ACIT5930

MASTER’S THESIS
in
Applied Computer and Information

Technology (ACIT)
May 2022

Robotics and Control

Verification and Validation of
ROV Simulation Using
Experimental Data

Jeen Ann Abraham

Department of Computer Science
Faculty of Technology, Art and Design

Verification and Validation of
ROV Simulation Using
Experimental Data

Jeen Ann Abraham

© 2022 Jeen Ann Abraham

Verification and Validation of ROV Simulation Using Experimental
Data

http://www.oslomet.no/

Printed: Oslo Metropolitan University — OsloMet

Abstract

Remotely operated vehicles (ROVs) are used widely in industries such as
oil and gas, offshore, and renewable industries for various applications
such as inspection, maintenance, and repair of their infrastructure. There
is a great and underutilized opportunity for their scientific use across the
world’s oceans with depths varying from a few hundred meters to depths
greater than 4,000 m. The ROV operations are normally controlled by
a human operator, and their hydrodynamic performance is far from the
ideal behavior. As a result, the outcome of the task primarily depends
on the operator’s experience. Model simulations that have close to real
behavior can help in the training, development, testing, and verification
of ROVs under varying test conditions and investigate critical situations
cost-effectively without risking the safety of the user as well as equipment
safety.

This research was focused on developing a high precision ROV
simulation platform under Robot Operating System(ROS) and MAT-
LAB/Simulink environment whose behavior stays as close to that of the
hardware (IKM Subsea’s Merlin) experimental data. The performance of
the ROV simulator was tested and validated against the real-time data cap-
tured from the Merlin. In the early phase, the focus was more on under-
standing the problem. To get an insight into the components and working
principle of an ROV, several related research works were reviewed, fol-
lowed by analyzing the relevant works done under this research topic, and
the simulation software environment was set up. Later, a great deal of at-
tention was directed toward the ROV kinematics and behavior of the dy-
namic model from the existing simulator. Data collection was done for both
simulators and hardware. Semi-automated scripts were made for data col-
lection and graphical representation to perform a comparative study. Also,
work has been done for ROV hydrodynamic modeling and simulation in
MATLAB to test the simulator behavior across independent simulation en-
vironments. Simulation and real-time experiments along with the results
were presented to demonstrate the reliability of the ROV simulator over
the hardware and thereby signify the possibility of replacing physical hard-
ware with virtual hardware for various applications.

ii

Preface

The Audience

In the modern era, simulation is extensively being used as a tool to increase
product safety as well as production capacity. The purpose of this thesis is
to study how close are software simulation results of the ROV simulator
against the real-time data captured from the hardware (Merlin UCV). This
report is designed in a way that the reader can easily capture the research
done during the work with basic knowledge of the ROS framework,
MATLAB/Simulink framework, and control engineering. Each chapter
begins with a chapter outline describing the topics the reader can expect
to encounter.

Acknowledgments

I would like to express my deep sense of gratitude towards Prof. Alex
Alcocer [Professor, Faculty of Technology, Art and Design, Department of
Mechanical, Electronics and Chemical Engineering, Teaching and Research,
Oslo Metropolitan University, Oslo] who was my dissertation guide
and Prof. Vahid Hassani [Vice-Dean, Faculty of Technology, Art and
Design, Department of Mechanical, Electronics and Chemical Engineering,
Teaching and Research, Oslo Metropolitan University, Oslo] who was
my co-supervisor, for their guidance, interesting discussions and healthy
criticism during the work, which has been a great motivation to me as a
way forward. Furthermore, I would like to thank Ph.D. Candidate, Hdkon
Teigland for the support, knowledge exchange on the existing simulator of
Merlin, and a good collaboration with the development of the simulator.

Also, I extend my sincere thanks to IKM Subsea AS for assisting with
necessary support and granting an opportunity to work with the latest
ROV technology as well as providing ROV data to use in my simulations.
Lastly, I'm extremely grateful to all of the Department faculty members at
the Oceanlab facility for their help and support.

Oslo, May 16, 2022

Jeen Ann Abraham

iii

iv

Contents

Abstract
Acknowledgments

1 Introduction

1.1 Unmanned Underwater Vehicle - A Brief Discussion
1.2 Motivation and Need of Research Topic
1.3 Problem Statement
14 Software Framework

141 MATLAB o

142 ROS. e

143 Gazebo
1.5 Overview of Original Contributions
1.6 Research Methodology
1.7 ThesisOutline

2 Background and Related Work
21 Background L.
211 ROV -ABrief Discussion
21.2 Components of an ROV System
21.3 Degreeof Autonomy
214 Human Riskin handlingUUVs
2.1.5 C(lassificationof ROVs
21.6 InspectionclassROVs
2.1.7 Intervention-classROVs
2.1.8 ResidentialROVs
22 MerlinROV o
23 ROVModelling
2.3.1 Mathematical modellingofan ROV
24 Relatedworks
241 Implementation of Mathematical Model in ROS . . .
242 World Modelling
243 Modellingof Sensors
244 CameraModelling
245 SonarModelling
246 Thruster Modelling
247 Role of System Identification in Thruster Modelling .

o
ey
=2y

NN O U W WDNDN M-

248 Modelling of Tether
249 Manipulator and tool pack Modelling

Approach
31 UUVKinematics
3.2 Dynamicmodelling

3.3

3.21 System Inertia Matrix
322 DragMatrix
3.2.3 Gravitational and Buoyancy Matrix
3.24 Force and Torque Vector
Model Implementation
3.3.1 Implementation overview inROS
3.3.2 Implementation overview in MATLAB/Simulink . .

Test Plan and Experiments

4.1
4.2
4.3
44

Introduction Lo L Lo
ROV model stability
Thruster response for varying inputs
Thruster response for varying movement commands -
Data Collection

4.5

4.6 Performance Comparison - Simulator v/s Merlin UCV
Results

5.1 Testscenario 1-ROV Model Stability

52
5.3

Test scenario 2 - Thruster Response for Varying Inputs
Test scenario 3 - Thruster Response for Varying Movement
Commands.

54 Test scenario 4 - Data Samples from Hardware
5.5 Test scenario 5 - Performance Comparison
Discussion

6.1 Preliminary Analysis on ROV Dynamics

6.2
6.3
6.4
6.5

ROV Simulator Stability
Thruster Inputs Versus Response

Movement Command Versus Thruster response
Simulator Versus Merlin UCV

Conclusion and Future Work

7.1

7.2

Conclusion
7.1.1 Simulation Environment
7.1.2 Dynamic Model of ROV Against Hardware
FurtherWork

ROS Environment Set-up

MATLAB Environment Set-up

Vi

27
28
29
30
30
31
31
31
31
33

35
36
37
37
37
38
39

43
44
46

49
50
52

55
56
56
57
57
58

61
62
62
62
63

69

71

List of Figures

1.1
1.2

2.1
2.2
23
24

3.1
3.2
3.3

4.1
4.2
4.3

5.1
52
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521

Merlin simulator 0 0L 4
Overview of Gazebo components 6
ROV submersible components 11
MerlinUCVROV 16
Merlin UCV Residential ROV 17
Different variants of active sonar technology 22
ROV reference frame and degrees of freedom 28
ROS package folder structure 32
MATLAB package folder structure 33
Input Commands to Individual Thruster using RQT_GUI . 36
Simulink model for stability test 36
Simulink Model for Comparison Study 40
ROV Velocity Versus Time in ROS - Test Scenario1 44
ROV Individual Thruster Response in ROS - Test Scenario 1~ 45
Input to individual thruster in MATLAB - Test Scenario1 . . 45
ROV Thrust in MATLAB - Test Scenario1 45
ROV Velocity in MATLAB - Test Scenariol 46
ROV Velocity Versus Time in ROS - Test Scenario2 46
ROV Individual Thruster Response in ROS - Test Scenario 2~ 47

Individual Thruster Velocity (linear) in ROS - Test Scenario 2~ 47
Individual Thruster Velocity (angular) in ROS - Test Scenario 2 47

Input to individual thruster in MATLAB - Test Scenario2 . . 48
ROV Thrust in MATLAB - Test Scenario2 48
ROV Velocity in MATLAB - Test Scenario2 48

Thruster 1 and 0 Input/ Output Versus Time - Test Scenario 3 49
Thruster 3 and 2 Input/ Output Versus Time - Test Scenario 3 50
Thruster 5 and 4 Input/ Output Versus Time - Test Scenario 3 50

Thruster 6 Input/ Output Versus Time - Test Scenario3 . . . 51
ROV Change in Position in MATLAB - Test Scenario3 51
ROV motion 3-D plot in MATLAB - Test Scenario3 51
ROV Velocity in MATLAB - Test Scenario3 52
Response From Various Thrusters in Merlin UCV 53

Performance comparison Merlin Hardware Versus Simulator 54

Vii

viii

List of Tables

4.1
4.2
43

44
4.5

4.6

4.7

6.1
6.2

Test scenario 1 - Model stability under MATLAB environment 37

Test scenario 1 - Model stability under ROS environment . . 38
Test scenario 2 - Thruster response under MATLAB environ-

ment 39
Test scenario 2 - Thruster response under ROS environment 40

Test scenario 3 - Thruster response for varying movement

commands under MATLAB environment 40
Test scenario 3 - Thruster response for varying movement

commands under ROS environment 41
Test scenario 4 - Performance Comparison - ROV Simulator

Versus Merlin UCV 41
Thruster response comparison. 57
Thruster response comparison. 59

ix

Chapter 1

Introduction

Chapter Outline

This chapter serves to introduce the subject of the research and details the
purpose of the study to the reader. It justifies the research based on the
identified problem, followed by exploring the objectives of the study. Once
the objectives have been defined, the contribution of the study has been
explored. Subsequently, the chapter discusses the followed methodology
in this research and how the thesis has been structured.

1.1 Unmanned Underwater Vehicle - A Brief Discus-
sion

Due to zero visibility, extreme environment, and high pressure, develop-
ment in the field of deep-sea exploration was running at a slow pace during
the early 80s. Additional factors that slag the exploration are lack of nat-
ural light because of scattering and attenuation, and high costs for devel-
opment and testing. Recently the advancement in engineering and techno-
logy, accompany more modern and sophisticated tools that can yield high
performance even in extreme environments. This plays a major role in the
rapid development in the field of deep-sea exploration. An Unmanned
Underwater Vehicle (UUV) is one of the best examples to explain the above
statement. As the name suggests, an Unmanned Underwater Vehicle is
a system that operates in a sub-aquatic environment without human in-
habitants which are basically of two types, Remotely Operated Vehicles,
and Autonomous Underwater Vehicles. The former one is called Remotely
Operated Vehicles (ROVs) which are tethered and require an isolated hu-
man operator mostly from an onboard vessel. The first ROV ever built was
named “Poodle” built-in 1953 by Dimitri Rebikoff [1]. The latter is called
Autonomous Underwater Vehicles (AUVs) which are self-governing. In the
absence of natural light in the deep sea, both the above vehicles utilize ar-
tificial light for illumination and advanced cameras to capture underwater
images for gathering the required information. The captured images from
cameras located at different positions of the UUVs are combined depend-
ing on the geometric relationship between the camera, light source, and the
object to obtain perfect deep-sea images.

ROV simulator is a PC-based simulation program whose main purpose
is pilot training and familiarization of ROV user controls. By utilizing ROV
simulation and applying unique solutions to problems, organizations can
significantly reduce engineering costs and risks, as well as safety issues
encountered later in a project. The simulation can be recorded and replayed
as a full 3D representation, which allows the user to visualize various views
from any camera on the ROV, as well as the free-camera views of the work
environment that can be seen from any angle, which will help the user to
identify any issues in early stage. Deep-sea underwater image simulators
which provide high precision pictures at interactive frame rates are still in
the development stage due to various factors. Deep-sea exploration can be
made achievable by integrating the simulator and UUYV, thereby increasing
the performance of the complete system and eliminating the need for
sophisticated sensors which will reflect positively on the engineering cost.

1.2 Motivation and Need of Research Topic

Equipped with different tools and sensors, ROVs are highly maneuverable
and are frequently used in a wide variety of industries such as oil and
gas, offshore energy, military, shipping, search and rescue, aquaculture,
and marine biology. The size and prices can vary depending on their

2

functionalities. They let the operators to capture photo and video footage
for port inspection and monitoring, harbors and vessels, bring innovation
to pipe inspections, locate underwater targets and ocean exploration in
depths. The ROV missions are normally controlled by a human operator,
and their hydrodynamic performance is far from the ideal behavior. As
a result, the outcome of the task primarily depends on the operator’s
experience. Even though autonomy can bring a solution to mitigate the
above risk, the solution itself produces another risk of safety for testing
and verifying control algorithms.

An imitation of similar operations in a simulation environment can be a
helpful tool from the user’s perspective for both ROV and UAV operations.
A simulation model can investigate outcomes for varying conditions,
investigate critical situations without any risk and finally the method
is cost-effective. The primary challenge for simulations are developing
relevant scenarios and to make the behavior of the model close to reality.
Several factors contribute to the above when the ROV is in water and the
complexity increases over depth which needs to be investigated and taken
into account while developing a simulation model. The environment itself
can change in a short period of time (For example: sometimes the sea can
be rough and in the next few hours the sea can be calm) which makes the
task even more challenging. All the above challenges motivated me to do
this research in a distinct way to verify and validate a high-fidelity ROV
simulation that can behave close to reality using real-time data.

1.3 Problem Statement

The prime objective of this study is to implement a dynamic model
of an ROV in two independent simulation environments followed by
validating the model behavior from simulation against the experimental
data captured from the hardware. For this purpose, a detailed study
has to be done on the comparison of physical parameters such as mass
and inertia for individual links between the simulator and hardware.
Few developments have already been done on the simulator model
from IKM Subsea AS which was built as a ROS package containing
the implementation of Gazebo plugins and ROS nodes necessary for the
simulation of Merlin as shown in Figure 1.1. The work stated in this thesis
is an extension of the previous simulator and is focused on, how effectively
real data captured from an ROV can be used for improving the quality of
the simulator. The main goal also involves investigating various ways to
perform the testing and verification of the complete system.

1.4 Software Framework

The software simulation platforms MATLAB/Simulink and ROS are used
in the development of the ROV simulator. MATLAB is an application
software with a sophisticated programming language and an interactive
environment that can be served for understanding mathematical concepts,

Figure 1.1: Merlin simulator

modeling, and testing complex systems interactively before encoding
in a traditional programming language. On the other hand, the ROS
package provides a vast collection of tools and packages allowing for
rapid development of solutions without having to build systems from the
ground up. This project employs the ROS Melodic branch, a ROS1 version
2 years old that is widely used and opted to avoid the newest branch
Noetic Ninjemys as it is new, with fewer supported packages. The original
UUYV package [2] has been released for the ROS Melodic distributions
which is the main reason behind choosing this distribution. Few additional
reasons that contribute to selecting the ROS compared to other frameworks
are flexibility, open-sourced, and a large community of developers and
users with vast support. The message handling and package management
in ROS are clean, straightforward, and easily understandable which is
advantageous and improves the quality of the simulation.

