
Activity dependent delay learning
in spiking neural networks

Jørgen J. Farner

Report submitted as part of the
Master in Applied Computer and Information

Technology (ACIT)
60 credits

Department of Computer Science
Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2022

Activity dependent delay
learning in spiking neural

networks

Jørgen J. Farner

© 2022 Jørgen J. Farner

Activity dependent delay learning in spiking neural networks

http://www.oslomet.no/

Printed: Oslo Metropolitan University

Abstract

Several observations indicate activity dependent changes in the propaga-
tion velocity of action potentials in biological neural networks. These
changes are believed to be deliberate mechanisms in the brain used to me-
diate the delays of the connections between neurons for functional pur-
poses. These observations have created a great interest from the research
community in the role of neuronal delays. In order to explore these mech-
anisms, a novel delay learning mechanism has been developed that adjusts
delays based on local activity. The main aspect of the learning method
is to align the delays of pre-synaptic spikes that are causally related to a
post-synaptic spike. The theory is that this will consolidate activity that
is related to similar inputs, consequently allowing the network to separate
inputs into classes. To accommodate for this method, a coding framework
that allows for local delay learning in spiking neural networks was cre-
ated. A novel method for detecting polychronous groups for the purpose
of performing classification tasks was also developed. The delay learn-
ing method was applied to various network topologies, and the learning
method showed a significant performance improvement when applied to
feed-forward networks over identical static networks. The performance
was measured on a classification task involving inputs encoded based on
relative spike latencies. It was also shown that using rate-coded inputs
leads to diverging and unstable delays, indicating that this might not be
an appropriate encoding method for this temporal learning mechanism.
Finally, the learning mechanism was applied to feed-forward topologies
to perform classification on images from the MNIST dataset. The plastic
networks showed a significant performance increase over identical static
networks.

i

Acknowledgments

I would like to thank Stefano Nichele for his support throughout the thesis
process and for sharing his vast knowledge of artificial intelligence which
has been of great help. I would also like to thank Ola Huse Ramstad for his
invaluable insight into the biological aspects of neural networks. Finally I
would like to extend a special thanks to Kristine Heiney, who has patiently
supported, encouraged and guided me every week throughout this one
and a half year process. This would not have been possible without your
help. It has been a tremendously rewarding experience to work with these
three great researchers.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3

2 Background 4
2.1 Artificial Neural Networks . 5

2.1.1 Conventional Artificial Neural Networks 5
2.1.2 Spiking Neural Networks 7

2.2 Neuron Models . 9
2.2.1 Hodgkin-Huxley . 10
2.2.2 Integrate and fire . 14
2.2.3 Izhikevich . 15

2.3 Learning Methods . 16
2.3.1 Biological learning . 16
2.3.2 Local Learning . 19
2.3.3 Supervised Learning 20

2.4 Coding Schemes . 24
2.4.1 Rate Coding . 25
2.4.2 Rank Order Coding . 25
2.4.3 Relative spike latencies 26
2.4.4 Time-to-first-spike . 26
2.4.5 Other coding schemes 27

2.5 Code libraries . 28
2.6 Related Works: Delay learning in Spiking Neural Networks 29

3 Framework and implementation 33
3.1 Framework overview . 33
3.2 Transmission delay model . 35
3.3 Izhikevich model implementation 37
3.4 Neuron behavior . 41

3.4.1 Neuron response . 41
3.4.2 Refractory period . 44

3.5 Polychronous groups . 46

iii

4 Delay learning 52
4.1 Conceptual foundations for delay learning 52
4.2 Activity-dependent delay learning method 53
4.3 Categorizing delay behavior for networks exposed to RSL

and rate-coded input . 61
4.3.1 Input patterns . 62
4.3.2 Categorization method 64
4.3.3 Rate-coded input . 67
4.3.4 Alternating RSL input 72
4.3.5 Conclusion . 74

5 Input classification through polychronous group detection 76
5.1 Polychronous group detection method 76
5.2 Increasing robustness through delay learning 79
5.3 Input classification in feed-forward network 81
5.4 Input classification in ring lattice 82
5.5 Input classification in reservoir 84
5.6 Classifying MNIST dataset . 85

6 Discussion 90

7 Conclusion 93

A Input classification 100
A.1 Ring lattice . 100
A.2 Reservoir . 101
A.3 MNIST classification . 102

B Topologies 103

iv

Chapter 1

Introduction

Curiosity about the inner workings of the brain is an age-less endeavour
that has perhaps been present since the dawn of complex primate
consciousness. For the vast majority of this time the brain has been
viewed as a black box, hiding the secrets about its intricate design.
With the emergence of advanced technology and research methods that
accompanied the twentieth century, we are beginning to unveil the answers
to our many questions regarding the human brain. At the same time
computer scientists discovered the possibility of recreating the mechanisms
and structures found in the brain as a computational tool, and thus the
research field of artificial intelligence emerged.

From its humble beginnings, artificial intelligence has come a long way.
The research field started off with the Threshold Logic Unit (TLU) [30],
capable of approximating simple boolean logic, and has now evolved to
the modern deep neural networks of today, capable of generating photo
realistic images from text input [52]. Artificial neural networks (ANN)
have been implemented to solve numerous real-world tasks that are either
laborious for humans to perform or in many cases impossible. Still, the
goal of achieving general intelligence in an artificial network is distant.
However, this shouldn’t deter us from exploring new methods and ideas
to make incremental improvements to our current models.

A significant limitation of conventional ANNs is their narrow domain
and lack of generalizability. Although the brain consists of several
specialized sub-networks that are structured to perform specific tasks, the
brain also consists of large areas that can perform more general tasks.
This flexibility is a desired trait to be reproduced in ANNs, and with this
motivation in mind a new paradigm is emerging with an increased focus
on drawing inspiration from biological networks. With this change of view,
spiking neural networks (SNN) have made their way into mainstream
research and stands as a possible successor to sigmoidal networks. Another
significant reason for a lot of current research pertaining to SNNs is their
ability to be implemented at a hardware level giving them a notable
increase in efficiency over their ANN counterparts.

The real-values output of the conventional ANNs can be considered an
abstraction of spike-rates [15]. However, contrary to the long-held notion

1

that neurons solely communicate with the firing-rate of action potentials,
many researchers current position is that the firing-rate is an insufficient
encoding method to explain all communication observed in biological
neural networks. Instead, it is believed that the precise timing of action
potentials plays a crucial role in the brains efficient processing ability, and
consequently the propagation delay between neurons is a vital part of this.
It is therefore logical to assume that the tuning of these delays could be a
crucial aspect of how the brain learns.

SNNs differ from conventional ANNs in primarily three aspects; activ-
ation functions are replaced with spiking neurons, real-valued outputs are
replaced with sequences of spikes and lastly the introduction of a temporal
aspect by replacing the layer-wise matrix operations of conventional ANNs
with discrete time-steps where neurons can produce action potentials asyn-
chronously, and these action potentials travel through connections. It is
believed that this temporal aspect opens up the possibility for SNNs to ex-
ceed the performance of conventional ANNs both in terms of efficiency and
in terms of computational capabilities. However, current implementations
of SNNs rarely outperform conventional ANNs, and a lot of work still re-
mains to uncover their true potential. As part of this process, the role of
propagation delays and how incorporating delay learning may affect the
networks computational capabilities, must be explored.

1.1 Motivation

There are several mechanisms and properties that affect the velocity at
which an action potential travels, like axon diameter, temperature and ion
channel density. Another important factor is the presence of a myelin
sheath that insulates the axon and increases the velocity of the action
potential [37]. The observed delay can therefore be considered as the result
of different mechanisms and properties that affect the propagation velocity
along with the physical length of the axon and dendrite connecting the
two neurons. However, the propagation delays do not necessarily appear
to be static at all times according to several observations [4], [13], [14],
[28], [7], which describe activity dependent changes to the propagation
velocity of action potentials. These observations indicate that there exists
deliberate mechanisms in biological neural networks that mediate the
delays between neurons with a functional purpose. From a computational
point of view Izhikevich [21] demonstrated that optimizing the delays of a
SNN increases the amount of information that can be represented. These
observations constitute the motivation for this project and as a step towards
understanding the role of activity dependent delay plasticity and how it
can increase the computational capabilities of neural networks, this project
developed and analyzed a novel local delay learning mechanism.

2

1.2 Problem Statement

Current SNNs are mainly considered for research purposes rather than
solutions to real-world problems as they rarely if ever outperform conven-
tional ANNs. Especially when implemented on conventional hardware,
the computational efficiency of SNNs is quite inferior to that of conven-
tional ANNs. This is in stark contrast to the extreme efficiency with which
the biological brain operates, and it is therefore believed that we have not
seen the full potential of SNNs.

Although various learning methods, both supervised and unsuper-
vised, that strengthens and weakens connections have been applied to
SNNs, there exists very little work directly associated with the training of
delays, and practically no work has been done on developing local learn-
ing methods for delay training. It is this gap of knowledge that this project
attempts to address by improving network performance on classification
tasks through the implementation of a novel delay learning method that
mediates delays based on local knowledge.

3

Chapter 2

Background

This section will present information that is relevant for this work. A
thorough exploration of the current state of knowledge within the relevant
fields provides the background information that is needed in order to
create new machine learning models with some improvement or novelty.
These fields include ANNs, neuron models, learning methods and coding
schemes.

During the project a novel local learning mechanism applied to SNNs
was developed, therefore an introduction to the principal features of SNNs
and a comparison to general neural networks will be given.

Any neural network consists of smaller computational units or artificial
neurons. In the context of SNNs, these computational units are often
referred to as neuron models. The most common neuron models will be
discussed and compared, highlighting their strengths and weaknesses.

As the main focus of the project is the development of a learning
mechanism, it is important to provide an understanding of the biological
learning mechanisms present in the brain, along with existing learning
frameworks applied to ANNs.

In biological neural networks, information is believed to be encoded by
various coding schemes, depending on the area of the brain in question.
These coding schemes differ in their efficiency and robustness. Likewise,
this project applies a specific coding scheme to convert information into
spikes, with which the network can process and perform computations on.
It is therefore important to explore some of the existing coding schemes
that are frequently implemented in SNNs.

In order to run simulations of SNNs, a coding framework that explicitly
allows for implementing self-defined delay learning methods must be
used. A section of this background chapter is therefore dedicated to the
process of evaluating existing frameworks.

The final section of the background chapter will explore related works
which either implement learning mechanisms on delays in SNNs or
otherwise explicitly depend on delays to perform computation.

4

2.1 Artificial Neural Networks

The term artificial neural network refers to any computational framework
that relies on interconnected nodes or artificial neurons loosely inspired
by real biological neurons, and encompasses a large variety of different
implementations of this definition. However, if one groups them by their
temporality, one can separate the networks into two major categories,
namely the spiking neural networks which relies on the spiking neuron
and the conventional neural networks which relies on what is often called
the sigmoidal neuron. The first category includes a temporal aspect where
information travels along connections between neurons as discrete spikes.
The latter category, however, transfers information immediately in a step-
wise manner from one neuron to the next, and the information takes the
form of a real number. In this section, these two types of artificial neural
networks will be described and compared.

2.1.1 Conventional Artificial Neural Networks

The group of computational frameworks the fall under what can be
referred to as conventional artificial neural networks, rely on relatively
simple mathematical units which operate on real values and lack the
time component of SNNs. With its growing number of variations, these
frameworks have virtually become synonymous with machine learning
in recent years. However, the idea of taking inspiration from biological
brains and creating a network of artificial neurons is not a novelty and has
been around for some time. The limiting factor that prevented NNs from
becoming widely used computational frameworks was the need for large
datasets required for training the models. This requirement posed a great
challenge in the early days of conventional NNs since large data sets were
not readily available. This has since changed with the global adaptation
of the internet, and the steady transfer from analog to digital storage of
information

The conventional ANNs of today are able to exceed human capabilities
in various tasks, but their usefulness was quite limited during their humble
beginnings. In 1943 McCulloch and Pitts [30] proposed the first artificial
neuron. Their proposed neuron model receives weighted inputs from
all of its pre-synaptic neighbours, and if the summed input is greater
than a fixed threshold, the neuron outputs a binary value of 1. If the
threshold is not exceeded, the output is 0. The weights of the connections
determine if it is providing an excitatory or inhibitory input. The input
is excitatory if its value is above zero, while it is inhibitory if its value is
below zero. There is no temporal aspect to the model, as the output of one
neuron is immediately received at the post-synaptic neuron during the next
computational step. The McCulloch and Pitts neuron can be referred to as
a threshold function and can be seen in figure 2.1.

f (x) =

{
1 if ∑m

i=0 wij · xi > ψ

0 otherwise
(2.1)

5

f (x) is the output of neuron j, ψ is the threshold of the neuron, wij is the
weight of the connection from neuron i to neuron j and xi is the output of
neuron i. This threshold logic allowed the McCulloch and Pitts neuron
to perform boolean operations when configured together in networks.
However, they lacked the ability to separate non-linearly separable input,
limiting their usability. In simple term, if one considers 2-dimensional
data containing two distinct classes, the data can be considered linearly
separable if it is possible to draw a straight line, or first degree polynomial,
that separates all instances of the two classes. If the data is not linearly
separable, a more complex function is needed to separate it.

Perhaps the biggest shortcoming of the McCulloch and Pitts neuron
was its inability to adjust weights or thresholds, in other words it lacked
the ability to learn. The models needed to be manually configured for a
specific task like performing a boolean AND operation.

The invention of the Perceptron by Rosenblatt in 1958 [38] introduced
several improvements to the McCulloch and Pitts neuron. A crucial
improvement was the inclusion of supervised learning which allowed a
network of Perceptrons to be trained for specific tasks, although the task
was limited to binary classification. The Perceptron also suffered from the
inability to separate non-linearly separable input if configured in a single
layer.

These issues with the early neuron models were addressed with the
modern artificial neuron which exchanged the threshold function with a
non-linearity called an activation function such as the Sigmoid function
seen in eq. 2.2.

f (x) =
1

1 + e−x (2.2)

The output of these neurons is a continuous set of values, f (x) ∈ R,
and as a complete network their ability to approximate any continuous
function has been demonstrated [17]. Perhaps the most common versions
of the modern ANN, is the recurrent neural network and the convolutional
neural network, which both implement these computational units and have
become the norm for solving classification tasks related to sequential data
and image recognition respectively.

A limitation of trained ANNs comes from the fact that they are
approximating a specific function. An ANN can essentially be thought of
as a universal function approximator, and through a substantial training
process its weights are adjusted until it has become an approximation
of a very specific function that does something very specific. Without
retraining, the model cannot properly perform other tasks.

Another limitation of ANN’s is that they propagate information from
input layer to output layer in a step-wise manner, thus the intra-neuronal
delay caused by the variable propagation speed of the action potentials
(AP) is neglected. Research into the information processing in certain
areas of the brain [35] has proven spike rate to be insufficient as the
sole encoder of information present in biological computational processes.
Perrett, Rolls and Caan [35] demonstrated that humans can perform simple
visual analysis in less than 100ms, a process that requires the information

6

to propagate through at least 10 synaptic layers from the retina to the
temporal lobe, with the involved neurons firing at a rate typically below
100Hz. Considering that there must be a 20-30ms time window to allow
for fire rate sampling, their work indicates that there is a clear discrepancy
between the observed time window for the visual processing and the time-
scale at which rate-coding would accomplished said task. It has also been
observed that neurons are able to produce spikes with very precise timing
[5], [11]. This observation led scientists to believe that the information
processing in the neurons is far more complex and that the precise timing
of spike-arrival at the post-synaptic neuron might be a significant part of
the information encoding. It is likely that this lack of temporal encoding
in conventional neural networks limits their computational abilities and
prevents them from achieving any form of general intelligence.

Creating networks that leverage some temporal coding might lead to
processing capabilities that exceeds that of ANNs in various ways. It
has also been proven that when SNNs are implemented in hardware,
referred to as Neuromorphic computing, the energy efficiency is drastically
increased [27]. This realization has led to a recent shift in focus among
researchers towards exploring spiking neural networks. The next section
will give an overview of the most important aspects of SNNs and how it
differs from conventional neural networks.

2.1.2 Spiking Neural Networks

SNNs takes the biological inspiration found in conventional ANNs a step
further by including a temporal component in addition to the inclusion
of more biologically realistic neuron models. When considering their
computational units, SNNs have been referred to as the third generation
of Neural Networks [29], with the first being the Perceptron or McCulloch-
Pitts neuron and and the second generation being the continuous activating
neurons of modern NN’s as seen in figure 2.1. It is worth to note that
the Perceptron and the McCulloch-Pitts neuron are quite similar and
although they differ in certain aspects, they can both be considered Linear
Threshold Units (LTU), and for simplicity’s sake, LTU will be used for
future comparisons to SNNs.

Figure 2.1 neatly portrays the three main aspects in which SNNs differ
from the other two generations of ANNs and the biological brain. The first
aspect is the individual computational units, or the neurons. As previously
mentioned, the artificial neuron of conventional ANNs, sums the input
which is then given to an activation function which calculates the output of
the neuron. The LTUs function in a similar way, except it uses a threshold
function instead of an activation function. Although there are multiple
spiking neuron models, their common mechanism is to integrate inputs
that arrive in the form of weighted spikes, and if a threshold is exceeded,
the neuron produces its own spike. At first glance, there are conceptual
similarities between spiking neurons and LTUs, with thresholds that when
exceeded leads to a spike or the binary value of one, in the case of the
LTU. However, SNNs function in a substantially different way due to their

7

Figure 2.1: A comparison between the three generations of ANNs and
neurobiology. The computational units, information transmission and
topology is compared [48].

temporal aspect, which leads to the second aspect which is the nature of the
neuronal communication. Whereas the LTU and artificial neuron outputs
binary or real values, which is immediately received by the post-synaptic
neuron, the spiking neuron outputs temporal spikes which travel along the
connections and arrive at the post-synaptic neuron at a time dictated by
the delay of the connection. The spiking neuron can produce a sequence
of spikes. This sequence of spikes is referred to as spike-trains and allows
for a substantial amount of information to be encoded either in the rate of
spikes or according to some temporal aspect of the spike train, which will
be discussed further in section 2.4

The final aspect that differentiates the SNN from the other generations
of ANNs is its configuration as a network. In contrast to the previous
two generations of ANNs, which are often configured in layered structures
or otherwise homogeneously distributed recurrent connections, the SNN
can be configured in practically endless ways. Although, the SNN is
often used in a feed-forward topology, it is also common to configure it
in a more random way. These random configurations of SNNs are often
referred to as reservoirs or liquid state machines, which is a sub-category
of reservoir computing. Although these configurations are sensitive to the
choice of hyper-parameters, such as connectivity, a properly configured
reservoir is a very capable computational framework. Such configurations
are particularly suitable for sequential data, as the temporal nature of SNNs
allows information to persist for some time in the network.

One distant goal of Artificial Intelligence is to create general intelligence
that mimics the cognitive abilities of biological brains to some extent.
Although conventional ANNs can be applied to a wide variety of problems,

8

they are very domain specific once they are configured and trained. A
large enough collection of these models, might constitute a more complex
framework as a whole, but hand-picking models to perform certain
tasks results in something that is not very flexible or adaptive and is
computationally expensive on current hardware.

The implementation and more specifically the training process of mod-
ern Deep Neural Networks (DNN) through methods like error back-
propagation (EBP), explained further in section 2.3.3, is computationally
expensive and consequently an energy inefficient process. SNN’s might
be the solution to this problem as they offer the possibility of being im-
plemented at a hardware level, referred to as Neuromorphic computing,
where neuronal structures are directly embedded in processor chips in or-
der to emulate real neural circuits. When each neuron and connection of the
neural network is implemented as electrical components, the efficiency is
drastically increased as each component expends energy only when active.
Running neural networks on conventional hardware, on the other hand,
requires a lot of energy due to the synchronous global clock which forces
all computational units, even ones that are not necessary for the task, to
respond [27].

2.2 Neuron Models

Spiking neural networks are inspired by biology and this includes the
computational units that they comprise of. Many neuron models have been
put forward and there is often a trade-off between creating a biologically
plausible model and creating a computationally efficient model. The reason
for this is that the biologically plausible models attempt to capture the
complexity of biological neurons and implement them in artificial circuits
with the existence of several abstraction layers between the code and the
hardware. This bottom-up approach leans heavily on the current biological
knowledge of neurons and its connections at the expense of usability in
larger systems. Another approach, a top-down approach, has been to
create a computationally efficient model that produces behavior similar
to that of a real cortical network. Figure 2.2 maps some of the most
popular neuron models with respect to their biological plausibility and
computational efficiency. The biological plausibility is determined by the
number of features that the respective models include 2.7. These features
are various spiking behaviors and intrinsic properties. The implementation
cost is measured in floating point operations per 1ms of simulation.

Since this work focuses on implementing networks with sufficient size
that allows for solving complex tasks, the choice of model relied heavily
on computational efficiency. However, biological realism is also preferred
if the computational penalty is not too severe, as the learning method is
also inspired by biological mechanisms. The next subsections will detail
the different model types that were deemed relevant either because of their
biological aspects or because of their computational efficiency.

