
ACIT5900

MASTER THESIS

in

Applied Computer and Information
Technology (ACIT)

May 2021

Applied Artificial Intelligence

A Comparative Study of Data Transformation

Tools: An Investigation of Functionalities Supported

in Common Tools and Case Study of Declarative and

Procedural Data Manipulation Languages

Tine-Lovise Storvoll

Department of Computer Science

Faculty of Technology, Art and Design

1

Acknowledgements

I would like to thank my supervisors, Ahmet Soylu and Francisco Martin-Recuerda,

for their help in getting me through this master’s thesis. Thank you for guiding and

encouraging me throughout the semester.

I would also like to thank Leif-Harald Karlsen for providing the use case with datasets

for my case study and giving me advice on solving the use case. I appreciate you taking the

time.

Francisco Martin-Recuerda was supported by the project Skytrack funded by The

Research Council of Norway under the grant No.309714.

Tine-Lovise Storvoll

Oslo, May 16, 2022

2

Abstract

Today, organizations are collecting and storing huge amounts of data that could

potentially be very valuable. Finding trends and patterns in historic data can allow

businesses to make more informed decision. Data scientists are therefore working to extract

meaning from the massive amount of data. However, 80% of the time in data science

projects is spent preparing the data for analysis. Selecting an efficient tool for the job can

contribute to reducing the time spent on data transformation. Thus, this thesis will provide

some insights into existing tools and their performance.

A selection of common tools is made in Chapter 3. The tools are reviewed with

regards to a framework to identify the support of common data preparation tasks and an

evaluation of the tools are given at the end of the chapter. In Chapter 4, one declarative and

one procedural Data Manipulation Language (DML) are selected from the common data

transformation tools. Python pandas, a procedural language, and SQL, a declarative

language, are evaluated and compared in a case study. The case study delves deeper into

the tools through a use case and the comparative analysis at the end will provide some

insights into the differences in the two DMLs. Thus, the first contribution of this thesis is a

review of the support of common data preparation tasks provided by a selection of some

prevalent data transformation tools. The second contribution is an analysis of the

differences in a declarative vs procedural approach to data manipulation through a case

study comparing two popular DMLs.

The findings of the review of tools in Chapter 3, revealed that the most prevalent

data transformation tools support the majority of the common data preparation tasks. This

review gives some general insight into which tasks are supported, which tasks needs more

effort to perform, and which are not supported at all. The review is exclusively based on

information found in technical documentation of the tools, and no further experimentation

is done to investigate the support. The case study in Chapter 4 revealed that the procedural

DML, Python pandas, is better suited for data manipulation as it is less time-consuming and

provides higher flexibility and usability. Python pandas is also considered to have high

readability and expressiveness, although SQL seems to beat pandas in these areas.

3

Table of Contents

Acknowledgements .. 1

Abstract .. 2

List of Figures .. 6

List of Tables ... 8

1 Introduction ... 9

1.1 Problem Description ... 10

1.2 Research Questions .. 10

1.3 Research Design .. 11

1.3.1 Framework .. 11

1.3.2 Use Case .. 13

1.4 Thesis Structure .. 13

2 Background and Related Works ... 14

2.1 The Raw Data .. 14

2.2 Data Transformation .. 15

2.3 Data Transformation Tools ... 17

2.3.1 Declarative vs. Procedural ... 18

2.3.2 Review of Data Transformation Tools ... 18

2.4 Related Works .. 21

2.5 Ethical considerations ... 25

3 Review of Data Transformation Tools ... 26

3.1 Functionalities of the different tools .. 28

3.1.1 Python pandas ... 28

3.1.2 SQL ... 28

3.1.3 R ... 29

4

3.1.4 RapidMiner .. 29

3.1.5 KNIME .. 30

3.1.6 Trifacta .. 30

3.1.7 OpenRefine .. 30

3.1.8 Talend Data Preparation ... 30

3.1.9 Tableau Prep ... 30

3.2 Results of the review .. 31

4 Case Study: Comparing Declarative vs. Procedural Data Transformation Tools ... 32

4.1 Python pandas library ... 32

4.1.1 Importing pandas and loading the data .. 32

4.1.2 Agricultural Properties .. 33

4.1.3 Meat Deliveries ... 36

4.1.4 Dairy Deliveries ... 44

4.1.5 Egg Deliveries .. 47

4.1.6 Grain Deliveries ... 52

4.1.7 Nutrients Table .. 57

4.1.8 Data Mapping and Integration .. 65

4.1.9 Summary of the case study of Python pandas .. 73

4.2 MySQL ... 74

4.2.1 Creating a database and loading the data .. 74

4.2.2 Data Discovery... 76

4.2.3 Data Preparation ... 76

4.2.4 Data Mapping and Integration .. 98

4.2.5 Summary of the case study of MySQL .. 102

4.3 Results ... 103

4.3.1 Time-consumption .. 104

5

4.3.2 Flexibility ... 105

4.3.3 Expressiveness ... 105

4.3.4 Usability ... 106

4.3.5 Readability ... 106

5 Conclusion .. 108

5.1 Discussion ... 108

5.1.1 What is the support for common data preparation tasks provided by

some of the most prevalent data transformation tools? ... 108

5.1.2 How does declarative vs. procedural DMLs differ in terms of time-

consumption, flexibility, expressiveness, usability, and readability? 109

5.2 Future work .. 113

6 References ... 114

List of Appendices .. 117

6

List of Figures

Figure 2.1 The steps of Data Transformation .. 16

Figure 2.2 Illustration of long and wide data formats (Zach, 2021) 17

Figure 4.1 A sample of the agricultural properties data .. 34

Figure 4.2 Output of the current subset of the agricultural properties data 35

Figure 4.3 Output of the prepared agricultural properties data 36

Figure 4.4 Comparing the size of the initial and final agricultural properties dataset 36

Figure 4.5 Meat deliveries data after unpivoting... 39

Figure 4.6 Meat deliveries data after removing rows where amount is 0 39

Figure 4.7 Lists of parts of the "type" column of the meat deliveries data 40

Figure 4.8 A sample of the current Meat deliveries data. ... 41

Figure 4.9 Dictionary of simplified meat types .. 42

Figure 4.10 A sample of the final Meat deliveries data. .. 44

Figure 4.11 Dairy deliveries data after dropping irrelevant columns 45

Figure 4.12 Dairy deliveries data after unpivoting ... 46

Figure 4.13 Dairy deliveries data after splitting the "type" column 47

Figure 4.14 The final Dairy deliveries data. .. 47

Figure 4.15 Egg deliveries data after dropping irrelevant rows 49

Figure 4.16 Null values in the egg deliveries dataset ... 49

Figure 4.17 Egg deliveries data after adding the “type” column 50

Figure 4.18 Egg deliveries data after renaming the "egg_kg" column to "amount" ... 51

Figure 4.19 Egg deliveries data after rearranging the columns 51

Figure 4.20 Final Egg deliveries data after preparation ... 52

Figure 4.21 List of column labels of the grain deliveries data 53

Figure 4.22 Relevant columns of the grain deliveries data .. 54

Figure 4.23 Grain deliveries data after removing irrelevant columns 55

Figure 4.24 Grain deliveries data after unpivoting .. 55

Figure 4.25 Grain deliveries data after splitting the "type" column 56

Figure 4.26 A sample of the current Grain deliveries data. ... 57

Figure 4.27 A small sample of the initial nutrient table data....................................... 57

7

Figure 4.28 A sample of the nutrients table data with the new column headers 58

Figure 4.29 Nutrients table data after removing redundant rows 60

Figure 4.30 Nutrients table data after extracting only relevant columns 60

Figure 4.31 Lists of substrings of the type of food from the Nutrients Table data. 61

Figure 4.32 Nutrients table data after splitting the "Matvare" column. 62

Figure 4.33 Nutrients table data after renaming the columns to "type" and "kcal" ... 62

Figure 4.34 Comparing the size of the dataframes after removing missing values. ... 63

Figure 4.35 Checking the size of the Nutrients Table data after grouping the data. .. 64

Figure 4.36 Nutrients table data after performing all data preparation tasks 64

Figure 4.37 First five rows of concatenated food production data 66

Figure 4.38 Last five rows of the food production data ... 66

Figure 4.39 List of unique food types in the food production data 67

Figure 4.40 Finding the length of the list of unique food types 68

Figure 4.41 Dictionary containing the fuzzy matched food types 69

Figure 4.42 Nutrients table data after matching the food types 70

Figure 4.43 Nutrients table data after mapping the food types 70

Figure 4.44 Final data with all datasets integrated .. 72

Figure 4.45 Sample of the data after adding a column "produced_kcal". 72

Figure 4.46 Final data answering the use case question ... 73

Figure 4.47 An example of the import of CSV files. ... 75

Figure 4.48 Sample of the Agricultural Properties Data .. 78

Figure 4.49 A sample of the Agricultural Properties data. ... 80

Figure 4.50 A sample of the current Meat Deliveries data. ... 84

Figure 4.51 A sample of the Dairy Deliveries data before making any changes 85

Figure 4.52 A sample of the Dairy Deliveries data with a “type” column.................... 86

Figure 4.53 A sample of the Dairy Deliveries table after adding the type column 86

Figure 4.54 A sample of the Dairy Deliveries data after setting the type 87

Figure 4.55 A sample of the Dairy Deliveries data with an “amount” column 88

Figure 4.56 A sample of the Dairy Deliveries data. .. 89

Figure 4.57 A sample of the Dairy Deliveries data after grouping and aggregating 90

Figure 4.58 A sample of the Egg Deliveries data before making any changes 91

8

Figure 4.59 A sample of the Egg Delivery data with a “type” column 92

Figure 4.60 A sample of the Egg Delivery data after grouping and aggregating 93

Figure 4.61 A sample of the Grain Deliveries data. .. 95

Figure 4.62 A sample of the loaded nutrients table data .. 96

Figure 4.63 A sample of the Nutrients Table data. .. 96

Figure 4.64 A sample of the Nutrients Table data after adding a type column 97

Figure 4.65 A sample of the Nutrients Table data with new “type” column 97

Figure 4.66 A sample of the final Nutrients Table data. .. 98

Figure 4.67 A sample of the joined data. ... 101

Figure 4.68 Results of the final calculation. ... 102

Figure 4.69 Results of final calculation using Python pandas 103

Figure 4.70 Results of final calculation using MySQL ... 103

List of Tables

Table 1.1 Examples of data preparation tasks in the data transformation process 11

Table 2.1 Pros and Cons of Applications vs. code for data transformation (White,

2020) ... 18

Table 2.2 Characteristics of Data Manipulation Languages ... 18

Table 2.3 Characteristics of Data Transformation Applications 20

Table 2.4 Results of the comparison of OpenRefine and Trifacta (Petrova-Antonova &

Tancheva, 2020) ... 22

Table 2.5 Advantages and Disadvantages of OpenRefine and Trifacta (Petrova-

Antonova & Tancheva, 2020) ... 23

Table 3.1 Overview of the support of common data preparation tasks...................... 27

Table 5.1 Advantages and disadvantages of Python pandas and MySQL 110

Table 5.2 Reviewing the functionalities of MySQL and Python pandas..................... 110

9

1 Introduction

Today organizations are collecting and storing huge amounts of data. In the field of

Data Science, scientists are attempting to extract insight from the massive volume of data in

order to make more informed business decisions. The large volume of data is often referred

to as Big Data. Big Data was characterized by Doug Laney in 2001 by three V’s (Laney, 2001).

Volume, as the volume of data is large in many environments. Variety, as the data comes in a

wide variety of types. And Velocity, as the data often is collected at a high rate. Big Data has

since been characterized by more V’s, such as Veracity and Value. Veracity refers to the

accuracy and truthfulness of the data. Value refers to the value that this data can provide.