141 MATLAB

MATLAB is a programming platform that has a high-level matrix-based
language for numerical computation and application development. It
allows to develop and test various algorithms, interface programs written
in other languages, performs matrix manipulations, plotting and data
analysis as well as creates complex system models and applications. It
provides numerous libraries of mathematical functions for linear algebra,
statistics, Fourier analysis, optimization, and solving ordinary differential
equations. Inbuilt graphics helps the users to create custom plots for data
visualization and data analysis.

1.4.2 ROS

ROS (Robot Operating System) is an open-source, meta-operating system
commonly used for robotic development. It provides a vast collection of
tools and packages allowing for rapid development of solutions without

4

having to build systems from the ground up. This project employs the
ROS Melodic branch, a ROS1 version 2 years old that is widely used and
opted to avoid the newest branch Noetic Ninjemys as it is new, with fewer
supported packages.

* ROS Master: The ROS Master started through roscore is the name
server for communication and node to node connections. This can
run locally (which is the default) or run remotely on a separate
station, this utility of communication is one of the strong suits of ROS,
as it allows a strong station to run heavy loads remotely, instead of
running them locally on the robotic unit, saving processing power.

* Nodes, Subscribers and Publishers: A node in ROS can be likened
to an executable program. They are typically charged with handling
a single task, such as sensors, movement commands, or control. ROS
gives the advantage of having multiple small tasks solved in neatly
arranged individual programs. Then passing the inputs, checks, or
outputs between these different nodes through the ROS messaging
system. These messages are sent from a Publisher, being the origin
point, or received at a Subscriber through the topics. It is also possible
to directly pass arguments to a topic from a terminal, commonly used
for testing. The topics themselves are channels in the ROS messaging
framework that runs in the background. These can be listened to (for
instance by using subscribers) or passed information if the topic has
been initialized.

* Launch files: Launch files are the premier way of running multiple
ROS nodes with the necessary configuration easily. The launch files
used in this project contain the required nodes, their arguments,
file paths, initial configuration, and so on. Without launch files
arguments would have to be hard-coded into the nodes themselves or
added into the terminal window at execution. They also prevent the
need for an individual terminal window for each node, as the launch
file can allow multiple nodes to be executed in the same terminal.

1.4.3 Gazebo

For robotic systems, gazebo helps in performing dynamic simulation
by utilizing the forces and torques that act on a body as inputs to the
simulation environment. Gazebo is a robust physics engine with high-
quality graphics and convenient programmatic and graphical interfaces
which can simulate robots in complex environments, accurately and
efficiently. It follows a user-friendly API for adding models and required
interfaces for interaction with client programs. Figure 1.2 shows a general
structure of components in Gazebo and how they interact each other to
client programs. The purpose of Open Dynamic Engine (ODE) is to
simulate the dynamics and kinematics associated with articulated rigid
bodies [3] and it is employed in gazebo by a layer of abstraction between
both gazebo and ODE. ROS provides necessary interfaces in the form of

[Bn Il and Soc kct)

Hinge 2-axis Cylind

CT
e g Pl

Figure 1.2: Overview of Gazebo components

(4]

packages that can simulate robots in Gazebo which can integrate with
ROS using ROS messages, services and dynamic reconfigure. Gazebo uses
physical engine for inertia, gravity, illumination, and so on. With the help
of gazebo, the robots can be examined and evaluated in all the possible
scenarios as for many applications it is necessary to test robot applications
such as navigation, error handling, localization, grasping, and battery life.
It is essential for avoiding any accidents or harm to the robot. It is much
simpler and faster to test a robot using a simulator rather than testing the
robot in the real world. The Gazebo consists of a client and server. The
server evaluates all the physics and world, while the client works out the
graphical interface for gazebo. There are five main components of Gazebo-
world files, models, gzserver, gzclient, gzweb. World files contain all the
elements such as lights, sensors, robots, and static objects required in the
simulation, models represent the individual elements, gzserver, its main
function is generating and populating a world by reading the world file,
gzclient visualises the elements by connecting to gzserver, gzweb is the
web version of gzclient.

1.5 Overview of Original Contributions

Indigenous work in this thesis focus on achieving the goals and objectives
of this research work. Through this work, we conscientiously studied ROV
kinetics and dynamics, specifically hydrodynamics modeling followed by
deriving an ROV model for the six degrees of freedom in its operating
range. During the initial phase, the studies were concentrated more
on understanding the problem. Several related research works were

reviewed, followed by analyzing the relevant works done under the
research topic which gave in-depth knowledge of theories behind ROV
types and components, working principles, simulation environments, and
modeling. After acquiring relevant knowledge and previous works done
on the topic, the study moved on to the setting up of the simulation
software environment which was one of the challenging tasks faced
during the early phase. Lately, a great deal of attention was directed
toward the ROV kinematics and behavior of the dynamic model from
the existing simulator. Data collection was done for both the simulator
and the hardware. Semi-automated scripts were made for data collection
and graphical representation to perform a comparative study. Also,
work has been done on ROV hydrodynamic modeling and simulation
under MATLAB/Simulink environment. Even though the task was
challenging, expected results were achieved in the end. Some of the
noticeable contributions in this work are, the implementation of a model
for Merlin ROV under MATLAB/Simulink environment and a feasible
design for verification and validation with experimental data by comparing
individual thrusters as input and achieved ROV velocities in six degrees of
freedom, for the ROV simulator and the hardware.

1.6 Research Methodology

Quantitative approach has been exercised in this thesis as the research
methodology and this section justifies, why the above method is best suited
to achieve the research objective and how it helps this study to obtain
valid and reliable results. The prime factor behind the selection of this
method is that it utilizes measurable data to formulate facts and uncover
patterns in research. At first, the studies were pointed in a direction
towards understanding the problem and ROV concepts including kinetics
and dynamics, especially hydrodynamics modeling followed by deriving
an ROV model for the six degrees of freedom. The study later investigates
previous works done on this topic and this formulates the drawbacks and
limitations of the existing techniques and draws up the problem definition.
Modeling the hardware based on mathematical equations and designing
a method to validate the accuracy of the model simulations towards
hardware was the next stage in this study. Data collections were made
for both the simulator and the hardware for validating the model behavior
from simulation. Semi-automated scripts were made to serve the above
purpose. Finally, the method ends with a discussion and conclusion of
achieved results that discuss the contribution and possibility for further
works which can be done.

1.7 Thesis Outline
The Report is organized into 7 chapters. Chapter 1 presents a brief

discussion on Unmanned Underwater Vehicle followed by motivation and
need for a research topic, problem statement, software framework, an

7

overview of original contributions, and research methodology. The reader
can acquire a background of the research work and the main goal that has
to be achieved from this chapter. Chapter 2 concentrates on explaining the
concepts and related work with a detailed discussion of ROV types and
components, Merlin ROV. ROV modeling and approach toward achieving
the research goal were discussed in Chapter 3. Chapter 4, covers the test
plan and various experiments that have been conducted for studying the
ROV simulator response under two independent simulation environments.
it also details how the performance comparison study is done between
simulator and hardware. Chapter 5 provides a concise summary of results
for each experiment that has been done for studying the feasibility of the
simulator. Chapter 6 interprets the results in detail and draws out their
implications. Chapter 7 concludes the results with an overall answer to the
main research question of this study along with future works that can be
done.

Chapter 2

Background and Related Work

Chapter Outline

This chapter outlines a review of the area being researched, current
information surrounding the issue stated in the problem statement,
previous studies on the same, and the relevant history on it. To easily
capture the progress of research, many recent techniques in the research
area are discussed and organized in a bottom to top hierarchical manner.
The background section details the theory and concepts, which are part
of this research while the literature review section details more on related
work done in past and existing technology.

2.1 Background

2.1.1 ROV - A Brief Discussion

“ROV” stands for Remotely Operated Vehicle which is a highly maneuver-
able, unmanned underwater machine mainly intended to explore ocean
depths by an operator at vessel on-board. The power and communication
between the operator and the vehicle are done through a bunch of cables,
or a tether that connects the ROV to the vessel, sending electrical signals
back and forth. To achieve a high level of safety and efficiency for perform-
ing a sub-sea operation, ROVs are the best choice. These vehicles are vital
in the offshore industry and some applications are as listed.

¢ Drilling: to monitor the Blow Out Preventer (BOP) and riser

* Inspection maintenance and repair: to perform inspection and
tooling

* Support during construction phase: to perform surveys, touch-
down monitoring and interfacing

2.1.2 Components of an ROV System

ROVs can vary in shape and size based on their applications, but they
generally have some common elements. This section details the major
components of a typical ROV system. The components can be classified
into mechanical and electro/mechanical systems, primary subsystems,
electrical systems, and control systems. The figure 2.1 details an overview
of ROV components.

Mechanical and electro/mechanical systems

Frame, buoyancy, propulsion, and thrust cover this category. The
frame is one of the critical components of an ROV and provides a firm
platform for mounting the necessary mechanical, electrical, and propulsion
components. The selection of materials for the frame depends on the
criteria "maximum strength- minimum weight" and it can be made of
materials ranging from plastic composites to aluminum tubing. The size
of the frame depends on the weight of the complete ROV unit in the air,
the volume of the onboard equipment, volume of the sensors and tooling,
volume of the buoyancy, and load-bearing criteria of the frame. When
it comes to underwater vehicle flotation systems, the main objective is
to achieve a near-neutral buoyant state. The main requirements of these
systems are that they should maintain their form and resistance to water
pressure at the anticipated operating depth.

The propulsion system and thrust play a major role in the ROV
design. In most cases, the type of thrusters, their configuration, and
the power source to drive them takes priority in vehicle design over
several other components. The propulsion systems in an ROV are mainly
of three different types which are, electrical, hydraulic, and ducted jet

10

Center of

Float block buoyancy ke
$ ‘, \
2
Camera \
Thrusters
Ballast
weights
: \ Ballast
Center of gravity Frame (load SeE e

bearing)

Figure 2.1: ROV submersible components

[5]

propulsion. Underwater electrical thrusters consist of a power source, an
electric motor and its controller unit, thruster housing and attachment to
the vehicle frame, gearing mechanism, driveshafts, seals and couplings,
propeller, Kort nozzle, and stators.[5] Thrusters are solely responsible
for the propulsion of ROVs which allows to control them in dynamic
environments. Electric DC thrusters are widely used in Inspection-class
ROVs using brushed DC motors, brushless DC motors, magnetically
coupled motors, or rim-driven motors. The control of the motion of ROV
depends on the configuration of the thrusters which includes size, available
power, required thrust, and Degrees of Freedom (DOF) which describes
every combination of a vehicle’s movement, payload, and several other
parameters.

Primary subsystems

The subsystems provide the ability to sense the environment either visually
or through other means to the ROVs, for completing the task at a given
location. Deep under the water, the operator can rely only on onboard
cameras for the view of the ROV’s work area. The lights provide
illumination for the camera underwater since the availability of natural
light decreases as the depth increases. Sensors play an important role in the
proper functionality of ROVs as they sense desired physical phenomena
without influencing the item being measured and are insensitive to other
environmental or physical factors. ROV sensors are broadly divided into
two categories namely survey sensors and vehicle sensors based on their
responsibilities. These sensors include pressure sensors, depth sensors,
rotation angle sensors, inclination sensors, proximity switches, sonars,
cameras, pipe and cable tracking, motion sensors, and gyros which vary
depending on electric connections, materials, mounting options, sizes, and
water depth. applicability. The manipulator and tool pack sub-system
consist of an electric motor running a worm gear to open and close valves
or grabber arms for intervention duties.

11

Electrical systems

Communication linkage to the underwater vehicle depends upon the
distance and the medium through which the communication takes place.
The tether and the umbilical are vital components of an ROV and the
main purpose is to serve as a medium to transfer the power to the vehicle
as well as communication between the operator/control room and the
vehicle. The cable linking the surface to the cage or tether management
system (TMS) is termed as ‘Umbilical’, while the cable from the TMS to the
submersible is called a “Tether’. Underwater vehicles can be powered either
by Alternating Current(AC) or Direct Current(DC) and can be sourced from
one of the following ways:

* Surface powered: For the surface powered vehicles the power source
is from the surface which means the vehicles must be practically
tethered.

* Vehicle powered: Vehicle powered vehicles gets powered by itself in
the form of battery, fuel cell, or some other means of power storage
needed foe vehicle operation and propulsion.

¢ Hybrid system: It is a mixture of surface powered and vehicle power.

The connectors are vital for underwater vehicles because of the highly
conductive nature of salt water, causing any exposed electrical component
submerged in salt water to short to the ground. The purpose of an
underwater connector is to conduct needed electrical currents through
the connector and at the same time squeeze the water path and seal the
connection to lower the risk of electrical leakage to the ground. [5]

Control systems

The control system provides a physical interface for the operator to
control the vehicle and controls various ROV functions that can vary from
switching the light(s) and video camera(s) to controlling the vehicle. These
systems comprise control stations and various other subsystem control
interfaces.

2.1.3 Degree of Autonomy

Autonomy has a direct relationship with human-robot interaction (HRI)
and it influences the way in which humans and robots may interact with
each other. There are several definitions related to the term "autonomy"
in robotics literature. Few are "Autonomy refers to systems capable of
operating in the real-world environment without any form of external
control for extended periods" [6], "An Unmanned System’s own ability
of sensing, perceiving, analyzing, communicating, planning, decision
making, and acting, to achieve goals as assigned by its human operator(s)
through designed HRI; The condition or quality of being self-governing"
[7]. According to the National Institute of Standards and Technology;,

12

unmanned vehicles can be operated in the following four modes of
operations [7]:

I Fully autonomous: A fully autonomous Underwater vehicle is the
one which functions with no human intervention within a defined
scope.

I Semi-autonomous: A semi-autonomous underwater vehicle requires
a certain level of human-robot interaction.

III Tele-operation: In this mode of operation, the human operator either
directly controls the motors/actuators or assigns incremental goals
via a tethered or radio/acoustic/optic/other linked control device
using video feedback or other sensory feedback.

IV Remote control: In this mode the human operator controls the
actuators directly without any assistance of video or other sensory
feedback on a continuous basis through a tethered or radio-linked
control device within visual line-of-sight. No initiative is taken by
the vehicle itself and sole operation is dependent on continuous input
from the user.