9

Figure 2.2: An overview of neuron models, their biological plausibility and
implementation cost [19].

2.2.1 Hodgkin-Huxley

Although it is one of the most computationally expensive models, the
Hodgkin-Huxley model [16] is the most comprehensive and biologically
accurate. It details various biological aspects of the neuron in great detail,
like the Na+ and K+ currents, by representing the neuron as an electrical
circuit of components. In order to understand the model, it is necessary to
have an understanding of the biological mechanisms that are present in the
neuron, axon and dendrites.

The biological neuron is the computational unit of all animal and
human brains. These neurons are clustered together to form larger
structures that have some functional purpose. A simplified explanation
of the intra-neuronal communication is that it is done by emitting action
potentials which are electrical signals that propagate along the connections
that binds the neurons together. These connections primarily consists of
three separate parts, the axon, the dendrites and the synapse. The different
parts of the neuron can be seen in figure 2.3. The axon is the output
connection of the neuron denoted d in figure 2.3, while the dendrites are
the input connections of the neuron, denoted a in figure 2.3. The synapse is
the connection between the two. A neuron has typically, but not always, a
single axon that conducts its output action potential, while it has multiple
dendrites that attaches to other neurons and conducts incoming signals. In
addition to the parts already detailed, the neuron consist of a cell body
that houses the nucleus which is a central part of the cell that controls
the activities of that particular cell. The Myelin-sheath insulates the axon
so that ions do not escape through its membrane. The Schwann cells are
responsible for wrapping around the axon to create the Myelin-sheath. The
Nodes of Ranvier are gaps in the Myelin-sheath that allow for the exchange
of ions with the extracellular space which enables the action potential to
propagate through the axon.

10

Figure 2.3: A: Dendrite B: Cell body C: Nucleus D: Axon E: Myelin sheath
F: Schwann cell G: Node of Ranvier H: Axon terminal [1].

Figure 2.4: The characteristic shape of an action potential seen in the squid
giant axon [43].

The Hodgkin-Huxley model is based on squids since they have
abnormally large axons which makes observations easier. The neurons of
the squid typically has a resting membrane potential of approximately -
60 mV, Whenever action potentials arrive at the neuron, there is a small
depolarization of the membrane potential. The characteristic shape of
the action potentials in squids can be seen in figure 2.4, it has a sharp
depolarizing slope at the onset of the spike, with a more moderate re-
polarizing phase after reaching around 40 mV. It is due to the different
responses each ion channel has to changes in membrane potential that gives
the characteristic shape of the action potential.

During the re-polarization phase, it is typical to observe an overshoot,

11

often referred to as hyper-polarization, where the membrane potential dips
below the resting potential of the neuron, consequently making it less
susceptible to emitting a new action potential until the membrane potential
has re-stabilized. This re-stabilizing phase is referred to as the refractory
period.

In contrast to signals in simple conductive transmission lines, an action
potential does not attenuate with distance as the mechanisms with which
the signals propagate is a regenerative process. There are primarily two
types of ions that are vital for the signal propagation and the changes in
membrane potential, the sodium ion (Na+) and potassium ion (K+). The
neurons, axons and dendrites contains these ions in varying concentrations
and their relative proportions determine the membrane potential. During
resting potential of the neuron, there is a higher concentration of sodium
ions in the extracellular space while there is a higher concentration of
potassium in the intracellular space. The membrane potential is as the
name suggests, the potential measured across the membrane of the cell, and
the negatively charged rest potential is due to the more positively charged
extracellular fluid compared to the cytoplasm of the cell.

The surface of the different neuronal components consists of a select-
ively permeable membrane that allows for both diffusion and electric drift.
These two forces counteract each other to create the nonzero potential ob-
served in quiescent neurons. In general the cell membrane is considered
to consist of three primary components, seen in figure 2.5 that enable the
neuron, axon and dendrites to manipulate their polarization. The two first
components are the two types of ion channels which are voltage sensitive
gates that allow Na+ to flow into the intracellular space and K+ to flow out
to the extracellular space granted that the voltage requirements are met.
The last component is the Na+−K+ pump which exchanges 3Na+ for 2K+

in order to retain the voltage equilibrium of the neuron.
During an action potential the voltage gated ion channels of the cell

membrane that are permeable to the sodium ions opens causing a rapid
influx of these ions into the cell consequently depolarizing the membrane
potential as seen in figure 2.4. When the membrane potential reaches
around 30mV, the potassium gates are activated and the membrane is re-
polarized by allowing K+ to flow out of the intracellular space. The same
mechanisms govern the propagation of action potentials through the axon
and dendrites by changing the voltage potentials along the membrane
structures.

Hodgkin and Huxley [16] were able to deduce mathematical models for
the different ion channels by observing the amount of current carried by
the different ions within a squid giant axon by changing the extracellular
concentration of sodium. Together these mathematical models can form
a realistic simulation of the membranes of neurons, axons and dendrites,
although there are many simplifications. The Hodgkin-Huxley model (HH)
considers three separate ion currents, namely the aforementioned sodium
INa and potassium currents IK in addition to a leak current IL that mainly
models the current of chloride ions. In addition to the ionic currents there
is a capacitive current Ic which is determined by the capacitance Cm and

12

Figure 2.5: The three main components of the neuronal cell membrane.
From left to right; Na+ channel, K+ channel and a Na+-K+ pump that
exchanges 3Na+ for 2K+ [43].

rate of change of potential in relation to time dV
dt for the membrane. These

four currents sum up and contribute to the total membrane current given
by:

I = Ic + Ii = Cm
dV
dt

+ Ii (2.3)

where the total ionic current Ii is given by:

Ii = INa + IK + IL = gNa(V − ENa) + gK(V − EK) + gL(V − EL) (2.4)

where gNa, gK and gL are the conductances for sodium, potassium and leak
respectively. The leak conductance is unchanging, represented as a regular
resistor in 2.6, in contrast to the sodium and potassium conductances which
are dependent on the membrane potential V and represented as variable
resistors in 2.6. The current for each ion channel is not dependent on
the actual membrane potential itself, but rather the difference between
the membrane potential and the equilibrium potential of that ion channel,
referred to as the driving force of the ion. The envisioned electrical circuit
that models the four currents can be seen in figure 2.6. The modelling of
ion channels based on their voltage-dependent conductance and reversal
potential can be used to model different types of neurons as well.

Although it can model a vast range of behaviors, because of its
complexity the model is only used to study single or small groups of
neurons and is not suited for large scale networks. For the purpose of
this project, the Hodgkin-Huxley model is therefor ill-suited since a larger
network is required and computational time is a relevant factor. It is
however important to understand the underlying biological mechanisms
with which the neurons function in order to understand the more simplistic
neuron models used in this project.

The Morris-Lecar model [31] has strong similarities to the Hodgkin-
Huxley model (HH) with its strong biological plausibility due to the

13

Figure 2.6: The electrical circuit representing the membrane of the squid
giant axon [43].

detailed simulation of the mechanisms of the neuron. Similar to the
Hodgkin-Huxley model, it is not suited for large scale networks.

2.2.2 Integrate and fire

The neuron model that is most popular among computer scientists and AI
researchers is the Leaky Integrate and Fire (LIF), which is a variation of
the Integrate and Fire (IF) model. Both the IF and LIF model are based
on a circuit model, similarly to the Hudgkin-Huxley model, although a
simplified one. IF integrates the incoming current and fires when exceeding
a threshold. The LIF model integrates the incoming current in a similar
fashion but also includes a leak-constant that models the slow decline of
membrane potential when the neuron is in a quiescent state. The equation
describing the LIF model can be seen in eq. 2.5.

dv
dt

= I + a− bv, if v ≥ vthresh, then v← c (2.5)

v is the membrane potential and I is the sum of incoming current. a, b and
c are constants that determine the behavioral dynamics and vthresh is the
threshold value that must be exceeded for the neuron to fire a spike. The
LIF model is extremely efficient, however this efficiency comes at the cost
of simplicity and limits its behavioral repertoire to tonic spikes of constant
frequency in response to simple pulses of DC current. It is therefore not
suited for neuroscientific simulations where complex neuronal behavior is
needed.

There have been a number of subsequent versions of the IF model
to address some of its shortcomings like the Integrate-and-Fire-or-Burst
[41] that models thalamo-cortical neurons with the inclusion of bursting
behavior not present in neither IF nor LIF. The Resonate-and-fire [20] model
is able to exhibit sub-threshold oscillations as well as acting as a resonator
among other behaviors. Perhaps the most interesting of the IF variations

14

is the Quadratic-Integrate-and-Fire [26] as it includes spike latencies and a
variable threshold.

The FitzHugh-Nagumo model [10] is another model that is fairly
efficient but at the cost of biological plausibility. This model can
approximate the dynamics of resonator neurons, however it does not
exhibit bursting behavior. Another drawback is the requirement to
simulate the curve of the action potential reducing the maximum length
of each time step consequently reducing computational efficiency. The
equations that describe the FitzHugh-Nagumo model can be seen in eq.
2.6 and eq. 2.7.

dv
dt

= a + bv + cv2 + dv3 − u (2.6)

du
dv

= ϵ(cv− u) (2.7)

The change of v per time step is given by 2.6 and includes the constants a,
b, c and d constituting a third-degree polynomial subtracted by the variable
u, which is updated with 2.7. As mentioned dt ̸= 1ms, and the tuning of
constants is critical for acquiring correct behavior.

The Wilson Polynomial Neurons [50] are described using a set of
polynomials and are able to approximate a wide range of neuronal
behaviors, however similarly to the FitzHugh-Nagumo model, there is
a limit on the time step size which leads to more computations per
millisecond putting the Wilson Polynomial Neurons among the less
efficient models explored in this work, although it is significantly more
efficient than both the Hodgkin-Huxley [16] and Morris-Lecar models [31].

The FitzHugh-Nagumo model, Wilson Polynomial and some of the
variations of the integrate-and-fire models could be implemented in
relatively large scale networks and exhibit a range of behaviors but they
are inferior models for this project when compared to the Izhikevich model,
both in term of computational efficiency and in behavioral repertoire.

2.2.3 Izhikevich

The Izhikevich model [18] is an extremely efficient model that mimics the
empirically observed behavior of several neuron types. The efficiency
of the model allows it to be implemented at large scales. Izhikevich
[19] categorize the neuronal spiking types based on observed behavioral
characteristics and describe four main classes. The first, Tonic Spiking, seen
in figure 2.7 (A), observed in Regular Spiking (RS) excitatory neurons, Low-
Threshold Spiking (LTS) and Fast Spiking (FS) inhibitory neurons and is
characterized by a continuous output of spikes when a continuous current
of input is applied. Phasic Spiking, seen in figure 2.7 (B), however, fires only
a single spike at the beginning of an applied input current. Tonic Bursting,
seen in figure 2.7 (C), outputs periodic bursts while Phasic Bursting, seen in
figure 2.7 (D) output a burst at the onset of the input current.

The membrane potential of the neuron is updated with a simple second

15

order polynomial shown in equation 2.8.

dv
dt

= 0.04v2 + 5v + 140− u + I (2.8)

dv
dt is the change in membrane potential in relation to time, v is the current
membrane potential, I is the sum of incoming current from pre-synaptic
neurons and u is a membrane recovery variable that models the flux of K+

and Na+ ions and the change in u in relation to time is given by:

du
dt

= a(bv− u) (2.9)

Membrane voltage is in mV and time is given as milliseconds. To model the
rapid depolarization in membrane potential following a spike, v is updated
with 2.10.

if v ≥ 30, then

{
v← c
u← u + d

(2.10)

The values of the constants a, b, c and d determine the type of neurons,
which includes regular spiking (RS), intrinsically bursting (IB), chattering
(CH), fast spiking (FS), thalamo-cortical (TC), resonator (RZ) and low-
theshold spiking (LTS) neurons. These different neuron models portray
the plethora of diverse neurons found in the brain and exhibit different
behaviors.

Since a great focus of this project is on taking inspiration from the
biological brain, the biological plausibility of the Izhikevich model in
addition to its computational efficiency makes it the best model, made
evident by 2.2.

2.3 Learning Methods

In general the learning methods for machine learning models can be
divided into two classes, namely supervised learning and unsupervised
learning methods. The way in which the human brain learns is not fully
understood, but researchers have proposed a plethora of methods that fall
under both of these classes with a varying degree of realism.

This section will present some current learning methods used in
machine learning models in addition to the mechanisms of biological
learning. The reason for presenting relevant aspects of biological learning
is to highlight the lack of biological plausibility for some of the existing
learning methods and demonstrate the mechanisms that inspired the
proposed learning method.

2.3.1 Biological learning

Similarly to neural networks, the learning that takes place in biological
brains is related to changes in connection strength and on larger time
scales, even the creation or destruction of connections. These changes

16

Figure 2.7: Shows the neuronal behaviors that is exhibited by tweaking the
parameters of the Izhikevich model [19]

in synaptic strength is due to the plasticity of synapses, which allows
them to continually adapt to local activity. The adaptation can be on
smaller time scales referred to as short-term plasticity (STP) or can be
more permanent referred to as long-term plasticity (LTP). Long-term
plasticity refers to functional changes that equates to memory and learning.
Short-term plasticity works on the millisecond time scale, and a common

17

example of STP is short-term synaptic depression (STSD) or short-term
synaptic facilitation (STSF). These two processes respectively decrease and
increase the effect a pre-synaptic spike has on a post-synaptic neuron
but only temporarily. If an action potential causes STSD, the following
action potential will have a lessened effect on the post synaptic neuron,
consequently the significance of the first action potential is greater than the
second action potential and vice-versa if the action potential causes STSF
[32].

Figure 2.8: The signal transmission across the synaptic cleft is facilitated
by the release of neurotransmitters at the presynaptic terminal which are
received by the receptors at the postsynaptic terminal [32].

The signal transmission across the synaptic cleft is facilitated by the
release of neurotransmitters at the pre-synaptic terminal which are received
by the receptors at the postsynaptic terminal as seen in figure 2.8. The
release of neurotransmitters occurs when an action potential activates
the voltage sensitive calcium channels at the post synaptic terminal
resulting in an influx of calcium ions which triggers the release of the
neurotransmitters.

The biological mechanism that causes STSD is the reduction of neur-
otransmitters released at the pre-synaptic terminal. It has been theorized

18

that STSF is caused by residual calcium at the pre synaptic terminal, how-
ever it has not been confirmed [32].

The communication between neurons can be excitatory or inhibitory
and the main deciding factor is the type of neurotransmitter released. The
most common inhibitory neurotransmitter in mammals is GABA, but it is
the group of corresponding receptors that determine the mechanism with
which the inhibition occurs. The receptor that causes the greatest inhibitory
effect is the GABAA receptor, which is done by reducing the overall
membrane resistance lessening the voltage change caused by incoming
excitatory signals. The most common excitatory neurotransmitter is
glutamate.

Taking inspiration from the biological learning mechanisms of the
brain, the proposed learning method in this project mediates delays based
on local activity.

2.3.2 Local Learning

Local learning is the group of learning methods that relate to changes
that occur based on local information or activity. This type of learning is
believed to be the primary mechanism for learning in the brain.

A well-known and documented local learning mechanism is Spike Time
Dependent plasticity (STDP). In its simplest form STDP is, as its name
suggests, a mechanism where the synaptic strength is altered based on the
relative timing of spikes at pre- and post-synaptic neurons. The idea is
that if there is a causal relationship between pre- and post-synaptic activity,
then this effect should be increased proportionally to the strength of the
causality, whether it be inhibitory or excitatory.

Song and Miller [42] formulates an STDP rule according to equation
2.11,

F(∆t) =

{
A+e∆t/τ+ , if ∆t < 0
−A−e−∆t/τ− , if ∆t > 0

(2.11)

where A+ and A− are the maximum axonal modification as ∆t goes
towards 0, while tau+ and tau− determines the pre- and post-spike time
window where axonal change occurs. ∆t is given by ∆t = (tpre + dprepost)−
tpost, where tpre and tpost is the spike time of the pre- and post-synaptic
neuron respectively. The output of F(∆t) does not give the absolute
change in weight, but rather the change relative to the maximum weight
value wmax. Thus, the change in weight is given by ∆w = F(∆t) · wmax.
Figure 2.9 shows the plotted function with maximum relative change set to
A+ = A− ≈ 0.5. The absolute value of the derivative of each section of
the discontinuous function is larger closer to the y-axis leading to a more
dramatic change to the weight as the pre-synaptic spike gets closer to the
post-synaptic spike time. As the spike times diverge, the change to the
weight lessens. The assumption is that the closer the pre-synaptic spike is
to the post-synaptic spike time, while still arriving before it, the stronger
the causal relationship is and consequently more potentiation should be
applied to the synapse. Inversely, the closer the pre-synaptic spike is to the

19

Figure 2.9: The percentage change relative to the maximum allowed weight
can be seen along the y-axis as a response to ∆t [42].

post-synaptic spike time, while still arriving after it, the weaker the causal
relationship is, and more depression should be applied to the synapse.
This learning method is simple yet powerful, and allows the network to
strengthen the paths that correlates to similar inputs, thus the network is
able to group the input space into a number of classes.

In the context of delayed connections, the STDP mechanism just
described, played an important role as inspiration for the proposed
learning method which mediate the delays instead of weights based on
the local activity.

2.3.3 Supervised Learning

Supervised learning is a method commonly used in conventional ANNs
and is a big contributing factor to the success of modern machine learning.
The method requires a labeled data set, often thousands of samples, in
order to train the model. The training is done by giving some input data
to the model, the model predicts an output and the output is compared
to the label and the resulting discrepancy is used to modify the model so
that the error is reduced. This process is repeated until the model performs
satisfactorily. The discrepancy is calculated using a loss function. A typical
loss function is the mean squared error 2.12,

J(W) =
1
n

n

∑
i=1

(hW(x(i))− yi)
2 (2.12)

where yi is the label value for training data i and hw(x(i)) is the hypothesis
function or predicted value which can also be denoted as ŷi. The purpose of
the training is to minimize the loss function min

w
J(w), and this is commonly

done through gradient descent. Since the model consists of a set of weights
which determine the output, the goal is to find the combination of weights

20

that give the least error overall, and this is done by calculating the gradient
of the error function and changing the parameters accordingly. The update
to a weight wi is done by subtracting the partial derivative of the loss
function with respect to wi multiplied by a learning rate a that determine
the magnitude of the change. This can be written as 2.13.

wi = wi − α
∂J(w0, w1, w2, . . . , wn)

∂wi
(2.13)

The process can be visualized as seeking the lowest point of a mountainous
terrain 2.10, although the parameter space for any deep neural network
would be high dimensional and impossible to actually visualize, but the
principle still holds.

Figure 2.10: The parameter space for a model with two weights, w0 and
w1. The algorithm iteratively descends towards the optimal weight values
where J(W) is at its minimum.

But the partial derivative becomes a bit more complicated in DNNs.
As previously mentioned, conventional feed-forward DNNs consist of a
set of n weighted connections W = {w0, w1, w2 . . . , wn}, configured in
layers with activation functions and the input is propagated through the
layers until the output layer where the prediction is given. Since the
output of each layer is the result of the output of all previous layers, the
process of calculating error and adjusting weights must therefore be done
by propagating the error backwards through each layer. This method for
updating the weights of a neural network is called error backpropagation
(EBP). Since the layers are dependent on each other, chain derivatives must
be used to uncover the correlation between changes in the weights and
changes in the cost function. If presented with a classification problem and
the cost function is given by 2.14,

Ck =
nL−1

∑
j=0

(a(L)
j − yj)

2 (2.14)

21

where k indicates the training sample and a(L)
j is the activation or output of

the j’th neuron of the L’th layer and given by 2.15

a(L)
j = g(z(L)

j) (2.15)

where g is some nonlinear activation function and z(L)
j is the weighted sum

given by 2.16,

z(L)
j =

n−1

∑
k=0

w(L)
jk a(L−1)

k + bL (2.16)

where w(L)
jk is the weighted connection between neuron k in layer L− 1 and

neuron j in layer L, then changes in C with respect to changes in w(L)
jk is

given by the chain derivative seen in eq. 2.17.

∂C
∂w(L)

=
∂z(L)

∂w(L)

∂a(L)

∂z(L)

∂C
∂a(L)

(2.17)

This is the gradient of the cost function with respect to that particular
weight for one training example. The gradient for the other weights can
be found in a similar fashion by finding the chain derivatives that describe
the relationship between that weight and the cost function. The training
samples are often split into batches and and the gradient components
are therefore averaged over the batch. DNN also includes biases but the
process is the same for calculating their gradients.

The process of training ANNs with EBP is very powerful and has
resulted in models that far exceeds human capabilities on certain tasks. In
a biological context, the existence of backpropagation is highly debated.
Since EBP requires error information from downstream neurons in order
to update connections warranting some bidirectional signal propagation,
and synaptic plasticity is believed to be the result of local activity only,
it is unlikely that it exists in the brain. Although there are bidirectional
connections in the brain, they are not always present, and EBP would
require identical strength for both connections requiring some mechanism
for synchronizing them which has not been observed.