The large amount of data allows for organizations to extract insight into historical

trends in the data, which can put them in a better position to make decisions. It can also be

fed to machine learning algorithms in order for the algorithms to learn trends and predict

the future. However, the raw data that is collected cannot be used for data analytics. The

data comes in different formats and can be structured, semi-structured or unstructured.

Because it comes in so many different formats and structures, it is very difficult to make

sense of the raw data. Therefore, there is a need for data engineering processes to be

applied in advance.

The raw data must go through a process in order to be prepared for data analysis.

This process might consist of several steps, and they are often implemented in a data

pipeline. In the pipeline, each step takes data as an input and produces data as an output,

which in turn is inputted to the next step. This continues until the data arrives at the desired

format and structure. Data pipelines must be designed specifically for the particular case,

but some common steps used in data pipelines are data transformation, augmentation,

enrichment, filtering, grouping, and aggregation (Snowflake, 2022).

A crucial phase in data analytic projects is the data transformation phase. This is

where the messy raw data is transformed into clean data that we are able to perform

analytics on. As this is a very time-consuming and often tedious task, a lot of researchers are

focusing on the challenges connected to optimizing the efficiency of this process. The

efficiency of the process is obviously connected to the efficiency of the tools used in the

10

process. Thus, data transformation tools will be investigated in this thesis. Prevalent data

transformation tools will be reviewed to provide some insights into what functionalities they

support. In a case study, declarative and procedural Data Manipulation Languages (DML) will

be compared. The aim is to provide an overview of popular data transformation tools and

DMLs and analyze their efficiency. The results of this thesis can be used by data scientists

and data engineers to get insights into what tools are available and when to choose them

over other tools.

1.1 Problem Description

The aim in this thesis is to compare some of the most popular data transformation

tools, their strengths and weaknesses. Some prevalent data transformation tools will be

reviewed using their technical documentation, to find out if the tools support common data

preparation tasks. The results will give data scientists and engineers an overview of which

tools provide the support needed for their projects.

In a case study, two tools will be selected and compared through a data

transformation use case. One declarative and one procedural tool will be compared, and the

results will provide insight into what the differences of the two approaches are.

Finding a tool that makes the transformation task simple and effective is essential for

companies and organizations in order to gain valuable insight from their data without the

process becoming too resource-demanding and time-consuming. Structured Query Language

(SQL) (W3Schools, n.d.) and Python Pandas (Pandas, n.d.-a) will be used to perform a data

transformation task and they will be compared using a framework for comparison. This will

give insight into the functionality they provide, and the ease of use of each of the Data

Manipulation Languages and will put data scientists at a better position to choose a tool that

fits their need.

1.2 Research Questions

The main research questions that will be answered in this thesis are:

• What is the support for common data preparation tasks provided by some of the

most prevalent data transformation tools?

11

• How does declarative vs. procedural Data Manipulation Languages differ in terms of

time-consumption, flexibility, expressiveness, usability, and readability?

1.3 Research Design

In order to answer the research questions defined in Section 1.2, a conceptual

framework is defined for the comparison of data transformation tools. The framework used

in this thesis is developed partly from the framework used in (Hameed & Naumann, 2020) to

compare commercial tools for data preparation. Some additional data preparation tasks will

be added, and some less relevant ones will be removed. The framework will be used to

review some of the most prevalent data transformation tools, including DMLs and

applications. This review will be based exclusively on reviewing the technical documentation

of these tools. Later, a case study will be conducted to further investigate a selection of

tools. The research questions will be investigated by defining a use case and considering

some dimensions to compare one declarative and one procedural Data Manipulation

Language, namely SQL and Python Pandas. This is done in order to analyze their

functionalities and demonstrate the most important differences, limitations and advantages

in different contexts. SQL and Python are two of the most frequently used Data

Manipulation Languages and are therefore highly relevant to consider in such an analysis

(Convertino & Echenique, 2017).

1.3.1 Framework

The core preparation tasks were initially defined in (Hameed & Naumann, 2020) for

evaluating commercial data preparation tools. Some of the initial tasks from the paper has

been removed and some new ones has been added. These tasks will be used in the

evaluation of data transformation tools, and the comparison of declarative and procedural

DMLs in this thesis. The data preparation tasks and their corresponding step in the process

are listed in Table 1.1.

Table 1.1 Examples of data preparation tasks in the data transformation process

Step in the process Preparation tasks

Data discovery Find null values

12

 Find outliers

Search by pattern

Sort data

Data validation Compare values (selection and

join)

Check data range

Check permitted characters

Check column uniqueness

Find type-mismatched data

Find type-mismatched datatypes

Data structuring Change column data type

Delete column

Detect & change encoding

Pivot / unpivot

Rename column

Split column

Transform by example

Data enrichment Assign semantic data type

Calculate column using

expressions

Discover & merge external data

Duplicate column

Generate primary key column

Join & Union

Merge columns

Normalize numeric values

Data filtering Delete / Keep filtered rows

Delete empty and invalid rows

Extract value parts

Filter with regular expressions

Data cleaning Change date & time format

Change letter case

Change number format

Deduplicate data

Delete by pattern

Edit & replace cell data

Fill empty cells

Remove extra whitespace

Remove diacritics

13

Standardize strings by pattern

Standardize values in clusters

1.3.2 Use Case

To evaluate SQL vs Python Pandas, datasets regarding food production will be used.

These datasets come in a couple of formats, namely CSV and XLSX. The datasets describe

agricultural enterprises, agricultural properties, deliveries for slaughterhouses, dairies, egg

packaging businesses, grain buyers, and seed businesses, and the energy and nutrients

contained in the most frequently eaten foods in Norway. In order to evaluate the two DMLs,

a question will be defined and attempted answered by performing the necessary steps in the

transformation process to get the data in a format where meaning can be extracted from it.

Performing these transformation steps will give insights into whether or not SQL and Python

Pandas provides the necessary functionalities for the process, and also how easy the process

is using the two DMLs.

1.4 Thesis Structure

The thesis structure is presented below.

• Chapter 2 Background and Related Works: The background theory will be presented

and some related work is summarized in order to provide an understanding of why

this thesis work is necessary.

• Chapter 3 Review of Data Transformation Tools: Some prevalent data transformation

tools will be reviewed in order to provide insight into which tools offer which

functionalities.

• Chapter 4 Case Study: Comparing Declarative vs. Procedural Data Transformation

Tools: Comparing SQL and Python Pandas: A declarative DML will be compared to a

procedural DML in order to provide some insight into the advantages and

disadvantages posed when working with the two approaches.

• Chapter 5 Conclusion: The results of the thesis work will be discussed and concluded

and some suggestions for future work in this field will be given.

14

2 Background and Related Works

In this chapter the theoretical background needed to understand the issue of

efficiency in the data transformation phase will be presented. The first section will discuss

the data, how it actually looks initially when it is being collected and the challenges posed

when working with this raw data. In the next section the solution to the challenges will be

presented, namely data transformation. Here, the data transformation steps from Table 1.1

will be explained. Lastly, some tools typically used in data transformation will be presented

and reviewed and some of their characteristics will be highlighted.

2.1 The Raw Data

During data extraction raw data is typically retrieved from several different sources.

Companies and organizations can use both internal and external sources to extract data

from. Some examples of internal sources are transactional data, such as purchases made by

the company or organization, or purchases made by customers. Customer Relationship

Management systems (CRMs) can also add insights into geographical details of the

customers, and this data can be combined with the purchase history of a customer, for

instance. Companies and organizations often have internal documents containing

information about things like business activities, policies and processes. (aunalytics, n.d.)

With the increase of Internet of Things (IoT) solutions, companies and organizations can also

collect data from sensors and devices. Examples of external sources are social media, official

records and publicly available data on the web.

Gathering data from all these different sources gives us datasets that are often

inconsistent. Some records can be incomplete, containing null values or missing values.

Sometimes records are duplicated in the dataset. Datasets can also contain comments that

are meant for humans to read in order to interpret the data table. These are often irrelevant

for computers and can even cause problems in an analysis. Thus, in order for data scientists

to be able to perform data analysis, the messy data has to be cleaned. This entails for

instance removing missing values, fixing data type mismatches, deduplicating data. The

structure of the data should also be tidy. In (Wickham, 2014), the author presents three

characteristics of tidy data. These are:

15

1. Each variable is a column

2. Each observation is a row

3. Each type of observational unit is a table

The author states that this standard structure of data facilitates data analysis, and

the three characteristics will therefore be used to define clean data throughout this thesis.

The process of transforming data from the initial format and structure to a structure where

we are able to apply data analysis, is called data transformation. This process will be

explained in the next section.

2.2 Data Transformation

Data transformation is any process that takes data as an input and produces data as

an output. Since the data can come from different sources it can have all kinds of different

formats, structures, and values. Data transformation enables us to get the data in a format

and structure that is understandable both for humans and computers, and especially for

systems and applications that requires a certain format or structure. It also enables us to

check for, and improve, data quality, which prevents problems later, for instance when

analysis is applied. Things like duplicate data, abnormalities and missing values can be taken

care of through data transformation. The data transformation process typically includes

some common steps such as data discovery, data validation, data structuring, data

enrichment and data filtering (Hameed & Naumann, 2020). These steps can be performed in

various orders and some steps are performed several times. Figure 2.1 illustrates the steps

of data transformation that will be considered in this thesis. The steps will be described in a

bit more detail below.

16

Figure 2.1 The steps of Data Transformation

Data discovery is the first step of the process. As the raw data is often messy and

inconsistent, the first step is to look at the data and try to identify the format and structure

that the source data has (TIBCO, n.d.). In order to be able to change the data to meet the

requirements of the target system, it is necessary to understand where the data is at the

moment. This step is typically done using tools for data profiling.

Data validation entails checking for data quality. This can include the correctness and

completeness of the data, for instance (Hameed & Naumann, 2020). The goal is to ensure

the data’s consistency and quality. Types of validations could for instance be allowed

character checks, data type checks, format checks and uniqueness checks (contributors,

2021). This is a step that might be conducted several times throughout the process.

Data structuring entails tasks that change the structure of the data. In some cases,

we want data to be in a long format, where data values repeat in the columns. In other

cases, we want a wide format, where values do not repeat in the columns (Zach, 2021).

These formats are illustrated in Figure 2.2. The structuring of data can include tasks such as

pivoting, changing data types, deleting and renaming columns etc. (Hameed & Naumann,

2020). This is done in order to reach a structure where the data is better understood by data

analysis tools.

17

Figure 2.2 Illustration of long and wide data formats (Zach, 2021)

Data enrichment means adding value or supplementary information to existing data

from separate sources, and it typically means augmenting existing data with new or derived

data values using data lookups, primary key generation, and inserting metadata (Hameed &

Naumann, 2020). Enrichment can be achieved by combining first party data from internal

sources with either disparate data from other internal systems, or third party data from

external sources (Trifacta, n.d.-a).

Data filtering is used to create a subset of data from a dataset and can for instance

be used to look at data for a particular period of time or exclude erroneous observations

from an analysis (Facer, n.d.). It helps improve data quality by using predefined criteria, such

as removing records that contain empty values or that do not conform to some user-defined

pattern (Hameed & Naumann, 2020).

Data cleaning is a process that is done in order to reach data quality. This is typically

done several times throughout the data transformation. Data cleaning may include tasks

such as deduplication of data, editing and replacing cell data and removing whitespace

(Hameed & Naumann, 2020). The goal is to ensure any corrupt or erroneous records are

corrected or removed entirely from the data, and thus, improving data quality.

2.3 Data Transformation Tools

In this section tools used in the process of data transformation will be discussed.