2.1.4 Human Risk in handling UUVs

The demand for UUVs is increasing in various industries and applications
such as military and intelligence, surveillance and reconnaissance (ISR),
Anti-Submarine Warfare (ASW), and even time-critical strike operations.
At the same time, little research has been done on human factors involved
in the operation of UUVs. Some of the challenges for an operator
when using UUVs are loss of sensor signals and spatial awareness, the
control of the remote vehicle, problems with situation awareness (SA) and
workload, problems with trust in automation, and challenges with robot
communication. [8] The following human factors are mainly involved in
the UUVs operation.

* Operator’s Perception in the Underwater Environment: The two
main root causes for restricting an operator’s task such as the ability
to navigate, control the vehicle, and object detection are poor vision
and poor depth perception. These are mainly caused because of
poor sensor signals or feedback from the vehicle in the operating
environment which may result in accidents. It may also lead to
high-cost impact and equipment damage for the owner due to
which some of the ROVs are kept inside the cage to protect them
from obstacles underwater. The operator’s understanding of the
underwater environment depends on the video camera images, sonar
images, sensor indicators, and a physical model of the operating area.
All of these have their limitations.

e UUV Control and Displays: The control of UUV is a very complex
and hectic task that requires a lot of training and focus because the

13

operator must control the robot along 6 degrees of freedom which
are surge (forward/backward), heave (up/down), sway (left/right),
pitch, roll, and yaw at the same time. In addition to the above,
the operator must also control the robot’s velocity, altitude, and
position in the water as well as the umbilical cord management. The
operator controls the ROV from a control station which can vary
in size, complexity, and location. As a result, unique human risks
are associated with each type of control station. For instance, the
operator who controls the vehicle outdoors, in a small boat, with
waves splashing over the side will face different a challenge than
the operator who controls an ROV from a comfortable office-like
environment. [5]

e Other factors: Situation Awareness and Workload, Trust in robot
and human-robot interaction and communication are the additional
factors that are involved in handling of UUVs.

2.1.5 C(lassification of ROVs

The term "ROV" envelops wide range of equipment and no single vehicle
can be described as ‘typical’. But they are categorised depending on their
functionalities, application and payload they can carry. [9]

* Class I — Pure observation vehicles: These vehicles are generally
small in size fitted with camera, lights and thrusters and their
functionality is limited to video surveillance. They will not be able
to undertake any other task than observation without considerable
modification.

* Class II — Observation vehicles with payload option: These
vehicles are capable of carrying at least two additional sensors such
as cathodic protection measurement systems and additional video
cameras and sonar systems without any compromise in its original
functionality.

¢ Class III - Work class vehicles: These vehicles are larger and more
powerful compared to Classes I and II. They also have a multiplexing
capability that allows additional sensors and tools to operate without
being ‘hard-wired’ through the umbilical system. Based on their
power they further classified as below:

— Class III A: Workclass vehicles < 100 Hp
— Class III B: Workclass vehicles 100 Hp to 150 Hp
— Class IIT C: Workclass vehicles > 150 Hp
* Class IV - Seabed working vehicles: Class IV vehicles are designed
for special purpose tasks such as cable and pipeline burial, dredging

and other remotely operated seabed construction works, thereby,
they are larger and heavier compared to Class III work class vehicles.

14

Due to their heavier nature, they manoeuvre on the seabed by a wheel
or belt traction system, by thruster propellers or water jet power, or
by combinations of any of these propulsion methods.

* Class V — Prototype or development vehicles: Autonomous Under-
water Vehicles (AUVs) are part Class V. Vehicles under development,
those regarded as prototypes and special-purpose vehicles that do
not fit into one of the other classes are assigned to this class.

2.1.6 Inspection class ROVs

Inspection-class ROVs are also known as Observation-class ROVs which
are smaller in size compared to Intervention-class ROVs. Inspection-class
ROVs are of two types namely Micro or Handheld ROVs and Medium-
sized ROVs. The weight of Medium-sized ROVs is between 30kg to
120kg which is usually powered by a DC supply with 600VDC voltage
and 6kW power transmitted through copper cores or a combination of
copper and fiber optic cores usually follow an open-frame model, whereas,
Micro or handheld inspection ROVs weighs between 3 kg to 20 kg with
smaller power requirements between 300W to 800W transmitted through
copper cores in the umbilical which can be hand-fed from the surface
vessel. Medium size inspection ROVs can be used to carry out underwater
mapping and surveys with the help of accurate navigation systems and
high-resolution imagining. [10] Inspection-class ROVs can be used in
coastal monitoring, habitat monitoring, pollution assessments, dam wall
inspections, blockage detection at pen-stock intake net inspection, seabed
investigation, marine life studies, water and sediment sampling, and so on.
[11]

2.1.7 Intervention-class ROVs

Intervention-class ROVs are of two types namely light work-class ROVs
weighing up to 2000 kg and heavy work-class ROVs weighing up to 5000
kg. A strong hydraulic actuation is responsible for carrying out heavy-duty
works. Due to the heavy mass, intervention-class ROVs require a Launch
and Recovery System (LARS), along with a Tether Management System
(TMS) which takes up a considerable volume of space on-board the surface
vessel from which they are operated. [11]

2.1.8 Residential ROVs

The ROV sub-sea industry is demanding resident systems that can
address various technology gaps and challenges along with integrated field
support through more advanced and automated concepts opening up the
door for unlimited potential in ROV and subsea operations for the future.
This leads to the introduction of a different approach to ROV System,
called Residential ROV (R-ROV). Residential ROVs (RROV) are unmanned
underwater vehicles that are permanently installed in the sub-sea and
are parked/caged on the seabed and have in-house designed Tether

15

Figure 2.2: Merlin UCV ROV
[12]

Management System (TMS) as well as Launch and Recovery Systems
(LARS) rather than being deployed from a dedicated support vessel. The
main advantages of this system are that it provides permanent installation
on the seabed for long periods, free from the need to be accompanied
by a support vessel, greater operational flexibility, increased safety, and
greater quality of life for the pilots. The required offshore manpower
is minimized due to the remote onshore control station via Tampnet.[10]
Above the surface, 4G telecommunications networks have made remote
control from onshore a reality whereas beneath the surface, "sub-sea GPS"
and communications technologies are making navigation easier. RROV
has revolutionized traditional sub-sea operations by reducing the waiting
time on the weather and thereby saving cost and time. In addition to
these benefits, they have also reduced Health Safety Environment (HSE)
and personnel requirements. These vehicles are coupled with the onshore
control centers. Having a permanently deployed RROV can lead to
big savings as it’s always available irrespective of the weather condition
especially during marine riser disconnects and re-connections.

2.2 Merlin ROV

Merlin UCV (Ultra Compact Vehicle) is an electrical Work Class ROV
[12] while Merlin UCV R-ROV (Residential- Remote Operated Vehicle) is
an electrical work class residential ROV that is remotely operated from
Onshore Control Centre (OCC) which can stay submerged for an extensive
time and no activities are interrupted due to bad weather [13]. Both Merlin
UCV and Merlin UCV R-ROV have the same dimensions with length 2.5-
meter length, 1.5-meter width, 1.5-meter height and functions with 200
horsepower which is an extreme power to size ratio. Merlin UCV has a
built-in tooling interface for electrical and hydraulic operated tooling while
Merlin UCV R-ROV has sub-sea mating only for hydraulic tools. Merlin
UCV weighs 2750 kilograms while Merlin UCV R-ROV weighs 3000 kg
and both can handle up to 250 kg to 475 kg payload with an underwater

16

Figure 2.3: Merlin UCV Residential ROV
[13]

operational range up to a depth of 3000-meter sea water(msw). Various
sensors are used in Merlin UCV such as depth sensor- Valeport Mini IPS,
Sonar- Tritech Super Seeking, Heading sensor- Fiber Optical Gyro System
- CDL Togs Nav with +/- 20 degrees pitch and roll. Merlin UCV R-ROV
has a navigation sensor- SPRINT 500 with Syrinx DVL 603-0156-NS and a
sonar - Tritech Super Seaking.

Both Merlin UCV and Merlin UCV R-ROV has one low light camera,
one colour and zoom camera, but Merlin UCV has two colour cameras on
front bar and the Merlin UCV R-ROV has only one camera at front down.
On the rear side and at the center for TMS docking both the ROVs has a
colour camera. Merlin UCV R-ROv has an additional wide angle colour
camera at the front. Both are equipped with seven electrical thrusters
(SA300), out of which 4 are horizontal and 3 are vertical. All the 7 thrusters
are available in their full capacity 24*7. Both uses eight RS232 out of which,
two can be configured to RS485 for subsea communication with 4 Ethernet
connectivity in GBs and holds a spare fibre conductor.

2.3 ROV Modelling

Modeling and simulation is an effective technique to test software that
plays an important role in different phases of development process. It
can make the software testing process much more effective by observing
the software’s behavior in a virtual environment similar to the real
environment whereas, testing in the real environment is not feasible
which may involve a high risk of damage or even loss of vehicle if the
algorithm fails to avoid on-board data collection, scenario construction and
underwater recovery in the case of AUVs. Several pieces of researche have
been done and are still ongoing in this field of modeling and simulation
of ROVs. One such example is Underwater Rigid Body Library (URBL).
[14] The URBL was developed as a framework for modeling underwater
vehicles which has the base functional components to any ROV design.

17

Components and interfaces for modeling underwater vehicles, and an
external interface to ROS are the two major sections of URBL. The modeling
is done on Modelica which is a non-proprietary, object-oriented, equation-
based language to conveniently model complex physical systems. The
study considers the effect of water on submerged bodies as interactions
with a “field” of water for encapsulating the effects of buoyancy and drag.
Different methods of simulation include:

¢ Offline simulation: Offline simulators are used in the early stages
of the development of the vehicle. The most used offline simulator
is MATLAB/SIMULINK, which helps in modeling the vehicle and
control systems but in this simulation, the time properties of the
developed algorithms are not taken into consideration and cannot
represent the external environment and the biggest drawback is that
there is no consistency between simulation and reality.

® Online simulation: In online simulation one second of simulation
is equal to one second of reality therefore we can say that there
is consistency between simulation and reality and it also facilitates
working concurrently on different features of the control system of a
virtual robot. The commonly used online simulators in the field of
robotics are ROS and MORSE.

¢ Hardware in the loop (HIL) simulation: In HIL simulation, a real-
time computer is used as a virtual representation of the vehicle model
and a real version of controller creates a test system that is scalable
and ensures comprehensive test coverage. [15]

The deciding factors for selecting a robot simulation platform are physical
correspondence for the simulation of rigid body dynamics and collisions,
interface for ROS applications, low complexity for the setup of new
world scenarios and robot models, extendable for integration of additional
modules, adequate documentation, periodical check-ups, updated and
maintenance, offering multiple-robot simulation, open-source application
with a permissive license.

2.3.1 Mathematical modelling of an ROV

The initial step in simulating any real-world system is to replace the
considered real-world system by a simplified mathematical model. To
formulate the movement of the vehicle the degrees of freedom (DOF) is
vital. For an ROV, there are a total of 6 (six) degrees of freedom (DOF), [16]
where the vehicle can move as follows:

* Forward, surge sideways (sway) and float up (up) in the direction of
the axis X, Y and Z.

* Roll, go up and turn (yaw) following the X, Y and Z axis.

The effects due to added mass and inertia terms as a result of the
simultaneous acceleration of water particles and quadratic damping

18

caused by energy dissipation within the medium has to be considered
while modelling a dynamic coupling of any system to the surrounding
water. The work [17] details hydrodynamic model of a robot link as
represented in equations 2.1 and 2.2 in which p denotes the pose of a
robot link expressed in the world frame, and v denotes the velocity screw
expressed in the local frame. The efforts related to hydrodynamic effects
are considered as a negative impact on the vehicle.

Mo=Gw)v +d(v) + Tg + T + T (2.1)
p=Jo (22)
where:

0 M represents the inertia matrix as detailed in the work [18] which is
the sum of rigid body inertia matrix M, and inertia matrix M, on the
body due to the fluid. M, is considered as zero since the error can be
large in the model.

O G (v) is the coriolis and centrifugal forces which is combination of
dynamic matrix G; and hydrodynamic matrix G,. The value of G, is
considered as zero.

O d (v) represents the hydro dynamic damping force.

[0 T, is the added forces due to gravity, buoyancy and induced torques

U T, is the added forces and torques by the user. For instance: force due
to thrusters

U 7, represents added forces and torques to the robot link.

(]] is the transformation matrix between the world frame and the link
frame.

Let k denotes the damping coefficients and v, = (v,, 0) is the water velocity
expressed in the world frame which has zero angular values. Then d (v)

can be expressed in the form of a quadratic function of velocity between
the robot link and the water velocity as shown in equation 2.3.

d(v) = —kT|v —] to.| (v —]’1vc> (2.3)

2.4 Related works

Several studies regarding the modeling and simulation of ROVs have been
carried out. The work [19] details the common tasks in ROV operations in
its operational environment.

19

2.4.1 Implementation of Mathematical Model in ROS

Gazebo utilizes SDF (Simulation Description Format), which is an XML
format for describing the objects and environments, that is capable of
describing all properties of the robot model (links, joints, sensors, plugins),
static and dynamic objects, lighting, terrain, and even physics. Links
are defined by Inertial (mass, a moment of inertia), Collision and Visual
(geometry) which are used by physics, collision and render engines,
respectively. Joints serve as a connection between two links and define their
movement, limiting the Degrees of Freedom (DOF) using various types
such as fixed, revolute, prismatic, universal, ball, and screw based on their
configuration. [20]

2.4.2 World Modelling

In the field of embedded robotics systems, tools like Gazebo and ROS
are gaining higher importance considering the new concept of kinetic
architecture or dynamic buildings. For ages architectural buildings were
considered static structure incapable of any changes or modification. But,
in recent years, the concept of kinetic architecture and dynamic buildings
are currently being exploited by many architects around the globe and
buildings are viewed as kinetic structures showing potential to changes
and adaption. As of now, no tools are available in the field of architecture
for the modeling, simulation, and operation of such complex kinetic
architectures. [21] Therefore, for the implementation of such a concept,
tools, and knowledge from the field of robotics is deployed for this
purpose. The best applicable open-source system Robot operating system
(ROS) permits the creation of a virtual model of the world along with the
integration of different types of sensors as required. The concept of the
dynamic building is utilized for making smart and sustainable buildings.
A 3D model of the environment is required to simulate a dynamic, kinetic
environment in ROS. Followed by the 3D model divided into smaller parts
that relate to joints having different properties in mobility. ROS is equipped
with tools that are capable of manual management of individual objects.

The water velocity v, and the buoyancy direction are two major factors
that contribute to the world plugin for any UUVs. [17] The Gazebo
simulator subscribes to a ROS topic that shows the intensity and direction
of the water current. The direction of buoyancy is opposite to that of
the gravity and decreases to zero as the vehicle move towards the water
surface. A Gazebo world file typically has a .world extension and the
Gazebo server (gzserver) reads this file to generate and populate the
defined world.