EBP works extremely well in conventional ANNs, however when
trying to implementing EBP in SNNs one is faced with the difficult task
of of finding the derivative of the neuronal output [49].

Similarly to supervised learning in conventional ANNs, the goal is to
match the model output to the desired output and in the case of SNNs
the process of supervised learning is to train the model to reproduce the
desired spatiotemporal pattern of spikes. A spatiotemporal pattern of
spikes, or a spike train, can be mathematically described by 2.18

s(t) =
F

∑
f=1

δ(t− t f) (2.18)

t f is the spike at position f in the ordered sequence of spikes and the
function s(t) gives the number of spikes for time t as the Dirac delta

22

function is given by 2.19 resulting in only spikes that occur at time t to
be counted.

δ(x) =

{
1 if x = 0
0 if x ̸= 0

(2.19)

Similar to conventional ANNs, the output So of the model is determined
by the input, which is a spike train Si in the case of SNN, and the weights
of the model W. This creates a functional relationship given by 2.20.

So = F(Si, W) (2.20)

And similar to conventional ANNs the purpose of the training is to
minimize the error function which can be described by equation 2.21. This
function compares the output spike train Sm

o (t) for each output neuron m
with the desired spike train Sm

o (t) that corresponds to the given output
neuron. These comparisons are summed and a set of weights W should
be chosen such that the summation is at its minimum value [48].

min(E(So, Sd)) = min
No

∑
m=1
|sm

d (t)− sm
o (t)| (2.21)

This learning method is based on strengthening connections where spikes
are desired and weakening connections where spikes are not desired.

Bohté, Kok and Pouté [3] proposed a method called SpikeProp for
implementing a learning mechanism similar to EBP in networks of spiking
neurons. The connections between neurons consist of a constant m number
of sub-connections each with its own weight and delay as seen in figure
2.11. The weight of connection k from neuron i to neuron j is denoted as
wk

ij. The delay for connection k is denoted as dk. A spike from neuron i at
time t is denoted as yk

i (t). The input for post-synaptic neuron j is therefore
given by the sum of each neurons weighted sub-connections k over the sum
of all connected neurons i to m as seen in eq. 2.22.

xj(t) =
n

∑
i

m

∑
k

wk
ijy

k
i (t) (2.22)

The supervised aspect of SpikeProp is done by comparing the models
spike-train output tj to a desired spike-train td

j using the least mean squared
error function. Just like for EBP in conventional ANNs, chain derivatives
for the correlation between error function and connection weights must be
calculated 2.23.

∂E
∂wk

ij
=

∂E
∂tj

∂tj

∂wk
ij
=

∂E
∂tj

∂tJ

∂xj(t)
|t=tj

∂xj(t)
∂wk

ij
|t=tj (2.23)

The partial derivative of the output spike-train in relation to the corres-
ponding weight is expanded to include the partial derivative of the spike-
train with respect to the post-synaptic input and the partial derivative of
the post-synaptic input with respect to the synaptic weights. These partial

23

Figure 2.11: A: shows a feed-forward SNN with input layer denoted as
H, the hidden layer denoted as I and the output layer denoted as J. B:
shows the connection k from neuron i to neuron j weighted by wk

ij, the
delay is denoted as dk and the spike-train is given as a function of time
t and denoted as yk

i (t). C: show two pre-synaptic neurons with multiple
delayed connections. The input is summed at the post-synaptic neuron
and membrane potential is given by xj(t) [3].

derivatives along with the learning rate is used to update the weights sim-
ilar to regular gradient descent. The issue, as stated earlier, is the discon-
tinuity related to spiking neurons, and SpikeProp overcomes this obstacle
by approximating xj(t) as a linear function of time. This method was later
improved by Schrauwen and Van Campenhout [40]. However, these meth-
ods updates the weights and not the delays of the network. They are also
very unlikely to occur in biological neural networks.

2.4 Coding Schemes

Neurons communicate with each other through APs, and although a
single AP can contain a lot of information by itself, for simplicity’s sake
we can consider it as a boolean value; either there is an AP or there is
not. When combining these individual spikes with precise spike timings
into series of consecutive spikes, or combinations of spikes from different
neurons, there is a significant number of ways that information can be
encoded. These coding schemes vary in biological plausibility and their
practicality in terms of implementation in SNNs relies heavily on the
network configuration, input type and how output is extracted from the
network. The most common, or otherwise relevant, coding schemes are

24

presented in this section.

2.4.1 Rate Coding

The coding scheme that was initially believed to apply for biological neural
networks was Rate Coding. This coding scheme pertains, as the name
suggests, to the rate at which a neuron fires and was believed to be the sole
encoder of information. In this coding scheme all information is contained
within the firing rate and the firing rate is simply the number of spikes
divided by a temporal sampling window. Although, it is now common
knowledge that the brain employs various coding schemes, one area of the
brain that is still believed to implement rate coding is the areas responsible
for muscle control, where a higher firing rate equates to a stronger muscle
contraction [9].

Since the inclusion of a certain sampling window is an intrinsic feature
of rate coding, the speed at which a signal may propagate through a
network is consequently limited by this sampling window. However,
spike-rate encoding is considered quite robust and applicable to many
tasks. A practical example of how information can be encoded with this
method is to convert image pixels to corresponding spike-rates based on
pixel intensities. From the viewpoint of computational neuroscience, other
coding schemes might be more suitable for model implementation due to
power and computational efficiency. However, since this is one of the most
common encoding method in SNNs, it was used as a comparison for other
methods.

2.4.2 Rank Order Coding

In the work of Thorpe and Gautrais [46], a coding scheme coined Rank
Order Coding (ROC) is hypothesised where the information is encoded as
the order in which a set of neurons spike.

When considering a set of neurons N, in terms of order, at which
ROC is dependent, the number of possibilities is given by N!. This gives
log2(N!) bits of information. For N = 6, ROC can encode around 9 bits of
information for a time window of 6ms allowing for one spike per ms, in
other words a perfect scenario for the selected temporal resolution.

Figure 2.12 illustrates how the order of pre-synaptic spikes can affect
the post-synaptic response. In this example, the post-synaptic neuron
is connected to sixteen pre-synaptic neurons with various connections
strengths. If the order of incoming spikes matches the order of weighted
connections from strongest to weakest, the activation of the post-synaptic
neuron is maximized. If the order is reversed, the activation is minimized.
However, this specific implementation relies on a decreasing sensitivity to
inputs in the post-synaptic neuron, which means altering the Izhikevihch
model, something that was not desired.

25

Figure 2.12: The activation of the post-synaptic neuron is dependent on the
order of incoming signals. When the order of incoming signals match the
order of weights from strongest to weakest, the activation is maximized. If
the order is reversed the activation is minimized [46].

2.4.3 Relative spike latencies

Although the ROC scheme is simple and elegant, there is some degree of
information loss as the method only considers the spike order, and not
the intervals between the spikes. If the ROC method is compared to a
coding scheme that is contingent on the relative spike-timings of a group
of neurons, when applied to N = 6 neurons and a time window of T = 6
ms, the latter method can encode log2(TN), or 15 bits of information. This
is significantly more than the 9 bits encoded by the ROC method.

Gollisch and Meister [12] proposed a method where information is
encoded in the relative spike latencies (RSL) of a set of neurons. They
argue that this might be the method that is employed in the visual center
of biological brains. This method not only differentiates the spikes based
on order, but also allows for encoding the relative difference of each input
in their relative latencies.

Due to its powerful encoding capabilities, and relatively easy imple-
mentation, this method was extensively used in this project.

2.4.4 Time-to-first-spike

Time-to-first-spike is a coding scheme that is believed to be responsible for
encoding information in areas of the brain that requires fast responses.
Park et al. [33] proposed a method using a decaying threshold for the
input neurons such that inputs with higher values would result in action
potentials at an earlier stage then weaker inputs. This threshold is given by

26

equation 2.24, where θ0 is a threshold constant and τth is a time constant.
Once a spike is emitted from an input neuron, the neuron can no longer
fire, in other words, each neuron only fires ones.

Pth(t) = θ0e
−t
τth (2.24)

In the decoding phase the arrival of the spike determines its significance in
a similar way as ROC. However, in contrast to ROC, the effect the action
potential has on the post-synaptic neuron decreases with time and not with
the order at which the spike arrives. The weighted sum zj(t) that is the
input for the post-synaptic neuron j at time t is therefore mediated by a
time-decaying component ws(t) and given by 2.25.

zj(t) = ws(t)∑
i

wijsi(t) (2.25)

The time decaying component is given by 2.26.

ws(t) = e
−t
τs (2.26)

The time-to-first-spike method is very energy efficient as it limits the
amount of spikes required to transmit information. This method resonates
well with a learning method that decreases delays between causally related
spikes, and perhaps increases delays between non-causally related spikes.
However, the method proposed in this project will not focus om promoting
fast throughput for for connections with causally related spikes, and will
therefore not be used.

2.4.5 Other coding schemes

There exists several other coding schemes that can be applied to SNNs.
Among them is the method proposed by Kim et al. [25], where input data is
represented as their binary values. A spike represents a binary bit-value of
1, and the absence of a spike represent a binary bit-value of 0. The different
bits are distinguished by splitting the sequence into temporal phases. The
phase determines the current weight of the connection and consequently
the relative position of the spike can be determined. The time-varying
weight is given by 2.27.

ws(t) = 2−(1+mod(t−1,8)) (2.27)

The number of phases is determined by the number of bits needed to
represent the largest value of the input data. If the input is an image of
pixels with 8-bit values, then 8 phases are needed. For the decoding phase,
the weight of the spikes is used to determine the significance of the spike,
and the higher position the spike is in the binary number the more impact it
has on the post-synaptic neuron. This method is not biologically plausible
and not practical for this project.

Burst coding is another coding scheme that is believed to exist in
the biological brain [51]. This method encodes the input value as a

27

proportionally intensive burst. A higher input value gives a burst with
a higher number of spikes and a lower inter-spike interval. This method
is not applied in this project as it requires a lot of spikes and has a strong
resemblance to rate-coding.

2.5 Code libraries

In order to simulate delay learning in neural networks, a simulation
software must be used. Early in the second phase of this project a
process was started to evaluate the software libraries that are available
for simulating spiking neurons. In contrast to popular libraries like
TensorFlow and Pytorch which allow for the training of conventional
neural networks, the slew of libraries that are targeted toward Spiking
Neurons are much less known and vary greatly in available documentation
and features. The initial step was therefore to identify the key features that
was believed to be important for the project at that time. These features
included the implementation of delays, allowing for recurrent connectivity,
allowing for the adjustment of delays in real-time, including both the
Izhikevich- and LIF-model and GPU-support for faster simulation. Other
indicators of whether the libraries were viable is how recent the latest
update to the code is and my personal evaluation. The entire table can
be seen in table 2.1.

Table 2.1: Evaluation of Spiking Neural Network libraries.

There were eight libraries that seemed relevant to explore further. After
reading through the documentation of each, a score was given from 1 to 3
for each of the key features, with 1 being that the feature is missing, 2 being
unresolved and 3 meaning that the feature is present. My own opinion was
scored from 1 to 5 as I noticed a clear difference between the viability and
usability of the different libraries and three categories was insufficient to
differentiate between them. The latest update to the code was scored such
that the oldest update was given the lowest score, and the latest update
was given the highest score.

Based on the scores calculated, the Brian2 library was investigated
further. Initially it appeared that the library implemented the most
important features. The library allows for specifying neuron models by
way of differential equations. It also includes axonal delays; however, it
is not made for delay learning as the mechanisms for updating connection
weights can not be utilized properly for delay changes. Eventually I found
a way to have real-time delay updates, but this method drastically reduced
simulation efficiency, and the library also exhibited numerical instability

28

for high-activity networks. PyNN, NeMo and NEST were subsequently
tested and also deemed unfit for the project.

As no appropriate library that fit the requirements for this project was
found, a new library was created using Python. This code is described
further in section 3.1.

2.6 Related Works: Delay learning in Spiking Neural
Networks

The focus of this project was to develop a learning mechanism that alters
the propagation delays of action potentials as they travel between spiking
neurons, and the process of adjusting these delays can be referred to as
delay learning. This section will therefore present existing work that either
incorporates some form of delay learning or in some way specifically relies
on the delays for computation.

Bohté, Kok and Poutré proposed a method named SpikeProp which
is an approximation of the error back propagation method used in
conventional neural network [3]. Although this method does not explicitly
alter the delays, the delays play an important role in computation and
are not homogeneous. This implementation is limited to a feed-forward
topology, which is remedied in the work of Bellec et al. [2], where
error-back-propagation through time is applied to recurrent spiking neural
networks. Again, the delays are static, but still plays a role in computation.

Both Schrauwen and Campenhout [39] and Wang, Lin and Dang [47]
applies supervised delay learning in the form of error back propagation in
their feed-forward SNNs. The latter work converts the spike trains to con-
tinuous analog signals allowing for the application of common mathemat-
ical operations. The former work extended the original SpikeProp model to
accommodate for delay learning, a change that could be considered an im-
provement of the biological plausibility of the original model. Their main
motivation however, was to reduce the size of the network since the ori-
ginal SpikeProp algorithm required multiple delayed synaptic terminals
for each connection. Their model still required multiple delayed terminals,
but the number was reduced since the delays could be adjusted to accom-
modate for the removed delayed connections. The proposed model can be
seen in figure 2.13 where each connection consists of multiple terminals,
each with their own delay dn

ij, weight wn
ij and post synaptic potential ϵn

ij.
Johnston and Prasad [24] present a hybrid method which includes both

unsupervised learning through STDP and supervised learning through a
genetic algorithm. However, it is the genetic algorithm that mediates the
delays, and therefore the delay learning method can be considered neither
online nor local learning.

The model proposed by Taherkhani et al. [44] rely on a version of STDP
which incorporates supervised learning. The supervised aspect stems from
an instruction signal sent from a neuron in the output layer to a neuron in
the hidden layer instructing potentiation or depression of its weights based
on the desired output of the output neuron. This change in weights is done

29

Figure 2.13: An overview of the model used in the delay learning extension
of SpikeProp where each connection consists of several sub-connections
with their own delay dn

ij, weight wn
ij and post synaptic potential ϵn

ij [39].

through STDP, in other words, the connections to pre-synaptic neurons that
fired in the desired time interval are potentiated. Likewise, connections
from inhibitory neurons are depressed based on anti-STDP. The delay of
the connection between the hidden neuron and the output neuron is then
shifted to allow the spike to arrive at the output neuron in the desired time
window. An illustration of the method can be seen in figure 2.14. The top-

Figure 2.14: An overview of the supervised STDP method where connec-
tions are adjusted according to an instruction signal [44].

left plot shows the desired time for the output spike and the inadequate
membrane potential of the o′th output neuron. The plots below shows the
missing output spike of the h′th hidden neuron. The right plot shows the
occurrence of an output spike from the output neuron when the effects of
the input neurons to the h′th hidden neuron is potentiated resulting in the
generation of an action potential which is passed to the output neuron.

Another supervised algorithm that implements delay learning through
an instruction signal is the DL-ReSuMe [45] which combines the weight
adjustments of the ReSuMe algorithm [36] with delay shifts. The method
used in ReSuMe to adjust weights is a combination of Hebbian and anti-

30

Hebbian learning, that enabled the model to learn a desired spike train
based on a input of a spatiotemporal spike pattern. A similar method is
used to adjust delays in the DL-ReSuMe method by checking for desired
and undesired spikes. If a spike is desired at a point in time and no spike
is present, the connection that provides a spike in the closest temporal
proximity to the desired spike time is delayed in order to increase the
membrane potential of the post-synaptic neurons, possibly allowing it to
exceed its threshold and produce a spike. Similarly if a spike is present
without the desire for a spike, the inhibitory connection with a spike in
closest temporal proximity to the undesired spike time will be delayed in
order to reduce the membrane potential and possibly avoid a spike being
produced in the post-synaptic neuron.

Paugam-Moisy, Martinez and Bengio [34] proposes a method that they
refer to as Multi-timescale learning for its combination of a small time-scale
learning method and a large time-scale learning method. Inputs are given
to the model in the form of vectors containing numerical values. These
values are converted with a temporal coding scheme where higher values
results in earlier firing times for the corresponding input neuron. The first
output neuron to fire corresponds to the prediction made by the model.
Successive inputs are separated by large intervals to avoid interference.

Figure 2.15: Shows the proposed LSM with a set K of input neurons, a set
M of internal cells and one output neuron per class. The edges connecting
the reservoir to the output layer has adjustable delays [34].

The architecture of the proposed model can be seen in 2.15. The weights
of the input and output connections are static and unchanging. The input
connections are chosen so that they result in sufficient excitation of the
membrane potential of the hidden neurons so they produce spikes. The
input neurons are connected to the hidden neurons with a probability Pin
and with no delay, while the reservoir is fully connected to the output layer
with trained delays. Plasticity through STDP is only present in the reservoir
and only affects weights, while delays of the reservoir are kept static.

Their proposed combination of learning methods that they implement
is STDP for the small time-scale method and a supervised method that
adapts the delays that connects the reservoir to the output neurons for
the large-scale method. This supervised learning method relies on the
existence of polychronous groups (PG) within the reservoir. PGs are groups
of neurons that responds in a reliable and reproducible way to specific

31

input patterns. For a given set of input patterns with corresponding
output neurons representing each patterns class, the connections between
the reservoir and the output neurons are iteratively adjusted depending
on whether the model classified correctly or not. If the model classified
correctly, no changes are made, but if it classified incorrectly the delay
of one triggering connection to the correct output neuron is decreased.
Likewise the delay of a triggering connection to the incorrect neuron
that gave the false classification is increased. A triggering connection is
connection that provided a spike to the output neuron which resulted
in a spike in the output neuron. This iterative process of small delay
adjustments gradually increases the performance of the model. To
summarize, the STDP mechanism continually adjust reservoir weights,
while the supervised learning method adjusts delays once for each input
pattern. The article mentions the possibility of including a plasticity
rule that adapts the delays of the reservoir neurons, but this was not
implemented.

Based on these findings, it does not appear that local learning rules for
explicit delay learning has been implemented, substantiating the need for
exploring such a mechanism.

32

Chapter 3

Framework and
implementation

This chapter will cover the simulation framework and the details concern-
ing the implementation of transmission delay model. The implementation
of the neuron model will also be covered in addition to thorough testing of
the model behavior. The chapter will conclude with a demonstration of the
model by recreating the polychronous groups described in the 2006 paper
by Izhikevich [21].

3.1 Framework overview

Based on the lack of suitable existing frameworks as made clear by the
testing described in section 2.5, an entirely new framework was required.
Although it is time-consuming to develop such a framework, it comes with
many benefits as the framework can be tailor made to a specific purpose,
removing unnecessary features.

The programming language used was Python, as it is easy and quick
to program, and can be quite efficient if some care is taken with the
choice of data structures and algorithmic implementation. The resulting
code showed a significant improvement in simulation time over the Brian2
library.

A class diagram of the most important parts of the code can be seen
in figure 3.1. The Population class is the main driver of the simulation. It
holds both the neurons and the synapses of the network configuration and
contains the run method which runs the simulation by calling the update
functions of all the neuron and synapse objects. The run method also
contain a call to the method that builds the polychronous groups, which
are also stored in the population object.

The population object also holds the methods for creating the neurons
as well as the synapses, which can be created individually or through
various helper functions that will create specific network topologies such
as feed-forward networks, ring lattices or reservoirs. Lastly, the Population
class holds the methods for plotting simulation related data, like membrane
potentials of the neurons, raster plots or network topologies.

33

Figure 3.1: Class-diagram showing the most important components of the
project code.

The neuron object contains of list of incoming synapses and one list
of outgoing synapses. These synapses are shared objects between a pre-
and post-synaptic neuron object. The update method of the neuron objects
checks all incoming synapses for spikes, and integrates any spikes during
the membrane potential update. If the spiking threshold is exceeded,
a spike is added to all outgoing synapses. Part of the delay learning
logic is also found in the neuron object. Specifically, it is the logic that
determines which synapses should activate what part of the delay learning
method. When a spike is generated, code logic determines the set of
incoming spike that contributed to the spiking based on the spike time of
the incoming spikes and the travel time between the two neurons. This
give the arrival time of that spike, and if it is within a specified time
window, it is a contributing spike. If a synapse contributes with multiple
spikes it is the spike closest to the post-synaptic spike time that takes
precedence. Likewise if there are no contributing spikes, logic checks if
there are spikes that arrive withing another pre-specified time-window
after the post-synaptic spike time, which triggers that second part of the
delay learning method.