First, the two different approaches to data transformation tools will be presented, namely

applications and code. Then, a review of data manipulation languages and data

transformation applications will be presented in Section 2.3.2.

Data transformation is typically done through the use of either applications or code.

What to choose depends on the prior knowledge and the given context, and both ways have

advantages and disadvantages. Data Manipulation Languages (DML) such as Python Pandas,

SQL, and R, are used to perform the data transformation through writing the code yourself.

Applications lets you do transformations using a graphical user interface to make the job

faster. However, there are some pros and cons of the two approaches. Nick White highlights

18

some of the pros and cons of applications in an article on LinkedIn (White, 2020) and these

are listed in Table 2.1.

Table 2.1 Pros and Cons of Applications vs. code for data transformation (White, 2020)

Pros Cons

Quicker to learn, programming languages

has a steep learning curve

Cost money (often significant amounts)

Easier to understand (not as advanced as

code)

Executes slower than code

Have the potential to be easily integrated

into a wider data governance eco-system

Do not integrate easily (or at all) into CI/CD

workflow

2.3.1 Declarative vs. Procedural

Data Manipulation Languages (DML) can be declarative or procedural. Declarative

languages are high-level languages, while a procedural language is a low-level language

embedded in a general-purpose programming language. Declarative DMLs specify properties

of the data that is to be retrieved from the database, while procedural languages specify

how to access the data (Özsu, 2017). Examples of popular declarative and procedural DMLs

are SQL and Python Pandas library, respectively.

2.3.2 Review of Data Transformation Tools

In this section, some data manipulation languages and some data transformation

applications will be reviewed. The tools’ characteristics will be highlighted.

Data Manipulation Languages

Table 2.2 shows the characteristics of Data Manipulation Languages (DML). R is not in

itself a DML, however, it has additional packages that adds capabilities for data

manipulation. As can be seen in Table 2.2, the packages dplyr and tidyr provides functionality

to support data profiling, data restructuring and data integration.

Table 2.2 Characteristics of Data Manipulation Languages

Language Characteristics

R (Foundation,

n.d.)

Data analysis and statistical language

Provides several Data Wrangling packages

19

Packages such as dplyr and tidyr include functionality to

support data profiling, data restructuring and data

integration

Packages such as ggplot2 provide powerful data

visualization functions

Many operations that allow for populating new columns

and operations to combine datasets

Lacks native support for Date/Time manipulation

operations

Main limitation is the steep learning curves for non-

professionals and the lack of Data Wrangling functions

provided in native R, finding the required functions across

several packages can be time-consuming

Python

(Pandas)

(Pandas, n.d.-a)

Python is a production ready language used in a wide range

of industries, research and engineering workflows

Supports extraction of data from many sources, such a

plain text files and CSV files, or the web

Provides functionality to also do analysis, such as

regression tests, time series manipulation, and statistical

analysis

Also offers machine learning frameworks for developing

ML algorithms to apply on the transformed data, and is

particularly well suited for deploying machine learning at a

large scale

Iterative, readable, portable, broadly applicable approach

to data manipulation, fast

Easy to join data from several sources

In-memory processing (can be disadvantageous with large

datasets)

Supported by a large community, continuously extended

libraries and tools

Can be used with notebooks to collaborate

SQL

(W3Schools,

n.d.)

Supports extraction of data from databases

Simple functions, but also a narrow range of functions

compared to Python

Limited functions for processing, analyzing or

experimenting with data

Can run some data processes, but may be inefficient or

complicated because the ability to perform calculations

efficiently is not part of the languages design

20

Specifically designed to query and extract data, and one of

its main strengths is merging data from multiple tables

within a database

Higher-level data manipulation, such as statistical analysis,

regression tests, and time-series data manipulation are

very difficult to achieve using SQL exclusively

Data Transformation Applications

Table 2.3 shows the characteristics of Data Transformation Applications.

Table 2.3 Characteristics of Data Transformation Applications

Tool Characteristics

Altair Monarch

Data Preparation

(Altair, n.d.)

Provides common data preparators for structured data, but also

transforms tables from within PDF and text files to tabular data

Extracted tables can be merged with other tables using a variety of

join and union operations

Paxata Self-

Service Data

Preparation

(DataRobot, n.d.)

Provides features for organizing and preparing structured data

Deals efficiently with semi-structured data

User experience is designed to fit non-experts

SAP Agile Data

Preparation

Runs on top of SAP’s HANA database system (SAP, n.d.)

Provides common data preparators with some specific system

features such as Schedule Snapshot, interactive suggestions to help

users navigate and prepare data efficiently and multi-user access that

enables collaboration

SAS Data

Preparation (SAS,

n.d.)

Part of SAS Viya System Management, which runs its operations with

distributed in-memory processing

Has common data preparation features, but also offers code-based

transformations for users to write and share custom code to

transform data, supporting re-usability of preparation pipeline

Tableau Prep

(Tableau, n.d.)

Implements a workflow approach to organize and prepare messy data

Users can perform multiple operations simultaneously

Tableau Prep Builder is designed to develop workflows, manage data

and apply operations on data

Tableau Prep Conductor is designed to share, schedule, and monitor

the flows

Tabula (Tabula,

n.d.)

Web-based Data Wrangling tool developed with focus on data format

transformation

21

Generates Excel, CSV or JSON data file format via extracting data

tables uploaded in PDF data file formats

Mr Data

Converter

(thdoan, n.d.)

Similar to Tabula in terms of data format transformations

Does not support extraction from PDF files

Supports uploading files in either TSV or CSV

Generates output files in a number of formats, such as Actionscript,

ASP/VB Script, MySQL, Ruby, HTML, XML, or JSON

Trifacta (Trifacta,

n.d.-b)

Supports a comprehensive set of data profiling and data re-

structuring functionality

Does not support extraction of data from PDF files

Can convert files from CSV or TSV to JSON

Allows for integration with a wide range of data science and data

ingestion technologies

OpenRefine

(OpenRefine,

n.d.)

Supports data profiling, data cleaning and data restructuring

Offers operations for data cleaning and string manipulations, but

lacks advanced statistical and restructuring operations

Supports moving and dropping columns, date/time operations and

array operations

Limited support for extracting data from PDF files

Supports converting data formats from JSON or TSV to CSV

Its big data capabilities have shown limitations to scale Gigabyte

order of magnitude

Talend Data

Preparation

(Talend, n.d.)

Designed for importing, structuring and transforming data

Web-based visual interface that enables users to develop data

preparation workflows

Offers common data cleaning and restructuring functionality, such as

column manipulation operators, like rename, create or drop, and fill

in missing data

Provides functionality for string manipulation

Supports few operations for Date/Time manipulation compared to

Trifacta and OpenRefine

2.4 Related Works

To address the issue of efficiency in the data transformation phase, several

researchers have taken a similar approach to provide insights into the functionality of

different data transformation tools. In (Petrova-Antonova & Tancheva, 2020), the authors

presented a comparative analysis of widely used tools for data cleaning. They also perform a

22

case study where they compare OpenRefine and Trifacta Wrangler in order to address the

issues they face using these tools. Both tools provide similar functionalities. However, the

results of applying the functions on the same dataset don’t necessarily match between the

tools. In Table 2.4 the results of applying the different techniques using the two tools are

shown. As seen in the table, OpenRefine for instance removed 3 duplicated rows, which is

100% of the existing duplicated rows. Trifacta only removed 2 out of 3 existing duplicated

rows. OpenRefine also performs better in clustering of text facets. Except for these two

techniques, the tools perform the same.

Table 2.4 Results of the comparison of OpenRefine and Trifacta (Petrova-Antonova & Tancheva, 2020)

Technique Results (Number) OpenRefine Trifacta

Duplicate rows

removal

Existing duplicate rows

3 3

Removed duplicate rows 3 (100%) 2 (66.66%)

Cleaning of structural

errors

Fields with removed

whitespace

413 413

Fields with incorrect format 6 6

Fields with corrected format 6 (100%) 6 (100%)

Clustering of text

facets

Unified fields 413 98

Outliers Existing outliers 1 1

Removed outliers 1 (100%) 1 (100%)

Missing values Existing missing values 14123 14123

Identified missing values 14123 (100%) 14123 (100%)

The authors also highlight some advantages and disadvantages of the two tools.

These are shown in Table 2.5.

23

Table 2.5 Advantages and Disadvantages of OpenRefine and Trifacta (Petrova-Antonova & Tancheva, 2020)

 Advantages Disadvantages

O
p

en
R

efin
e

(1) Easy modification of a single field

(2) The field is not necessary to satisfy

a given criterion to be changed

(3) Multiple records processing

(4) Statistics on the number of

records processed with a given

operation

(1) Doesn’t support processing of large

datasets

Trifacta

(1) Record the applied data

processing steps as a “Recipe”

procedure

(2) Non-blocking processing of large

datasets

(3) Supports easier to use functions

(4) Different method for filling the

missing values

(1) Single field cannot be modified

(2) Allows only modification of multiple

fields that meet a given criterion

(3) Missing information for the number of

records processed with a given operation

In (Patil & Hiremath, 2018), the authors argue that in order for data preparation tools

to be efficient, self-service solutions using machine learning approaches are required. In this

paper, the Trifacta tool’s functionalities are tested through a data wrangling case study to

demonstrate the efficiency. The case study shows that Trifacta allows for human machine

interactive transformation of real world data, and that it enables business analysts to

iteratively explore predictive transformation scripts with the help of highly trained learning

algorithms (Patil & Hiremath, 2018).

A survey of commercial tools for data preparation is presented in (Hameed &

Naumann, 2020). The authors collected 42 commercial tools and listed their data

preparation capabilities. Later they picked out seven tools which they investigated further. A

preparator matrix showed each preparator’s availability for each tool. They selected three

examples of preparators to demonstrate their function. Then they gave examples of how

24

one tool solved each of the preparators. Through the investigation of the tools, the authors

found that all the tools needed the data that was being inputted to be clean beforehand.

They list a few assumptions that most tools make (Hameed & Naumann, 2020):

• Single table file (no multi-table files)

• Specific file encoding

• No preambles, comments, footnotes, etc.

• No intermediate headers

• Specific line-ending symbol

• Homogenous delimiters

• Homogenous escape symbols

• Same number of fields per row

• Relational data (no nested or graph-structured data, such as XML, JSON, or RDF)

The authors of (Hameed & Naumann, 2020) also emphasizes the need for automated

and intelligent solutions for the data preparation tasks. They also found that IT- and domain

knowledge is needed due to the shortcomings of the tools. Although the paper focused on

preparing structured data, the authors also highlight the lack of basic preparation steps for

unstructured data, such as textual data.

The comparative analysis in (Petrova-Antonova & Tancheva, 2020) only focuses on a

few activities of the data cleaning process. In addition, it only considers two applications for

data transformation, namely OpenRefine and Trifacta Wrangler. The case study in (Patil &

Hiremath, 2018) only considers Trifacta and is focused on the need for self-service in data

wrangling tools. The survey in (Hameed & Naumann, 2020) is focused on commercial tools

and the lack of automation and intelligent solutions. The reviews of data transformation

tools only consider a few tools and a few common data preparation tasks. In this thesis,

more tools and preparation tasks will be considered in order to provide a larger overview of

prevalent tools and their support of data preparation tasks. None of the case studies are

comparing declarative and procedural data manipulation languages either. This area of

research does not seem to have been explored. Thus, these two things are what will be

investigated in this thesis.

25

2.5 Ethical considerations

When dealing with data, and particularly personally identifiable information (PII),

there are some guides on measures in information security. For instance, the CIA triad. CIA is

an abbreviation of Confidentiality, Integrity, and Availability. In information technology the

three things that typically are attacked by hackers are the confidentiality of information, the

integrity of information, and also the availability of information. In the data transformation

phase all three of these aspects should be considered. Making sure the data is not altered in

a way that makes it loose integrity is one measure to ensure the process is conducted

ethically. Another thing to consider is whether the temporary storage of PII, from source to

target, is safe from attacks. This involves confidentiality particularly, as the data probably still

is available in the source.