2.4.3 Modelling of Sensors

Gazebo supports several plugin types which can be connected to ROS but
only Model plugins such as differential drive controller, Sensor plugins
such as cameras and visual plugins such as sonars can be accessed using

20

URDF file. When the robot model is loaded in the Gazebo, the plugin name
in the code is given a reference to the sensor which provides access to its
Application Programming Interface (API).

2.4.4 Camera Modelling

The sub-sea imaging simulators have received a lot of attention in recent
researches since the captured images from real-time are not of very good
quality due to numerous reasons such as low contrast, blurring details,
colour deviations, non-uniform illumination. A prominent example is
the deep sea robotic imaging simulator for UUV development. [1] The
work focus on image restoration and enhancement which are vital for
practical applications, are done using Jaffe-McGlamery model. According
to this model, the underwater image is the linear superposition of three
components (camera, light source, and image plane). An underwater
image experiment consists of tracing the progression of light from a light
source to a camera. The light received by the camera is composed by three
components:

I The direct component (light reflected directly by the object that has
not been scattered in the water) because the RID curve of the light is
usually very smooth.

I The forward-scattered component (light reflected by the object that
has been scattered at a small angle)

III The back scatter component (light reflected by objects not on the
target scene but that enters the camera, for example, due to floating
particles) which leads to a veiling light effect in the medium which
happens along the whole light path.

The solid model of camera can be added to the robot model using visual
tags in the URDF file. Once the necessary visual properties are added, the
technical features can be added using a <gazebo> tag. There are many
sub-tags for adjusting the properties of the camera such as update-rate,
distortion and so on. Several examples are detailed by B.R.Japon in his
work. [22] Gazebo also provides opportunity to create custom camera
plugins for the robot model.

2.4.5 Sonar Modelling

Among various sonar technologies available active and passive are the
most commonly used ones. For mapping related applications active
sonar are more preferred since it can emit and receive acoustic symbols
compared to its counterpart which can receive only echoes. Echo sounder,
mechanically scanning profiler and multi-beam echo sounder are some of
the types in active sonars. An echo sounder is a static type of sensor
which emits a pulse from its transducer and calculates distance from the
time of flight of reflected pulse by a surface to the sensor head. Most
echo sounders compromise on precision, and doesn’t compensate for water

21

el

‘\

(a) Echo sounder (b) Mechanically scanning profiler
(c) Multi-beam echo sounder (d) Mechanically scanned imaging

(e) Electronically scanned imaging (f) Side-scan

Figure 2.4: Different variants of active sonar technology
[23]

conditions such as temperature. Mechanically scanning profilers consists
of mechanical actuators for orienting sensors at different angles varying
from a few degrees to a complete 360-degree scan and produce a series
of measurements to create an acoustic image of the environment in terms
of intensity and position. Different variants in these types of sonars
are mechanically scanned imaging sonar, electronically scanned imaging
sonar and side-scan sonar. Multi-beam echo sounder consists of an array
of hydrophones which emit fan shaped beams and thereby producing a
complete strip of points in the direction of the pulses emitted. Figure 2.4
details how the scan is performed with various active sonar technology

For modeling the sonar, Gazebo_ros_range plugin can be utilized which
publish messages according to sensor_msgs/Range Message format so
that integration to ROS can be done easily. The work [23] details the
modifications made on the SDF format to add the sonar sensor to a robot
in gazebo. The sensor definition is done using the <sensor> XML element
and the following sub-tags <always_on>, <update_rate> and <plugin> are
used. The sonar sensor functions similar to an ultrasound range sensor
by simulating the sound pulse emitted using a cone, and gets the closest
collision between the cone and any surface in the environment followed by
publishing as a message containing information about the 3D position of
the collision. The <sonar> element, which is a child of the <sensor> element
is used in the above work, with the following child elements

22

o <min> Minimum distance at which we detect collisions.
e <max> Maximum rage of the sonar.

e <radius> Radius of the cone at maximum range.

2.4.6 Thruster Modelling

A thruster, the combination of a motor and propeller, is an electro-
mechanical device generating thrust to translate and rotate an underwater
vehicle to control altitude, position, velocity, resist external disturbances
and ensures maneuvering and station-keeping capabilities. Thrusters can
be divided into two categories, hydraulic thrusters which are mainly used
on work class hydraulic ROVs and electric thrusters which are mainly
used battery operated underwater vehicles. The efficiency of a thruster
decreases with speed so with thrusters we must choose between a thruster
which produces an ample amount of thrust at a low speed or a thruster
with high speed but less efficiency. For ROVs, we choose the latter,
ROVs thruster needs to develop maximum thrust at zero forward speed
as thrusters play a vital role in the functionalities of remotely operated
vehicles (ROVs) and are the lowest control loop on the ROV system. A
thruster is a good fit for an ROV if it possesses a high voltage range, works
well in forward and reverse direction, generates at least 15 lbs of thrust
from 25 to 50 volts, consist of a nozzle engineered for maximum thrust and
an efficient brush-less motor with a decent gear ratio with a reliable thruster
design requiring little maintenance.

Thrusters are composed of components like power source, thruster
housing and attachment to vehicle frame, motor controller, electric motors,
propeller, kort nozzle, stators, drive shafts, seals, couplings, gearing
mechanism. While developing a thruster design following things must
be kept in mind: cost, physical weight, thrust force and size. The steps
involved in design and modelling of a thruster are problem specification,
experimentation, system identification, testing/validation, analysis of
performances, controller design and testing, implementation and testing
and final testing.

2.4.7 Role of System Identification in Thruster Modelling

The modelling and control of underwater vehicle thruster systems using
system identification has received a wide attention in the literature over
the last years. [24] [25] The easiest and the fastest alternative for
modelling a thruster is by system identification as compared to design
by using a derivation of mathematical equations. Detection of the forces
and moments generated by underwater vehicles plays an important role
in the development of any physical models as well as for validating
theoretical models. Hydrodynamic reaction torque must be considered
while modelling underwater vehicles, which usually goes unnoticed.
For characterising thrust performance, usually simple Bollard setups are
implemented. All-axis translational and rotational flow sensing models are

23

complicated dynamic numerical model that have been used in the past.
Additionally, underwater vehicles go through a complex full- vehicle test
which can be harsh and time consuming. The process becomes even more
tedious due to a large amount of information required to be collected and
processed. Above mentioned difficulties are not present while using a 6
degree of freedom (lift, draw, side-force, yaw, roll, pitch) Gough-Stewart
platform-based load cell. It is also very compact to fit in smaller test tanks.

Modelling of thrusters are a crucial part of underwater vehicle control
and simulation. Motor modeling, propeller design, and hydrodynamic ef-
fects contributes to the thrust force from an ROV. The system identification
can be done in modelling the thrusters of an underwater vehicle by using
MATLAB system identification toolbox. The study [26] states that thruster
modelling using system identification is an easier and faster alternative for
modelling compared to design by using derivation of mathematical equa-
tions. The mathematical model of thruster is detailed in the above study
and the final equations are shown in equation 2.4.

V= Ry (T/Kn) + Ke (V/T/Kr) (2.4)
Where,
U Vis the applied voltage to the motor.
U R, represents motor resistance.
O T is the output thrust from the thruster
O K,, is the modified motor constant.
U Kg represents back EMF constant of the motor.

U Kr equals lump parameter of various constants.

2.4.8 Modelling of Tether

Forces from the tether are one of the vital elements affecting the dynamics
of an ROV. These forces can vary widely depending on sea current and
how the ROV is deployed, thereby affecting the ROV motion. As a result,
to achieve realistic simulation of real ROV motions, an estimation of these
forces is important to include in the dynamics of ROV model. Using
mathematical model, the study [27] details how much of these forces can
contribute to dynamics of an ROV under water. Several pieces researches
have been done in modelling and simulation of umbilical which can be
categorized under two categories, force-based methods and position-based
methods. Cable and chain models [28] fall under the first category while
the study done by Jackobson [29] lies in the latter category. In a study by
Ganoni et al. [30] found that, the simulation aspects of the tether attached
to a ROV and to the launching platform is a major part of an underwater
ROV simulation. The tether simulation is done by utilizing advantages
from both the forced based and the position-based methods. The study

24

states that a close to real cable behavior can be achieved in simulation
when a robot sees its own cable along with the aid from computer vision
algorithms.

2.4.9 Manipulator and tool pack Modelling

Manipulator, also known as robot arm is a vital tool for executing
sub-sea intervention operations. As a result, most of the ROVs that
are under class III ROVs are equipped with one or more underwater
manipulators. UUVs with manipulators are often called Underwater
Vehicle Manipulator Systems (UVMS). These manipulators are comprised
of links interconnected by means of revolute joints with a suitable angular
displacement between them and grippers or other interchangeable tools
attached at the end-effector. On the base underwater vehicle and/or on the
manipulator itself, sensors such as spotlights and cameras are mounted, for
observing their surroundings they are usually accompanied by additional
equipment comprising of one or more cameras and spotlights. Generally,
UVMS have two manipulators in which, one is anchor manipulator that
holds UVMS still, as an underwater current countermeasure and another
as the actual operation manipulator. The current and turbidity of water
increase the complexity of controlling these systems. So, modeling and
simulation can help UVMS operators to a greater extent in their tasks, by
making tasks repeatable and reducing operation time.

Several works have been done explaining concepts of underwater ma-
nipulators out of which the prominent ones are, a study by Antonelli [31]
provides a detailed theoretical background for underwater manipulators
from the modeling and control point of view and another one by Yuh and
West [32] giving a brief overview on underwater manipulators. The project
[33] categorizes the semi-autonomous behavior of underwater manipulat-
ors into three main features, which are localization, UVMS pose control and
manipulator pose control.

e Localization: The localization problem is common in most robotic
applications. To estimate UVMS pose in the environment, necessary
data from various sensors are used. Each sensor uses different
algorithms to establish sensor’s pose and consequently robot pose.
For localization, aruco artificial markers are implemented in the
above work for pose estimation using ROV camera.

e UVMS Control: UVMS can move to reach a pose by activating the
thrusters. Velocity control through controlled thrusters is commonly
used to move the ROV at a specific velocity in all 6 Degrees Of
Freedom (DOF).

e Manipulator Control: A ROS tool called Moveit [34] was used in
the above simulation to control the manipulator. It implements
trajectory planning, joint controller, inverse and direct kinematics.
The advantage is the possibility to define a pose as set-point to the
manipulator’s end effector.

25

26

Chapter 3

Approach

Chapter Outline

The chapter describes plans and the procedures for the study to develop
the dynamic model of ROV and explains basic concepts of ROV kinetics
followed by mathematical modelling of the ROV. These mathematical
derivations provide the basis for developing the dynamic models under
two independent simulation environments and their implementations
were discussed towards the end of this chapter.

27

3.1 UUV Kinematics

A rigid body in motion in space can be explained through two reference
frames, a world-fixed reference frame (W) and a frame fixed to the body as
reference (B). These two systems are represented in Figure 3.1. The body
frame system was considered as placed with origin coinciding with the
center of mass of the vehicle, where the degrees of freedom (DOF) of the
body frame, respectively Xg , Yp , Zp, ¢B, 08, g are named Surge, Sway,
Heave, Roll, Pitch, Yaw. The position vectors for world frame and body
frame are given by equations 3.1 and 3.2.

X = [surge sway heave roll pitch yaw]

3.1
=[Xs Ys Zp ¢p 65 5] G

n=I[xy z ¢ 0 ¢ (3.2)

Inertial system (W)

% VATA e
. S
' -~
IZ

]
;1%

Body system(B) : T Il”
" Sway, v < Surge, u
v o - 0
--F b !
pitch,g 1 VB Heave,w 5 “~ 4
[B /Rollp
~ o

Figure 3.1: ROV reference frame and degrees of freedom

The velocity vectors in terms of vector of linear velocity vg and the
vector of angular velocity wp for world frame and body frame can be
written as shown in equations 3.3 and 3.4.

v=[Xg Y Zp ¢p 0p lﬁB]T
= [u v w p q r]T (3-3)
= [0 ws]'

=[x gz ¢ 6 ¢ 5.4
= [ow ww]’

The force/torque vector T of the thruster input are given by the equation
3.5.

T=[t & T T T Ty (3.5)

Equation 3.6 shows the velocity vector transformation from the body frame

28

into the world frame.

0 (3.6)
L) = Ll(gm J2 (ww)

where,] (17) is the coordinate transform matrix, which brings the world
frame into alignment with the body frame.

Equation 3.7 represents the Euler angle rotation matrix J; (v) defined
in terms of principal rotations as shown in equation 3.8

c(@)c(p) —c(@)s(y)+s(O)s(@)c(p) s(@)s(y)+s(6)c(P)c(yp)
= |c(@)s(p) c(p)c(y)+s(0)s(@)s(p) —s(p)c(y)+s(60)c(P)s ()
—s(0) c(6)c(y c(@)c(®)
3.7)
1 0 0 c(®) 0 s(9) c(p) —s(yp) O
Ryp =10 c(¢) —s(9)|Ryg=1| 0 1 0 IR;y=|s(p) c(p) O
0 s(¢) c(¢) —s(0) 0 c(h) 0 0 1(3)

where, s represents sin, ¢ represents cosine and t represents tangent.
On the other hand, the Euler angle attitude transformation matrix is
shown in equation 3.9.

(3.9)

3.2 Dynamic modelling

Dynamic model is vital for performing simulations as well as to formulate
control algorithms. In order to generate control forces for thruster-actuated
vehicles, it is necessary to compute the Thruster Allocation Matrix, which
will translate the output of the controller into the output thruster forces for
individual thrusters. ROV simulator expects each thruster unit to have its
unique frame, which enables the use of tf package in ROS to lookup the
transformation matrix between the vehicle’s body frame and each thruster
during runtime.

Equation 3.10 shows the dynamic model which has been derived from
the Newton-Euler equation of a rigid body in fluid and does not take
account of environmental disturbances, such as underwater currents.

Mo+ C(v)v+D(v)vo+g(n) =1 (3.10)
Where,

[0 M is the inertia matrix.