The synapse object is a structure that accepts and delivers spikes. Each
spike is registered by its spike time and the synapses delay and weight
at the time of spiking. When a post-synaptic neuron checks for incoming
spikes, the synapse object checks for the condition T == si(t) + dij(t),
where T is the current simulation time, si(t) is the pre-synaptic spike-times
and dij(t) is the delay between neuron i and j at time t. The synapse object
also holds the two delay learning functions F(dist and G(), which will be
detailed in section 4.1.

34

The framework includes a few features that have not been used in
this project such as including all seven neuron types described in the
paper of Izhikevich from 2003 [18]. This allows for creating heterogeneous
populations of various neuron types. The framework also allows for a
heterogeneous combination of trainable and fixed connection delays.

3.2 Transmission delay model

One of the most crucial parts of delay learning is the implementation of
the delays themselves, which is not a trivial matter. A complex network
consists of many neuron pairs that are connected by a theoretical axon. This
axon has an associated delay, and the axon implementation must therefore
ensure that a spike received in one end, reaches the other end in accordance
with its delay. There can be multiple spikes in transit between two neurons
at any time and they must reach the post-synaptic neuron at the right time
and in the correct order.

One solution is to implement the connections as queues, were the pre-
synaptic neuron would push a boolean value of true onto the que if it
produces a spike, and false if not. In the same timestep, the post-synaptic
neuron would retrieve a boolean value from the opposite end where a true
value would increase its membrane potential by the connection weight
and a false value would cause no change. This method of adding and
retrieving from either end of the queue acts as the spike delay between
the two neurons, and the length of the queue when initialized determines
the delay. The queue is then initialized with all false values. The minimum
delay allowed between neurons is equal to one time step, or dt, when using
this method, which is both logical in relation to the iterative manner in
which the simulation proceeds, and it also avoids the issue of retrieval from
an empty queue. This queue method can be seen in figure 3.2.

Figure 3.2: The que method where the pre-synaptic neurons add spikes,
and the post-synaptic neuron retrieves them. The green squares indicate
added spikes, while the red indicates retrieved spikes.

Although the method is efficient and simple to implement, it raises
some issues when the delays are altered in real-time. A reduction of the
synapses delay would warrant the removal of Boolean values from one
of the ends of the queue, which in turn would alter the intra-neuronal
communication. Additionally, the method requires that boolean values are
added to the queue regardless of whether there is a spike or not, something
that can slow down the simulation when there are many synapses.

35

Another method that avoids the needless adding of boolean values
is the counter-method. Each time a neuron spikes, it adds a counter to
each of its downstream connections initialized with their respective delay-
values. These values are subsequently decremented for the following time
iterations until reaching zero upon which the spike has arrived at the post-
synaptic neuron leading to an increase in its membrane potential. If an
axonal delay is changed, it is simply the initializing value that is changed,
and the current counters are unchanged and no spikes are removed. This
method is illustrated in figure 3.3.

Figure 3.3: A counter is added to the axon each time a pre-synaptic neuron
spike. The counters are decremented for each time iteration, until reaching
zero, upon which the spike is integrated into the membrane potential of the
post-synaptic neuron.

This method led to an issue with the inherent asynchrony of state
updates. Since the order in which the neurons are updated is in practice
arbitrary, the decrementation of a new counter during an iteration is
dependent on whether it is added prior or posterior to the state updates
of the post-synaptic neuron which is responsible for the counter updates.
This results in delay-related errors.

An obvious solution is to use the global variable for time, which is
accessible to all neurons. The method can be seen in figure 3.4. Whenever
a pre-synaptic neuron fires, the time of the spike, in addition to the weight
and delay at the time of spiking, is added to the axons list of spikes. The
post-synaptic neuron checks all spike times in its upstream connections
against the current time, taking into account the delay of each connection,
and if it is equal, the spike has arrived at the post-synaptic neuron and can
be integrated into its membrane potential.

This method ensures that the spike times and propagation of spikes
are synchronized across the entire model. Since it is assumed that a
spike cannot instantaneously arrive at the post-synaptic neuron, there is
a minimum of one simulation iteration before a spike propagates to the
end of a connection. This invalidates the issue with the sequence of delay
updates, since any spike from the previous time step will be accessible to
the post-synaptic neuron at the current time step.

36

Figure 3.4: The time of the spike in addition to the weight and delay of the
connection at the time of spiking is added to the axons list of spikes. The
post-synaptic neuron checks the list of spikes in its upstream connections
and integrates spikes that align with the current time when considering the
delay value.

3.3 Izhikevich model implementation

The chosen neuron model for this project is the Izhikevich model detailed
in section 2.2.3. This model, as previously mentioned, allows for multiple
neuron sub-types depending on the choices for the constants a, b, c and d
and is driven by two differential equations.

The simplest neuron type, and the one which will be explored in this
work, is the Regular Spiking neuron, abbreviated RS neuron. This neuron
fires a single spike when the membrane potential crosses the threshold
of 30mV, followed by a refractory period where the reset of u, results in
a depression of the membrane potential. This depression constitutes the
refractory period of the neuron. As the increased value of u slowly returns
to equilibrium, the membrane potential will also return to its resting state.
The chance of eliciting a spike in the refractory neuron will be reduced,
and depending on the strength of the input, the neuron might not fire at all
during this time window.

Figure 3.5: Constant b determines the sensitivity of u(t) to the membrane
potential v(t) and a is the rate of change for u(t) [18].

As seen in figure 3.5, constant b determines the sensitivity of the u
variable to the membrane potential v(t) and a is the rate of change for u(t).
c and d is the reset values for v and u respectively. The initialization of the
u and v varies, with -65 mV used in one code example [22], while another
code example [23] uses -70 mV. Testing showed that for the RS neuron, an

37

initial membrane potential of -70 mV and a u-value of -14 results in a stable
state for both values.

The choice of implementing the Izhikevich neuron model is accom-
panied by several design choices that have varying degrees of impact on
the dynamics and behavior of the individual neurons and the system as a
whole. These choices include, for example, the order of state updates, the
manner in which the v-variable is updated, the choice of simulation resol-
ution and the integration of spikes. The order of state updates is important
in order to avoid incorrect values, such as v must be updated before u.
Reducing the simulation duration might be beneficial, but could also res-
ult in unexpected behavior. Likewise, the method for integrating spikes
is important, especially if the time resolution is changed from the original
implementation [18], which uses 1 ms.

As mentioned, the order at which the system states are updated
requires some afterthought. The state updates and general procedures for
simulation are implemented according to the pseudo-code below:

while t < duration do
for neuron in neuron_list do

Integrate spikes;
update v and u;
Limit v to threshold (for plotting);
Plot v and u;
if v == threshold then

Register spike;
Reset v and u;
Trigger learning mechanism;

end
end
t+=dt;

end
Algorithm 1: General simulation procedure

By updating the v- and u-variable before checking and registering
spikes ensures that the spike-time is correct in terms of when the time-
step in which the membrane potential crosses the threshold. The value
for v is allowed to exceed the threshold for updating the u-variable but
is then limited to the threshold value for plotting purposes. This ensures
that the membrane potential at the time of spiking is even along the
entire simulation, while not affecting the dynamics of the neuron as the
membrane potential is reset right after its values is registered.

Since the membrane potential can only be recorded once per time
step, and its value is potentially updated twice; once during a regular
update, and once during a potential reset following a spike, it is logical to
register it prior to the reset in order to include the entire form of the spike.
Consequently, the reset value might not be registered as the membrane
potential is again updated in the next iteration before it is stored. This

38

can be considered a trivial matter, however, as it is far more important to
visualize the spike peak, than the exact reset value.

In one of the Matlab code examples by Izhikevich [22], he has opted to
check and register spikes at the start of each iteration before state updates,
thus the spike is registered one timestep after the membrane potential
crosses the threshold which introduces a delay in the system further
complicating its dynamics. This is unwanted behavior in this project, and
the sequence of procedures is therefore as described above.

An interesting feature of the same code, however, is the separation of
the v-updates which is done in two sequential steps, where each step is
multiplied by a factor of one half. Izhikevich explains this as a method for
decreasing numerical instability. Although the instability seen in the Brian2
library in high-activity networks was not observed in the new code, testing
with dt = 1 ms, showed that omitting this step could lead to oscillations
of the membrane potential at the equilibrium state for high inputs, which
can be seen in figure 3.6. This is uncharacteristic behavior for the regular
spiking (RS) neuron model used in the test. An interesting observation is
that this behavioral artifact was not present when dt = 0.1 ms.

Figure 3.6: Left plot shows the oscillatory behavior of a single regular
spiking neuron exposed to high inputs. Right image shows no oscillations
when v-updates are performed in two steps.

Both in the Izhikevich [18] paper that introduces the neuron model and
in its accompanying code examples [22], the time-step used is dt = 1 ms.
Differential equations can be fine-tuned to specific time steps, but this is
not explicitly mentioned to be the case for these equations in the paper. An
obvious motivation for decreasing the time step is that it typically decreases
the integration error which is a compounding error that will increase with
simulation duration. Another motivation for reducing the time step is that
it increases the resolution of delays, potentially increasing the repertoire of
dynamic behavior of the models. In order to assert the validity of the model
at lower time steps, a comparison is crucial.

This comparison can be seen in figure 3.7, which shows very similar
behavior. The smaller time step is achieved by relying on the Euler
integration method given by equation 3.1,

y1+n = yn + h f (tn, Yn) (3.1)

where yn+1 is the value of the variable in question, in this case either v or
u, for the current time step. yn is then the value for the previous time step.
h is the size of the time step, referred to as dt, which is multiplied with the

39

Figure 3.7: Comparison of the v- and u-variables of a single regular spiking
neuron with dt of 1 ms in the left column and 0.1 ms in the right column.
The neurons in both examples are exposed to identical input.

differential equation describing the change of y. Thus, the updates for the
neuron model are given by equation 3.2 and equation 3.3.

vt+dt = vt + dt(0.04v2 + 0.5v + 140− u + I) (3.2)

ut+dt = ut + dt(a(bv− u)) (3.3)

In practice the v-update is as mentioned performed in two identical
steps where each operation is multiplied by 0.5.

An important consideration, however, is the manner in which I is
integrated. For the time step of 1 ms, I is simply added to the membrane
potential since dt = 1 ms. For a time step of 0.1 ms, the effect of I will
be one tenth if it is simply applied for one time step only. Removing
the I-variable from the equation and adding it prior or posterior to the
differential equation will not elicit the same behavior and will not be
mathematically equivalent. It is therefore necessary to integrate the input
over the same time-period as for the larger time step. In other words, the
input must be integrated over 1 ms, and therefore applied for 10 iterations
when dt = 0.1ms.

It is worth noting that there is a slight time-shift between the two plots
in figure 3.7, where the simulation using dt = 0.1 ms, results in a slight
delayed reaction to inputs. The reason for this is that when the spike
reaches the post-synaptic neuron the input is gradually integrated from
that time point and over the ten next iterations as mentioned, but when
dt = 1 ms, the input is instantaneously integrated during the time step in
which it reaches the post-synaptic neuron. In other words, decreasing the
time step introduces another source of delay, but by decreasing dt a higher
resolution for delay values is possible.

40

3.4 Neuron behavior

In order to be able to configure larger networks of Izhikevich neurons, it
is important to understand the properties and behavior of single neurons.
These behaviors includes, how much input is required to elicit a post-
synaptic spike, how the magnitude of the input affects the response in
the post-synaptic neuron, how the alignment of incoming spikes affect
post-synaptic response, how long the intrinsic refractory period of the
Izhikevich neuron is and finally how quickly the neuron returns to its
equilibrium state after an weak input. Based on these properties, better
choices can be made for model parameters such as connection weights and
delays, network connectivity and input frequency in addition to choices
regarding the learning method implementation.

3.4.1 Neuron response

A single neuron was exposed to varying inputs, and its minimum input
required to cause a spike was found to be a single spike with a weight
of 16.4 when dt = 1 ms. With such a weak input, the post-synaptic
spike occurred 11 ms after the pre-synaptic spike arrived at the neuron.
This period will be referred to as the neuron response time in this work.
Decreasing the step size of the simulation to 0.1 ms, doesn’t elicit a spike
until the weight is 16.8, with a corresponding neuron response time of
approximately 9 ms. Further testing with this higher time resolution shows
a steady decrease in response time as the connection weight is increased.
When the weight is approximately 40, the neuron response time starts
evening out. Figure 3.8 shows the neuron response time for a relevant
weight interval for both time resolutions.

This shows that the temporal dynamics of the model is not only
dependent on the delays of the connections, but also on the magnitude
of the input, which is again dependent on the number of incoming
connections that provides a spike and their respective weights.

These interesting observations can be further explored by looking at
spikes from two incoming connections with various connection strengths
and spike offsets. Figure 3.9 shows spikes in blue and dormancy in red
for each combination of spike shifts and connection weights. The y-axis
shows the shift in milliseconds between the arrival time at the post-synaptic
neuron, and the weight is the connection strength of both synapses. The
left plot is for dt = 1 ms, while the right plot is for dt = 0.1 ms.
There is a clear phase transition going from no spike to spiking which
is dependent on the aforementioned variables. The time-window within
which two spikes must arrive to elicit a post-synaptic spike increases
somewhat exponentially with an increase in connection weight.

The input shift and weight not only determines the occurrence of a
spike, it also determines the time it takes for the membrane potential to
cross the spiking threshold. As previously mentioned, this is referred to
as the neuron response time. Plotting the individual response times for
various weights and input shifts in figure 3.10, we can see that there is an

41

Figure 3.8: Neuron response for a given weight. The top plot uses dt = 1
ms, while the bottom plot uses dt = 0.1 ms.

exponential relationship between shift and response time. The choice of
weight interval covers all integer weights that elicits a post-synaptic spike
as a pair of two incoming spikes.

The most dramatic changes to the response time occurs as the shift in
input reaches its maximum value that still elicits a spike. Larger weight
values, which have a wider interval of possible shifts that still elicits a post-
synaptic spike, will have a more consistent response time.

An interesting observation is that the maximum response time before
spiking stops does not seem to follow a clear trend. This can be seen going
from a weight of 12 to a weight of 13, which results in a lower response
time, followed by a higher response time when the weight is 14. This is
likely a bi-product of the simulation step size which limits the size of the
shifts to 0.1 ms.

For initial configurations of delay learning models, the connection
weights should be carefully chosen with these results in mind, with lower

42

Figure 3.9: Red indicates no spike and blue indicate spike at the post-
synaptic neuron for a given connection weights of two connections and
their spike off-sets to each other. The left plot is the result of dt = 1 ms,
while the right plot uses dt = 0.1 ms.

Figure 3.10: The neuron response time for different spike alignment shifts
for all integer weights that can elicit a spike. Neuron response time is
calculated from the time of arrival for the last spike to spike time of post-
synaptic neuron and is for dt = 0.1 ms.

weights requiring a higher precision of arrival time at the post-synaptic
neuron to elicit a post-synaptic spike, possibly reducing chaotic behavior.
However, lower weights will also increase the reaction time of the neurons
membrane potential, introducing more delay in the network. Choosing

43

higher weight values gives more consistency as the response time changes
less with input shifts, but the large spike alignment window could lead to
more chaotic behavior.

3.4.2 Refractory period

An important aspect of the the neurons behavior is how it responds to
changes in membrane potential. This is an important consideration because
it indicates how long a neuron is affected by previous inputs. This can help
determine the proper interval between input patterns, if it is desired that
the consecutive activity does not interfere with each other.

There are two specific cases that are of interest, namely the refractory
period following a spike generation, and the return to equilibrium follow-
ing an excitement of the membrane potential without spike generation.

The implementation of a forced refractory period, where incoming
spike are ignored, was tested early on, but keeping with the notion of
trying to implement the Izhikevich model in its original form, this was not
used for the simulations presented in this project. Instead, the simulations
rely on the inherent refractoriness of the model itself. This means that it is
possible to elicit a spike during the refractory period if the combined input
is strong enough.

The duration of the refractory period in this case can be considered to
last from the time-point of the initial spike until the earliest spike arrival
time that can lead to spike generation. This is a more useful definition
as defining this period as a spike-to-spike interval gives little information
about when the neuron is capable of receiving input that can lead to
spiking. Based on this definition, and the use of a connection strength of
32, equivalent to perfect spike alignment of two connections of strength 16,
a time window of 22ms is required before a spike can arrive and ultimately
lead to another spike generation when the time step is set to 0.1 ms.
Naturally, the neuron response time is slightly increased as the membrane
potential has not reached its equilibrium state entirely. Additionally, the
refractory period is increased for imperfect spike alignment. For a spike
pair of the lowest alignment that still can elicit spike, which is an offset of
8.9 ms, a period of close to 450 ms is needed for this spike pair to cause
a post-synaptic spike. The practical duration of the refractory period is
therefor quite significant. A shorter refractory period would be preferred,
but in order to preserve the integrity of the model, no changes will be made.

Figure 3.11 shows the phase transition going from dormant to spiking
as the offset decreases and the interval between the initial spike and the
following input increases enough to allow a new spike to be generated.
An interesting observation is the occurrence of spiking for low intervals
and offsets, barely visible in the lower left corner of the plot. Further
investigation showed that there is a small time-window following an initial
spike, where the membrane potential is reset to -65 mV according to the
c parameter of the model, when spiking is possible. Due to the drastic
change in the u-variable, this time-window is quickly followed by a further
decrease in membrane potential below the equilibrium state of -70 mV,

44

Figure 3.11: Plot showing whether a second spike occurs at a specific
interval, on the x-axis, following an initial spike as a result of two inputs
with a weight of 16 and an offset described by the y-axis.

which prevents spiking. This issue can be avoided by reducing the reset
value of the membrane potential, but as previously mentioned, it is desired
to retain the integrity of the original model as much as possible.

Another typical scenario that can be encountered is the arrival of a
single spike which elevates the membrane potential without causing a
spike to occur in the receiving neuron. The membrane potential slowly
returns to its equilibrium state, and during this time, the neuron is more
susceptible to spiking when new input is given. If successive inputs are
given and it is a requirement that these inputs do not affect each other, it
is important to know the extent of the time window of this elevated state
of the membrane potential. To test the this hypothesis, an input of 16 is
used, which is close the the maximum input that will not lead to a post-
synaptic spike. The membrane potential returns to within 0.1 mV after
approximately 11.1 ms.

An interesting observation is that following the return to equilibrium
the membrane potential overshoots below the equilibrium state of -70 mV,
effectively leading to a weak refractory period. This requires a slightly
elevated combined input of 17.7 in order to elicit a post-synaptic spike, at
the peak of this small refractory period which occurs at 16.5 ms following
the onset of the previous input. Due to the inversely exponential change
in the membrane potential, the return to within 0.1 mV of equilibrium
following the onset of the input when including the additional refractory
period is significantly longer at 69.3 ms.

Based on these observations it is difficult to completely avoid interfer-
ence between inputs. If inputs are spaced out at around 300 ms intervals,

45

there should be little interference.

3.5 Polychronous groups

In the 2006 paper by Izhikevich [21], polychronous groups are described
as groups of spiking neurons that exhibit reproducible time-locked firing
patterns, and that the number of coexisting polychronous groups can far
exceed the number of neurons in a network. This indicates a significant
ability for computational capacity, and inspired the classification method
used in this work, as will be shown in section 5.1.

In order to test the concept of polychronous groups, the theoretical
models described by Izhikevich was implemented using real networks of
the Izhikevich model. These theoretical models consists of five neurons and
use handpicked delays to maximize the number of coexisting polychronous
groups.

The handpicked delays and the 14 polychronous groups can be seen in
figure 3.12. All simulations in this sections used dt = 1 ms which appears
to be the time resolution used in the Izhikevich paper.

Figure 3.12: Polychronous groups achieved by hand-picking delays for a
fully connected network of 5 neurons [21]

When implementing these specific delays with the intention of recreat-

46

ing the polychronous groups, the results were varied. The activity patterns
seen in part B of figure 3.12, is the result, as mentioned in the paper, of a toy-
model, and as such does not take into consideration the complex dynamics
of the Izhikevich neuron model. The discrepancy between the results from
the toy-model and the recreated configuration using the Izhikevich neur-
ons can therefore be explained by the responsiveness of the neurons. In the
toy-model, the neurons responds immediately when two incoming spike
coincide at the post-synaptic neuron. With the Izhikevich model, however,
the response is never immediate. The lower the connection weights are, the
more the pattern gets distorted and stretched as each process of spike in-
tegration adds a delay to the dynamics of the spike propagation. With high
connections weights, a higher resemblance to the reference pattern can be
achieved, but at the cost of noise, as neurons no longer require a single
spike to reach threshold.

In order to reduce the delay that is introduced by the neuron, some
care should be taken when choosing the connection weights. In fact, when
looking at the neuron response plots in figure 3.8 for dt = 1 ms, the highest
connection strength that does not elicit a post-synaptic response with a
single spike is 16.3, which equates to an input of 32.6, for perfect spike time
alignment at the post-synaptic neuron. This gives a response time of 2 ms,
from the time at which the two spikes arrive at the post-synaptic neuron
until the subsequent spike is produced.