The focus on the rights of individuals and obligations of organizations has increased

over the years, and laws that regulates both the gathering and storage of PII has been

developed. The General Data Protection Regulation (GDPR), which applies to countries

within the European Union (EU), has a goal of protecting personal data and give users

control over their data (Consulting, n.d.). China has adopted a lot of GDPR’s principles in

their People’s Republic of China (PRC) Personal Information Protection Law (PIPL) (Laird,

2021). In the U.S several laws have been implemented, but none of them are like GDPR and

PIPL. To mention a couple of them, they have The Healthcare Insurance Portability and

Accounting Act (HIPPA) that governs health information collection and The Children’s Online

Privacy Protection Act (COPPA) that governs collection of minors information and prohibits

online companies from collecting personal information from children under the age of 12

unless parents have given verifiable consent (Green, 2021).

Another thing to consider is the ethics around what the transformed data is used for.

Whether the data is to be used in an ethical manner or not. For instance, many tech giants

are gathering information about how their consumers are behaving on their applications.

Often their activities are sold to companies that sends targeted commercials to the

consumer. Consumers are often not aware of the effect that this data gathering has on

them. This consideration is not specifically important in the data transformation phase, but it

is still something to consider.

26

3 Review of Data Transformation Tools

In this chapter, some popular data transformation tools and languages will be

reviewed. The review will provide some insights into what features each of the tools provide

and what they are lacking. The results of the review will give some general guidance for data

engineers and data scientists that are looking for a tool for the data transformation process.

In Table 3.1 an overview of the available data preparation tasks in each of the selected tools

is shown. In the table, the different data preparation tasks’ availability is indicated by “✔”,

“*”, or “-“. “✔” indicates the data preparation task can be performed using a specific

method or component/block. “*” indicates the data preparation task can be performed, but

it requires some extra effort to create a script or workflow that performs the tasks, and

there is no single method or component/block that solves the task. “-“ indicates that the

data preparation task is not available. This review is based exclusively on reading the

technical documentation and without any exploration of the tools beyond this. The

availability of preparation tasks for the tools will be provided in a table and the results for

each tool will be discussed in Sections 3.1.1 to 3.1.9. Lastly, the results of the review will be

presented in Section 3.2.

27

Table 3.1 Overview of the support of common data preparation tasks. The data preparation tasks supported by each of the

data transformation languages and tools are shown. “✔” means that the data preparation task is available in a simple
method/function or component of the language/tool. “*” means the data preparation task can be performed but it requires

additional libraries or some kind of workaround, meaning there is no specific method or component that solves the task
alone. “-“ means the data preparation task is not available.

P
yth

o
n

 p
an

d
as

SQ
L

R

R
ap

id
M

in
er

K
N

IM
E

Trifacta

O
p

en
R

efin
e

Talen
d

Tab
leau

 P
rep

Data profiling ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Find missing or null values ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Find outliers * ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Sort data ✔ ✔ * ✔ ✔ ✔ ✔ - ✔

Filter data ✔ ✔ * ✔ ✔ ✔ ✔ ✔ ✔

Check permitted characters * * * - ✔ ✔ ✔ ✔ -

Check column uniqueness ✔ ✔ ✔ - ✔ ✔ - ✔ -

Change column data type ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Delete column ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Pivot / Unpivot ✔ * * ✔ ✔ ✔ ✔ - ✔

Rename column ✔ ✔ * ✔ ✔ ✔ ✔ ✔ ✔

Split column ✔ * * ✔ ✔ ✔ ✔ ✔ ✔

Grouping data ✔ ✔ * ✔ ✔ ✔ ✔ ✔ ✔

Aggregating data ✔ ✔ * ✔ ✔ ✔ - ✔ ✔

Fuzzy matching * * * ✔ ✔ ✔ ✔ ✔ ✔

Duplicate column ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Join and Union ✔ ✔ * ✔ ✔ ✔ ✔ ✔ ✔

Merge columns ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Delete / Keep filtered rows ✔ ✔ * ✔ ✔ ✔ ✔ ✔ ✔

28

Delete empty or invalid rows ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Change date and time format ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ -

Change letter case ✔ ✔ * ✔ ✔ ✔ ✔ ✔ ✔

Deduplicate data ✔ ✔ * ✔ ✔ ✔ ✔ ✔ -

Edit and replace cell data ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Remove diacritics ✔ * * - ✔ - ✔ ✔ -

Remove whitespace ✔ ✔ ✔ ✔ ✔ ✔ * ✔ ✔

3.1 Functionalities of the different tools

3.1.1 Python pandas

The Python pandas library offer most of the data preparation tasks in simple

methods. However, some of the data preparation tasks must be solved by creating custom

scripts. This makes the job a little more time-consuming and requires a bit more

programming experience than what using simple methods provided in the library would.

Although some of the tasks requires a bit of programming experience, Python is not a very

challenging programming language to learn. As previously mentioned in Table 2.2 of Section

2.3.2, Python provides functionalities for data analysis as well as data manipulation. It also

offers machine learning frameworks and is particularly well suited for deploying machine

learning algorithms at scale. Considering these factors, Python and the pandas library are

strong tools when working with data science. The wide range of possibilities these tools

provide makes it an effective and applicable option for the entire data science project.

3.1.2 SQL

SQL solves most tasks using relatively simple queries. Some of the tasks, however,

require a complicated workaround in order to be solved. Examples are pivoting data or

removing diacritics. These tasks therefore become very time-consuming to perform,

especially for non-experts. Thus, SQL is efficient for performing most of the tasks but the

ones that do not have an obvious solution, gets very complicated and requires experience.

29

3.1.3 R

R provides some data preparation tasks using simple functions. However, R is made

for data analysis and additional packages are required to get the necessary data preparation

functionalities. Using these additional packages, all the data preparation tasks in Table 3.1

are possible to achieve with R. The drawbacks of R as a data manipulation language is the

inefficiency of the process due to the required additional packages. Over half of the data

preparation tasks required, or was at least more efficiently performed with, additional

packages. The dplyr package provide many functions for data preparation tasks, e.g., for

sorting, filtering, aggregating, and deduplicating data. The tidyr package provide

functionalities for pivoting data and splitting columns, for instance. In addition, the grepl

package was mentioned for checking permitted characters, and the stringi package for

removing diacritics. Some of the data preparation tasks are possible to perform without

additional packages, but not in a simple and efficient way. These are also marked as “*” in

Table 3.1, as the additional packages provide more efficient ways of solving the tasks. The

large set of packages required to do all the data preparation tasks makes the process more

time-consuming, as a data scientist would have to look up the different packages needed to

perform the data preparation process. However, this probably is only a problem the first few

times. Once the required packages are identified they provide the necessary functionalities.

As mentioned in Table 2.2 of Section 2.3.2, R has a steep learning curve which is also worth

considering when choosing which tool to use for a data science project. Overall, the lack of

native support for data preparation tasks and the steep learning curve for non-experts

makes R a poorer choice than for instance Python pandas.

3.1.4 RapidMiner

RapidMiner is one of the applications reviewed in this chapter. As seen in Table 3.1,

RapidMiner provides most of the preparation tasks. However, three of them are marked as

unavailable. There might be ways to solve these tasks, but it is not clear from the

documentation, and it is therefore assumed that these tasks either are completely

unavailable or at least requires a workaround in order to solve. RapidMiner still provides a

simple solution to the data preparation tasks that are available, and therefore is considered

a highly efficient tool for data preparation.

30

3.1.5 KNIME

KNIME is another application which provides all of the data preparation tasks. In

KNIME, the components which performs the different tasks are called nodes. Some of the

tasks requires a few nodes in order to be solved, but they are still easy to perform. With all

the data preparation tasks available in the application, KNIME seems to provide even more

functionalities than RapidMiner, and is therefore considered a slightly more efficient tool.

3.1.6 Trifacta

The Trifacta application only misses functionality for removing diacritics. The rest of

the data preparation tasks are easily performed in the application. As with RapidMiner and

KNIME, this makes the application a highly efficient tool for data preparation. The simple

user interface and the availability of data preparation tasks makes Trifacta a great tool to

consider, especially for non-experts.

3.1.7 OpenRefine

The OpenRefine application is missing a few of the data preparation tasks, as seen in

Table 3.1. Most important is the grouping and aggregation of data. These data preparation

tasks are included in all the previously reviewed applications and languages. Although

OpenRefine offer many of the preparation tasks in Table 3.1, the lack of data preparation

tasks should be considered when choosing a tool for the data transformation process as it

might affect the efficiency of the process. Spending time on workarounds or having to use

additional tools to perform the data transformation makes the process more time-

consuming.

3.1.8 Talend Data Preparation

As shown in Table 3.1, Talend Data Preparation is missing a couple of data

preparation tasks but provide most of them. As with OpenRefine, the lack of data

preparation tasks has to be taken into consideration when choosing a tool, as workarounds

or use of additional tools is time-consuming and inefficient.

3.1.9 Tableau Prep

31

Tableau Prep are missing quite a few data preparation tasks, as seen in Table 3.1. It is

the tool that provides the least tasks. However, what tasks are needed in the particular

context has to be considered when choosing a tool. If the missing preparation tasks are not

relevant in that context, Tableau can still be an efficient tool.

3.2 Results of the review

Table 3.1 provides a quick overview of which data preparation tasks are provided

from the different tools. This can be considered when selecting a tool for the data

transformation process, in order to get some insight into the efficiency of the tool. Many

missing data preparation tasks might indicate that the tool is missing important functionality

and therefore is inefficient. It’s also worth mentioning that the tools are evolving, and

suggestions from the community often are taken into account in new releases of the tools.

Thus, there is no guarantee that the tool that currently provides the most data preparation

tasks will always be the better choice.

The review of the technical documentation revealed that that the languages Python

pandas, SQL, and R often requires workarounds or additional packages and libraries.

Therefore, the decision should be made also considering the context it is being used in. For

instance, if the data is going to be used for Machine Learning, Python is a good choice, as

previously mentioned. If the purpose is to do data analysis, R is specifically designed for that

and is particularly well suited. And as previously mentioned, the languages also require some

programming experience. The applications, on the other hand, all provide a user interface

which makes the process much easier for non-experts. However, the flexibility of the

applications should be considered, as the user interface might limit the user to only a set of

specific operations.

32

4 Case Study: Comparing Declarative vs. Procedural

Data Transformation Tools

In this chapter a case study of a selection of two data transformation tools from the

review in Section 3 will be conducted. One of the tools is declarative and the other is

procedural. The case study considers a situation where a data scientist is handed a set of

data files that needs to be transformed in order to answer a question. The question is:

How many calories worth of food did each municipality in Norway produce per square

meter in 2019?

The question is to be answered using six different data files. The case will be solved

using Python pandas library, which is a procedural approach to data transformation, and

SQL, which is the declarative approach to the data transformation. The necessary data

preparation tasks will be performed and each of the tools will be evaluated based on

whether they provide the functionality for performing the tasks or not. In addition, the tools

will be evaluated with regards to some measures, namely, time-consumption, flexibility,

expressiveness, usability, and readability.

4.1 Python pandas library

In this chapter, the process of preparing the data for an analysis where the answer to

the question can be found will be demonstrated using the Python library pandas (Pandas,

n.d.-a). The process contains two general steps: Data Discovery and Data Preparation. During

the Data Discovery the raw data will be investigated, and the necessary data preparation

steps will be identified. Later, during the Data Preparation step, the necessary data

preparation tasks will be performed in order to reach the desired format and structure. In

the end the different fields of the prepared datasets can be mapped before the data can be

integrated. The final data can be used to answer the question.