29

0 C represents the Coriolis and centripetal matrix.

U D is the drag matrix

3.2.1 System Inertia Matrix

The system inertia matrix is the sum of of rigid body mass Mz and added
mass M 4. The rigid body mass can be written in terms of mass of the ROV
m and the inertia I()of the ROV with respect to the Body frame as shown in
equation 3.11.

m 0 0 0 mzg —myg
0 m 0 —mzg 0 mxg
Moo — 0 0 m myg —mxg 0 (3.11)
Z=RB — 0 —mzg myg Ly Ly I :
mzg 0 —mxg —lyx Ly —Iy;
—myg mxg 0 — Iy — Iy I

The calculated values for rigid body mass and the effect of the hydro-
dynamic added mass for the Merlin UCV is detailed in equation 3.12. The
values are used in the

2936.0 0.0 0.0 0.0 0.0 0.0 T
0.0 2936.0 0.0 0.0 0.0 0.0
M . 0.0 0.0 2936.0 0.0 0.0 0.0
==RB 0.0 0.0 0.0 1224.179892 —28.489418 —82.409928
0.0 0.0 0.0 0.0 2234.271553 7.821611
L 0.0 0.0 0.0 0.0 0.0 2125.224693
(3.12)
[1468.0 0.0 0.0 0.0 0.0 0.0 T
0.0 1468.0 0.0 0.0 0.0 0.0
M, — 0.0 0.0 1468.0 0.0 0.0 0.0
A T 0.0 0.0 0.0 122.4179892 0.0 0.0
0.0 0.0 0.0 0.0 223.4271553 0.0
L 0.0 0.0 0.0 0.0 0.0 212.5224693

3.2.2 Drag Matrix

The hydrodynamic damping in underwater vehicles are caused mainly by
the drag and lift forces. The lift forces are negligible compared to the drag
forces since ROV is operated at very low speeds. The drag forces is the
sum of linear D; (v) and quadratic term D, (v). The calculated values for
the above terms are given by the equation 3.13.

1500 0.0 0.0 0.0 00 007
00 2000 0.0 0.0 00 00
D | o0 00 —2000 0.0 00 00
Dy(v) = | oo 0.0 00 —1000 0 0
0.0 0.0 0.0 00 —1000 0
0.0 0.0 0.0 0.0 00 —50]

(3.13)
—1500.0 0.0 0.0 0.0 0.0 0.0 7
0.0 —2000.0 0.0 0.0 0.0 0.0
D (U) _ 0.0 0.0 —2000.0 0.0 0.0 0.0
=q 0.0 0.0 0.0 —500.0 0 0
0.0 0.0 0.0 0.0 —500.0 0
0.0 0.0 0.0 0.0 0.0 —500

30

3.2.3 Gravitational and Buoyancy Matrix

The gravitational and buoyancy vector, g (#) , can be denoted in matrix
form as shown in equation 3.14. B

(m—pV)s(6)
B
g) =g (mzg —z,pV) c(6) s (gbp) — (myg — ypoV) ¢ (6) c (¢) (3.14)
(mzg — zppV) s () + (mxg — xp0V) ¢ (0) ¢ (¢)
= (mxg —xppV) c (8) s (9) — (myg —yppV) s (6)
Where,

O g is the acceleration due to gravity.
U p represents the density of fluid and V is the ROV volume.
0 x¢, yg, Zg is the ROV center of gravity.

U x4, Yp, zp is the ROV center of buoyancy.

3.2.4 Force and Torque Vector

Seven motors works together to deliver the required thrust force and torque
for the ROV to move in surge, sway, heave and yaw directions. The force and
torque vector is defined in equation 3.15

T=MU (3.15)
Where,
O M is the thruster mapping matrix.

0 U represents the thrust vector.

3.3 Model Implementation

3.3.1 Implementation overview in ROS

Most of the development of IKM Subsea’s Merlin Simulator under the
ROS/Gazebo environment were already been done and in this work, the
studies were more towards validating the existing model performance. The
simulator was built on ROS package and the simulation engine was gazebo.
The common file extensions used are listed below:

e .urdf: known as Unified Robot Description Format. These are robot
description files used by ROS.

e .xacro: also known as XML macros. These are urdf files with macro
features and are converted to .urdf before being used.

e .launch: These files contains launch instructions for the ROS package.
For example, using these files it can be determined, which models to
load and which scripts to run.

31

e .sdf: also known as Simulation Description Format. These are
Simulation/model description files for Gazebo and it is also used in
.urdf files where ever there is a <gazebo> tag.

The folder organisation of ROS simulator is shown in Figure 3.2 and
the files under each folder are not included in the figure due to its
large structure. The files under the folder bagfiles are part of the
original contributions of this research with which validation of the existing
simulator has been done whereas the srov — master is part of the existing
simulator where the works has already been done. The procedure for
setting-up and running the ROS simulation environment are detailed in
Appendix A.

+---bagfiles
+---srov-master
| README . md
|
+---catkin ws
| +---build
+---devel
+---5PC
+---SrOVm_cameras
+---srovm_lights
+---5rOVm_MmSgs
+---srovm_plugins
+---5rOVm_rov
| +---config
| +---launch
| +---mesh
| +---robots
| +---scripts
| +-—src
| | +---thrusters
| | +---models
| +---urdf
+---5rOVM_Sensors
| +---mesh
| +---urdf
+---srovm_utils
| +---urdf
+---srovm_worlds
+---launch
+---models
| +---toolstand
| | +---mesh
| +---wall
+---worlds

Figure 3.2: ROS package folder structure

32

3.3.2 Implementation overview in MATLAB/Simulink

The mathematical modelling of the ROV in MATLAB/Simulink environ-
ment follows the equations discussed in section 3.1 and section 3.2. The
project package has been adapted to that of Merlin UCV hardware by some
modifications on top of UUV dynamics project [27]. The ROV dynam-
ics and thruster modelling are implemented in C language using the C
MEX API followed by calling them in Simulink using C s-functions. The

N\ ---uuv-master
| merlinUCV_88.csv
| startup.m
+---data
| rov.mat
+---functions
animateAUV.m
plotForces.m
plotMotions.m
plotPath.m
rotation.m
skew.m
---models
rovSim los.slx
rov_simulator.slx
rov_simulator revB@l.slx
rov_simulator revB@2.slx
rov_simulator_revd3.slx
rov_thrust.c
uuvSim_simple.slx
uuv_dynamics.c
---preprocessing
| readData.m
| thruster_data.xlsx
| welocity data.xlsx
\---merlinUCV
COB.txt
COG. txt
D.txt
D L.txt
D g.txt
K T.txt
M A.txt
M_RB.txt
T.txt
theta.asv
theta. txt
V.txt
---scripts
merlin wvs simulator.m
rovSimRun.m
rovSimSetup.m
uuvSimRun.m
uuvSimRun_los.m
uuvSimSetup.m
+---simulator
+---work

I
I
I
I
I
I
+
I
I
I
I
I
I
I
I
+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+
I
I
I
I
I
I

Figure 3.3: MATLAB package folder structure

33

"rov_thrust.c" details the thruster behaviour for seven thrusters by taking
propeller revolutions as an array of input and returns the output as a thrust
vector with six degrees of freedom. On the other hand the dynamics of
ROV in six degrees of freedom is detailed in "uuv_dynamics.c" taking ac-
count of system inertial mass which includes rigid body matrix and added
mass, drag matrix consisting of linear and quadratic damping, and other
external effects from water current. A basic PID controller to control depth,
speed and steering is designed to verify the model in Simulink environ-
ment. Functions for plotting and animation of ROV in 3D space are also
implemented to capture the results.

The ROV is defined under the directory uuv — master/ preprocessing/
merlinlUCV as shown in Figure 3.3. All the physical parameters related
to ROV, thruster and the operational environment are stored under this
directory. The MATLAB scripts (with .m extensions) are responsible
for calling various parameters and individual models as required for
simulation. All the main scripts for running the simulations are kept
under the directory scripts. The Simulink models and the C codes that
control the ROV behaviour and dynamics are stored under the directory
models. The procedure for setting-up and running the MATLAB simulation
environment are detailed in Appendix B.

34

Chapter 4

Test Plan and Experiments

Chapter Outline

This chapter discusses the test plan and various experiments that have
been conducted for studying the ROV simulator response under two
independent simulation environments. it also provides an overview of
additional tools and libraries utilised to perform the data capture and
analysis. Lastly, how to perform a performance comparison study between
simulator and hardware is detailed.

35

4.1 Introduction

Experiments have a vital role in the testing and verification of mathematical
models. It can provide practical ground for the designed model is correct,
or it can prove the the model is wrong by a deviation from the expected
behaviour which opens a new area of attention for the study. They also
facilitate evidence for the existence of the entities involved in our theories
and mathematical equations. In this work, MATLAB/Simulink and
ROS/Gazebo environments are utilized to perform experimentation on the
ROV simulator. Few additional tools such as PlotJuggler, RQT_GUI, and a
few custom-made scripts in python are utilized for data capture to perform
data analysis and comparative study.

Defaulk - rqt &)

File Plugins Running Perspectives Help

>Message Publisher (3) D&@ -0
& | Topic | /clock ~ Type |rosgraph_msgs/Clock ~ | Freg. |1 ~|Hz g | = (€]
topic - bype rate expression
~ v fucvfthrusters/0/input uuv_gazebo_ros_plugins_msgs/FloatStamped 1.00

» header std_msgs/Header
data float64 0
= [V| fucvfthrusters/2/input uuv_gazebo_ros_plugins_msgs/FloatStamped 1.00
» header std_msgs/Header
data float64 0
* |V fucvfthrusters/3/input uuv_gazebo ros_plugins_msgs/FloatStamped 1.00
» header std_msgs/Header
data float64 0
~ v fucvfthrusters/4/input uuv_gazebo ros_plugins_msgs/FloatStamped 1.00
» header std_msgs/Header
data float64 0
~ v fucvfthrusters/5/input uuv_gazebo ros_plugins_msgs/FloatStamped 1.00
» header std_msgs/Header
data float64 0
~ v fucvfthrusters/6/input uuv_gazebo_ros_plugins_msgs/FloatStamped 1.00
» header std_msgs/Header
data float64 0
~ v fucvfthrusters/1/input uuv_gazebo_ros_plugins_msgs/FloatStamped 1.00
» header std_msgs/Header
data float64 0

Figure 4.1: Input Commands to Individual Thruster using RQT_GUI

» (]
thrust_in

» (]

thrust thrust out

a

row_thrust

*

uwy_dynamics

: it forces
- tau
Thruster input IE‘-’

currant velocity ;. " L
YNamics

—@ welacity

speed in each
thruster

Figure 4.2: Simulink model for stability test

36

4.2 ROV model stability

Initial experiments were focused on studying the stability of the ROV
model in MATLAB and ROS environment under ideal conditions. The test
plan for the above is detailed in tables 4.1 and 4.2.

| To study ROV stability under ideal conditions in MATLAB ‘

S No. Procedure
Test preconditions | Make sure all necessary directories are included
in the path and the C-coded S-functions are

compiled.
1 Run the startup script named startup.m
2 Run the Simulink model named rov_simulator.slx
as shown in Figure 4.2, under the directory models
3 Observe and record thrust and velocity of ROV in

all six degrees of freedom.

Expected result | Both the thrust and velocity in all six degrees of
freedom must be zero under ideal conditions (zero
RPM to thruster input).

Table 4.1: Test scenario 1 - Model stability under MATLAB environment

To serve the purpose of this study, all inputs to individual thrusters
were set to zero followed by comparing the performance between models
in ROS and MATLAB.

4.3 Thruster response for varying inputs

The main goal of this study is to compare the individual thruster response
from the ROV model in MATLAB/Simulink and ROS environment. The
test plan is detailed in tables 4.3 and 4.4. The inputs to individual thrusters
are changed with respect to time but they remain the same across the
simulation environments.

4.4 Thruster response for varying movement com-
mands

Few additional experiments have been done with simulator in ROS
environment to test casual relationship by manipulating ROV input
variables related to movements and measure their effect on thruster inputs
and outputs. The initial experiments were done to study the list of available
feed-backs from the simulator and ROS message types followed by storing
the complete data in time synchronised form. Scripts were made to extract
time series data for individual message types from the complete data file
to study the co-relation between inputs and outputs to thrusters at varying
environmental conditions. The test plan for the above under ROS platform
is detailed in Table 4.6. On the other hand, ROV simulator under MATLAB

37

| To study ROV stability under ideal conditions in ROS \

S No. Procedure
Test preconditions | Make sure all the UCV ROS packages are build
and sourced.

1 Run a terminal and launch the world in gazebo
using the command snorre

2 Run another terminal and spawn the robot to
gazebo environment using the command snorre

3 Run another terminal and launch the ROS tool
rqt_gui by running the command rosrun rqt_gui
rqt_gui.

4 Run another terminal and launch the PlotJuggler

which is a tool to visualize time series by running
the command rosrun plotjuggler plotjuggler.

5 Load the topics for individual thruster input with
data value equal to zero in rgt_gui as shown in
Figure 4.1 and publish the topics at 10 Hz.

6 Load the subscribed topics to PlotJuggler data
analysis window and record thrust and velocity of
ROV in all six degrees of freedom.

Expected result | Both the thrust and velocity in all six degrees of
freedom must be zero under ideal conditions(zero
RPM to thruster input).

Table 4.2: Test scenario 1 - Model stability under ROS environment

Environment, controls the movement directions using 3-dimensional way
points in a Cartesian coordinate system. The test plan is detailed in Table
4.5.

4.5 Data Collection

Data collection plays a vital role in any field of research to evaluate their
hypothesis or validate a model with hardware in real-time. Through data
collection, accurate insights of research can be measured and analysed
using standard validation techniques. Quantitative approach is used in
this study to find a relationship between the data from simulator and
that from the Merlin UCV. The data from the simulator is gathered using
PlotJuggler tool and rosbag commands in ROS and extracting the required
data through custom-made scripts. To serve the above purpose bagpy
library - (A Python package to facilitate the reading of a rosbag file based
on semantic datatypes) has been used. On the other hand, MATLAB
simulation captures the simulator data using standard Simulink library
functions.

The hardware (Merlin UCV) data has been collected in real-time from
various sensor feed-backs. The data sampling rate was 10Hz. A total

38

] To study individual thruster response in MATLAB ‘

S No. Procedure
Test preconditions | Make sure all necessary directories are included
in the path and the C-coded S-functions are
compiled.
1 Follow the steps 1 and 2 listed in table 4.1
2 Vary the inputs to individual thrusters by running
the script .m
3 Observe the scope and record the thruster output
as well as the velocity of ROV in all six degrees of
freedom.
Expected result | The thrust output varies with the varying ro-
tational speed of individual thrusters and ROV
starts the movement accordingly

Table 4.3: Test scenario 2 - Thruster response under MATLAB environment

of seven thrusters are available in the Merlin UCV which are named
VFP, VFS, VAC, HFP, HFS, HAP, HAS where the naming convention
is as follows: V - vertical, H - horizontal, F - forward, A - aft, P -
port, S - starboard. For each thrusters, both the feedback value/ process
value and the command/ set-point were collected. The Latitude and
Longitude are computed by Inertial Navigation System on the ROV using
measurements from the Inertial Measurement Unit, Doppler Velocity Log
and transponders through a Kalman filter

4.6 Performance Comparison - Simulator v/s Merlin
ucv

Real-time simulation plays a vital role in the design and test of complex
systems, especially when interfacing the subsystems. The main goal of
this experiments is to compare the corresponding experimental data from
Merlin UCV and verify to represent the physical behavior of the ROV
simulator. A dynamics simulation model was developed considering
the characteristics of individual seven thrusters, the ROV dynamics,
and the operating conditions of the hardware. The kinetic behavior of
both the Hardware (Merlin UCV) and the MATLAB ROV simulator is
compared when they are in underwater conditions. A close proximity
to environmental conditions was maintained during the experiment by
tuning the ROV parameters as well as sea bed conditions. The test plan
is detailed in Table 4.7.