The neuron response time per millisecond offset in spike alignment
for weights in the interval w = [13, 16] can be seen in figure 3.10. This
is the set of integer valued weights where the response time is 2 ms, and
where no single spike can elicit a post-synaptic spike. It could be beneficial
to choose a value in the lower end, as this will minimize the time in
which non-spiking neurons returns to equilibrium after receiving spikes,
consequently reducing noise. A connection strength of 13, should be
sufficient in this regard, but testing shows that with such weak connectivity,
consecutive spikes from single neurons are prevented by the refractoriness
of the Izhikevich neuron for the time scale relevant for the polychronous
examples of figure 3.12. The shortest duration between consecutive spikes
in a single neuron in the toy example is about 8 ms. Increasing the weight to
14 and 15 allowed for consecutive spikes within the 30 ms simulation, but
not in the quick succession required to recreate the polychronous patterns.
We are therefor left with choosing the maximum weight that still prevents
spike elicitation from single connections. For simplicity’s sake the weight
can rounded to w = 16. Isolated tests of a single neuron receiving perfectly
aligned spikes from two such connections showed that a inter-spike time
of 28 ms was required before a new spike could be produced. This is
consistent with the observations made in section 3.4.2, with the slight
difference likely being a result of the different time resolutions.

This shows that although subsequent spikes from single neurons are
observed in networks consisting of weights of 16 within the relevant time
frame, they are likely the product of more than two spikes. Based on these
observations it can be concluded that it is essentially impossible to recreate
the polychronous patterns using the Izhikevich neuron model on the same

47

time scale.
It is still worth exploring the result of the simulations attempting to

recreate the patterns however, as it can uncover more aspects about the
application of Izhikevich neurons in networks. According to figure 3.10,
shifts up to 10ms will still elicit a spike for a connection weight of 16, so a
lot of noise should be expected. With this knowledge about the dynamics
of this particular set of parameters, a more thorough understanding of the
output for the hand-picked connections delays can be made.

It is worth noting that there appears to be some inconsistency in the
plots in figure 3.12. Some plots seem to include a 1ms spike response delay
for some neurons. It is unclear whether this is due to the difficult task
of hand-picking delays, or if some margin of error is allowed for spike
alignment as is the case for real spiking networks. This has a significant
effect on the implementation using the Izhikevich neuron models, as
different spike alignments introduces shifts in spike times that propagate
throughout the network. It is therefore beneficial for the sake of simplicity
to choose an input pattern that adheres to the simple immediate response
mechanism, as is the case for input pattern 3 in the first column of figure
3.12.

Figure 3.13 shows the theoretical sequence of activity based on the
observations made using the specified parameters. The smaller values
shows the delays between neurons, identical to the ones described in figure
3.12. However, the larger numbers indicates the arrival time of the pre-
synaptic spikes in parenthesis, and the delayed spike time of the post-
synaptic neuron. Neuron 3 receives spikes from neuron 1 and 4 with perfect
alignment, and according to figure 3.10, will have a neuron response time
of 2 ms, resulting in a spike time at t = 7 ms. Likewise, neuron 2, receives
spikes with an alignment shift of 2 ms, resulting in a response time of 2 ms.
The next spike is at neuron 1, and in this case, we disregard the observation
that neuron 1 is unable to produce a second spike from two inputs due to
refractoriness. The spike at neuron 1 occurs at t = 15. Finally a spike at
neuron 5 happens at t = 19 ms.

Figure 3.14 shows the resulting spike times when implementing the
parameters discussed. The initial two spikes from neuron 1 and 4 achieves
correct spike times through some implementation specific measures so as to
start the spike sequence of correctly. The third spike occurs at t = 7 ms for
neuron 3, as predicted. The next spike from neuron 5 at t = 8 ms, however
seems to be incorrect as it should not occur until t = 19 ms according to
3.13. Looking at the delay configuration of figure 3.12, neuron 3 has a 7
ms delay to neuron 5 excluding it from having any effect in relation to this
specific spike, as it would arrive after the post-synaptic spike. However,
neuron 4 has a connection delay to neuron 5 of 6 ms. Likewise neuron 1 has
a delay of 2 ms, thus their spike alignment offset is 3 ms, which is within
the window that will elicit a post-synaptic spike 2 ms after the arrival of
the last spike. This causes neuron 5 to spike at t = 8 ms, which is consistent
with the result in figure 3.14.

Similarly, the spike at neuron 2, should theoretically happen at t = 11
ms, but occurs at t = 9 ms. This is likely due to an additional input from

48

Figure 3.13: Smaller numbers at the edges indicate delays in milliseconds,
while larger numbers by nodes indicate spike arrival time for the two
incoming spikes in parenthesis followed by spike time in milliseconds.

neuron 4, not considered in figure 3.13. Neuron 4 is connected with a delay
of 3 ms to neuron 2. Neuron 3 connects via a 2 ms delay and neuron 1
connects via a 6 ms delay. This gives spike arrival times of 3 ms, 9 ms and
7 ms respectively.

Figure 3.14: Shows the simulated spikes for the input pattern of polychron-
ous group 3.

Since a weight of 16 allows for spike offsets of 10 ms while still
producing a post-synaptic spike, it is clear that all the spike times
mentioned is well within this window. However, the two first spikes to
arrive gives a response time of 2 ms, eliciting a spike in neuron 2 at t = 9
ms, thus the third spike is not necessary for the creation of this spike. This
observation is consistent with the results in figure 3.14.

The next spike that is expected to occur is at neuron 1, at t = 15 ms.
However, due to the change in spike time at neuron 2, the arrival times
are 11 ms and 10 ms from neuron 2 and 4 respectively. The expected spike
time would therefore be at t = 13 ms instead, which is consistent with
figure 3.14. The next expected spike should happen at neuron 5 at t = 19

49

ms but never occurs. When considering the shifts of previous spike times
the arrival times at neuron 5 is t = 15 ms and t = 14 ms from neuron
1 and 3 respectively. This would lead to a new spike time at t = 17 ms.
The missing spike can be attributed to the refractory period following the
previous spike.

Figure 3.15 shows the membrane potential of neuron 5. The membrane
potential prior to the initial spike at t = 8 ms, is −70 mV. Following the
spike there is a noticeable decrease in membrane potential to about −80
mV, which is 10 mV less than its equilibrium state. This prohibits the
following inputs from causing a spike. This is not possible to mitigate as
increasing synaptic strength further will allow for spikes to occur as a result
of single input spike.

Figure 3.15: Initial membrane potential before spike is−70 mV. After spike,
the membrane potential dips to −80 mV, slowly returning towards the
initial equilibrium state. The ability for the neuron to spike is reduced while
returning to its normal resting potential.

Similar analysis of the other polychronous patterns can be made, but the
concept remains the same. In theory, the patterns can only be reproduced
if there is an equal number of neurons in every path of any spiking neuron
linking it to the instigating neuron of the spike pattern, and this does not
consider the noise of other spiking neurons which would alter the result.
And in that case, it is only the order which can be reproduced and not the
exact spike times. Whenever there is a non-zero time component for spike
integration, there is a possibility that delays will be introduced into the
information propagation asynchronously throughout the network which
will alter the timing and spike arrival times. Additionally, the refractory
period which is an intrinsic property of the Izhikevich neuron, as shown in
figure 3.15, will reduce the ability of neurons to spike over a time scale that
exceeds the duration of the polychronous patterns. Lastly, the relatively
large time window in which spikes can arrive and elicit a post-synaptic
spike, allows spikes from more neurons to interfere and alter the spike time
of the post-synaptic neuron. This is not a trivial matter as it introduces
another layer of complexity when considering these recurrently connected
networks.

50

Although the model can not reproduce the pattern from the ideal
model, the output is just as valid as polychronous groups since they are
reproducible and activated through a specific input pattern.

51

Chapter 4

Delay learning

This chapter will cover the process of developing and validating the delay
learning method, which is the main contribution of this project. This
includes the assumptions and reasoning behind various design choices, as
well as the formulation of the final method. A short demonstration of the
learning method applied to a simple network is then given.

This is followed by a section describing three distinct classes of input
patterns, which in turn was exposed to various simple networks in the final
section of the chapter. This is done in order to analyze the behavior of the
delays when exposed to different types of inputs. The final result section is
preceded by a detailed explanation of the method for delay categorization.

4.1 Conceptual foundations for delay learning

When designing the local learning rule, one must consider various aspects
of the model itself, such as how the activity of the network should be
interpreted and extracted from the network. In the case of this project,
the output of the network was extracted through the identification of
polychronous groups. The specific implementation of PG detection is
detailed in section 5.1. The general concept however can be illustrated by
figure 4.1, where three neurons are connected with different delays to two
post-synaptic neurons. Depending on the spike times of the three neurons,
they can activate one of the two post-synaptic neurons if their spikes align.
Although they are quite simple, this would constitute two distinct PGs.

This is an example of a simple network, but when the concept is applied
to a larger network, similar interactions would occur many places in the
network and lead to a distinct activity pattern that depends on the initial
input.

Based on this method for output interpretation, the focus of the learning
mechanism should be to consolidate the network activity associated with
similar inputs that constitute a distinct input class. If one considers all
instances of a particular input class, there likely exist some average or
arch-typical class instance which the network should adjust for such that
the activity of all instances within that class falls within some margin of
error and is then correctly classified. This would be achieved through

52

Figure 4.1: Three pre-synaptic neurons activating different post-synaptic
neuron based on their order of activation [21].

incremental adjustments of delays for each instance, and after enough
iterations, an optimal set of delays for this particular class is hopefully
achieved.

This idea is visualized in figure 4.2. The figure shows one instance
of an input class in each column. These three instances have slightly
different spike times, and the desired behavior is for the network to
respond similarly for all instances of the class by adjusting delays through
delay learning. The inputs are given to the same network sequentially
from left to right. The bottom row shows the corresponding incremental
changes after each input, which gives that starting delays for the next input.
The colored vertical lines represent the optimal spike arrival time for the
particular class instance. Over time, these incremental changes will add up
to some average change that give the optimal set of delays for this input
class. Based on these observations, a delay learning method that attempts
to align pre-synaptic spike times is proposed.

4.2 Activity-dependent delay learning method

The general mechanism of the learning method is inspired by the tradi-
tional STDP rule described in section 2.3.2, where a synapse is strengthened
if the pre-synaptic spike results in a post-synaptic spike, and a synapse
is weakened when the pre-synaptic spike is not contributing to a post-
synaptic spike. In a similar fashion, the causal relationship between pre-
and post-synaptic spikes will determine the changes that are made to the
connection between them.

Since the increase in membrane potential caused by an action potential
from a pre-synaptic neuron gradually decreases with time until the effect is
completely diminished, there is a time window in which the pre-synaptic
neuron has contributed to the increased membrane potential of the post-

53

Figure 4.2: Three separate instances of a class is given sequentially from left
to right, resulting in incremental changes to the delays seen in the bottom
row. Vertical lines represents spikes, and the colored vertical lines indicate
the optimal time for the set of spikes to arrive.

synaptic neuron as shown in section 3.4.2. Consequently its contribution
is at its peak at the end of the 1 ms integration window starting at the
instance the action potential reaches the post-synaptic neuron. Inversely,
one can say that for any action potential produced by the post-synaptic
neuron, there is a time window of influence prior to its spike time where
all connections that contributed in this time window should be subject to
the delay learning mechanism.

When considering the adjustment of delays instead of weights, the
temporal dynamics is more complicated. A weight change will likely result
in a shift in the post-synaptic spike time as the intensity of the input is
changed. However, changes to delays will adjust the post-synaptic spike
time as the result of both the realignment of spike arrivals increasing input
intensity, and potentially the shift in average arrival time. There are three
obvious ways of considering the delay adjustments, each one aiming to
align spike arrival times. All three methods increases the likelihood of
eliciting a post-synaptic spike, however they differ in the amount of change
in the post-synaptic spike time, and in the average changes to delays.

Figure 4.3 shows the three ways that the pre-synaptic spikes can be
aligned. Each example uses the same network, consisting of three pre-
synaptic neurons connected to one post-synaptic neuron. The spike times
of the pre-synaptic neurons are indicated by the black vertical lines, the
green lines indicate the arrival time of the pre-synaptic spikes at the post-
synaptic neuron and the spike of the post-synaptic neuron is indicated
in blue. Additionally there is some time added between the last arrival

54

time and the post-synaptic spike as there is some response time before the
neuron spikes as observed in section 3.4.1.

Figure 4.3: Black vertical lines indicate spikes from pre-synaptic neurons,
while green vertical lines indicate the spike arrival time at the post-synaptic
neuron when considering their respective delays. The blue vertical line
signifies the spike time of the post-synaptic neuron.

55

The first method for grouping the spikes is to align them at the first
arrival time, which occurs at neuron 1 and can be seen in the top plot of
figure 4.3. The desired spike arrival time is indicated by the yellow line.
This method leads to little to no delay adjustment to the middle neuron, a
small adjustment to the top neuron and a larger adjustment to the bottom
neuron. This change would decrease the spike time of the post-synaptic
neuron the most. This method can also suffer from an issue where it is
not possible to align all arrival times. This would happen if one neuron
has a spike time that occurs after the earliest spike arrival time, as the
delay can not be negative. This is the case in the example given, where
the arrival time of neuron 1 occurs before the spike time of neuron 2. This
method would also exclusively reduce delays, which could lead to delays
saturating towards the lower limit, consequently limiting further learning
in the network.

The second method aims at aligning spikes at the last spike arrival time,
seen in the middle plot of figure 4.3. All changes to delays would therefore
be increases. This method would likely result in the least adjustments to
the post-synaptic spike time as there is a combination of positive shift as
a result of increased delays, and a negative shift as a result of better spike
alignment. This would result in a reduction in the downstream effect on
other neuron interactions that are a result of this spike. However, as was
the case with the previous method, the downside of exclusively positive
changes to delays, is the problem of delays saturating to to limits of allowed
delay values. This method would also introduce a lot of long delays into
the system, which might eventually lead to slow computation times.

The last method, seen in the bottom plot of figure 4.3, aims at
aligning the spikes at the average spike arrival time for all axons involved.
This would involve increasing certain delays, while decreasing others.
Although, the average arrival time would remain the same, the post-
synaptic spike time would still see a shift, as the offset between spikes
is reduced resulting in a greater immediate post-synaptic response. This
method works better at avoiding delay saturation, and will likely not
introduce significantly more system delay.

Based on these observations, the last method was determined to be the
best option. Since the concept is based on gradual incremental changes,
it was important to include some proportionality in the delay changes
based on the distance between spike arrival time and the average spike
time, denoted as ∆tdist. In other words, spike arrival times furthest from
the average spike arrival time should experience the largest delay change,
while closer ones should experience smaller delay changes. A reversed
sigmoidal function was deemed a good choice for this learning method
and is given by equation 4.1,

F(∆tdist) =
a

1 + e∆tdist/b −
a
2
= − a

2
tanh(

∆tdist

2b
) (4.1)

where ∆tdist = (tpre + dprepost)− tavg. The constant a adjusts the maximum
changes to delays, while b, determines the steepness of the function. The
output of this function is the absolute change of the delay rather than

56

a change relative to some maximum value as is the case for the STDP
mechanism described in section 2.3.2. This is done in order to maintain
interpretability of the functions output. It is important that the constants is
chosen so that the function fulfills the constraints given in equation 4.2,

∄∆tdist ∈ R, |F(∆tdist)| > |∆tdist| (4.2)

which states that there does not exist a value for ∆tdist which results in
|F(∆tdist)| being larger than |∆tdist|. With |F(∆tdist| > |∆tdist|, the delay
change would push the arrival time past the average spike time.

Figure 4.4 shows equation 4.1, with constants chosen so that the
function obeys the constraints from equation 4.2. This is clear from the plot,
as the function only crosses the diagonal at the origin. The corresponding
values on the y-axis is therefore never greater than the x-values.

Figure 4.4: Function 4.1, with a = 6 and b = 1.5. These constant values
ensure that the function obeys the constraints from 4.2.

With the mechanism for changing delays formulated, the scope of pre-
synaptic spike times that are causally related to the post-synaptic spike
must be determined. Observations made in section 3.4.2 shows that the
membrane potential returns to within 0.1 mV of its equilibrium state
following an input weight of 16 after approximately 11.1 ms. This gives
good indication of the extent of the causal relationship between pre- and
post-synaptic spikes. Testing with dt = 0.1 ms showed that there is a
somewhat linear relationship between the weight of the connection and
the time window in which a pre-synaptic spike significantly affects the
post-synaptic membrane potential. When w = 16, the time window is
approximately 10 ms, while w = 13 gives a window of 7 ms. The linearity
breaks down for lower values of w where the time window is in the 6 ms
to 7 ms range. For simplicity’s sake, it is logical to limit the function to
the range ∆t = [−10, 0] ms for all values of w, but future work could
incorporate this into the learning mechanism. It is important to note the

57

distinction between ∆tdist and ∆t as ∆t = (tpre + dprepost) − tpost, which
is the time difference between spike arrival time and post-synaptic spike
time.

The learning method has so far only considered negative values of ∆t,
and does not apply for spike arrival times that occur after the post-synaptic
spike. These spikes have no causal relationship with the post-synaptic
spike, and one solution would be to apply no delay changes. However,
one of the main advantages of physical implementations of SNN’s is their
efficiency compared to conventional neural networks. It would therefore be
more beneficial to try to ensure that as many spike as possible are part of
some polychronous pattern, and avoid noisy spikes from interfering with
existing spike times. A method could therefore be devised that pushed
these noisy spikes away from the post-synaptic spike time. A similar
function to the one applied to negative values of ∆t can be applied as seen
in equation 4.3.

G(∆t) = − a
2

tanh(
∆t− c

2b
) + d (4.3)

Choosing the appropriate values for a, b, c and d, one achieves a function
that saturates at a positive delay change of 3 for values close to ∆t = 0 ms,
and no delay change for values close to ∆t = 7 ms. This function can be
seen in figure 4.5. Thorough testing would be needed to find the best suited

Figure 4.5: The learning function for positive values of ∆t with a = 3,
b = 0.8, c = 4.1 and d = 1.5

time window for activating this part of the delay learning mechanism, so a
preliminary window is set to ∆t = [0, 7] ms.

A complete formulation of the learning rule can therefore be represen-
ted by equation 4.4, where ϕlow and ϕhigh, are the are the minimum and
maximum values of the learning mechanism windows, set to -10 ms and 7

58

ms respectively.

∆d =

{
F(∆tdist) = −3tanh(∆tdist

3), if ϕlow ≥ ∆t ≤ 0
G(∆t) = 3

2 tanh(2.5625− 0.625∆t) + 1.5, if 0 < ∆t ≤ ϕhigh
(4.4)

If there are multiple spikes from a single synapse that theoretically
triggers both learning mechanisms, the F(∆tdist) takes precedence. If there
are multiple spikes that trigger F(∆tdist), it is the values with the lowest ∆t,
that takes precedence.

Figure 4.6 shows an example network with the learning mechanism
implemented. It consists of three input neurons connected to a single RS
neuron. In addition to these three inputs, there is a fourth input neuron
added to illustrate the learning method for positive values of ∆t. The black
vertical lines of the top plot signifies spike times, while the colored vertical
lines gives the corresponding spike arrival time at the RS neuron. Similar
colors in the raster and delay plots indicates information related to the
same neuron. As the figure shows, the three first spike arrival times are
within the time window that will trigger the learning function for ∆t ≤ 0
ms. The learning method will therefor adjust the delays so that spike
arrival times are shifted toward the average spike arrival time, which is
likely in between 7 ms and 8 ms. The connection of the first input neuron
should therefore experience a noticeable decrease in delay. The second
input neuron will experience an increase in delay of a similar magnitude.
Finally the third input neuron will experience a slight decrease in delay.
The middle plot of 4.6, showing the corresponding delays as functions of
time, confirms these observations. A second spike was added to input
neuron 3, to illustrate that spike arrival times prior to the post-synaptic
spike times have precedence, when triggering a learning mechanism even
though the second spike arrival time is closer to the post-synaptic spike
time. As mentioned, the spike arrival time of the fourth input neuron is
past the spike time of the RS neuron, and therefore experiences an increase
to its delay.

Using the new delays and an identical input spike pattern, the second
set of plots in figure 4.6 shows that the spike arrival times are now much
more aligned resulting in a decrease in spike time at the RS neuron.

Since the training of the delays is an iterative process, the delays for
input 1 and 2 continues to experience a slight shift in order for the spike
times to align even better. Once all three spikes are perfectly aligned, the
delays no longer experience shifts in this configuration. The spike arrival
time of the fourth neuron is now pushed passed the post-spike window of
the RS neuron, and therefore no longer experiences changes to its delay.