4.1.1 Importing pandas and loading the data

33

In this case study the Anaconda distribution has been installed beforehand, and the

pandas library has also been installed using pip (pypi, n.d.). Pandas library is then easily

imported into a Jupyter Notebook (Jupyter, 2022) as shown in the code line below:

1 import pandas as pd

The data is loaded simply by using pandas’ reader functions. CSV files are read using

the read_csv() function (pandas, n.d.-u) where the sep argument specifies the delimiter used

in the files. In this case all the CSV files use “;” as delimiter, therefore sep is set equal to “;”.

The XLSX file is read using the read_excel function (pandas, n.d.-v). The code lines loading

the different data files are shown below:

1 # Load the data
2 ac_businesses_init = pd.read_csv("foretak.csv", sep=";")
3 ac_properties_init = pd.read_csv("grunneiendommer.csv", sep=";")
4 meat_deliveries_init = pd.read_csv("slakteri.csv", sep=";")
5 dairy_deliveries_init = pd.read_csv("meieri.csv", sep=";")
6 egg_deliveries_init = pd.read_csv("eggpakkeri.csv", sep=";")
7 grain_deliveries_init = pd.read_csv("korn.csv", sep=";")
8 nutrients_table_init = pd.read_excel("matvaretabellen.xlsx")

4.1.2 Agricultural Properties

Data Discovery

This data file is from Felles Datakatalog and contains information about all the

agricultural properties in Norway1. Properties in Norway have different identification

numbers called “gardsnummer”, “bruksnummer” and “festenummer". These are irrelevant

for this case study, but they are some of the columns in the raw data. In addition, the

properties have a column which holds the identification number of the municipality the

property is in. This column is named “komnr” and is essential for this case study. The rest of

the columns provides information about the area of land each of the properties has. Some of

the land is categorized as farmland, some is categorized as forest, along with a few other

categories. Most of these are not important in this case study. The column that is interesting

1 https://data.norge.no/datasets/0dabd5e4-514c-4667-adfc-aa4fe741142b

https://data.norge.no/datasets/0dabd5e4-514c-4667-adfc-aa4fe741142b

34

is the one named “jordbruksareal”, as this is the one that tells us the area of farmland of the

property.

To explore the data the head() method (pandas, n.d.-h) can be used. This method

outputs a small sample of a Series or DataFrame. The default number of elements in the

sample is 5 but adding a number inside the parentheses will output the given number of

elements.

1 ac_properties_init.head()

This outputs the data shown in Figure 4.1.

Figure 4.1 A sample of the agricultural properties data

What needs to be done

What is needed from this dataset is the total area of farmland of each municipality.

To get this, the following data preparation tasks are necessary:

• Drop irrelevant columns

• Remove null data

• Group the data by Municipality ID and calculate the total area of farmland for each

municipality

Data Preparation

Drop irrelevant columns

In this case, the only columns that are relevant are Municipality ID (komnr) and area

of farmland (jordbruksareal). Since only two columns is needed and 13 columns are

irrelevant, it is easier to create a subset of the data only containing the desired columns. This

is done in the following line of code:

35

1 ac_properties_subset = ac_properties_init[[‘komnr’, ‘jordbruksareal’]]

Remove null data

The properties in this dataset has area of farmland, forests and area of other types.

Some of the properties in the data only has forests, and the area of farmland is therefore

0.0. As mentioned in the previous section, these properties are not interesting in this case

and can therefore be removed. They are removed by creating another subset of data where

the rows that has area of farmland greater than 0 is included, and the rest is filtered out.

This is shown in the following line of code:

1 ac_properties = ac_properties_subset[ac_properties_subset[‘jordbruksareal’ > 0]]

Looking at the current data, it only contains the two columns we desired and the

rows where the area of farmland seem to be gone. This is shown in Figure 4.2.

Figure 4.2 Output of the current subset of the agricultural properties data

Group data by Municipality ID

Now, to find the area of farmland per municipality the groupby() (pandas, n.d.-g) and

agg() (pandas, n.d.-c) methods can be used. The groupby() method groups the data by the

column that is added in the parentheses. In this case, the data needs to be grouped by

36

Municipality ID (komnr). Since the total area of farmland per municipality is what is needed,

the agg() method is used to specify which aggregation functions to use on which columns.

Here, the area of farmland needs to be summarized for each municipality. This results in the

following line of code:

1 area_of_farmland_per_municipality = ac_properties.groupby([‘komnr’], as_index=False)
 .agg({‘jordbruksareal’: ‘sum’})

Looking at the current dataset, it now only contains the municipality ID and area of

farmland columns. This can be seen in Figure 4.3.

Figure 4.3 Output of the prepared agricultural properties data

Comparing the initial dataset and the final dataset using the shape attribute (pandas,

n.d.-o), it can be seen that the data has been significantly reduced, with about 314,500 rows

and 13 columns. The code lines and output are shown in Figure 4.4. The output shows the

number of rows and columns, respectively, in parentheses.

Figure 4.4 Comparing the size of the initial and final agricultural properties dataset

4.1.3 Meat Deliveries

37

This data file contains information about the deliveries of meat from each farm2. It

contains columns for organization ID, name of the agricultural business/owner of the farm

and the municipality ID. In addition, each meat type has a column giving the amount of each

type of meat produced by each farm.

Data Discovery

The next dataset is explored in the same way using the head() method. This dataset

contains the amount of produced meat per organization. The amount is also linked to a

municipality ID. From this dataset, the amount of each type of meat for each municipality is

needed. The necessary steps to reach this is listed below:

• Drop irrelevant columns

• Unpivot data

• Remove null data

• Split column

• Simplify meat types

• Group by municipality ID and type of meat

Data Preparation

Drop irrelevant columns

The data contains three columns that are irrelevant for the case study, and these are

removed in the code line below using the drop() method (pandas, n.d.-f). The axis parameter

is set equal to 1, which means it will drop columns with the labels specified in the list.

1 meat_deliveries_dropped = meat_deliveries_init.drop([‘navn’, ‘orgnr’, ‘ull_kg’], axis=1)

Unpivot data

The data is in a wide format, meaning that it has many columns of data. This is

because for each organization, there is one column for each meat type. However, one

organization typically produced one or a few types of meat. Therefore, in one row of data

2 https://data.norge.no/datasets/713abd23-2247-4287-a969-cf0079318685

https://data.norge.no/datasets/713abd23-2247-4287-a969-cf0079318685

38

there is one or a few cells giving the amount of produced meat, but most of the cells will be

0 since no organization produces all types of meat. Referring back to section 2.1, the

characteristics of tidy data described in (Wickham, 2014) was:

• Each variable is a column

• Each observation is a row

• Each type of observational unit is a table

Starting from the bottom, the data table is one observational unit as this is a table of

the amount of meat produced by each organization. The variables needed in this data is the

type of meat and the amount, so these should be the columns. Each observation should in

this case be the amount of each meat type produced in each municipality. Therefore, the

data is unpivoted into a long format, keeping the municipality ID column and naming the

new columns “type” and “amount”.

The unpivoting of the data is done using the melt() method (pandas, n.d.-l). In the

method, identifier variables (id_vars) and measured variables (value_vars) can be set.

Identifier variables are the ones that are kept the way they are, while measured variables

will be unpivoted. The line of code is shown below:

1 meat_deliveries_melted = pd.melt(meat_deliveries_dropped, id_vars=[‘komnr’],
 var_name=’type’,
 value_name=’amount’)

The data now consists of the columns “komnr”, “type” and amount, as shown in

Figure 4.5.

39

Figure 4.5 Meat deliveries data after unpivoting

Remove rows where amount = 0

As there are many rows now having an amount of 0, these will be removed. This is

done by filtering the dataset and creating a subset of data only containing rows that has an

amount greater than 0. The code line is shown below:

1 meat_deliveries_subset = meat_deliveries_melted[meat_deliveries_melted[‘amount’] > 0]

The data looks pretty much the same, but as shown in Figure 4.6 the first 5 rows

printed no longer has amount of 0.

Figure 4.6 Meat deliveries data after removing rows where amount is 0

Split columns

The type of meat also contains the unit of the amount in the name. Since the unit is

the same for all rows, the unit can be removed from the name. The column will be split and

the rows will be renamed to only the type of meat. This is done by first splitting the different

parts of the name by the underscore as shown in the code line below using the split()

method (pandas, n.d.-x):

40

1 meat_deliveries_variables = meat_deliveries_subset[‘type’].str.split(‘_’)

This creates a series where each row is a list of the two parts of the name, the meat

type and the unit, as shown in Figure 4.7.

Figure 4.7 Lists of parts of the "type" column of the meat deliveries data

Now, the next code lines first makes a copy of the previous subset of data using the

copy() method (pandas, n.d.-e), drops the type column where the unit is still in the type

name, add a new type column where only the type is added. Lastly, the newly added type

column will be added to the end of the table. To keep the same order for all datasets, the

columns are rearranged in the last line of code. All the code lines are shown below:

1 # Copy the old subset
2 meat_deliveries_subset_copy = meat_deliveries_subset.copy()
3 # Drop the old types
4 meat_deliveries_split = meat_deliveries_subset_copy.drop(['type'], axis=1)
5 # Add a new type column with the values of the splitted types
6 meat_deliveries_split['type'] = meat_deliveries_variables.str.get(0)
7 # Rearrange the order of the columns to match the other datasets
8 meat_deliveries_split = meat_deliveries_split[['komnr', 'type', 'amount']]

The data now looks as shown in Figure 4.8.

41

Figure 4.8 A sample of the current Meat deliveries data.The unit has been removed from the types in the “type”

column.Simplify meat types

The meat types are very specific and will not match the nutrients table that will be

described later. Therefore, some of the categories should be added together into one

broader category. An example is the category “sheep”, which is categorized as “sau”,

“ungsau” and “vaer”. The difference is the age and sex of the sheep. For instance, “ungsau”

is a young sheep, and “vaer” is a male sheep. These three categories could be given the

broader category “sheep”. In addition, some of the meat types are not in the nutrients table

at all and there is no substitute for it. For instance, horse and goat meat. The meat deliveries

data also contains the amount of wool produced, which is not relevant in this case. These

types will be removed from the data.

To do this, the new and broader categories of meat is first created by creating lists of

the types that are to be considered the same category. Then the fromkeys() method

(Python, n.d.-b) is used to create dictionaries from the lists. The fromkeys() method takes in

the keys and value and returns a dictionary and it is used to create a dictionary where each

element in the lists are set as keys and the specified value is set as value. The specified value

is in this case the simplified types of meat. A new dictionary named simplified_meat_types

can now be created, and all the dictionaries can be added to this. The code lines are shown

below:

42

1 L1 = ['gris', 'purke', 'raane']
2 d1 = dict.fromkeys(L1, 'svin')
3 L2 = ['okse', 'ungokse', 'ku', 'ungku', 'kvige']
4 d2 = dict.fromkeys(L2, 'okse')
5 L3 = ['hons', 'hane']
6 d3 = dict.fromkeys(L3, 'høne')
7 L4 = ['lam', 'lam_villsau']
8 d4 = dict.fromkeys(L4, 'lam')
9 L5 = ['vaer', 'sau', 'ungsau']
10 d5 = dict.fromkeys(L5, 'sau')
11 L6 = ['kalv']
12 d6 = dict.fromkeys(L6, 'kalv')
13 L7 = ['kylling']
14 d7 = dict.fromkeys(L7, 'kylling')
15 L8 = ['kalkun']
16 d8 = dict.fromkeys(L8, 'kalkun')
17 L9 = ['and']
18 d9 = dict.fromkeys(L9, 'and')
19 L10 = ['gaas']
20 d10 = dict.fromkeys(L10, 'gås')
21
22 # Create a dictionaty and add all dictionaries to it (d1 to d10)
23 simplified_meat_types = {**d1, **d2, **d3, **d4, **d5, **d6, **d7,
 **d8, **d 9, **d10}

The final dictionary now looks as shown in Figure 4.9.