39

To study individual thruster response in ROS

S No.

Procedure

Test preconditions

Make sure all the UCV ROS packages are build
and sourced .

1 Follow the steps from 1 to 4 listed in table 4.2

2 Publish data to the topics for individual thruster
input with a value varying from 0 RPM to 70 RPM
and back to 0 RPM manually at a rate of 10 Hz.

3 Load the subscribed topics to PlotJuggler data
analysis window and record thrust and velocity of
ROV in all six degrees of freedom.

Expected result | The thrust output varies with the varying ro-

tational speed of individual thrusters and ROV
starts the movement accordingly.

Table 4.4: Test scenario 2 - Thruster response under ROS environment

\ To study thruster response for movement commands in MATLAB

|

S No.

Procedure

Test preconditions

Make sure all necessary directories are included
in the path and the C-coded S-functions are
compiled.

1 Follow the steps 1 and 2 listed in table 4.1
2 Load the directory scripts and run the script
rovSimRun.m
4 Record the plots for forces, thrust and velocity of
ROV in six degrees of freedom.
Expected result | Not applicable

Table 4.5: Test scenario 3 - Thruster response for varying movement
commands under MATLAB environment

Figure 4.3: Simulink Model for Comparison Study

40

] To study thruster response for movement commands in ROS

S No.

Procedure

Test preconditions

Make sure all the UCV ROS packages are build
and sourced .

1

Follow the steps from 1 and 2 listed in table 4.2

2

Run another terminal and launch the PlotJuggler
tool by running the command rosrun plotjuggler

plotjuggler

Load the subscribed topics to PlotJuggler data
analysis window and record individual thruster’s
output, thrust and velocity of ROV in all six
degrees of freedom.

To study the effect of following movements surge,
sway, heave and yaw in positive and negative dir-
ections, on individual thrusters, perform modi-
fications on the script teleop.py so that each type
of movement is performed for 30 seconds with a
waiting period of another 30 seconds. The waiting
time is for retaining the ROV stability after each
movement finishes.

Expected result

Not applicable

Table 4.6: Test scenario 3 - Thruster response for varying movement
commands under ROS environment

| To compare the performance between the hardware and simulator

S No. Procedure
Test preconditions | Make sure all necessary directories are included
in the path and the C-coded S-functions are
compiled.
1 Load the directory models and open the Simulink
model rov_simulator_rev03.slx as shown in Figure
43
2 Once the Simulink model is opened, Load
the directory scripts and open the m-script
merlin_vs_simulator.m
3 Run the script and record individual thruster’s
output, thrust, velocity of ROV in all six degrees
of freedom and the error plots.
Expected result | Not applicable

Table 4.7: Test scenario 4 - Performance Comparison - ROV Simulator

Versus Merlin UCV

41

42

Chapter 5

Results

Chapter Outline

This chapter provides a clear idea of exactly what is found and keeps the
data itself separate from the interpretation i.e., discussion and analysis.
A concise summary of results for each experiment listed in the previous
chapter is discussed. The chapter objectively report the findings and only
brief observations were presented in relation to each question.

43

The validation of results from the experiments play a vital role to
measure the extent to which the results reflect the truth. While performing
data validation, several things have to be considered such as the accuracy
of sensors in data measurements, time synchronisation when working with
real-time data, and so on. The question raised is, whether the value of
the dependent variable has been changed due to the manipulated variable
from the experimental study or if confounding factors have been the cause.
As a result, time synchronised data has been collected across the data to
keep track of what is measured and when is it measured. This chapter
details the data capture.

5.1 Test scenario 1- ROV Model Stability

For test scenario 1, inputs to individual thrusters were set to zero.
In MATLAB the results were captured using blocks from the standard
Simulink library functions while in ROS, the same was captured by using
the tool PlotJuggler. The Figure 5.1 shows the ROV velocity in six degrees
of freedom. On the other hand, Figure 5.2 was to study the inputs to
individual thruster and corresponding response. The test results from
MATLAB environment are shown from Figure 5.3 to Figure 5.5. Inputs
to individual thrusters were plotted along with ROV’s thrust and velocity
in six degrees of freedom. The main goal behind this experiment is to
compare the ROV stability in ROS and MATLAB environments which will
be closely examined in latter chapter. For better understanding, all the plots
are plotted as time series with simulation time on X-axis.

ROV linear velocity X

| | m/gazebo/model_states/twlist. 3/linear/y
1A "‘ljgazebo/medeljtatest‘tvd‘;td/tme@r,’z
g o hill T R 1 B! H
\oth ol R L wl
et ATt At e i
I m:ﬁ LA
itk UEF LR 1l
1P
F}J ! L\
‘ Al
Al ¥

B/gazebo/model_states/twist. ip‘hnear,'x,[

Velocity (m/s)

b

!

T T T T T T T T T T T T T T T T
01:24:40.0 01:25:00.0 Time (seconds) 01:25:20.0 01:25:40.0 01:26:00.0

ROV angular velocity X

l | states/twist:3
N M fgazebo/model states/twisk.3/angilarfy
Al .
| /gaapho/model_states/‘tywst,3/4_|\Ejlar,’z L

0.0005

velocity (rad/s)

-0.0005 — i

-0.001

T . T T T T T . T T T
01:25:20.0 01:25:40.0 01:26:00.0
Time {Seconds)

T T T T T T
01:24:40.0 01:25:00.0

Figure 5.1: ROV Velocity Versus Time in ROS - Test Scenario 1

44

Thruster 0 X Thruster 1 X Thruster 2 X

0.1 0.1 0.1+
h u.;mmi F 1 Ji i] fehrusters/2/input/s i
| hrust/data | 1/thru 3|] ifthrust hrust/data: |
0.05 0.05 0.05
0 0 0
-0.05 -0.05 <0.05
01, 0.1 0.1 -,
1820 1840 1860 1880 1900 1820 1840 1860 1880 1900 1820 1840 1860 1880 1900
Thruster 3 X Thruster 4 x Thruster 5 X Thruster 6 X
0.1 & 0.1 & 0.1 & 0.1 = &
N ucvfthr i Jat n h T inputy J s, dat nu h
fucv/thrusters/3/t Bfucifthrdsters/fajt Jnjuey/ t Bfucifth
0.05 0.05 0.05 - 0.05
0 0 0 0
-0.05 -0.05 -0.05 -0.05
0.1 T T T T 0.1 T T ﬂ'17\w|-\-|-\-|www-|w 0.1 T
1820 1840 1860 1880 1900 1820 1840 1860 1880 1900 1820 1840 1860 1880 1900 1820 1840 1860 1880 1900
X-axis: Time (seonds) Y-axis: Thrust (Nm)

Figure 5.2: ROV Individual Thruster Response in ROS - Test Scenario 1

ROV thruster input

1
Thruster 1
0.8 Thruster 27|
Thruster 3
0.6 Thruster 4 |
Thruster 5
Thruster 6| |
= o4 Thruster 7
a
Z o2
3
2 0
a
]
G 0.2
3
F o4
0.6
0.8
-1
0 200 400 600 800 1000 1200

Time (seconds)

Figure 5.3: Input to individual thruster in MATLAB - Test Scenario 1

ROV Thrust
150
theust finear X
theust finear Y
theust finear Z
100 thaust angular X |H
thnust angular Y
thrust angular 2
_. 50
E
£
w
E o
IS
50
-100
o 200 400 800 800 1000 1200

Time (seconds)

Figure 5.4: ROV Thrust in MATLAB - Test Scenario 1

45

ROV linear and angular velocity
I |

15 Velocity linearz | |

Velocity (mis). (rad/s)
°

I I I I I
0 200 400 600 800 1000 1200
Time (seconds)

Figure 5.5: ROV Velocity in MATLAB - Test Scenario 1

5.2 Test scenario 2 - Thruster Response for Varying
Inputs

Thrusters are one of the vital components responsible for ROV’s dynamics.
As a result, it is important to test and verify individual thruster responses.
Test scenario 2 focuses the test coverage for individual thruster response for
varying inputs. In ROS simulation, the rotation of individual thruster are
varied at regular intervals and published with a constant frequency rate
using the RQT_GUI tool manually and results were captured using the
tool PlotJuggler. On the otherhand, MATLAB simulation runs a test script
that performs the parameter change in input, automatically and capture
the results using standard Simulink library functions. The motive behind
this experiment is to study the behaviour of individual thrusters of ROV
under independent simulation environments, in this study, the ROS and
the MATLAB environments. All the plots are done in time series with
simulation time on X-axis.

ROV linear velocity X

5
000 =/gazebojmodel_states/twist.3/linear/x
004 Jgazebojmodel.states/twist.3/linearfy
7T =/gazebojmodel_states/twist.3/linear/z
<
£ .
£ o, \//
Zg Sk o4 \ TSUAL > Y
S o <J N ¥ e
2 \
2 J \ = \ <
-0.02 \
-0.04
T T y T T
5660 5680 Time (seonds) 5700 5720
ROV angular velocity X
006
E =/gazebo/model_states/twist 3/angular/x
004] izt model.states st 3/angulaiy
& jazebo/model.states twist.3/angular/z
S 002
8] !
£ <A KA ARG LT i e A A
B \ LARIAY Bl EARACKE AU ARG X S AN R U e U e i A
FRRE NS Wi SN AN SORAXIONS
] \
S 002
Q)
>
-0.04

T T T T T T
5660 5680 5700 5720
Time (seonds)

Figure 5.6: ROV Velocity Versus Time in ROS - Test Scenario 2

The results from ROS are shown from Figure 5.6 to Figure 5.9 in which
Figure 5.6 shows the ROV velocity in six degrees of freedom, 5.7 shows
the thrust from individual thruster for corresponding inputs i.e., thruster
rotational speed. The Figure 5.8 and Figure 5.9 shows the individual

46

Thruster 0 X Thruster 1 X Thruster 2 X
20 70 80
1 ? cifthrusters/ 1/ | ?
1 60 o /ucy/thrusters/1/H /ofthrust/data |
60 5 60
1 20
40 40
30
20 = 20
] 10
— 0 0
T T T T —T LA S B S T T T
5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5650 5680 5700 5720 5740
Thruster 3 X Thruster S X Thruster 6 X
70
20 r : 80 T o
| e 1
I |
60 50 60
40
40 40
30
20 2 20
10
o o o
T T T T T T T T T T T T T T T T T T
5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740

Figure 5.7: ROV Individual Thruster Response in ROS - Test Scenario 2

X-axis: Time (seonds)

Y-axis: Thrust (Nm)/ Thruster speed (RPM)

Thrustero X Thruster 1 X Thruster 2 X
‘ o
008 m/gazeboflink] 0.04 N s[zms/MlsL.m/unemx? _states/twist. 11/linearfx |
0.04 i 1 | m/gazebalink states/twisk, 10flioeary 5t ist. 1/linearly
] /gazebo/tf 002 |m{gazgh S twist. 10/lipe 0.05 J i |
0.02 4 S]
] i A i
. /) 1 | J \ i g
P A v 0 ! \ Wy A f \,
" 1
| / | / 0
-0.02 [002 ! /)
1 : A
-0.04 ¥ / X pt
004 Vo \
-0.06 W -0.05 -
T T
5660 5700 5720 5730 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740
Thruster 3 X Thruster § X Thruster 6 X
; : : 003 ’ o :
s 1 0021 o1 | " 1aflinearx [0.04 | _states/tHist 15/0 |
005] |-/ga'zeh'|...k;smés | ! [w link 1afineary | | ik isfinsarly
| i i 2| 0.01 14/linear/z | 0.02 o o;/lingAa ftwist. 15/linear/z
I =~ 0 0.05 Bl 3} N e
g, ! 03-
ol- Aon 001 il | Lg
/]- 002
] 002 / 0778 \ Y
| J 0.04 1
008 003 13/ { |
004 I 008 L -0.06
L A N T) T T T T T L I N T
5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740

Figure 5.8: Individual Thruster Velocity (linear) in ROS - Test Scenario 2

X-axis: Time (Seconds)

Y-axis: velocity (m/s)

Thruster 0 X Thruster 1 X Thruster 2 X
20 B ;
1 I s i s tes st 10/dngular . skates/twiist. 11/an gul
tates/twist.9) L (s 0 ¥ /gazebollink_statesjtwist.
o W]gazabo/link_states/owisk3/anaularfz || | 50 s s 1 i i l
] 40 | i
20 [i 20
1 N 1
-40 20 -0
f
||
10 | “
-60 4 60 R
o
ISR R e e e | T T T T T T T T T T T L A S B N B
5660 5680 5720 s740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740
Thruster 3 X Thruster 4 X Thruster s X Thruster 6 X
e 60 T 1
[13/angulr/ 60
i 0 ink tdtes/twist. 13/anqularfy
I 30 | mlaazeboflink Btes/twist 13/2ngularz ©
20 |
30 |
o 20 Il 30
-40 1}
-20 If
1 -40
50 0
-40 E !
-60 I 50
T T T T T T 2 T T T
5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740 5660 5680 5700 5720 5740

X-axis: Time(seconds) Y-axis: velocity(rad/s)

Figure 5.9: Individual Thruster Velocity (angular) in ROS - Test Scenario 2

47

ROV thruster input

Thruster 1
70 Thruster 2|
Thruster 3|
Thruster 4| |
60 Thruster 5|
. Thruster 6|
= 50 Thruster 7[H
&
B 40
a
&
5 30
@
2
£ 20
10
' |
0 200 400 600 800 1000 1200

Time (seconds)

Figure 5.10: Input to individual thruster in MATLAB - Test Scenario 2

ROV Thrust
150
thrust linear X
thrust linear Y
thrust linear Z
100 thrust angular X [
N 1 thrust angular Y
tJ thiust angular Z
_ 50
= — %— —
z
2 — = [4
50 -
100 }
[200 400 600 800 1000 1200
Time (seconds)
Figure 5.11: ROV Thrust in MATLAB - Test Scenario 2
ROV linear and angular velocity
2 Velogity lnearX | |
Velocity linear ¥
15 Velocity linearZ | |
: Velocity angular X
Velocity angular ¥
1 Velocity angular Z [H
e
Bos
@
E 0
=y
805
s
>
A
15
2
0 200 400 800 800 1000 1200

Time (seconds)

Figure 5.12: ROV Velocity in MATLAB - Test Scenario 2

48

thrusters linear and angular velocity feedback in six degrees of freedom.
The test results from MATLAB environment are shown from Figure 5.10
to Figure 5.12. Figure 5.10 shows the inputs i.e., thruster rotational speed
commanded to individual thruster. The feedback i.e., ROV’s thrust and
velocity in six degrees of freedom are shown in Figure 5.11 and Figure 5.12.
The analysis on results will be detailed in later chapter.