This learning method also solves the issue that occurs when the average
spike arrival time is before the minimum spike arrival time of one of the
contributing axons. As figure 4.7 shows, the average spike arrival time for
the three input neurons is behind the spike time of the third input neuron.
For the first iteration, this neuron experiences a decrease in delay, but since
the delay can not be negative, the minimum spike arrival time for this
neuron is t3 + dmin where dmin is the minimum delay which is set equal to

59

Figure 4.6: Two identical inputs are given, the top set of plots show the
initial activity and delays, while the second set shows the same input but
with the new delays.

the dt-value of the simulation, and is therefor 0.1 ms in this case. However,
since the spike arrival time of input neuron is now kept constant at its
minimum value, the other two spike arrival times will slowly be shifted
towards it, since the average spike arrival time will always be somewhere
between between the three. After some iterations, continuously updating

60

Figure 4.7: The spike arrival times align even though one of the spike times
is after the average spike arrival time of the first iteration.

the delays to their new values, which is equivalent to inputting a periodic
pattern, the bottom plot of figure 4.7 shows that they eventually align to
the spike arrival time of input neuron 3.

4.3 Categorizing delay behavior for networks exposed
to RSL and rate-coded input

The behavior of the network and its ability to learn, and consequently
perform classification, depends on the behavior of the delays. In this
section two simple topologies were tested, consisting of two inputs
connected to a single RS neuron, and three inputs connected to a single
RS neuron. These two topologies was exposed to three different types
of inputs and the delays of the network was categorized based on their
behavior. The purpose of categorizing the delay behavior for the different

61

types of input is to understand how these inputs affect the delays. As
the final set of delays of a network after training can be considered the
solution of the training period, the desired behavior of the delays is for
them to converge. This would indicate that the network has settled on some
optimal state which accommodates for all the inputs that the network has
been exposed to.

4.3.1 Input patterns

In order to understand the effect of the input pattern on the network,
several instances of the three input types was generated and tested on
networks of various delays. The three distinct types of input patterns that
was tested can be seen in figure 4.8.

The simplest of these pattern types is the RSL pattern, which consist
of a set of spikes which have a constant time shift between them, and this
pattern is repeated with a certain interval. The purpose of this pattern is to
see how the network adjusts to a constant repeating pattern. Preliminary
results showed that RSL inputs results in convergence as long as the input
causes activity in the post-synaptic neuron. Therefore, this input type was
not examined further in this context.

Figure 4.8: Three simple types of spiking inputs. The leftmost figure
shows a RSL pattern consisting of a pair of three spikes with a specific
relative offset, repeated with a specified interval. The middle figure
shows an alternating RSL pattern consisting of two patterns, similar to
the the leftmost figure, but alternating between the two with a specified
intermission period between then. The final figure shows an input type
where each input neuron fires with a specified spike interval.

The second input type is the alternating RSL pattern. This pattern
is generated in a similar way as the RSL pattern, except it consists of
two different sets of time shifts, and they are alternated with a longer
intermission between them. This intermission is added so that the network
can return to equilibrium before the new pattern is introduced. The
purpose of this pattern is to see how the network adjusts to two alternating
input patterns.

The last input type is the rate-coded pattern and it differs from the

62

previous two in a fundamental way. The set of spikes that constitutes
the two previous patterns are time locked. In other words, the time shift
between the set of spikes is always constant. For the rate-coded pattern,
each neuron fires with a specific firing rate, and therefore the offset between
the firing times of the input neurons is not necessarily constant, unless the
firing rate of one input is a multiple of another.

Due to the vast number of parameters that determine the configuration
of even small networks of a few neurons, it is not feasible to do a thorough
test of all such configurations. The parameters for these configurations
was therefore kept within logical intervals according to computational
constraints.

Figure 4.9: There are two network topologies, each subject to two different
inputs. The parameters for the testing therefore consist of the delay of the
network and parameters related to the input. For the rate-coded input it is
the interval between spikes for each input. For the alternating RSL input it
is the offset from the pattern start for both patterns in each input.

With two topologies subject to the two input types, alternating RSL and
rate-coding, a total of four main configurations were tested with various
parameters. Figure 4.9 shows the four configurations along with their set
of parameters. The parameters are color coded based on what axis they
are located on in the plots that show delay categories later in this section.

63

A common parameter for all configurations is the delays, although the
intervals vary due to computational constraints. Arrows show the physical
meaning of each parameter.

For the rate-coded input, the Inti or Interval, determines the time
between spikes for each input neuron. Although rate-coded input is
typically parameterized by frequency, the interval was used in this case
since it is easier to interpret the interval between spikes instead of
frequency in this context. For the alternating RSL input, the Offi or Offset,
determines the time from the start of the pattern to the spike of each input.
This initial pattern is then repeated every 30 ms for 500 ms, followed by a
500 ms dormant period. The new pattern is then introduced in a similar
manner. The two patterns alternate in this fashion for the duration of the
simulation.

Including parameters for both the inputs and delays, gives an under-
standing of the significance of the delay initialization and the input instance
on the behavior of the delays.

All simulations described in this section were run for 10000 ms, which
was deemed sufficient for the delays to settle into a category.

4.3.2 Categorization method

The delays of the networks can be expressed as functions of time, and when
viewed in this manner the behavior of the delays can be separated into
specific categories. Seven main categories have been identified and include:

• Converging

• Repeating

• Increasing

• Decreasing

• Maximum

• Minimum

• Dormant

• Uncategorized

The converging category is the desired behavior of the delays, as it implies
that the delay has converged to a specific value that accommodates for
the network activity. This category is given when the standard deviation,
σd(tint), of a specified time interval, tint, of the latter part of the delay function
is within a specified threshold, σth. The delay behavior of a connection
is therefore categorized as converging when σd(tint) < σth. σth was set to
0.1 and tint was set to 2000 ms. The selection of the time interval was
based on observations that repeating delay patterns could have quite long
periods with unchanging delays which would otherwise be categorized as
converging. The length of these unchanging periods is largely due to the
way the input is generated.

64

The repeating category is a special case where the delay function
expresses a periodic repeating behavioral pattern. The categorization is
ideally determined by taking a similar time interval as for the converging
pattern, and calculating the correlation coefficients of this time window
with each previous time shifted window of equal length. If the correlation
exceeds a specific threshold, the repeating category is assigned. This method
allows for some leniency when it comes to matching the repeating pattern
with the previous delay function. However, this is a computationally
unviable option as there is a high number of possible time shifted windows.
Instead, a direct string comparison is done, which requires a complete
match of the entire chosen time window of the delay function. This time-
window is also set to 2000 ms.

The increasing, decreasing, maximum and minimum categories all describe
diverging delay patterns, with the latter two pertaining to delay values
that have saturated toward the maximum and minimum values allowed,
respectively. These four categories described undesired behavior where
the delays are either not converging, or is limited by the bounds set for
the simulations. Identifying increasing or decreasing delays is done by
doing linear regression on the delay function and then retrieving the slope
of the resulting line. If the absolute value of the slope exceeds a specified
threshold, set to 0.001, the delay is either increasing or decreasing, which
is based on the sign of the slope. Delay saturation is determined by
calculating the mean delay value of a time interval, set to 1000 ms, and
checking if it is within a certain margin, set to the same threshold as
for the converging method, of either the maximum or minimum allowed
delay values. The choice for a shorter time interval is because the delays
require more time to saturate, and because once the delay has reached the
maximum or minimum values it is unlikely that it will decrease again.

Due to the logic of the converging category, low-activity interactions
where there is little to no change in the delays could potentially lead
to miscategorization. To avoid this, another category is introduced that
captures dormant neuron interactions. This category is triggered when
activity is less or equal to 0.1 spikes/s, which was observed to be the
approximate threshold for achieving any meaningful changes to delays.

The categories mentioned so far are determined through various means,
but does not capture all behavior, and the last category is therefor named
uncategorized. As the name suggests, this label is given when none of the
other categories apply. The logic for categorizing individual delays can be
seen below.

The specific order of categorization is important. Initially it is
determined whether the network is dormant. The next category that is
checked for is the saturated category. The reason for this is that when a
delay is saturated, it is often constant, which could easily be miscategorized
as being a converging delay. Other times the delays behave in a repeating
manner, similar to that of a repeating delay, only it is situated around the
delay limits. It is therefore important to first test for saturation to avoid
misclassification. Then the converging category can be tested for, followed
by the repeating category. It is important that the converging category

65

if dormant then
Categorize as dormant;

else if saturated then
Categorize as saturated;

else if converging then
Categorize as converging;

else if repeating then
Categorize as repeating;

else if diverging then
Categorize as diverging;

else
Categorize as uncategorized;

end
Algorithm 2: Logic for categorizing individual delays

is check first, as a converging delay is constant and would therefore fall
under the repeating categorization logic. Finally the diverging category
is checked, and if none of the categories are given, the delay is labeled
uncategorized.

The purpose of categorizing the delay behaviors is to understand the
effects of a specific input or delay initialization on the network. When
considering that there are eight delay categories, then for a simple network
of 2 connections, the number of possible combinations when order matters
is 64. It is theoretically possible for a delay function to be within more
than one category. For example, it can be both increasing and saturating
at the maximum allowed delay value, further increasing the number of
categories. Having this many categories for each network is impractical
and the number of categories needs to be compressed.

if dormant ∈ categories then
Categorize network as dormant;

else if increasing or decreasing or maximum or minimum ∈ categories
then

Categorize network as diverging;
else if uncategorized ∈ categories then

Categorize network as uncategorized;
else if repeating ∈ categories then

Categorize network as repeating;
else

Categorize network as converging;
end

Algorithm 3: Logic for categorizing networks of a single RS neuron.

Similarly as to the categorization of individual delays, the order in
which the network categorizing logic is applied is important. Initially,
the activity of the RS neuron is checked, and if the spike rate is below the
specified threshold, the network is classified as dormant. The next step is to
check for divergence. One can consider increasing, decreasing, minimum and

66

maximum as diverging. It is unwanted behavior, and does not necessarily
need be described in more detail in an overview of network activity. One
can also assume that any connections that share the same post-synaptic
neuron, have delay functions that are to some degree correlated, as a
change in one will likely lead to a change in the other. It is therefore
logical to say that if one connection is diverging, the connection pair have
not converged, and the pair can therefore be said to be diverging. If there
are no diverging connections in a pair, but at least one is uncategorized,
the pair can be said to be uncategorized. The reasoning behind this is
that the uncategorized connection could actually be diverging which takes
precedence over the other categories, and the pair can therefore not with
any certainty be put in any of the other categories. If none of the mentioned
categories are present, but at least one repeating delay function is observed,
then the pair can be said to be repeating. This is the case because the
final category is the converging category, and it is logical to assume that
all connections in a pair must be converging for them to be considered in
this category, since any other behavior means the pair has not settled. If
none of the other logic has been triggered, the network can be considered
to be converging. This logic can be seen in algorithm 3.

This results in a set of five categories that describe each connection pair,
which is more practical for making assumptions and observations on entire
networks.

Figure 4.10 shows one example from each network delay category. The
legend indicated what color corresponds to what connection. The RS
neuron is always 0, while the inputs are numbered from 1 to 3. In the
dormant example, the RS neuron is dormant, and therefore none of the
connections experience any change. The diverging example consist of one
uncategorized delay from input 1, one increasing delay from input 2 and one
delay saturated at the minimum value from input 3. Since the network
consist of at least one diverging connection, the network is categorized as
diverging.

The repeating example contains two repeating connections from input
1 and 2, and one converging connection from input 3. Since the repeating
connections takes precedence, the network is labeled repeating.

The converging example contains three converging delays. The
connection from input 1 and 2 overlap as they have the same spiking
parameters.

Finally the uncategorized example consist of two uncategorized delays.
Both delays are increasing and decreasing, the sum of which does not
activate either of those categories. Nor does it activate any of the other
categories and is therefore given the uncategorized label.

4.3.3 Rate-coded input

For the first test configuration, various versions of the rate-coded input
described in section 4.3.1 are explored. Starting with the simplest network
that is of interest, which consists of 1 RS neuron and 2 inputs, with
connection weights of 16. This leads to two individual connections

67

Figure 4.10: Shows an example from each network delay category.

connecting the two inputs to the RS neuron. Each connection is initialized
with a delay chosen from the interval [10, 30] ms. The limits for the delay
values in the simulation is 0.1 ms and 40 ms. The chosen interval for
initialization will therefore allow for the most changes in each direction,
reducing biased saturation to either extreme. Each input is producing a
spike train with an inter-spike interval chosen from the interval [20-30] ms.
The aforementioned parameters results in a set of 48 400 unique simulation
configurations.

The top plot of figure 4.11 shows the categories resulting from the logic
described in section 4.3.2, for each simulation with parameters determined
by the x- and y-axis of the plot. The x-axis shows the pair of delays with
which the models were initialized, and the y-axis shows the pair of spike
intervals for the two inputs. Both axis are sorted low to high based on the
differences in the parameter values. The reason for the sorting method is

68

that it is hypothesised that the delay behavior is more dependent on the
difference in the parameters than the absolute values.

Figure 4.11: Top: Delay categories for two inputs and one neuron. Middle:
Delay categories for three inputs and one neuron. Bottom: Delay categories
for three inputs and one neuron connected with a weight of 8.

The plot clearly shows horizontal trends indicating the the delay
behavior is more reliant on the input activity rather than the delay
initialization. The most prominent category by far is the diverging category.
A high degree of diverging delays is typical for an input pattern where the
spikes from each input neuron is not time-locked, or in other words, the

69

offset between pairs of input spikes are not constant.
There is also a notable presence of both converging and dormant delays.

The convergence is largely congregated around low delay differences and
equal spike intervals. There is also occurrences of convergence at higher
spike interval differences, which also seem less affected by the delays. It
is possible that this convergence stems from pairs of spike intervals that
periodically align.

There is a clear trend for repeating delays at the highest differences in
both spike intervals and delay pairs. It seems that the repeating categories
are more dependent on the initialized delays as can be seen by the dotted
pattern. It is likely that specific combinations of spike intervals and delays
lead to the equivalency of an alternating RSL input.

The top plot of figure 4.12 shows the spike rate of the RS neuron
based on the same network configurations. There are clear trends both
horizontally and vertically. High spiking activity seems to be centered
around identical spike intervals on the y-axis and centered around similar
delays on the x-axis. Interestingly, there is also high activity when the
delays are very offset as the previous input spike from one input neuron
suddenly lines up with the current spike from the other input. It is also
clear that the areas with high activity strongly correlate with the convergent
category, which is logical as convergent delays will likely match well
leading to a high spike rate.

The next step towards more complex networks is to include another
input. In similar fashion as the previous configuration, the three inputs are
connected to the RS neuron. The connection strength is kept the same, at
16. Due to computational restraints and observations from the previous
results, the intervals governing the possible simulation configurations are
reduced. The range for input spiking intervals is set to [20, 25] ms and the
possible values for delays are from [18, 22] ms, again centered around the
middle of the allowed delay range. With a selection of three values from
each set, the number of possible combinations amount to 27 000.

The delay categories of this configuration can be seen in the middle
plot of figure 4.11. This topology shows perhaps a bit more dependence on
the delay initialization while having less clear trends regarding clustering
delay categories to either ends of the plot. The diverging category is still
significantly more common than the other categories.

Again the converging delays are most prevalent where the spike
intervals are equal. The repeating delays appears close to where the
difference in spike intervals are lowest, but seems dependent on the delays
as there is a more sporadic pattern.

The middle plot of figure 4.12 shows the spike rates of this topology.
It generally shows high activity when the spike intervals are equal. The
exception seems to be when non of the delays are equal. There is then a
general trend of lower activity as the spike interval differences increase.

The previous networks rely on connections with a weight of 16, and
therefore only two spikes are required to align for a post-synaptic spike.
If the weight is reduced to 8, three concurrent spikes are required to elicit
a post-synaptic spike. The bottom plot of figure 4.11 shows the resulting

70

Figure 4.12: Top: Spike-rate plot for two inputs and one neuron. Middle:
Spike-rate plot for three inputs and one neuron. Bottom: Spike-rate plot for
three inputs and one neuron connected with a weight of 8.

delay categories of this scenario.
This reduction in connection strength results in dramatic changes to the

71

delay categorization plot. The most obvious is perhaps the emergence of
a field of dormant connections in the right part of the plot, which seems
dependent on both the delays and spike intervals. There also appears to be
more uncategorized behavior.

The corresponding spike-rate plot can be seen at the bottom of figure
4.12, and is similar to that of the previous network type, but with a
significantly lower level of activity.

4.3.4 Alternating RSL input

The other input type that is of interest is the alternating RSL input. For the
simplest network of 1 RS neuron and two input neurons, the configuration
consists of 4 spike offsets and 2 delays. The two first offsets constitutes
the first pattern. Each of the two numbers describes the spike time chosen
from [0,5] ms for each of the two input neurons. These spike times are then
repeated every 30 ms for 500 ms. This is followed by a dormant period
of 500 ms before the other spike pattern is introduced in a similar manner
as the previous pattern. This process is repeated for the duration of the
simulation. Since the input now has more parameters it was necessary to
reduce the interval for the delays to the range [18, 22] ms.

As expected, the top plot of figure 4.13 clearly shows that the primary
category for this type of input is repeating. The second category that
is present is the converging category. The converging delays are most
prevalent for higher difference in spike offsets, while neither categories
seems very affected by the delays. The other three categories are practically
non-existent.

According to the top plot of figure 4.14, the spiking activity is quite
evenly dispersed with the only trend being slightly lower activity for high
differences in spike offsets.

There is an interesting change when the networks size is increased to
include a third input neuron as shown by the middle plot of figure 4.13.
There is no longer an obvious preferred category, and there is no longer
any recognizable trends. The only two categories that does not seem
to be present is the uncategorized and dormant categories. Again, the
corresponding spike-plot seen in the middle of figure 4.14 shows higher
activity trends when differences in spike offsets are low.

When the weight between the three inputs and the RS neuron is
reduced to 8, the delay category plot, seen at the bottom of figure 4.13,
looks quite similar to the delay plot seen for the smaller network. There
is a higher trend of convergence and some areas of dormancy. The
corresponding spike-rate plot, seen at the bottom of figure 4.14, shows a
relatively low level of activity across the plot.

Upon further inspection of a few uncategorized cases, there appeared
to be some trends. A typical behavior for the low-activity interactions
was that the low spike-rate lead to the delays changing slowly, and
consequently not being registered by any of the categorizing methods
within the given time frame. Another strange observation was pairs of
delays were one increased, while the other decreased until one reached

72

Figure 4.13: Top: Delay categories for two inputs and one neuron. Middle:
Delay categories for three inputs and one neuron. Bottom: Delay categories
for three inputs and one neuron connected with a weight of 8.

the delay limit, upon which the behavior reversed, and the first decreased
while the second increased. This is likely the result of a change in one
delay, while the other delay is prohibited from changing by the delay limits,
leading to a switch of the spike arrival time, warranting a new direction of
delay change. Lastly, a typical observed behavior was divergence to the
delay limits, followed by erratic, non-repeating behavior.

73

Figure 4.14: Spike-rate plot for networks with three inputs, one RS neuron
and weights of 8.

4.3.5 Conclusion

Based on these findings it is clear that the rate-coded pattern in large part
leads to diverging delays regardless of the three configurations tested. This

74

is an indication that this encoding method might not be suited for this
learning method. The alternating RSL input leads to mostly repeating
delays, which is at least better than converging. It also appears that
reducing the connection weight might lead to more convergence.

In general, the highest activity is seen when delays converge. For
both input types it appears that reducing the connection weight limits the
spiking activity quite significantly. If such low weights are used, it might
require higher connectivity. For the remaining sections, the RSL encoding
method will be used as it appears to result in more stable delay behavior
than the rate-coded input.

75

Chapter 5

Input classification through
polychronous group detection

This section will investigate the performance of the delay learning method
by applying it to three different topologies and performing classification
of inputs. The three topologies are feed-forward, ring-lattice and reservoir.
The reservoir topology can also be referred to as a randomly connected
recurrent network.

A simple but effective method for information encoding is to use RSL
described in section 2.4.3. Based on the observations of section 4.3.2, this
was also found to be a better suited encoding method than rate-coding
for the proposed learning mechanism. In order to have a clear definition
of what a class would be, an input class is represented by some specific
spike order from the input neurons and the instances of that class would
consist of any variation that still follows that spike order. This could also
be considered a type of ROC method as the two coding schemes are quite
similar, however for consistencies sake, the method will be referred to as
RSL.

The method is illustrated in figure 5.1, which shows two classes, A and
B, and three instances of each class. Even though the spike times differ
within a class, the order is the same. Continuously repeating such an input
order should theoretically train the network to accommodate for all the
variations of the input classes that is exposed to the network.

The three topologies tested in sections 5.3, 5.4 and 5.5, were given 12
instances of one input class, followed by 12 instances of another class. This
was done in attempt to see if the delay learning method could adjust for
and properly classify one input, and then readjust for a new pattern and
correctly classify that as well.

5.1 Polychronous group detection method

When attempting to extract information from a spiking neural network,
there are two methods that were considered promising candidates for this
project. The first one is to feed the network activity into a regression model,
which undergoes supervised training with labeled data. The regression

76

Figure 5.1: Two input classes with three instances of each class.

model then learns what output activity corresponds to the correct input
class. This is the most common method used for reservoir computing, but
is for obvious reasons less biologically realistic.

