely followed by "ARUCO_4X4_50". These are both
4x4 matrices. Overall detection rate is presented in table 5.4. For both ArUco and
AprilTag it is clear that matrices with fewer cells are more easily detected. The downside
of a smaller matrix though is that it gives fewer unique identities. This does not really
matter in this particular application however. For performing pose detection, all markers
could have the same identity.
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Table 5.3: Average detection rate in each experiment

Experiment Dictionary N tags
1 APRILTAG_16h5 10.41

APRILTAG_25h9 7.02
APRILTAG_36h11 6.24
ARUCO_4X4_50 10.32
ARUCO_7X7_50 8.94

2 APRILTAG_16h5 11.65
APRILTAG_25h9 8.41
APRILTAG_36h11 7.81
ARUCO_4X4_50 11.67
ARUCO_7X7_50 10.94

3 APRILTAG_16h5 13.35
APRILTAG_25h9 7.95
APRILTAG_36h11 7.19
ARUCO_4X4_50 12.79
ARUCO_7X7_50 11.83

4 APRILTAG_16h5 11.95
APRILTAG_25h9 7.15
APRILTAG_36h11 6.77
ARUCO_4X4_50 11.28
ARUCO_7X7_50 10.19

5 APRILTAG_16h5 7.52
APRILTAG_25h9 4.85
APRILTAG_36h11 4.03
ARUCO_4X4_50 7.33
ARUCO_7X7_50 6.50

6 APRILTAG_16h5 7.47
APRILTAG_25h9 3.39
APRILTAG_36h11 2.77
ARUCO_4X4_50 6.15
ARUCO_7X7_50 6.03

Table 5.4: Average detection rate across all experiments

Dictionary N tags
APRILTAG_16h5 10.14
ARUCO_4X4_50 9.69
ARUCO_7X7_50 8.84
APRILTAG_25h9 6.32
APRILTAG_36h11 5.65
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Figure 5.5: Loss on validation and test data after each epoch of training.

5.2 Object detection

Mask R-CNN was trained for 2D object detection using the dataset. The network predicts
segmentation masks and create a bounding box based on that. Loss across epochs are
presented in figure 5.5. It calculates loss for segmentation masks and bounding boxes
separately. Bounding box loss appear to improve more than mask loss. Furthermore
validation loss is significantly better than training loss. The validation set is used during
training for parameter tuning, while the test set is used to evaluate the model afterwards.

Average precision and recall is presented in table 5.5. This the stats for the highest
scoring model, which occoured in epoch 26.

Figure 5.6 present a few examples of failed predictions. Here the model is able to
predict all instances of objects, but create a false positives as well. Either the shackle or
duck model is falsely classified as handles.

Some examples of good predictions can be seen in figure 5.7. Here there are no
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Table 5.5: Mean Average Precision and recall after training

IoU Score
mAP 0.50 : 0.95 0.354

0.50 0.687
0.75 0.280

IoU Score
Average Recall 0.50 : 0.95 0.584

Figure 5.6: A sample of failed mask predictions from the test set.

false predictions, classifications are correct and although masks are sometimes patchy the
bounding box fits precisely around the model.
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Figure 5.7: Successful mask predictions.
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Chapter 6

Discussion

The initial idea was to use the fiducial markers as ground truth to create a dataset for
training neural nets and evaluate RBOT. This based on the results reported by Henriksen
et al [22], where displacement had millimeter accuracy and yaw was within one degree.
They used acoustic positioning as ground truth to measure the accuracy of pose estimation
with fiducials. While the current project does not have access to a sufficiently accurate
positioning system to compare results quantitatively, it seems obvious that these fiducial
pose estimates are far less accurate. This led me to turn things around and use RBOT
as ground truth in the dataset when the fiducial poses roughly correspond.

6.1 Dataset

There are systematic biases in the dataset that could reduced in a future version. Because
the ROV has a limited capability to look downward the poster was designed to hang
vertically. This should be balanced out by footage of the poster lying horizontally on the
ground.

A significant flaw in the current dataset is that a pose is recorded only when RBOT
and the fiducial pose overlap. This means that even though all models are visible in a
given frame, there might only be a pose for one or two models. This greatly skews the
accuracy metrics of the 2D detection network. If for instance a frame has the D-handle,
T-handle and fishtail all visible, but only a pose for the D-handle. The classifier might
correctly guess the mask of the T-handle and fishtail as well. However these will be
counted as false positives in the evaluation metric.

Evaluation of the 2D object detection network also revealed a large gap between scores
on the validation and testing data. This could be caused by several factors, but is often
a symptom of overfitting. That is when the model is not capable of generalizing to new
cases. This could be caused by unbalanced training data. There might be more samples
of the handles in certain configurations. The idea was to move back and forth in front
of the poster in a random fashion and get a nice distribution of poses. However the two
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pose estimation methods correspond much more under certain conditions. At 30 frames
per second it quickly builds up a large amount of images if poses align all the time. In
other situations there might be no correspondence for a long time.

6.2 UUV pose estimation framework

Using a method like RBOT that focus on silhouette and regional features rather than
keypoint features appear to work very well under water. The method is also very efficient
and can run at easily run real time on a laptop. In comparison neural nets are significantly
slower. Although some papers report they can run up 10-15 Hz this relies on a powerful
GPU. For ROVs this might be possible as they are connected through the umbilical to the
surface. Most AUVs will not be capable of this however, although this might be changing
with small embedded computers such as the Nvidia Jetson.