5.3 Test scenario 3 - Thruster Response for Varying
Movement Commands

The test scope for this section covers the response of individual thruster
in ROS simulation for the movements - surge, sway, heave and yaw
both in positive and negative directions. The rotation of individual
thruster are controlled depending on the movement commands received
from the python script teleop.py and results were captured using the
tool PlotJuggler. Individual thruster response at ideal conditions for
corresponding inputs were captured and are shown from Figure 5.16 to
Figure 5.13. On the other hand, MATLAB simulations control the

Thiust Force

Time (Seconds))

Figure 5.13: Thruster 1 and 0 Input/ Output Versus Time - Test Scenario 3

movement directions using way points in Cartesian coordinate system.
The test results from MATLAB environment are shown from Figure 5.17
to Figure 5.18. Figure 5.17 shows the linear and angular displacement,
while the linear and angular velocities are plotted in Figure 5.19. Figure
5.18 details the ROV simulator’s movement as a three dimensional plot.

49

Thruster 2

Thrust Force (N)

Time (Seconds)

Thruster 3

Thrust Force (N)
|

Figure 5.14: Thruster 3 and 2 Input/ Output Versus Time - Test Scenario 3

Thruster 4

&
—— st
o rste
&0
0 ——
5
F
z ==
E 0 . -
20 ~
—— :
: e
a0 —
200
Time (Seconds)
Thruster 5
" —
20 -
_ —
z o
e o —
5
g2 !
E hm— ——
a0
&0

00
Time (Seconds)

Figure 5.15: Thruster 5 and 4 Input/ Output Versus Time - Test Scenario 3

5.4 Test scenario 4 - Data Samples from Hardware

The available seven thrusters in the Merlin UCV are named as VFP, VFS,
VAC, HFP, HFS, HAP, HAS where the naming convention is as follows:
V - vertical, H - horizontal, F - forward, A - aft, P - port, S - starboard. For
each thrusters, both the feedback value/ process value and the command/

50

Thruster 6

ruster 6 input
thrustars thrust

200 300 400 500 600
Time (Seconds)

Figure 5.16: Thruster 6 Input/ Output Versus Time - Test Scenario 3

o0 b T T T T T ———
B LT T
=RRUTS - e |
3 o -
b= ——
g f/ L
S of! = —
g A . e I I R PR 4
=] “w, LT z
S
10 L
1] 104} 20y N} EL 500 (1] TOH}
. ' P T T T Tt
- | 0 - =
¥ DRI NIRIS NI N
— 100 4 | A] '_.-'I 7 Ay .I".I I-I 1 ||r .l__.-l 1
e I LS | | I It
= | [R I I I
£ 0 - :—'—I""t']l‘':—|—:'-|'+-J-]—:'JI'T""J‘I_:":'I"I
= | 1 | Ll |
i I||:|||||::|||———a||||I
-1(H} | | I |l| |1 | il | il f: I |: |
| I 1s | |_| la el I_I =TT
200 . A . . .
1] 200 siL1] M) 500 i) TH)

Time (s)

Figure 5.17: ROV Change in Position in MATLAB - Test Scenario 3

10

2 {m)
-

=l

0 - 0
y (m)

Figure 5.18: ROV motion 3-D plot in MATLAB - Test Scenario 3

51

Translational velocity (m/s)

1
{1 1{H} 2N K} M) HILI] ZL1] M}

1{H} T T T T T T

=)
/8]

-100 F N

=200 | e

Rorarional velocicy |

i i i i i i
L1 10} 20} J(H} 2} S0H G TN
Time (s)

Figure 5.19: ROV Velocity in MATLAB - Test Scenario 3

set-point were plotted. The data also consists of Timestamps in units hour,
minutes, seconds and milli — seconds; Latitude and Longitude in decimal
degrees; depth in meters; attitude in degrees; linear velocity in meters /second;
angular velocity in degrees /second; linear acceleration in meter? /second and
rotation of thrusters in rpm. Figure 5.20 details the thruster rotation from
the hardware for varying movement commands from the control station.

5.5 Test scenario 5 - Performance Comparison

The test coverage under this section focuses on comparing performance
between hardware data and ROV simulator under matlab. The achieved
ROV velocity for same thruster input were taken as the parameter to
compare the performance. Figure 5.21 shows the comparison on achieved
thruster velocity for linear and angular motions from the hardware and
simulator.

52

. Thruster speed (RPM)
Estbm.8888

Thruster HAP

Time (milli-Seconds)

| Thruster speed (RPM)

(a) HAP

Thruster HFP

Time (milli-Seconds)

(c) HFP

Thruster VAC

1000

Thruster speed (RPM)

Time (milli-Seconds|

(e) VAC

g

Thruster speed (RPM)
o

Thruster HAS
1000
800
E 600
& Nf'\
= 200
i |
y -2 f
W .m0
Eaw U
-800
1000
Time (milli-Seconds)
Thruster HFS
1500

Time (milli-Seconds)

DI000 39750000

Thruster VFS

Thruster speed (RPM)

vis_pe

Thruster speed (RPM}

Figure 5.20: Response From Various Thrusters in Merlin UCV

Time (milli-Seconds)

(g) VFS

53

3971

visp

0 39750000

(d) HFS

Thruster VFP

Time (milli-Seconds)

(f) VEP

lin UG linear velodity x
Simulator lnear velocty x

02 7\

Linear Velocity (m/s)

o 50 100 150
Time (seconds)

(a) Linear velocity X-axis

Metlin UGV linear velocity y
Simulator finear velogity y

Linear Velocity (mfs)
°

02
0.3
0 50 100 150
Time (seconds)
(c) Linear velocity Y-axis
, . ‘ ‘
Merin UCV linear velocity z

" e
0.6
— 0.4

©
o

)
©

Linear Velocity (mis
o

S
S

: S
@

&
o

20 40 60 80 100 120 140
Time (seconds)

(e) Linear velocity Z-axis

v —
oxbizg | hoby ‘ MVW‘\
g o M L) V
R
» il
il
. I
-2.5 v
’ ° Time (seconds) 100 e
(b) Angular velocity X-axis
: el
i
§o '»UA{U\-LA_&A ﬁMnﬂ I\J\/\ﬂnn\
1AM A A
1 'v
1

o

50 100 150
Time (seconds)

(d) Angular velocity Y-axis

‘Merfin UCV angular velocity z
10 ——— Simulator angular velosityz_| |
5

Linear Velocity (mJs)
o
P
<
|+

Time (seconds)

(f) Angular velocity Z-axis

Figure 5.21: Performance comparison Merlin Hardware Versus Simulator

Chapter 6

Discussion

Chapter Outline

This chapter interprets the results listed in the previous chapter in
detail and draws out their implications. The research findings from
the simulations were elaborated on and evaluated in a thoroughly and
coherently manner throughout the chapter.

55

6.1 Preliminary Analysis on ROV Dynamics

The ROV motion in 3-D space was investigated in two entirely independent
simulation platforms: ROS and MATLAB/ Simulink based on the mathem-
atical model. The initial simulation phase was focused on comparing the
model uncertainties among the different simulation environments and the
results were promising with a 10% variation in ROV dynamics across the
platforms. The above behaviour can be seen from the individual thruster
response as seen in Figure 5.9 and Figure 5.10. It is also noticeable that
the two systems have similar sensitivity towards underwater dynamic un-
certainties where the variations in rotational velocities are slightly greater
than that in linear velocities (translational motions). The simulation results
indicates that light variations in thruster parameters causes a considerable
impact on simulator performance. As a result, the accuracy of the model
was vital for studying the performance comparison between the simulator
and the hardware which is discussed under Section 6.5. To prove the model
is accurate, the analysis has to start with the ROV model stability with all
the thrusters running at zero speed and is discussed under Section 6.2.

6.2 ROV Simulator Stability

When discussing the stability of an ROV, the two main factors taken
into account are: the vehicle must be buoyant enough so that it can be
maneuvered easily up or down without using too much energy and it must
also be stable and doesn’t tip over. Results from the test scenario 1 shows
that the stability of an ROV is affected by the distance between the center
of gravity and the center of buoyancy. Figure 5.5 and Figure 5.1 shows both
the values for linear and angular velocities of the ROV in all the 3 axes are
almost zero when there is no thrust generated from the thrusters. It has also
been observed that the result stays consistent in both MATLAB/Simulink
as well as ROS simulation environment.

During the initial phase of modelling, the main challenges to achieve
stability was from the physical parameters of ROV such as system inertia
matrix comprising the rigid body mass(Mzp) and added mass(M ,), drag
matrix which consists of linear damping(D;) and quadratic damping(Qi),
volume(V), center of buoyancy (xp, ys, z5) and center of gravity(xg, vy,
zg). When the above parameters were tuned as close to the hardware,
the simulator got its stability. Another observation from both simulation
platforms are that the ROV sinks to the seabed gradually over time with
out tip over when the thrusters is running at zero speed. The noticeable
difference across the simulation platforms are on the noise in velocity
measurements. In ROS simulation platform the noise in velocities is with
in the magnitude of 1 x 1072 m/s while in MATLAB the noises has to be
manually fed into the ROV dynamics based on the real-time data from
hardware.

56

6.3 Thruster Inputs Versus Response

The one-to-one relationship of thrusters among simulators is vital for a
precise ROV simulation and can be studied from the recorded results from
the test scenario 2 detailed under Section 5.2. From the Figure 5.6 and
Figure 5.12 shows that the ROV simulator in the MATLAB/ Simulink
environment as well as in the ROS environment has similar and consistent
results for velocities in six degrees of freedom for the corresponding
thruster speed. It can also be perceived from the simulation results that the
thrust output from individual thrusters has almost identical results across
the two independent simulation environments and is detailed in the Table
6.1.

’ Comparing thruster response across simulation platforms ‘

Platform | Thruster/ Output thrust (Nm)
input(RPM)

TO | T1 | T2 | T3 | T4 |T5 | Té
T0-70.0 827100 |00 |00 |00 |00 |00
T1-70.0 00 |313|00 |00 |00 |00 |00
T2 -70.0 00 |00 88|00 |00 |00 |00
MATLAB| T3-70.0 00 |00 |00 |870]00 |00 |00
T4-70.0 00 {00 |00 |00 |352|00 |00
T5-70.0 00 {00 |00 |00 |00 |86.7]00
T6-70.0 00 |00 |00 |00 |00 |00 |314
T0-70.0 805100 |00 |00 |00 |00 |00
T1-70.0 00 [304|00 {00 |00 |00 |00
T2 -70.0 00 |00 |787|0.0 [0.0 |0.0 |O0.0
ROS T3-70.0 00 |00 |00 |821]00 |00 |00
T4-70.0 00 |00 |00 |00 [31.7]0.0 |O0.0
T5-70.0 00 {00 |00 |00 |00 |803]|0.0
T6-70.0 00 {00 |00 (0.0 [0.0 |00 |295

Table 6.1: Thruster response comparison

6.4 Movement Command Versus Thruster response

The control algorithm and the PID tuning parameters for the ROV
simulator in MATLAB environment is premature and the movement
directions were fed using waypoints in the Cartesian coordinate system
which increases the complexity to perform this study. The above
unstability can be visualised from the plots shown from Figure 5.17 to
Figure 5.18. On the other hand, the simulator under ROS environment
can be commanded to move in positive and negative directions for surge,
sway, heave, and yaw movements under the ROS environment. For each
commanded movement, the activated thrusters and their corresponding
thrust output vary depending on thruster characteristics which consist of
thruster allocation matrix, thruster diameter, thruster coefficient, and thrust

57

loss factors for individual thruster. Detailed analysis of results from Figure
5.16 to Figure 5.13 following observations were made for various ROV
motions.

6.5

Backward (surge negative): For a backward movement, thrusters
namely 3, 4, 5 and 6 where in active state on which, thrusters 3 and 6
where rotating opposite to 4 and 5. The thrust force was at negative
side for thrusters 3 and 6 while it was at positive side for thrusters 4
and 5.

Forward (surge positive): In case of forward movement, the
difference in thrusters behaviour compared to backward movement
is that the thrust force was at positive side for thrusters 3 and 6, while
it was at negative side for thrusters 4 and 5.

Right (sway positive): Thrusters 3, 4, 5 and 6 were active and all of
their individual thrust were at positive side, for a movement towards
right direction.

Left (sway negative): The only difference for a left movement as
compared to the right movement, is that the thrust force was at
negative side.

Upward (heave positive): For an upward movement, the active
thrusters were 0, 1 and 2 in which, thruster 1 rotates in the opposite
direction to the thruster 0 and thruster 3. For thrusters 0 and 2, the
thrust force was at negative side while, it was opposite for thruster 1.

Downward (heave neagtive): In comparison to upward movement,
the difference for downward movement is that thrusters 0 and 2, the
thrust force was at positive side while, it was at negative side for
thruster 1.

Rotate right (roll positive): For a movement command to rotate right,
thrusters namely 3, 4, 5 and 6 where in active state on which, thrusters
3 and 4 where rotating opposite to 5 and 6. The thrust force was at
positive side for thrusters 3 and 4 while it was at negative side for
thrusters 5 and 6.

Rotate left (roll negative): In case of rotate left movement, the
difference in thrusters behaviour compared to rotate right movement
is that the thrust force was at negative side for thrusters 3 and 4, while
it was at positive side for thrusters 5 and 6.

Simulator Versus Merlin UCV

The stability of the ROV was analyzed and an open-loop simulation was
performed under MATLAB/Simulink platform with a motive to compare
the performance between the hardware and the simulator. Preliminary
analysis draws the inference that there are few variations in the magnitude

58

of thrust force from individual thrusters compared to that of the real
hardware, but the simulation results were realistic. In real life scenario,
it is merely impossible to achieve the perfect reality, but by taking account
of ROV’s physical parameters and disturbance in operational environment
the results indicate that the model is correct. The error calculations from
the comparison study are detailed in the table 6.2. The initial problems
faced was to achieving the stability of the simulator. The root-cause
was realised from consecutive tests and simulation which contribute to
instability are the ROV physical parameters such as weight of ROV ,
sea water density, system inertia, and drag matrix. Once the values for
the above parameters correspond to that of the hardware, the stability
was achieved. Next challenge was to achieve the performance and it
has been observed that, the major factors that contribute towards it are
thruster allocation matrix, thruster diameter, thruster coefficient and thrust
loss factors for individual thruster. In the above thruster diameter and
thruster coefficient are constants but thruster allocation matrix and thrust
loss factors needed tuning to match simulator performance with that of
hardware.