Another method that does not rely on another predictive model is to
detect PGs. There exists methods for offline detection of PGs, but these
methods are often slow. An efficient online method was proposed by
Chrol-Cannon et al. [6], where subsequent spikes build up an identifying
code. This method is sensitive to the exact order of spike arrivals at
the post-synaptic neuron, something which would likely result in mis-
identification when delays are adjusted consequently altering spike order.
An new algorithm loosely inspired by this method was therefore created.

The idea that governs the proposed method for PG detection, relies
on the creation of data structures that can store spiking activity in a
meaningful way. The spikes must be stored so that the order of a set of pre-
synaptic spikes that cause a spike in a post-synaptic neuron is insignificant.
It is, however, important that the overall sequence of spikes is retained, in
terms of which neuron causes which neuron to spike. It is important to
distinguish between individual spikes of a specific neuron, as one neuron
might fire multiple times as a result of one input. Consequently, this neuron
would appear multiple places in the PG structure.

The general data structure that represents the PGs starts with a single
spike from the input neurons, and then branches out to include all
subsequent neurons that spikes as a result of a specific spike by said input.
These subsequent spikes are therefore ordered in a hierarchical branching

77

structure from initiating spike to the final spike in each branch that does
not elicit a spike in another neuron.

The method for building the PGs relies on each individual neuron to
add its own structure to the structure of each pre-synaptic neuron that
contributed to its own spike. The structure that is added is empty at this
point, but will be filled by the structures of post-synaptic neurons that spike
as a result of this spike. Each neuron has one data structure for each spike
it produces, which will contain different substructures depending on the
subsequent activity resulting from that spike.

The actual datatype of the implementation is python dictionaries. These
data types are mutable objects, and when a neuron passes along its
dictionary, it is the reference to the original object that is shared and not
a copy. This means that when a neuron, several layers into the PG shares
its dictionary to the pre-synaptic neurons own dictionary, there is a trickle-
effect that ensures that the entire structure stored in the original input
neuron is updated as well.

The root of the entire structure is, as previously mentioned, always an
input neuron. It is expected that all input neurons contribute to an input
pattern, and therefore, the entire PG initiated by an input consist of the
branching structure of all the input neurons. When new input patterns are
given to the network, the resulting PGs are compared layer by layer with
existing PGs, and if the match percentage for all PGs are below a specified
threshold, the new PG is considered unique and is added to the universal
list of PGs. If there is a match, the activity is classified as the same as the
PG with the highest match percentage.

The specific method for comparing a new PG with any existing PGs
first registers the total number of spikes present in the existing PG. This
is the baseline for the maximum number of matches between the two. A
recursive algorithm then checks each level of each branch in the structure,
and counts how many of the neuron IDs that is in the existing PG that are
also found in the new PG. Excess spikes in the new PG that are not in the
existing one are ignored. The final match is then calculated as matches

totalspikes . It
is important to reiterate that it is not simply the existence of a spike that
constitutes a match, as its place in the structure is crucial.

A visualization of the PG structure can be seen in figure 5.2, along with
the corresponding network topology. This PG is the result of a spike in
each neuron in the network, with the input neurons strongly connected to
the network, and delays chosen so that spikes align at the networks internal
post-synaptic neurons. The structure on the left shows the network and its
nodes, with colors that corresponds to the neurons place or layer position
in the PG. The numbers is the ID of the neuron. The right part of the plot
illustrates the PG which encompasses all the activity, starting with the two
inputs, and followed by all the successive spikes.

As previously mentioned, one neuron can be in several parts of the PG.
In this case, a neuron appears in several places because it is part of the
structure of several pre-synaptic neurons. However, since each neuron in
this example only fires once, it is actually the same structure corresponding

78

to the same spike that is seen in multiple places.

Figure 5.2: Visualization of the datastructure used to store PGs. The color
of the nodes, and boxes corresponds to the layer depth in the structure.
Some nodes occur in two layers.

Current limitations to the method is that each input can only spike
once for each PG, and a limit for the duration of the PG must be set. A
new input cannot be given to the network until after this duration and
any PG that stretches beyond it is not recorded in the PG. This limits the
ways that information can be encoded and given to the network, but the
current implementation is intended for inputs that are encoded with the
RSL method described in section 2.4.3, which will pose no problems.

The hypothesis is that the learning mechanism is able to adjust for
variations of patterns that belong to the same class, while no adjustments
to delays will miscategorize these variations.

5.2 Increasing robustness through delay learning

Initially it can be shown that a plastic reservoir can retain activity as an
input is increasingly distorted while the activity of an identical but static
reservoir seizes. To demonstrate this, a plastic and static reservoir was
given a repeating RSL encoded input consisting of four spikes, with an
increasing offset between them, while retaining their initial order. This
would constitute various instances of a single input class.

Figure 5.3 shows the raster plot of the plastic reservoir on the bottom,
and the static reservoir on the top. The delay plasticity allows for the
reservoir to gradually adjust the delays to accommodate for the increasing
separation between the inputs, retaining reservoir activity past 4000 ms.

79

Figure 5.3: The bottom plot shows a plastic reservoir, with adaptive delays
that extend the activity. The top plot shows a static reservoir where the
activity quickly seizes as the stretched pattern no longer causes reservoir
activity. The input spikes are indicated by the red color.

The activity in the static reservoir, however, seizes at around 1000 ms. It is
worth noting that the input neurons are strongly connected to one reservoir
neuron each, which explains the four spikes that are always present.

This demonstrates the robustness that is introduced by the learning
method which sustains activity for a very wide variety of class instances.

80

5.3 Input classification in feed-forward network

One of the simplest topologies for spiking neural networks is the fully
connected feed-forward neural network. In order to make the comparison
between the three different topologies more valid, the network size was
set to 25 for all topologies, along with 5 input neurons. In the case of the
feed-forward topology, the neurons were configured in five layers, with
each input neuron connected to one RS neuron in the first layer. The input
consisted of 12 instances of one class, followed by a short intermission
period before 12 instances of another class was given. An illustration of
these classes and instances can be seen in figure 5.1. The reason for having
two separate classes as input is to see how the networks handle adjusting
for one class, and then following a short intermission period, adjust for a
completely new class. The interval between inputs was 400 ms, and the
length limit of PGs was set to 200 ms. Allowing for enough time between
the termination of the first activity and the onset of the next input pattern is
important in order to avoid interference as a result of neuron refractoriness.
The threshold for PG matching was set to 0.6.

An example of the network can be seen in figure B.1. The delays were
limited to the interval (0,20] ms, and the initialization of the delays were
done in the same interval.

Initial testing showed that using a weight of 16 resulted in adequate
network activity for this specific configuration. Using lower weights
resulted in the activity seizing after the first couple layers.

20 simulations were run with an identical network using internal
weights of 16 and various input classes, as previously explained. The
results can be seen in table 5.1. The average accuracy over the 20
simulations was 90.4% when delay learning was enabled, while it was
79.4% when delay learning was not enabled.

Table 5.1: Accuracy of identical feed forward network run for 20 simu-
lations with and without delay learning, for various instances of the two
input classes.

Network type Plastic Static

Accuracy per input
Class 1 Class 2 Class 1 Class 2
90.8% 90.0% 76.3% 82.5%

Average accuracy 90.4% 79.4%

The method for calculating accuracy is illustrated in figure 5.4. The
activity resulting from the two classes used for these simulations are
indicated by the colored dotted boxes. The PG group that is most prevalent
is considered the networks solution to the classification. For the first class it
is the green PG, or PG ID 0. The PG method has identified five out of the 12
patterns to belong to this group, indicated by the number in parenthesis.
The accuracy for this input class is 41.7%. It is worth noting that the PG
ID is just an arbitrary number in order to differentiate between the PG
groups. Likewise, for the second input class, nine out of the 12 inputs were

81

classified as the same, giving an accuracy of 75%.

Figure 5.4: The accuracy of the model is calculated by checking how many
inputs of one class are classified as the same class.

Figure 5.5 shows the delays as functions of time for a typical simulation,
with each color representing the delay of one connection. The delays seem
to converge towards the ends of each input sequence, indicated by the red
boxes. It is worth noting that the section were the delays seem to have
completely converged in the middle of the plot, indicated by the blue boxes,
is due to the intermission period between inputs. Likewise, at the end of
the plot there is a period where there is no activity. In general the delays
are quite evenly distributed with practically no delay saturation and very
little diverging behavior.

Although the sample size is low, this is a strong indication that the delay
learning method increases classification accuracy in feed-forward neural
networks.

5.4 Input classification in ring lattice

Taking another step towards more complex topologies, various unidirec-
tional ring lattice configurations were tested. The relevant parameters that
were tested in this case is the connectivity probability between input and
network which is limited to the interval [0.1, 0.4], the k feature or out-degree
of each neuron in the interval [2,4], and the internal weights from the set
8, 16. Since the ring lattice topology in question is unidirectional, the k
feature describes the number of outgoing connections in the anti-clockwise
direction. Each configuration also has 3 long-range connections where the
outgoing and incoming neuron is randomly chosen. The total number of

82

Figure 5.5: Shows delays as functions of time for a typical instance of the
20 simulations. Each color corresponds to the delay of on connection.

neurons is again 25, and there are 5 inputs. The PG matching threshold
was set to 0.6. With the described parameter intervals, a total set of 24
configurations were run twice, once with delay learning and once without.
The accuracy with delay learning enabled was 86.5%, while it was slightly
higher at 90.7% with delay learning disabled.

These numbers do not include the simulations where the network was
not able to separate the input which resulted in all instances being classified
as the same class. This occurred seven times out of 24 simulations for the
plastic network, and six times for the static network. If these instances are
counted as zero for both input classes, the accuracy drops down to 61.3%
for the plastic network, and 68.1% for the static network.

It is quite likely that increasing the PG matching threshold would reveal
that the network is in fact separating the input in these instances, but
this would likely lead to lower accuracy in the other simulations. This
highlights the potential need for a specific threshold for each network
configuration, but it would be quite a laborious task to establish such a
threshold for each individual network.

Another potential reason for the separation issue could be low activity,
as these instances appear to happen when the input connectivity is quite
low. It also appears to occur more frequently for the configurations with
lower internal weights. The input separation issue does not seem to

83

particularly favour either the plastic or static networks. Another interesting
observation is that the accuracy appears to be lower for the higher internal
weight, which is likely due to the more chaotic behavior as a result of more
activity in the network. The entire results table from the simulations can be
found in appendix A.1.

All the configurations of ring-lattice networks discussed so far are
subject to an identical input. In order to test the effects of various inputs, a
promising topology was chosen and another 20 simulations were run with
different inputs, in a similar manner as with the feed-forward topology.
The configuration that was chosen uses an internal weight of 8, k is set to
3 and the input to reservoir connectivity is 0.3. Figure B.2 shows the ring
lattice configuration used for the 20 tests.

Table 5.2: Accuracy of identical ring-lattice network run for 20 simulations
with and without delay learning, for various instances of the two input
classes.

Network type Plastic Static

Accuracy per input
Class 1 Class 2 Class 1 Class 2
91.7% 93.3% 97.1% 87.9%

Average accuracy 92.5% 92.5%

Table 5.2, shows the resulting accuracy of the simulations. The overall
accuracy was identical between the static and plastic networks, at 92.5%.
There were no class separation issues during these simulations. The
lack of difference between the two could be due to the high baseline
accuracy of the static network, which does not leave room for a lot of
improvement. However, this is a considerable performance increase for
the plastic network over the average accuracy seen in appendix A.1. This
could be an indication that the learning mechanism is sensitive to the exact
ring-lattice configurations.

5.5 Input classification in reservoir

The final and perhaps most complex topology that is tested is the reservoir,
which can also be referred to as the recurrent network. This topology is
created by iterating through all the neurons of the network and connecting
it to every other neuron with a specified probability. The parameters
include input to reservoir connectivity in the interval [0.1 , 0.4], reservoir
connectivity in the interval [0.1, 0.4], and internal weights from the set 4, 8,
16. Again, the reservoir consist of 25 neurons and there are 5 input neurons.

The accuracy was relatively low for both the static and plastic reser-
voirs, with an average accuracy of 75.8% and 71.0% respectively. The sep-
aration issue was again present, with 11 occurrences out of 44 simulations
in both the plastic and static networks. Counting these instances as 0 res-
ults in a 53.2% accuracy for the plastic networks and 56.8% for the static
networks. Again, the issue was prevalent for networks with low weights
and low input and reservoir connectivity, indicating that perhaps low activ-

84

ity is the culprit. There is also a clear trend of lower accuracy as the weight
and connectivity increases, which could result in chaotic behavior leading
to low PG matching within the same class.

The entire results table can be found in appendix A.2. The four last
configurations using a weight of 16 and reservoir connectivity probability
of 0.4 are missing due to memory constraints. This indicates that these
configurations resulted in quite chaotic behavior with many large and
memory intensive PG structures and few matches.

The reservoir weight of 8 seems to be a good middle ground between
the chaotic and low accuracy behavior of the higher weight, and the low
activity of the lower weight. A promising configuration with this weight
was therefore selected and 20 simulations were run with varying input
classes. The specific configuration used a reservoir connectivity of 0.2 and
an input connectivity of 0.3.

An example of this configuration can be seen in figure B.3. The overall
accuracy was quite high, with the static reservoir achieving an average
accuracy of 89.6% while the plastic reservoir achieved a slightly higher
accuracy of 91.3%. These results can be seen in table 5.3.

Table 5.3: Accuracy of identical ring-lattice network run for 20 simulations
with and without delay learning, for various instances of the two input
classes.

Network type Plastic Static

Accuracy per input
Class 1 Class 2 Class 1 Class 2
89.2% 93.3% 88.8% 90.4%

Average accuracy 91.3% 89.6%

It is not unexpected that the reservoir in general performs poorly when
averaged over several configurations, as this topology is quite sensitive
to the choice of parameters. However, it is also clear that the reservoir
topology can perform quite well when parameters are carefully chosen.

5.6 Classifying MNIST dataset

This section will showcase a practical application of the delay learning
method by comparing the performance of static and plastic networks on
classification of images from the MNIST dataset.

The MNIST dataset [8] is commonly used to demonstrate machine
learning frameworks and often used as a benchmark for prediction
accuracy. The dataset consists of thousands of greyscale 28 by 28 pixel
images of handwritten digits.

The RSL encoding method is used to convert the images to spikes so
that it can be introduced to the network. Each pixel of the images is
converted to a single spike, where the pixel intensity determines the spikes
offset from the initiation of the input pattern. By using this method the
order and the temporal offset between the spikes describes the differences
between the pixels.

85

Since the images are greyscale with an eight bit color depth, the pixels
have integer values in the range [0, 255], where 0 is black and 255 is white.
Having offsets in this range is impractical, and therefore the values were
scaled down. Various smaller intervals were tested until [0, 40] was found
to provide sufficient spacing between input spikes, which allowed the
network to separate the input classes.

The method also require that each pixel is represented by one input,
and due to computational constraints, it is not feasible to use the original
image size. However, reducing the image too much removes a lot of
information. A good middle ground avoiding slow computation and too
much information loss was to use 10 by 10 pixels. This requires 100 input
neurons, and consequently quite large networks.

The method for encoding an image into spikes can be seen in figure 5.6.
The downscaled image is seen on the left, which is converted to a matrix in
the mentioned range. Row by row, the pixel numbers are then given to the
input neurons as spike times. If images are given to the network with a 400
ms interval, then a pixel value of 1 from the first image results in a spike
time of 1 ms. The same pixel value for the next image would then give a
spike time of 401 ms.

Figure 5.6: The images from the MNIST dataset are initially reduced in
size, then the pixel values are scaled down to an appropriate range. Each
individual pixel value is then given to one input neuron as a spike time.

Based on the encouraging performance increase shown by the plastic
networks over the static networks when using the feed-forward topology
in the previous input classification task, this topology was chosen for
classifying the MNIST data. A network configuration of 500 RS neurons
configured in 5 layers was observed to perform quite well. However, due
to the size of the network and the number of inputs, using fully connected
layers resulted in chaotic behavior. Through testing, a configuration using
weights of 4 and network connectivity of 0.3, yielded good performance.
In this case, the network connectivity determines the probability of a
connection between two layers.

An interesting result was that in order to achieve good performance
with this network, the G(∆t) part of the learning mechanism had to be
disabled. Figure 5.7 shows the learning method with G(∆t) enabled on the
top plot, and disabled on the bottom plot. The input for both networks

86

is the digit 0, repeated 20 times. The top plot shows significantly more
activity, and the chaotic behavior results in a large number of different
classes. When G(∆t) is disabled, however, the intensity of the activity
is reduced after a few iterations and the network correctly classifies
the remaining inputs as the same class. It is worth noting that other
configurations of feed-forward networks did not necessarily require part
of the learning method to be disabled, which indicates that the learning
method is quite sensitive to the exact network configuration.

Figure 5.7: The digit five introduced to a network with G(∆t) enabled in
the top plot, and disabled in the bottom plot.

Adding a second input class and comparing the learning method to its
static counterpart, reveals a significant advantage in accuracy in the plastic
network over its static counterpart. Figure 5.8 shows the resulting raster

87

plots, with the static network in the top plot and the plastic network in
the bottom plot. The networks are given a series of 20 instances with the
digit 0, followed by another series of the digit 7. These specific digits were
chosen because they are not very similar in their shape.

The plastic network achieves an accuracy of 75% for the first pattern,
and 90% for the second. One interesting observation is that the main PG
group of the first input series appears in the beginning of the second input
series, before the network adjusts resulting in a new PG group. This means
that if the network was static after the first input, it would incorrectly
classify all the instances of the second input, substantiating the importance
of training with multiple input classes. The static network is quite chaotic
and is not able to properly group the activity into meaningful groups.

In order to test the network on an even distribution of the various
classes, the same network was tested on each of the 10 digits, with 10
instances of each class. The result can be seen in table 5.4. The plastic
network was able to achieve an accuracy of 63.0% while the static network
only achieved 28.0%. The raster plots from the simulations can be seen in
appendix A.1, which shows than many of the plastic networks appear to
settle on a specific class towards the end of the simulation. This means that
the accuracy discrepancy between static and plastic networks would likely
be further exacerbated if the simulations were run for a longer period.

Table 5.4: Number of correctly classified digits out of 10 instances for each
digit for both the static and the plastic network.

Digit Static Plastic
0 4 7
1 3 8
2 2 8
3 2 7
4 1 5
5 6 5
6 2 6
7 2 6
8 3 6
9 3 5
Accuracy 28.0% 63.0%

Overall these results using the feed-forward topology are quite prom-
ising. It demonstrates that the learning method is able to consolidate the
activity that is the result of similar input classes. However, in order to
truly test the method, a large set of randomly chosen and evenly distrib-
utes classes should be given to the network in a training phase. Then the
delay learning could be disabled and the trained static network would then
be tested with unseen data. Due to the relatively time consuming simula-
tions and computationally expensive PG detection method, such a train-
ing period is unfeasible with the current implementation and therefore this
proof-of-concept will have to suffice. However, implementing a regression

88

Figure 5.8: Top plot shows a static network, while the bottom plot shows a
plastic network. Input consist of 20 instances of the digit 0, followed by 20
instances of the digit 7.

layer for extracting network activity instead of PG detection could make
such a training period possible.

89

Chapter 6

Discussion

The first interesting observation made in this project was the overwhelming
trend of diverging delays when rate-coded input was presented to small
networks. However, this was not entirely unexpected since the learning
method adjusts delays so that each pre-synaptic spike that contributed to
the post-synaptic spike would align more towards the average spike arrival
time for the next set of similar spikes. The order and offset between these
spikes is therefore crucial for what the adjustments to the delays will be.
It is simple to imagine how a set of input neurons with different firing
rates, will lead to different spike offsets and even spike orders when the
spikes arrive at the post-synaptic neuron. This would result in the learning
mechanism continuously attempting to adjust the delays to accommodate
for the change spike offsets.

Applying RSL encoding, on the other hand, appears to work signific-
antly better. This is a logical result, as this method encodes information in
the latencies or offsets between spikes, rather than the rate of spikes. The
offset and order of spikes from instances of one class would therefore be
somewhat similar, and the delay learning method should be able to adjust
to accommodate for these input without drastic changes between instances.

Another interesting observation was that the ring-lattice and reservoir
topologies did not show a performance increase when delay learning was
applied. This can likely be attributed to the complex temporal nature of
networks with recurrent connections. The issue is that a single connection
could be active in multiple parts of an activity pattern that is the result
of a single input. The average spike arrival time could be different in all
these instances, and therefore the delay change would be different, and
consequently the delay would never converge.

It was also observed that the learning mechanism could perform well
with the ring-lattice and reservoir topologies, when correct parameters
were applied. Even a slight improvement in accuracy in the plastic
reservoir topology over its static counterpart was observed. This indicate
that the proposed learning method is sensitive to the exact configuration of
the network.