Figure 4.9 Dictionary of simplified meat types

The final dictionary can be used to map the simplified meat types to the initial meat

types in the meat deliveries dataset. This is done using the map() method, which maps the

43

values according to a input mapping (pandas, n.d.-r). In this case, the values are mapped

according to the dictionary. The line of code is shown below:

1 meat_deliveries_split[‘type’] = meat_deliveries_split[‘type’].map(simplified_meat_types)

The map() method will set all values that it cannot find in the dictionary as keys to

NaN, which means that in this case wherever e.g. categories horse and goat are in the data,

there will be a NaN value. Therefore, a subset of data is created from the previous dataset,

where the data is filtered using the notnull() method (pandas, n.d.-s). The notnull() method

detects existing values and returns a boolean object that indicates if the value is null or not.

Non-missing values are mapped to True, while missing values (for instance NaN) is mapped

to False. In this way, the subset of data will only contains the values that are not NaN. The

code line is shown below:

1 meat_deliveries_subset = meat_deliveries_split[meat_deliveries_split[‘type’].notnull()]

Group by municipality ID and type of meat

To get the amount of each type of meat delivered for each municipality, the data is

grouped by both municipality ID (komnr) and type of meat (type). The amount is then

summarized per municipality and meat type using the aggregation function sum and pandas

agg() method.

1 meat_deliveries_per_municipality = meat_deliveries_split_subset.groupby([‘komnr’, ‘type’],
 as_index=False)
 .agg({‘amount’: ‘sum’})

44

Figure 4.10 A sample of the final Meat deliveries data.All the necessary data preparation tasks have been performed, and
the data now shows the amount of each meat type for each municipality.

4.1.4 Dairy Deliveries

The data file from Felles Datakatalog contains information about deliveries of cow

and goat milk3. It contains columns for organization ID (orgnr), name of the owner of the

organization, municipality ID and amount of cow milk and goat milk.

Data Discovery

Since the goal is to find the amount of each type of milk produced in each

municipality, the necessary data preparation tasks are:

3 https://data.norge.no/datasets/ce1f1dfc-704f-43c8-b133-51f5a20ee406

https://data.norge.no/datasets/ce1f1dfc-704f-43c8-b133-51f5a20ee406

45

• Drop irrelevant columns

• Unpivot data

• Remove null data

• Split column

• Group by municipality ID and type of milk

Data Preparation

Drop irrelevant columns

The organization ID and name of the owner is not relevant in this case, therefore

these columns should be dropped. Columns are dropped from a pandas DataFrame using the

drop() method, which drops the specified labels from rows or columns. The axis parameter

is set to 1, which means it drops the columns with the specified labels in the inputted list.

The code line is shown below:

1 dairy_deliveries_dropped = dairy_deliveries_init.drop([‘navn’, ‘orgnr’], axis=1)

The data now looks as shown in Figure 4.11.

Figure 4.11 Dairy deliveries data after dropping irrelevant columns

Unpivot data

To get the dairy deliveries data in a similar format and structure as the meat

deliveries data, it is unpivoted using the melt() method. The municipality ID (komnr) columns

is kept as is, and the cow and goat milk columns are unpivoted. The new columns are named

“type” and “amount”. The code line is shown below:

46

1 dairy_deliveries_melted = pd.melt(dairy_deliveries_dropped,
 id_vars=[‘komnr’],
 var_name=’type’,
 value_name=’amount’)

The unpivoted data looks as shown in Figure 4.12.

Figure 4.12 Dairy deliveries data after unpivoting

Remove null data

Since most farms only produce one type of milk, there will be a lot of rows having an

amount of 0. These rows are redundant and can be removed. This is done in the following

line of code:

1 dairy_deliveries_subset = dairy_deliveries_melted[dairy_deliveries_melted[‘amount’] > 0.0]

Split column

Similarly as in the meat deliveries dataset, the type of milk also contains the unit. The

unit is liter for all entries in the data table, so it can be removed from this dataset as well.

This is done in the same way as before and will not be described again in detail. See section

4.1.3 for details on how this was done for the meat deliveries data.

The result after splitting the column and setting the type to the first part, is shown in

Figure 4.13.

47

Figure 4.13 Dairy deliveries data after splitting the "type" column

Group by municipality ID and grain type

The dairy delivery data is grouped in the same way as the meat delivery data, by

using the groupby() method. It is grouped by both municipality ID (komnr) and type of milk

(type). The code line is shown below:

1 dairy_deliveries_per_municipality = dairy_deliveries_split.groupby([‘komnr’, ‘type’],
 as_index=False)
 .agg({‘amount’: ‘sum’})

The dairy deliveries data now looks as shown in Figure 4.14.

Figure 4.14 The final Dairy deliveries data.All data preparation steps have now been performed.

4.1.5 Egg Deliveries

48

This data file contains information about the amount of eggs delivered from each

organization4. It contains the columns organization ID (orgnr), name of organization owner

(navn), municipality ID (komnr), and the amount of eggs in kilograms (egg_kg).

Data Discovery

To find the amount of eggs delivered in each municipality, the necessary data

preparation tasks are:

• Drop irrelevant columns

• Check for null values

• Add a “type” column

• Rename column

• Group by municipality ID

Data Preparation

Drop irrelevant columns

Again using the drop() method, the organization ID (orgnr) and owner (navn) is

dropped. The code line is shown below:

1 egg_deliveries_dropped = egg_deliveries_init.drop([‘orgnr’, ‘navn’], axis=1)

The data now only contains the columns municipality ID (komnr) an amount of eggs

(egg_kg), as shown in Figure 4.15.

4 https://data.norge.no/datasets/d58a8898-6162-43cd-9df8-5ae0b5fa9ebc

https://data.norge.no/datasets/d58a8898-6162-43cd-9df8-5ae0b5fa9ebc

49

Figure 4.15 Egg deliveries data after dropping irrelevant rows

Check for null values

There are several ways to check for null values. One way is using the info() method

(pandas, n.d.-j). This will output how many non-null values are in each column. If the number

of non-null values are not equal to the total number of values in the column, there are null

values in the column. Another way is using the isnull() (pandas, n.d.-k) and any() (pandas,

n.d.-d) methods can be used in combination to check for null values and filter out any null

values from the data. The any() method returns whether any element is True. In this case

over axis 1, which is the columns. This is done as shown in the code line below:

1 null_data = egg_deliveries_dropped[egg_deliveries_dropped.isnull().any(axis=1)]

Since there are no null values in this dataset, the output of null_data is an empty

data table, as shown in Figure 4.16.

Figure 4.16 Null values in the egg deliveries dataset

Add a new column

To match the other datasets another column is added named “type”. Since this data

only contains amount of egg, the type will be set to “egg” for all rows. The code line is shown

below:

50

1 egg_deliveries_dropped[‘type’] = «egg»

The data now looks as shown in Figure 4.17.

Figure 4.17 Egg deliveries data after adding the “type” column

Rename column

The “egg_kg” column should be renamed to match the other datasets. This column is

renamed to “amount” using the rename() method (pandas, n.d.-m), which takes in a

dictionary containing the columns to rename and the new name to apply. The line of code is

shown below:

1 egg_deliveries = egg_deliveries_dropped.rename(columns={‘egg_kg’: ‘amount’})

The data now looks as shown in Figure 4.18.

51

Figure 4.18 Egg deliveries data after renaming the "egg_kg" column to "amount"

Rearrange columns

To get the egg deliveries data to match the other dataset, the order of the columns is

rearranged by extracting the columns in the desired order and saving them to the dataset

egg_deliveries. This is done in the following line of code:

1 egg_deliveries = egg_deliveries[[‘komnr’, ‘type’, ‘amount’]]

The columns are now in the desired order, as shown in Figure 4.19.

Figure 4.19 Egg deliveries data after rearranging the columns

Group by municipality ID

Lastly, the egg deliveries data needs to be grouped by municipality ID and the

amount is summarized. This is done in the code line below:

1 egg_deliveries_per_municipality = egg_deliveries.groupby([‘komnr’, ‘type’],
 as_index=False)
 .agg({‘amount’: ‘sum’})

52

This results in the dataset only containing one row of the amount of egg produced for

each municipality ID. A sample of the data is shown in Figure 4.20, where you can see that

there is only one row for each municipality ID (komnr).

Figure 4.20 Final Egg deliveries data after preparation

4.1.6 Grain Deliveries

This data file contains information about the deliveries of different types of grain5. It

contains the columns organization ID (orgnr), name of owner of organization (navn) and

municipality ID (komnr). In addition, each type of grain is divided into three categories:

animal feed, food and seeds. Each of the types of grain, and each category of the type, has

its own column.

Data Discovery

The data has a wide format and each grain type has its own column, similar to the

meat and egg deliveries data. A lot of these categories are irrelevant or not in the nutrients

table and should therefore be removed. All the necessary data preparation tasks are listed

below:

• Drop irrelevant columns

• Unpivot data

• Remove null data

• Split column

5 https://data.norge.no/datasets/2cda2089-8629-4098-835c-59b473e4a785

https://data.norge.no/datasets/2cda2089-8629-4098-835c-59b473e4a785

53

• Group by municipality ID

Data Preparation

Drop irrelevant columns

The only relevant columns in the grain deliveries dataset are the municipality ID

(komnr) and amount of each type of food. Since there are some columns of animal feed and

seeds, these can be removed first. This is done by getting the column labels, converting them

to a list using the tolist() method (pandas, n.d.-q), and storing them in a list named

grain_deliveries_columns as shown in the code line below:

1 grain_deliveries_cols = grain_deliveries_init.columns.tolist()

The list now looks as shown in Figure 4.21.

Figure 4.21 List of column labels of the grain deliveries data

To remove the columns that are not relevant, the remove() method (Python, n.d.-a)

is used. The columns that are needed are the municipality ID and all types of grain that is

food. This means the “komnr” and all columns containing the word “mat” (food in

Norwegian). The irrelevant column labels are removed from the list using a while loop that

loops as long as i is less than the length of the list of columns labels. An If statement is used

54

to check if the column label does not consist of the substring “mat” and is not equal to

“komnr”. These elements in the list are removed. Else, the i is increased by 1. The i will

increase until each element has been checked and the irrelevant column labels are removed.

The code lines are shown below:

1 # Extract only column headers containing the substring "mat"
2 substring = "mat"
3 i = 0
4 while i < len(grain_deliveries_cols):
5 if (substring not in grain_deliveries_cols[i]) & (grain_deliveries_cols[i] != "komnr"):
7 print(f'"{grain_deliveries_cols[i]}" does not contain the substring "mat"')
8 grain_deliveries_cols.remove(grain_deliveries_cols[i])
9 else:
10 i += 1
11 print(f'"{grain_deliveries_cols[i]}" does contain the substring "mat"')

The list now looks as shown in Figure 4.22.

Figure 4.22 Relevant columns of the grain deliveries data

Now, the relevant columns can be extracted from the dataset. This is done in the

code line below:

1 grain_deliveries_dropped = grain_deliveries_init[grain_deliveries_cols]

A sample of the current data can be seen in Figure 4.23.