] Comparing thruster response across simulation platforms ‘

Velocity | Axis Error | Integral Absolute Error
X -0.096 22.94
Linear Y 0.078 13.92
V4 -0.006 10.76
X -0.299 65.41
Angular Y -0.32 63.59
V4 -2.01 487.1

Table 6.2: Thruster response comparison

59

60

Chapter 7

Conclusion and Future Work

Chapter Outline

This chapter interprets the results to an overall answer to the main research
question of this study. The main research question was that, how far is
the performance between the hardware (Merlin UCV) and the software
simulations. The chapter provides a summary of findings and an answer to
the research question and concludes with future work and improvements.

61

7.1 Conclusion

The main goal of this work was to compare the model performance
between simulator and hardware at its operational conditions. To get an in-
sight into the components and working principle of an ROV, several related
research works were reviewed, followed by analysing of the relevant works
done under the research topic. Installation and setup of simulation envir-
onments, specifically ROS/Gazebo was a challenging task. A few chal-
lenges worth mentioning are the simulation of custom components in an
ROV, fixing Operating System(OS) compatibility related issues while set-
tingup the simulation environment, unsupported custom ROS messages in
MATLAB. Data collection was done on both simulator and hardware. Ini-
tially, Semi-automated scripts were made for data collection and graphical
representation to perform a comparative study under ROS but, lately more
sophisticated and open source data visualisation tools that are compatible
with ROS were found and utilized.

7.1.1 Simulation Environment

The two simulation platforms ROS/Gazebo and MATLAB/Simulink are
used in the development of the ROV simulator. ROS provides software
management and real-world physics in a high fidelity simulation that can
be done using Gazebo, while MATLAB provides dynamics simulation
where algorithms can be easily implemented and tested, easy debugging
capability and help to perform extensive data analysis and visualization.
MATLAB provides vast built-in library of functions as part of various tool
kits which makes task more comfortable and saves development time. It
offers plotting and data visualisation tools as well as tools to develop GUI
based applications. Both the simulation platform requires a configuration
file of the ROV model before simulations can be launched. This file includes
the ROV physical parameters, thruster characteristics as well as parameters
that define operational environments. In ROS simulation, the above file
cannot be done after the simulation is loaded, while in MATLAB, the
ROV parameters (ex: thruster characteristics) can be tuned even when
the simulation is loaded which provides a several advantages during
simulation. One example is, to study the effect of change in the value of
thruster allocation matrix against the stability of ROV without compiling
the code each time.

7.1.2 Dynamic Model of ROV Against Hardware

A dynamic model of an ROV is implemented in both ROS and MATLAB,
and an analysis is done to test the stability and flexibility to compare the
performance which resulted in choosing MATLAB/Simulink environment
to perform a comparison study between the simulator and the hardware.
The results under ROS environment have dynamic noise response while
in MATLAB the results were more or less stable which is in contradiction
to real-time response from the hardware. During the initial phase, out

62

of several modelling problems encountered with the ROV dynamics, the
prime one to be mentioned is that, In MATLAB the simulation does not
manage to simulate for a long period. It was discovered later that the root
cause for the above issue was that the ROV lose its stability and solved
later by tuning the ROV parameters close to the hardware. The validation
of results across two different simulation platforms was done and observed
realistic simulation results. The simulation results were compared against
the experimental data from the hardware and the results were promising
with slight variations in linear and angular velocities for both simulator
and the hardware. It has been noticed during simulations that the thruster
allocation matrix, thruster coefficient and thruster loss factor were the
main factors contributing to the tuning of ROV velocities in six degrees
of freedom.

7.2 Further Work

This research work introduces a way of simulating an ROV model which
can be a replica of the hardware and compare the performance between
both. Few proposals to improvise the simulator as a part of further work
to continue the development of the platform, including some specific
proposals of how the problems can be solved are detailed below.

e Expansion of the Simulation Platform: Addition of new modules
(for example: an Inertial Navigation System) and control algorithms
in the existing simulator can be contained as future work. Graphical
User Interface is another improvement that can be looked into, that
makes the simulator user-friendly. As of today, it requires certain
knowledge at developer level to load the simulator.

e Improvements under MATLAB simulation: For simulating the dis-
turbance caused by wave loads under the desired weather conditions,
noise blocks that are available in MATLAB tool kits can be modified
and fed into the simulator input. It will help the simulator to pro-
duce more close results to the hardware at its operating conditions.
In addition, It would be better if the simulation can take account of
how the current varies with depth, and also how it varies with other
environmental conditions such as wind speed.

e Improvements under ROS simulation: The ROS simulator provides
only a few tool-kits for verification of simulation results with output
from the hardware and it is an area of improvement. Also, simulator
under ROS Environment can be improvised with an option for
feeding the same input as that of hardware instead of controlling the
simulator with a separate input from a keyboard/ joystick.

63

64

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

Yifan Song, David Nakath, Mengkun She, Furkan Elibol, and Kevin
Koser. Deep sea robotic imaging simulator for uuv development.
arXiv preprint arXiv:2006.15398, 2020.

Musa Morena Marcusso Manhdes, Sebastian A. Scherer, Martin Voss,
Luiz Ricardo Douat, and Thomas Rauschenbach. UUV simulator: A
gazebo-based package for underwater intervention and multi-robot
simulation. In OCEANS 2016 MTS/IEEE Monterey. IEEE, sep 2016.

Russell Smith. Open dynamics engine v0. 5 user guide. http://ode. org/,
2005.

N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In IEEE/RS] International
Conference on Intelligent Robots and Systems, pages 2149 — 2154 vol.3,
04 2004.

Robert D Christ and Robert L Wernli Sr. The ROV manual: a user guide

for remotely operated vehicles. Butterworth-Heinemann, 2013.

George A Bekey. Autonomous robots: from biological inspiration to
implementation and control. MIT press, 2005.

Kerry Pavek, James Albus, and Elena Messina. Autonomy levels for
unmanned systems (alfus) framework: An update. Proceedings of SPIE
- The International Society for Optical Engineering, 05 2005.

Geoffrey Ho, Nada Pavlovic, and Robert Arrabito. Human factors
issues with operating unmanned underwater vehicles. In Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, pages 429—
433. SAGE Publications Sage CA: Los Angeles, CA, 2011.

NORSOK Standard. Remotely operated vehicle (rov) services. U-102,
Rev, 1, 2003.

Yulian Mahendra, Muhammad Igbal, and Husnul Furqon. Introduc-
tion to residential ROV: New concept of ROV for oil and gas activities.
In Proc of Indonesian Petroleum Association 42nd Annual Convention. In-
donesian Petroleum Association, May 2018.

65

[11] Romano Capocci, Gerard Dooly, Edin Omerdi¢, Joseph Coleman,
Thomas Newe, and Daniel Toal. Inspection-class remotely operated
vehicles—a review. Journal of Marine Science and Engineering, 5(1):13,
2017.

[12] IKM Subsea AS. Merlin UCV product datasheet, 2018.
[13] IKM Subsea AS. Merlin UCV RROV product datasheet, 2019.

[14] Shashank Swaminathan and Srikanth Saripalli. A framework for
modeling underwater vehicles in modelica. In 2018 IEEE/OES
Autonomous Underwater Vehicle Workshop (AUV), pages 1-6, 2018.

[15] O Matsebe, CM Kumile, and NS Tlale. A review of virtual simulators
for autonomous underwater vehicles (auvs). IFAC Proceedings Volumes,
41(1):31-37, 2008.

[16] Iis Hamsir Ayub Wahab, Rintania Elliyati Nuryaningsih, and
Achmad Pradjudin Sardju. Proposed mathematical modeling of small
remotely operated vehicle (rov) movement. Journal of Physics: Confer-
ence Series, 1569:042002, Jul 2020.

[17] Olivier Kermorgant. A dynamic simulator for underwater vehicle-
manipulators. In Davide Brugali, Jan F. Broenink, Torsten Kroeger,
and Bruce A. MacDonald, editors, Simulation, Modeling, and Program-
ming for Autonomous Robots, pages 25-36, Cham, 2014. Springer Inter-
national Publishing.

[18] L. Bevilacqua, W. Kleczka, and E. Kreuzer. On the mathematical
modeling of rov’s. IFAC Proceedings Volumes, 24(9):51-54, Sep 1991.

[19] Hakon Teigland, Vahid Hassani, and Ments Tore Moller. Operator
focused automation of rov operations. In 2020 IEEE/OES Autonomous
Underwater Vehicles Symposium (AUV)(50043), pages 1-7. IEEE, 2020.

[20] Zandra B. Rivera, Marco C. De Simone, and Domenico Guida. Un-
manned ground vehicle modelling in gazebo/ros-based environ-
ments. Machines, 7(2):42, Jun 2019.

[21] Thomas Linner, Alaguraj Shrikathiresan, Maxim Vetrenko, Bernhard
Ellmann, and Thomas Bock. Modeling and operating robotic environ-
ments using gazebo/ros. In proceedings of the 28th isarc, Jun 2011.

[22] Bernardo Ronquillo Japon. Hands-On ROS for Robotics Programming
Program highly autonomous and Al-capable mobile robots powered by ROS.
Packt Publishing Ltd., UK, 2020. OCLC: 1241687096.

[23] Aridane Jests Sarrionandia de Leén. Underwater mapping using
sonar. B.S. thesis, Universidad de Las Palmas de Gran Canaria, 2015.

[24] Jordan Boehm, Eric Berkenpas, Bradley Henning, Michelle Rodriguez,
Charles Shepard, and Alan Turchik. Characterization, modeling, and

66

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

simulation of an rov thruster using a six degree-of-freedom load cell.
In OCEANS 2018 MTS/IEEE Charleston, page 1-7. IEEE, Oct 2018.

Kristian Fotland. Analysis of rov thrusters and small marine
propellers at specific rotational speeds. Master’s thesis, University of
Stavanger, Norway, 2018.

Mohd Shahrieel Mohd Aras, Shahrum Shah Abdullah, Azhan Ab.
Rahman, and Muhammad Azhar Abd Aziz. Thruster modelling for
underwater vehicle using system identification method. International
Journal of Advanced Robotic Systems, 10(5):252, May 2013.

Sigrid Marie Mo. Development of a simulation platform for rov
systems. Master’s thesis, NTNU, 2015.

R.N. Marshall, RK. Jensen, and G.A. Wood. A general newtonian
simulation of an n-segment open chain model. Journal of Biomechanics,
18(5):359-367, Jan 1985.

Thomas Jakobsen. Advanced character physics. In Game developers
conference, volume 3, pages 383-401. IO Interactive, Copenhagen
Denmark, 2001.

Ori Ganoni, Ramakrishnan Mukundan, and Richard Green. A
generalized simulation framework for tethered remotely operated
vehicles in realistic underwater environments. Drones, 3(1):1, Dec
2018.

Gianluca Antonelli and G Antonelli. Underwater robots, volume 3.
Springer, 2014.

Junku Yuh and Michael West. Underwater robotics. Advanced Robotics,
15(5):609-639, 2001.

Yuri M. A. Oliveira, Diogo A. Martins, Leizer Schnitman, and
Marco A. Reis. Semi-autonomous uvms simulation: vehicle and
manipulator pose control using artificial markers for localization. In
Proceedings of the 11 Brazilian Humanoid Robot Workshop (BRAHUR) and
IV Brazilian Workshop on Service Robotics (BRASERO). Even3, 2020.

Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit! [ros topics].
IEEE Robotics and Automation Magazine, 19(1):18-19, Mar 2012.

67

68

Appendix A

ROS Environment Set-up

Prerequisites

I Install Ubuntu 18.04, ROS melodic.

II Open a new terminal and install uuv-simulator using command
sudoaptinstallros — melodic — uuv — simulator

To Build srov-master

I Load a new terminal and go to the source directory using the
command cdsrov — master / catkin_ws.

IT Build the package using command catkin,,ake

III Source the setup file using command source../devel /setup.bash. This
tells ROS where to look for packages. This step must be performed
for each new terminal. To avoid having to do this, the bash script file
/ bashrc can be edited so that this is performed in each new window.
In addition, some Gazebo paths needs to point to the repository so
that Gazebo is able to find models and plugins. To do this open the
file with command gedit /.bashrc and add the following lines to the
end of the file

e source /srov — master/catkin_ws /devel /setup.bash

o export GAZEBO_PLUGIN_PATH = GAZEBO_PLUGIN_PATH :
/srov — master / catkin_ws /src/srovm_plugins /build /devel / lib

o export GAZEBO_MODEL_PATH = GAZEBO_MODEL_PATH :
/srov — master /catkin_ws/src/srovm_worlds /models

o export GAZEBO_RESOURCE_PATH = GAZEBO_RESOURCE_PATH :
/srov — master /catkin_ws/src/srovm_worlds

69

To Run the Simulator

I Launch a world in Gazebo using command roslaunchsrovm_worldssnorre.launch.
I Launch the ROV using command roslaunchsrovm_rovucv.launch

III To control the ROV with a keyboard run the command roslaunch
srovm_rov keyboard_control.launch. Default setup is: w/s : surge,
a/d:sway,r/f : heave, q/e : yaw.

IV To view output from camera use command roslaunch srovm_cameras
viewer.launchcamera := color_zoom

V Launch camera processor with the command roslaunch srovm_cameras
viewer.launch camera := color_zoom. This looks for circles and draws
them on a new image that is subscribed to by the viewer

70

Appendix B
MATLAB Environment Set-up

Prerequisites

I Install MATLAB R2021b.

II Install a C/C++ compiler supported by/compatible with Matlab
which are listed below.

e In case of Windows, install the _MinGW — w64_ compiler from
the Add-Ons app.

e In case of Linux, install _gcc_.
e In case of OSX, install _Xcode_.

To Build UUV-master

I Compile the C-coded S-functions located in the uuv — master /models
directory for the rov thrust and dynamics as listed below.

e mex rov_thrust.c

o mex uuv_dynamics.c

To Run the Simulator

After the C files has been compiled, the desired simulations can be run as
stated below.

I First run the script startup.m to include the necessary files and
directories to Matlab.

II Run the desired simulation file.

II Once finished with the simulation, run the script cleanup.m to clean
up the temporary files and the Matlab path.

71