One improvement to the proposed learning method that could provide
a solution to the lack of converging delays is to incorporate a decaying

90

learning rate. This could be implemented on a per-synapse basis. The
proposed implementation is that the learning rate, or change to delays,
is reduced for each time the learning mechanism is triggered. If one
uses the MNIST dataset as an example, and random images of digits are
sequentially introduced to the network, then after some period of time
the network will consolidate and become static, and the final delays are
the result of gradually decaying incremental changes based on an evenly
distributed set of instances from all classes. It is not unlikely that this final
static network, regardless of topology, would outperform a static network
of randomly chosen delays, since the trained network will hopefully have
increased the probability of a certain network pattern to occur as a result of
input instances of a specific class.

The proposed learning method introduces changes to the temporal
dynamics of the model in two ways, the most obvious being changes to the
delays, while the other is by aligning pre-synaptic spikes which increases
the magnitude of the input and leads to a quicker post-synaptic response.
This means that the post-synaptic spike time is shifted forward in time
which could affect the activity the follows this spike in other parts of the
network. The proposed solution to this issue, is to align the spikes at a time
point, slightly after the average spike arrival time, to compensate for the
shift in post-synaptic spike time. This slight shift in alignment would likely
depend on the number of contributing spikes, their respective weights and
their relative spike arrival times.

Another interesting notion is the inclusion of local weight training
through the conventional STDP mechanism. It would be very interesting
to observe the network dynamics when local delay learning and weight
learning are applied in tandem. Especially exchanging the G(∆t) part of the
delay learning mechanism with synaptic depression could yield interesting
results. Then the effect of the spike would be decreased instead of being
shifted backwards in time.

It was observed that the learning method in its current state is quite
sensitive to the exact configuration of the network, especially for ring-
lattice and reservoir networks. Applying a genetic algorithm to find an
optimal learning method that could potentially perform well on a wider
range of network configurations and topologies would be an interesting
endeavor. The parameter space could include parameters related to the
current learning method from equations 4.1 and 4.3, disabling G(∆t),
learning rates, decaying learning rates, inclusion of STDP or other local
delay learning methods entirely.

When working with AI, one should always consider the ethical
implications. As for any implementation of AI, the goal is to achieve a
model or method that can be applied in real-life scenarios. This can raise
issues related to the explainability of the model, as many are reluctant to
using black-box models. This is a difficult issue to overcome as the spiking
networks can be quite large and the activity complicated.

A positive ethical result of this work is that SNN’s are more power-
efficient, as previously stated, which can reduce impacts on the environ-
ment. When the neurons and synapses are implemented as discrete elec-

91

trical components the efficiency over conventional computers is drastic-
ally increased as the components only expend energy when they are act-
ive. This is in contrast to the inefficient synchronous clock used by classical
computers which forces all computational units to respond even it they are
not part of the computation.

92

Chapter 7

Conclusion

The purpose of this project was to develop a local delay learning method
that adjusts delays based on local knowledge, in order to improve the
performance of spiking neural networks. A delay learning method was
developed, and subsequently proved to increase performance of feed-
forward networks on classification tasks.

The learning method consist of two mechanisms. The first mechanism
adjust delays of connections that are contributing pre-synaptic spikes that
are causally related to a post-synaptic spike to improve spike alignment.
The theory is that by improving the alignment of these spikes, the chance of
eliciting the same post-synaptic response from similar inputs is increased.
This would help the network separate different classes of inputs. The
second mechanism pushed away spikes that are not causally related to the
post-synaptic spike by increasing the connection delay.

Two methods for input encoding were tested on simple networks with
the learning method applied. The results showed that rate-coded inputs
leads to diverging delays and is not a suitable encoding method for the
proposed learning mechanism.

The RSL encoding method showed significantly better response in
delay behavior. This method was subsequently used to encode inputs
for three topologies, in order to compare the performance of the learning
method on various network configurations.

The network configurations were tested on a classification task, where
a novel PG detection method was developed and used to group network
behavior into classes. The three topologies used was the feed-forward,
ring-lattice and reservoir. Various versions of these topologies was tested
with and without delay learning enabled. The only topology that showed
a substantial performance increase when delay learning was applied, was
the feed-forward networks.

The feed-forward topology was then used to classify hand-written
digits from the MNIST dataset, and the plastic networks showed a
significant performance increase in this classification task over the static
networks.

The project highlights the difficulty of developing delay learning
methods for recurrent networks. This is an obstacle that is important

93

to overcome, as recurrent SNNs are powerful computational frameworks
that can perform well on sequential data tasks due to their capacity for
memory. It is also clear that the method used for encoding inputs is an
important consideration for temporal learning methods. Likewise, the way
the network output is interpreted is likely just as important, although only
one method for decoding output was tested in this project.

The work presents a small but important step in attempting to fill a
void in current research pertaining to local learning of delays in spiking
neural networks. Although the results of the project indicates promising
performance on specific topologies, much work remains to develop an
optimal local learning mechanism for delays that can be applied to more
complicated tasks and on more interesting topologies.

94

Bibliography

[1] Andrew Allot and Midorff David. IB biology. Course book. Oxford :
Oxford University Press, 2014., 2015.

[2] Guillaume Bellec et al. ‘Long short-term memory and learning-to-
learn in networks of spiking neurons’. In: (2018).

[3] S. Bohté, J. Kok and H. L. Poutré. ‘SpikeProp: backpropagation for
networks of spiking neurons’. In: ESANN. 2000.

[4] Dirk Bucher and Jean-Marc Goaillard. ‘Beyond faithful conduction:
short-term dynamics, neuromodulation, and long-term regulation of
spike propagation in the axon’. eng. In: Progress in neurobiology 94.4
(2011), pp. 307–346. ISSN: 0301-0082.

[5] CE Carr and M Konishi. ‘A circuit for detection of interaural time
differences in the brain stem of the barn owl’. eng. In: The Journal of
neuroscience 10.10 (1990), pp. 3227–3246. ISSN: 0270-6474.

[6] Joseph Chrol-Cannon, Yaochu Jin and André Grüning. ‘An efficient
method for online detection of polychronous patterns in spiking
neural networks’. In: Neurocomputing 267 (Dec. 2017), pp. 644–650.
DOI: 10.1016/j.neucom.2017.06.025. URL: https://doi.org/10.1016%
5C%2Fj.neucom.2017.06.025.

[7] Dominique Debanne. ‘Information processing in the axon’. In: Nat
Rev Neurosci 5.4 (2004), pp. 304–316. ISSN: 1471-003X. DOI: 10.1038/
nrn1397.

[8] Li Deng. ‘The mnist database of handwritten digit images for
machine learning research’. In: IEEE Signal Processing Magazine 29.6
(2012), pp. 141–142.

[9] Roger M Enoka and Jacques Duchateau. ‘Rate Coding and the
Control of Muscle Force’. eng. In: Cold Spring Harbor perspectives in
medicine 7.10 (2017), a029702. ISSN: 2157-1422.

[10] Richard FitzHugh. ‘Impulses and Physiological States in Theoretical
Models of Nerve Membrane’. eng. In: Biophysical journal 1.6 (1961),
pp. 445–466. ISSN: 0006-3495.

[11] W Gerstner et al. A neuronal learning rule for sub-millisecond temporal
coding. eng.

95

[12] Tim GOLLISCH and Markus MEISTER. ‘Rapid Neural Coding in
the Retina with Relative Spike Latencies’. eng. In: Science (American
Association for the Advancement of Science) 319.5866 (2008), pp. 1108–
1111. ISSN: 0036-8075.

[13] Y Grossman, I Parnas and M E Spira. ‘Differential conduction block
in branches of a bifurcating axon’. eng. In: The Journal of physiology
295.1 (1979), pp. 283–305. ISSN: 0022-3751.

[14] H Hatt and D O Smith. ‘Synaptic depression related to presynaptic
axon conduction block’. eng. In: The Journal of physiology 259.2 (1976),
pp. 367–393. ISSN: 0022-3751.

[15] Simon Haykin. Neural networks and learning machines. eng. Upper
Saddle River, N.J, 2009.

[16] A. L. Hodgkin and A. F. Huxley. ‘A quantitative description of
membrane current and its application to conduction and excitation
in nerve’. In: Bulletin of mathematical biology 52.1 (1990), pp. 25–71.
ISSN: 0092-8240. DOI: 10.1016/S0092-8240(05)80004-7.

[17] Kurt Hornik. ‘Approximation capabilities of multilayer feedforward
networks’. eng. In: Neural networks 4.2 (1991), pp. 251–257. ISSN: 0893-
6080.

[18] E. M. Izhikevich. ‘Simple model of spiking neurons’. In: IEEE Trans
Neural Netw 14.6 (2003), pp. 1569–1572. ISSN: 1045-9227. DOI: 10.1109/
TNN.2003.820440.

[19] E. M. Izhikevich. ‘Which model to use for cortical spiking neurons?’
In: IEEE Trans Neural Netw 15.5 (2004), pp. 1063–1070. ISSN: 1045-
9227. DOI: 10.1109/TNN.2004.832719.

[20] Eugene M Izhikevich. ‘Resonate-and-fire neurons’. eng. In: Neural
networks 14.6 (2001), pp. 883–894. ISSN: 0893-6080.

[21] Eugene M. Izhikevich. ‘Polychronization: Computation with Spikes’.
In: Neural Comput 18.2 (2006), pp. 245–282. ISSN: 1530-888X,0899-
7667. DOI: 10.1162/089976606775093882.

[22] Eugene M. Izhikevich. Simple model of spiking neurons code example 1.
https://www.izhikevich.org/publications/net.m. 2003.

[23] Eugene M. Izhikevich. Simple model of spiking neurons code example 2.
https://www.izhikevich.org/publications/figure1.m. 2003.

[24] S.P Johnston et al. ‘A Hybrid Learning Algorithm Fusing STDP with
GA based Explicit Delay Learning for Spiking Neurons’. eng. In:
2006 3rd International IEEE Conference Intelligent Systems. IEEE, 2006,
pp. 632–637. ISBN: 9781424401956.

[25] Jaehyun Kim et al. ‘Deep neural networks with weighted spikes’.
eng. In: Neurocomputing (Amsterdam) 311 (2018), pp. 373–386. ISSN:
0925-2312.

96

[26] P. E. Latham et al. ‘Intrinsic Dynamics in Neuronal Networks. I.
Theory’. In: Journal of Neurophysiology 83.2 (2000). PMID: 10669496,
pp. 808–827. DOI: 10.1152/jn.2000.83.2.808. eprint: https://doi.org/10.
1152/jn.2000.83.2.808. URL: https://doi.org/10.1152/jn.2000.83.2.808.

[27] Dingbang Liu, Hao Yu and Yang Chai. ‘Low-Power Computing with
Neuromorphic Engineering’. eng. In: Advanced intelligent systems 3.2
(2021), 2000150–n/a. ISSN: 2640-4567.

[28] C. Luscher et al. ‘Action potential propagation through embryonic
dorsal root ganglion cells in culture. I. Influence of the cell morpho-
logy on propagation properties’. In: Journal of Neurophysiology 72.2
(1994). PMID: 7983524, pp. 622–633. DOI: 10.1152/jn.1994.72.2.622.
eprint: https://doi.org/10.1152/jn.1994.72.2.622. URL: https://doi.org/
10.1152/jn.1994.72.2.622.

[29] Wolfgang Maass. ‘Networks of spiking neurons: The third generation
of neural network models’. In: Neural networks 10.9 (1997), pp. 1659–
1671. ISSN: 0893-6080. DOI: 10.1016/S0893-6080(97)00011-7.

[30] Warren S. McCulloch and Walter Pitts. ‘A logical calculus of the
ideas immanent in nervous activity’. In: The Bulletin of Mathematical
Biophysics 5.4 (1943), pp. 115–133. ISSN: 0007-4985. DOI: 10 . 1007 /
BF02478259.

[31] C Morris and H Lecar. ‘Voltage oscillations in the barnacle giant
muscle fiber’. eng. In: Biophysical journal 35.1 (1981), pp. 193–213.
ISSN: 0006-3495.

[32] Flavio öhlich. Network Neuroscience. eng. San Diego: Elsevier Science
Technology, 2016. ISBN: 9780128015605.

[33] Seongsik Park et al. ‘T2FSNN: Deep Spiking Neural Networks
with Time-to-first-spike Coding’. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC). 2020, pp. 1–6. DOI: 10.1109/DAC18072.
2020.9218689.

[34] Hélène Paugam-Moisy, Régis Martinez and Samy Bengio. ‘Delay
learning and polychronization for reservoir computing’. eng. In:
Neurocomputing (Amsterdam) 71.7 (2008), pp. 1143–1158. ISSN: 0925-
2312.

[35] D. I. Perrett, E. T. Rolls and W. Caan. ‘Visual neurones responsive to
faces in the monkey temporal cortex’. In: Exp Brain Res 47.3 (1982),
pp. 329–342. ISSN: 0014-4819. DOI: 10.1007/BF00239352.

[36] Filip PONULAK and Andrzej KASINSKI. ‘Supervised Learning
in Spiking Neural Networks with ReSuMe: Sequence Learning,
Classification, and Spike Shifting’. eng. In: Neural computation 22.2
(2010), pp. 467–510. ISSN: 0899-7667.

[37] Dale Purves and Stephen Mark. Williams. Neuroscience. 2nd edition.
Sinauer Associates, 2001.

97

[38] F Rosenblatt. ‘The perceptron: A probabilistic model for information
storage and organization in the brain’. eng. In: Psychological review
65.6 (1958), pp. 386–408. ISSN: 0033-295X.

[39] B. Schrauwen and J. Van Campenhout. ‘Extending SpikeProp’. In:
2004 IEEE International Joint Conference on Neural Networks (IEEE Cat.
No.04CH37541). Vol. 1. 2004, pp. 471–475. DOI: 10.1109/IJCNN.2004.
1379954.

[40] Benjamin Schrauwen and Jan Van Campenhout. ‘Extending Spike-
Prop’. eng. In: IEEE International Joint Conference on Neural Networks
(IJCNN). Budapest, Hungary: IEEE, 2004, pp. 471–475. ISBN: 0-7803-
8359-1.

[41] Gregory D. Smith et al. ‘Fourier Analysis of Sinusoidally Driven
Thalamocortical Relay Neurons and a Minimal Integrate-and-Fire-
or-Burst Model’. eng. In: Journal of Neurophysiology 83.1 (2000),
pp. 588–610. ISSN: 0022-3077.

[42] Sen Song, Kenneth Miller and L.F. Abbott. ‘Competitive Hebbian
learning through spike timing-dependent plasticity’. In: Nature neur-
oscience 3 (Oct. 2000), pp. 919–26. DOI: 10.1038/78829.

[43] David Sterratt et al. Principles of Computational Modelling in Neur-
oscience. eng. Cambridge: Cambridge University Press, 2011. ISBN:
9780521877954.

[44] Aboozar Taherkhani et al. ‘A Supervised Learning Algorithm for
Learning Precise Timing of Multiple Spikes in Multilayer Spiking
Neural Networks’. eng. In: IEEE transaction on neural networks and
learning systems 29.11 (2018), pp. 5394–5407. ISSN: 2162-237X.

[45] Aboozar Taherkhani et al. ‘DL-ReSuMe: A Delay Learning-Based
Remote Supervised Method for Spiking Neurons’. In: IEEE Trans
Neural Netw Learn Syst 26.12 (2015), pp. 3137–3149. ISSN: 2162-237X.
DOI: 10.1109/TNNLS.2015.2404938.

[46] Jacques Thorpe Simon; Gautrais. ‘Rank order coding’. In: Computa-
tional Neuroscience: Trends in Research (1998), pp. 113–118. ISSN: 978-1-
4613-7190-8. DOI: 10.1007/978-1-4615-4831-7_19.

[47] Xiangwen Wang, Xianghong Lin and Xiaochao Dang. ‘A Delay
Learning Algorithm Based on Spike Train Kernels for Spiking
Neurons’. eng. In: Frontiers in neuroscience 13 (2019), pp. 252–252.
ISSN: 1662-4548.

[48] Xiangwen Wang, Xianghong Lin and Xiaochao Dang. ‘Supervised
learning in spiking neural networks: A review of algorithms and
evaluations’. In: Neural Netw 125 (2020), pp. 258–280. ISSN: 0893-6080.
DOI: 10.1016/j.neunet.2020.02.011.

[49] James C. R. Whittington and Rafal Bogacz. ‘Theories of Error Back-
Propagation in the Brain’. In: Trends Cogn Sci 23.3 (2019), pp. 235–250.
ISSN: 1364-6613. DOI: 10.1016/j.tics.2018.12.005.

98

[50] Hugh R Wilson. ‘Simplified Dynamics of Human and Mammalian
Neocortical Neurons’. eng. In: Journal of theoretical biology 200.4 (1999),
pp. 375–388. ISSN: 0022-5193.

[51] Fleur Zeldenrust, Wytse J. Wadman and Bernhard Englitz. ‘Neural
Coding With Bursts—Current State and Future Perspectives’. In:
Frontiers in Computational Neuroscience 12 (2018). ISSN: 1662-5188. DOI:
10.3389/fncom.2018.00048. URL: https://www.frontiersin.org/article/
10.3389/fncom.2018.00048.

[52] Han Zhang et al. ‘StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks’. eng. In: (2016).

99

Appendix A

Input classification

A.1 Ring lattice

Ring lattice

resW k inpP
Plastic Static

Pattern
1

Pattern
2

Pattern
1

Pattern
2

8 2 0.1 - - - -
8 2 0.2 - - - -
8 2 0.3 12 12 12 12
8 2 0.4 12 12 12 12
8 3 0.1 - - - -
8 3 0.2 - - - -
8 3 0.3 12 12 12 12
8 3 0.4 11 8 9 11
8 4 0.1 - - - -
8 4 0.2 12 12 12 12
8 4 0.3 11 12 9 12
8 4 0.4 8 12 6 11
16 2 0.1 12 12 12 12
16 2 0.2 - - - -
16 2 0.3 12 6 12 12
16 2 0.4 12 12 12 12
16 3 0.1 8 12 7 12
16 3 0.2 - - 12 11
16 3 0.3 12 12 12 12
16 3 0.4 12 12 12 12
16 4 0.1 6 3 12 12
16 4 0.2 11 12 8 12
16 4 0.3 6 11 11 12
16 4 0.4 5 7 7 5

Average accuracy 86.5% 90.7%
Average accuracy w/null 61.3% 68.1%

100

A.2 Reservoir

Reservoir

resW resP inpP
Plastic Static

Pattern
1

Pattern
2

Pattern
1

Pattern
2

4 0.1 0.1 - - - -
4 0.1 0.2 - - - -
4 0.1 0.3 - - - -
4 0.1 0.4 12 12 12 12
4 0.2 0.1 - - - -
4 0.2 0.2 - - - -
4 0.2 0.3 12 12 12 12
4 0.2 0.4 12 12 12 6
4 0.3 0.1 - - - -
4 0.3 0.2 12 12 12 12
4 0.3 0.3 8 12 9 12
4 0.3 0.4 6 8 6 8
4 0.4 0.1 - - - -
4 0.4 0.2 12 8 12 12
4 0.4 0.3 8 9 7 8
4 0.4 0.4 6 12 12 9
8 0.1 0.1 - - - -
8 0.1 0.2 - - - -
8 0.1 0.3 12 5 12 12
8 0.1 0.4 6 12 12 6
8 0.2 0.1 12 12 12 12
8 0.2 0.2 12 11 12 12
8 0.2 0.3 9 12 12 9
8 0.2 0.4 7 8 7 9
8 0.3 0.1 12 12 12 12
8 0.3 0.2 12 12 7 11
8 0.3 0.3 6 6 7 9
8 0.3 0.4 6 9 9 5
8 0.4 0.1 12 9 12 8
8 0.4 0.2 9 5 5 9
8 0.4 0.3 9 6 8 9
8 0.4 0.4 3 9 6 6
16 0.1 0.1 - - - -
16 0.1 0.2 - - - -
16 0.1 0.3 12 3 12 12
16 0.1 0.4 12 9 12 8
16 0.2 0.1 12 12 12 12
16 0.2 0.2 8 5 6 12
16 0.2 0.3 6 9 4 7
16 0.2 0.4 7 5 10 5
16 0.3 0.1 3 5 6 4
16 0.3 0.2 3 2 6 10
16 0.3 0.3 2 3 3 2
16 0.3 0.4 2 2 8 2

Average accuracy 71.0% 75.8%
Average accuracy w/null 53.2% 56.8%

101

A.3 MNIST classification

Figure A.1: Classification of MNIST digits using feed-forward topology.
Similar colors indates that the spike activity belongs to the same PG.

102

Appendix B

Topologies

Figure B.1: An example of the feed-forward topology with green nodes
representing inputs and blue nodes representing RS neurons. Edge colors
indicate delays in ms.

103

Figure B.2: A typical ring lattice topology.

Figure B.3: A typical reservoir topology.

104