55

Figure 4.23 Grain deliveries data after removing irrelevant columns

Unpivot

The data is unpivoted to match the other datasets, creating a column “type”

containing the type of grain and a column “amount” containing the amount of grain in

kilograms. The code line is shown below:

1 grain_deliveries_melted = pd.melt(grain_deliveries_dropped,
 id_vars=[‘komnr’],
 var_name=’type’,
 value_name=’amount’)

The unpivoted data is shown in Figure 4.24.

Figure 4.24 Grain deliveries data after unpivoting

Remove null data

There are now a lot of rows with amount of 0. These are removed in the code line

below:

1 grain_deliveries_subset = grain_deliveries_melted[grain_deliveries_melted[‘amount’] > 0]

56

Split column

The type is formatted like this: [type of grain] _ [mat] _ [kg]. All rows are grain used

for food and are in kilograms, so these parts of the name can be removed. The columns

strings are split on underscore and the first part of the string is assigned as the value of the

rows of the “type” column. The code line is shown below:

1 grain_deliveries_variables = grain_deliveries_subset[‘type’].str.split(‘_’)
2 # Copy the old subset
3 grain_deliveries_subset_copy = grain_deliveries_subset.copy()
4 # Drop the old types
5 grain_deliveries_split = grain_deliveries_subset_copy.drop(['type'], axis=1)
6 # Add a new type column with the values of the splitted types
7 grain_deliveries_split['type'] = grain_deliveries_variables.str.get(0)
8 # Rearrange the order of the columns to match the other datasets
9 grain_deliveries_split = grain_deliveries_split[['komnr', 'type', 'amount']]

The data now looks as shown in Figure 4.25.

Figure 4.25 Grain deliveries data after splitting the "type" column

Group by municipality ID and type of grain

To get the amount of each type of grain per municipality, the data needs to be

grouped by municipality ID (komnr) and type of grain (type). This is done in the code line

below:

1 grain_deliveries_per_municipality = grain_deliveries_split.groupby([‘komnr’, ‘type’],
 as_index=False)
 .agg({‘amount’: ‘sum’})

A sample of the grouped data is shown in Figure 4.26.

57

Figure 4.26 A sample of the current Grain deliveries data.All the necessary data preparation tasks have now been performed

4.1.7 Nutrients Table

This data file contains the nutritional contents of different types of food6. As this file

has 116 columns, they won’t all be described here, but there are for instance columns for

the type of food, an ID for each type of food, and one column for each type of nutrient.

Data Discovery

This is a very messy dataset with many empty rows of data and one row dedicated to

the title. It also has comments and in some cells the unit of the value is given. In Figure 4.27

you can see a small sample of the initial nutrients table data, where only 10 out of 116

columns and 5 out of 2152 rows are shown. There is a lot of NaN values, comments and

generally irrelevant data that should be removed.

Figure 4.27 A small sample of the initial nutrient table data

The necessary steps to get the desired data format and structure is:

6 https://data.norge.no/datasets/9d082918-e3d4-4ae2-8efd-e7d025dfd52d

https://data.norge.no/datasets/9d082918-e3d4-4ae2-8efd-e7d025dfd52d

58

• Change column header

• Drop redundant rows

• Extract only relevant columns

• Split column

Data Preparation

Change column header

Since the header row only contains a title in one of the columns and the rest of the

columns are named “Unnamed: 0”, “Unnamed: 1”, and so on, there is no point in keeping

this row. The first row only contains NaN values, as seen in Figure 4.27, and this can also be

removed. The actual column headers are in row 2 (with index 1), so this row should be set as

column header. This is done by using the pandas indexer .iloc[] (pandas, n.d.-i), which gets

the row(s) of the inputted index. In this case, the row with index 1 should be set as column

header. This is done by setting the column labels equal to the row as shown in the code line

below:

1 nutrients_table_init.columns = nutrients_table_init.iloc[1]

A sample of the current data is shown in Figure 4.28.

Figure 4.28 A sample of the nutrients table data with the new column headers

Drop redundant rows

There is still a lot of redundant rows. As seen in Figure 4.28, the first row (with index

0) consist of only NaN values. The second row (with index 1) is set as the column header and

59

should be removed. The third row (with index 2) has a comment in the second column and

the rest of the columns are units and NaN values. The foods are also divided into categories,

such as “Milk and dairy products”. There are rows that only contain the category in the

“Matvare” columns, but the rest of the columns consists of NaN values. None of the above-

mentioned rows are relevant in this case and should be removed. One thing to note is that

the comment tells me that any missing values are denoted “M”, which is important to know

in order to remove this data later. Rows of index 0-3 are removed in the code line below:

1 # Drop rows containing redundant information or null values
2 nutrients_table_dropped = nutrients_table_init.drop([0, 1, 2, 3])

This removed the first four rows. Now, all the rows containing the categories of food

can be removed. Since these rows only has a value in the “Matvare” column, it will have a

NaN value in the rest of the columns. Choosing one of these columns, a subset of data can

be made by filtering out the rows where the column contains a NaN value. In this case, the

“Spiselig del” column are chosen. Filtering the rows by using the notnull() method results in

a subset of data where all values are non-missing values (not NaN values). The code line is

shown below:

1 # Remove food category rows
2 nutrients_table_subset = nutrients_table_dropped[nutrients_table_dropped['Spiselig del']
 .notnull()]

A sample of the current data is shown in Figure 4.29.

60

Figure 4.29 Nutrients table data after removing redundant rows

Extract relevant columns

In order to get the kilocalories of each type of food, the food type column “Matvare”

and the kilocalories column named “Kilokalorier” should be extracted from the dataset. This

is done in the code line below:

1 nutrients_table = nutrients_table_subset[[‘Matvare’, ‘Kilokalorier’]]

A sample of the current data is shown in Figure 4.30.

Figure 4.30 Nutrients table data after extracting only relevant columns

Split column

The type of food in the column “Matvare” not only provides the type of food, but

also some additional information about the food type, such as whether it is cooked or not,

how many percent of fat it contains, the manufacturer of the food, etc. This information is

not relevant in this case. The rest of the datasets of food production data are not very

specific. For instance, the meat deliveries data only says pig meat, and does not specify

61

which part of the pig the meat is from. In the nutrients table, this information is included.

However, as the information is not consistent in both datasets, there is no point in

considering which part of the pig the meat is from. Thus, the type column (Matvare) will be

split on comma and space (“, ”) and the first string will be the value that is assigned to the

type column.

Splitting the string on underscore is done in the code line below:

1 # Split the string on underscore
2 nutrients_table_variables = nutrients_table[‘Matvare’].str.split(‘, ‘)

This gives a Series of lists containing the parts of the string, as shown in Figure 4.31.

Figure 4.31 Lists of substrings of the type of food from the Nutrients Table data.

Next, a copy of the previous dataset is made, the old types of food are dropped and a

new column with the first part of the string is created. This is shown in the code lines below:

1 # Copy the old subset
2 nutrients_table_copy = nutrients_table.copy()
3 # Drop the old types
4 nutrients_table_split = nutrients_table_copy.drop(['Matvare'], axis=1)
5 # Add a new type column with the values of the splitted types
6 nutrients_table_split['Matvare'] = nutrients_table_variables.str.get(0)

The data now looks as shown in Figure 4.32.

62

Figure 4.32 Nutrients table data after splitting the "Matvare" column.Only the first part of the string has been assigned as
the value of the column

Rename columns

To get this dataset to match the rest, the columns are renamed to “type” and “kcal”.

This is done using the rename() method. The code line is shown below:

1 nutrients_table_renamed = nutrients_table_split.rename(columns={
 ‘Matvare’: ‘type’,
 ‘Kilokalorier’: ‘kcal’
 })

The data now looks as shown in Figure 4.33.

Figure 4.33 Nutrients table data after renaming the columns to "type" and "kcal"

Remove missing values

As previously mentioned, a comment in the data said that missing values where

denoted “M”. A subset of the data should therefore be made, filtering out the rows where

kilocalories have a “M” as value. This is done in the code line below:

1 nutrients_table_reduced = nutrients_table_renamed[nutrients_table_renamed[‘kcal’] != ‘M’]

63

Using the shape attribute the number of rows of the datasets can be checked to see

if it has been reduced. As seen in Figure 4.34, the reduced nutrients table data has 1980

rows and the old dataset had 1983. This means three rows of data were removed from the

nutrients table data.

Figure 4.34 Comparing the size of the dataframes after removing missing values.

Group by type of food

Previously, the “Matvare” column (now named “type”) was split, and the first part of

the string was set as the value of the column. This means there will be a lot of rows with the

same food type. Previously there were more information about the food type that specified

the difference between these types, however, as this additional information is now removed

these types can be grouped together. Since these types in the initial datasets where

different, they all have different values in the kilocalories column. As the food production

datasets are not specific enough to distinguish between these types, the kilocalories values

will be aggregated for each type, returning the mean of the kilocalories for each type of

food. First the column data type has to be changed to dtype float. This is done in the code

line below:

1 # Change data type (dtype) of the kilocalories column
2 nutrients_table_numeric = nutrients_table_reduced.astype({'kcal': float})

Then the data can be grouped by the food type as shown in the code line below:

1 # Group by type of food
2 nutrients_table_grouped = nutrients_table_numeric.groupby(['type'],
 as_index=False)
 .agg({'kcal': 'mean'})

This further reduces the data by more than 1,000 rows, as shown in Figure 4.35.

64

Figure 4.35 Checking the size of the Nutrients Table data after grouping the data.

Changing letter case

The food types in the nutrients table data have a capitalized first letter. This does not

match the other datasets, and the letter case will therefore be changed. This is done by first

creating a copy of the previous dataset as shown in the code line below:

1 kcal_of_foods_copy = nutrients_table_grouped.copy()

Then the “type” column is dropped from the copied data as shown in the code line

below:

1 kcal_of_foods = kcal_of_foods_copy.drop([‘type’], axis=1)

Next, a new “type” column is added and set equal to the “type” column of the

previous nutrients table data, applying the lower() method to convert the strings to

lowercase. This is done in the code line below:

1 kcal_of_foods[‘type’] = nutrients_table_grouped[‘type’].str.lower()

This results in the data shown in Figure 4.36.

Figure 4.36 Nutrients table data after performing all data preparation tasks

65

4.1.8 Data Mapping and Integration

The datasets have now been individually prepared for integration. The types of

datasets that are available are:

1. One dataset containing information about area of farmland of each municipality

2. Four datasets containing information about the amount of food produced in each

municipality

3. One dataset containing information about how many kilocalories each type of food

contains

In order to answer the question from the use case, the data needs to be integrated.

The necessary steps in order to integrate the data is:

• The food production datasets need to be concatenated to form one large datasets of

all the produces food of each municipality

• The food types of the nutrients table data and the food production data needs to be

mapped

• Do the final calculation

Concatenating the Food Production datasets

The food production datasets are listed below:

• meat_deliveries_per_municipality

• dairy_deliveries_per_municipality

• egg_deliveries_per_municipality

• grain_deliveries_per_municipality

These datasets can now be concatenated using the concat() method (pandas, n.d.-b).

This method concatenates pandas objects along a particular axis. In this case, the axis is not

set in the code line, which means it will be set to the default which is 0 or index. The code

line is shown below:

1 food_produced_per_municipality = pd.concat([meat_deliveries_per_municipality,
 dairy_deliveries_per_municipality,
 egg_deliveries_per_municipality,
 grain_deliveries_per_municipality])

66

The tail() method (pandas, n.d.-p) is used to output a sample of the data and by

default returns the five last rows of the data frame. As shown in Figure 4.37 and Figure 4.38,

the five first and last rows of data in the concatenated food production data are meat types

and grain types, respectively. This is consistent with the code line above, where the meat

deliveries data was in the first element of the list given to the concat() method, and the grain

deliveries data was the last element of this list.