Both RBOT and the most suited 6D pose estimation neutral net should be
implemented as ROS (Robot Operating System) nodes. ROS is popular robot
"middleware" operating system. It lets nodes run independently of each other and
facilitates communication between them. Nodes can run on separate machines and
communicate via network. Although both RBOT and neural nets are computationally
heavy, this burden could be distributed between two machines. This would let them work
in tandem, such that the neural net would supply RBOT with a initial pose whenever
tracking was lost.
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Chapter 7

Conclusion

The literature review performed in section 3.1 focused on intervention-AUV projects
from the last two decades. Most projects used pose estimation methods that were very
particular to a certain task. For instance, the RAUVI project [58] primarily rely on
color histograms to retrieve a red box. The TWINBOT [56] and MARIS [68] projects
focus on manipulation of pipes and rely on assumptions of their particular color and
geometry. The more versatile methods used feature descriptors like ORB in combination
with traditional 2D-3D algorithms such as perspective n-point. In the TRIDENT project
[3] ORB performed reasonably well in pool trials, but not in the ocean with realistic
visibility conditions.

This initially led me to the idea of developing a method using perspective n-point and
RANSAC, but by using learned feature descriptors rather than ORB. Learned feature
descriptors are trained in neural nets and have proved to be more effective than hand-
crafted descriptors such as ORB. However, similar methods has already been explored
by Crivellaro et al. [12] and Tremblay et al. [76]. Point-based methods also appear to
perform poorly in pose estimation benchmarking tests [26].

Finally it has some fundamental issues when applied in an underwater environment.
ROVs are mostly used to manipulate man-made objects that are simple shapes with
uniform color and very little texture. Hence there is little for a feature descriptor to work
with. Methods that rely on local features such as keypoints are likely to perform poorly.
And while these objects are designed with CAD tools, the models might not have texture
added. Even if textures were added, equipment could be painted with a different color
during repairs. For this application then, methods that rely on 3D CAD models without
texture are more apt.

The methods reviewed here are either pose detection or pose refinement methods.
Only pose detection methods can find the pose from a single image, but are too slow to
run in realtime. Pose refinement methods make assumptions based on the pose in the
previous frame and rely on being initialized. But this makes refinement methods more
efficient and able to run in realtime on simple hardware. A flexible and robust pose
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estimation system would probably have to combine estimation and tracking.
The dataset created in this project can be used to this purpose. Although generating

synthetic images is most definitely more efficient than creating a real dataset, methods
will have to try on the real world eventually. Also augmenting a synthetic training set
with images from such a dataset can help lessen the reality gap.

7.1 Future work

• The database should be used to train a number of existing 6D pose estimation
neural nets and evaluate how they perform in water. Results from the BOP
challenge hint that machine learning methods are improving at a faster rate than
traditional methods. However, neural nets and pose detection will forever be more
computationally heavy than tracking. The best immediate solution seems to be a
hybrid of a neural net pose detector and template based tracker. Neural networks
not relying on textures seem like the best option on subsea equipment, for instance
Pix2Pose. CosyPose performed much better in BOP, largely because it integrates
pose estimates from many different views. The authors further claim this method
works independent of what exact pose estimator is used (they use a variant of
DeepIM). A textureless method like Pix2Pose then could conceivably be integrated
with CosyPose.

• RBOT is fundamentally a pose tracking method and relies on initialization. In the
lab this can be done manually, but an application usable in real life would have
to do this automatically. By using a separate object detection algorithm, RBOT
could be supplied with either a bounding box or even segmented image to restrict its
search. And because objects used in subsea industry are generally yellow or orange,
the histograms could be initialized with these colors, or by user choice. When
using color histograms deep underwater one might be able to make an assumption
that would be unreasonable in most other environments. That is if the UUV is
deep enough that most sunlight is absorbed and it primarily relies on the artificial
lighting coming for the UUV itself. If the color temperatures of the UUV lights are
known, one could use that information to perform white balancing on the captured
images. That would mean the hue of an object never changes, only the luminosity.
This is particularly useful if using the HSV color space rather than RGB. HSV is
an acronym for hue, saturation and value. If imagining a surface with a certain hue
lit by a white light, "value" is the strength of that light. Unlike RGB where the
intensity of red, green and blue is represented individually, in HSV hue and value are
separate properties. HSV histograms of oriented gradients were used successfully
for image segmentation by [38, 39] in the MARIS I-AUV project.

• Models occluding the fiducial markers and causing erroneous box detections (for
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instance figure 4.6) could be fixed in a future project by either making the poster
less crowded or using another fiducial detection method. If there was more space
around the models they wouldn’t occlude the markers in the first place. But other
detection algorithms such as Olson [50] claim to do robust marker detection despite
occlusion. I could also have made a custom algorithm that performs some kind of
error correction. For instance, all the boxes are approximate parallelograms because
of how perspective works. All the horizontal lines in all of the boxes should be more
or less parallel on an undistorted image. Undistoring an image is not a problem as
the camera intrinsics are necessary for pose detection anyway. And so the average
gradient of each horizontal line could be used to identify outliers, instead of the each
element in the translation vector. Likewise with vertical lines.

• Given the poor visibility conditions, "active" markers might create more reliable
fiducial pose estimates. Active fiducials use LED diodes to create patterns the
algorithm can use as feature points when solving the PnP for pose. A custom active
marker poster could be produced using a CNC milling machine creating precise holes
for diodes and screws that attach the model. Using the entire area of the poster as
a square would create more reliable poses. The poster could also be divided into
sub-squares that each create a recognizable pattern.
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Appendix A

Miscellaneous figures

Figure A.1: Locations for underwater filming.
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