Figure 4.37 First five rows of concatenated food
production data

Figure 4.38 Last five rows of the food production data

Mapping food types of the Nutrients Table and Food Production dataset

In order to integrate the nutrients table data and food production data, the food

types in both the datasets needs to be mapped. This is done by first getting the unique food

types from the food production data by using the unique() method (pandas, n.d.-y), which

returns all unique values in a Series. The tolist() method is also used to create a list of the

unique values. This is done in the code line below:

1 unique_food_types = food_produced_per_municipality['type'].unique().tolist()

After some exploration using a python library named thefuzz (seatgeek, n.d.) to do

fuzzy matching between the food types in the two datasets, a few food types did not get a

high enough matching score and therefore had to be changed manually before the rest of

the types was matched using fuzzy matching. The types of food that had to be manually

mapped are three types of flour, where in the nutrients table it said the flour type and

“flour” at the end. An example is “hvetemel”, which is wheat flour. In the nutrients table, the

food type is “hvetemel” (wheat flour in English), but in the food production data the food

type is only “hvete” (wheat in English). To solve this, these types of food is added to the list

of unique food types from the food production data. This way, the food types are written in

67

the exact same way in both datasets. This shouldn’t be necessary when doing fuzzy

matching, but as a few characters was missing from the type in the food production dataset,

the threshold set to select a match had to be set too low. When the threshold is too low,

some of the other types got several matches that were not a good match at all. After the

food types are added to the list, the food types that could not be fuzzy matched has to be

removed from the list. This is done by creating a list with the food types, iterating over the

list using a for loop and checking whether the element is in the list of unique food types or

not using an if statement. If the element is in the list of unique food types, it is removed

using the remove() method. The code lines are shown below:

1 unique_food_types += ['hvetemel', 'rugmel', 'byggmel', ‘melk’, ‘okserull’]
2 x = ['hvete', 'rug', 'bygg', ‘kumelk’, ‘okse’]
3 for f in x:
4 if f in unique_food_types:
5 unique_food_types.remove(f)

The list now contains the food types that match the nutrients table, and the ones

that could not be fuzzy matched are removed. In total, the food production data now

contains 16 unique food types, as shown in Figure 4.39.

Figure 4.39 List of unique food types in the food production data

A list of unique values is created for the nutrients table in the same way as shown in

the code line below:

1 nutrients_types_unique = kcal_of_foods[‘type’].unique().tolist()

68

Using the len() method the length of the list can be found. As seen in Figure 4.40, the

nutrients table data has 942 types of food.

Figure 4.40 Finding the length of the list of unique food types

To map the food production data’s food types to the matching nutrients table data

food types, fuzzy matching is used. The Python library thefuzz is imported in the line below:

1 from thefuzz import fuzz

An empty dictionary is created first. Then the matching food types are found using a

nested for loop to check two elements, one from each list of food types. If the two elements

gets a score that is greater than 90, the food type from the nutrients table is set as key and

the food type from the food production dataset is set as value in the dictionary. The code

lines are shown below:

1 # Fuzzy matching food types
2 food_types = {}
3 for f1 in unique_food_types:
4 for f2 in nutrients_types_unique:
5 if fuzz.ratio(f1, f2) > 90:
6 food_types[f2] = f1

This resulted in the dictionary shown in Figure 4.41.

69

Figure 4.41 Dictionary containing the fuzzy matched food types

Now, the food types in the nutrients table that is in the dictionary can be replaced by

the food type from the food production data, such that food types match between the

datasets. This is done in the code line below:

1 kcal_of_foods_mapped = kcal_of_foods.replace({'type': food_types})

As previously mentioned, the nutrients table data has 942 unique food types. The

only ones that are relevant in this case, are the 16 types that are also in the food production

data. Therefore, the rest of the 926 food types in the nutrients table data can be removed.

This is done in the code line below:

1 # Remove irrelevant food types
2 kcal_of_foods_reduced = kcal_of_foods_mapped.loc[kcal_of_foods_mapped['type']
 .isin(unique_food_types)]

Lastly, the column’s order is rearranged in the code line below:

1 # Rearrange the order of columns
2 kcal_of_foods_final = kcal_of_foods_reduced[['type', 'kcal']]

As shown in Figure 4.42, the nutrients table now seems to have the desired food

types.

70

Figure 4.42 Nutrients table data after matching the food types

Since the index of the rows are now all messed up, the reset_index() method

(pandas, n.d.-n) can be used to reset the indexes. Setting the drop parameter to True makes

sure the current index is not added as a new column. The code line is shown below:

1 kcal_of_foods_final.reset_index(drop=True)

This results in the data frame shown in Figure 4.43.

Figure 4.43 Nutrients table data after mapping the food types

The final processing step is to merge the three current datasets. This is done using

the merge() method (pandas, n.d.-t), which merges the data frames with a database-style

71

join. The code line that merges the food production data and the nutrients table data is

shown below:

1 final_data = pd.merge(food_produced_per_municipality, kcal_of_foods_final)

This data is then merged with the area of farmland data in the code line below:

1 final_data2 = pd.merge(final_data, area_of_farmland_per_municipality)

Now, all the data is integrated into one final data frame and the final calculation can

be done to answer the question.

Final calculation

During the exploration of how to calculate the answer for the question, the units of

some of the columns needed to be changed. The kilocalories are given in kilocalories per

hectogram, instead it should be in kilocalories per kilograms, as the food amount is given in

kilograms. The area of farmland is given in square kilometers and should be in square

meters. The code lines doing the conversions is shown below:

1 # Converting kcal/hg to kcal/kg
2 final_data3 = final_data2.drop('kcal', axis=1)
3 final_data3['kcal'] = final_data2['kcal'].div(0.1)
4 # Convert area of farmland from km^2 to m^2
5 final_data3['jordbruksareal'] = final_data2['jordbruksareal'].mul(1000000)

The resulting data looks as shown in Figure 4.44.

72

Figure 4.44 Final data with all datasets integrated

The amount of produced kilocalories are found by adding a column to the data

named “produced_kcal” and multiplying the amount with the kilocalories of each type of

food produced by each municipality. A sample of the result is shown in Figure 4.45.

Figure 4.45 Sample of the data after adding a column "produced_kcal".The column shows the amount of produced
kilocalories of each type of food by each municipality

The “type”, “amount” and “kcal” columns are now removed as the calculation has

been done. The code line is shown below:

1 final_data4 = final_data3.drop(['amount', 'type', 'kcal'], axis=1)

Then the data is grouped by municipality ID (komnr), the produced kilocalories

(produced_kcal) is summarized for each municipality, and the area of farmland

(jordbruksareal) gets the first value of the group. This means the area of farmland gets the

first area of farmland belonging to each municipality. As the area of farmland is the same for

all rows in this column, it can be set to the first value. The code line is shown below:

73

1 final_data5 = final_data3.groupby(['komnr'], as_index=False)
 .agg({'produced_kcal': 'sum', 'jordbruksareal': 'first'})

Now, a new data frame can be made by taking the old one and dropping the

produced kilocalories and the area of farmland. A new column named “kcal_produced

per_m2” is added to the new data frame and for each row the produced kilocalories is

divided by the area of farmland. This is shown in the code lines below:

1 final_data6 = final_data5.drop(['produced_kcal', 'jordbruksareal'], axis=1)
2 final_data6['kcal_produced_per_m2'] = final_data5['produced_kcal'] /
 final_data5['jordbruksareal']

The kilocalories produced per square meter for each municipality can be rounded to

4 decimal places using the round() method (pandas, n.d.-w).

1 final_data6['kcal_produced_per_m2'] = final_data6['kcal_produced_per_m2'].round(4)

Using the head() method to output a sample of the data frame it can be seen in

Figure 4.46 that the answer can be found in the outputted table.

Figure 4.46 Final data answering the use case question

4.1.9 Summary of the case study of Python pandas

The data files were easily read using pandas’ reader methods. Most tasks were

efficiently solved using simple methods provided by the library. Some methods are native

Python method, namely the remove() and fromkeys() methods. A few of the tasks had to be

solved creating some custom scripts, and fuzzy matching required importing an additional

library called thefuzz. This makes the tool a bit less efficient. However, overall, Python

74

pandas provides a wide range of methods for solving the necessary tasks to get the data in

the desired format and structure, and to perform the final calculation.

4.2 MySQL

In this chapter, the process of preparing the data for an analysis will be performed

using Structured Query Language. In this case study, MySQL Workbench (MySQL, 2021) is

used to create a database, load and prepare the data. After the data has been prepared, the

question defined in the introduction to Chapter 4 can be answered. As MySQL Database

Management System (DBMS) is investigated in this case study, some functions, clauses and

statements mentioned in this chapter are specific to MySQL. Thus, when describing the

solutions to the data preparation tasks, MySQL will be referred to throughout the case

study. Other DBMSs might provide different functionalities than described here. However,

only MySQL will be considered in this study.

4.2.1 Creating a database and loading the data

First, a database needs to be created. The first line drops the database if it already

exists, the second line creates the database, and the third line accesses the database. This is

done as shown below:

1 DROP DATABASE IF EXISTS `test_db`;
2 CREATE DATABASE `test_db`;
3 USE `test_db`;

MySQL Workbench allows for simple import of data from the CSV files through the

Table Data Import Wizard. The data can either be loaded into an already existing table, or a

new table can be created when the data is loaded. The Import Wizard lets you choose which

columns in the CSV files should be included, and each column in the source data is linked to

a column in the table. An example of the import of data is shown in Figure 4.47, where the

source and destination columns has been linked and a preview of the data is shown at the

bottom of the window. One of the datafiles has file format XLSX, which cannot be imported

directly into MySQL database. This file had to be exported as a CSV file before importing it

into the database.

75

Figure 4.47 An example of the import of CSV files.The Table Data Import Wizard in MySQL Workbench is used. Here the
agricultural properties data is shown. The relevant columns are selected and linked to the correct columns in the table

("komnr" is linked to "municipality_id" and “jordbruksareal” is linked to “area_of_farmland).

After the source and destination columns has been linked, the data is imported into

the table. This process is done in a similar way for each of the six data files. Tables are

created for the data in advance and the data is imported using Table Data Import Wizard. An

example of how the tables are created is shown below:

1 CREATE TABLE ac_properties(
2 municipality_id INT NOT NULL,
3 area_of_farmland INT NOT NULL
4);

Loading the data in MySQL can be a bit challenging and large amounts of data takes

time to load using MySQL Workbench’s Table Data Import Wizard. However, data can also

be loaded using the LOAD DATA Statement (MySQL, n.d.-e). An example of a simple load

data statement is shown below:

76

1 LOAD DATA INFILE ‘file_name.csv’ INTO TABLE table_name;

More clauses can be added for specifying which line or fields terminator is used in

the data, for instance. This way of loading the CSV files caused some problems, mainly

regarding missing values and wrong data types in the CSV files. No solution to these

problems were found, and therefore the Import Wizard was used instead. The problem with

the Import Wizard was that it takes a lot more time to import the data. As an example, the

agricultural properties CSV file had about 300,000 rows of data and it took about 3 hours to

load using Import Wizard. Some people therefore suggest using the LOAD DATA statement

instead as they claim it is faster (Stackoverflow, 2019). The problems using the LOAD DATA

Statement could have been solved by preprocessing the data using another tool before

loading it. Removing missing values and fixing data type mismatches. However, Table Data

Import Wizard handles this automatically.

4.2.2 Data Discovery

When the data has been loaded into the different tables, the SELECT statement can

be used to retrieve the data from one or more tables (MySQL, n.d.-f). Using aggregate

functions (MySQL, n.d.-j), some statistics can be retrieved from the data as well. For

instance, finding out the number of rows of the table can be done using the COUNT()

aggregate function (MySQL, n.d.-j). An example showing the use of the SELECT statement

and COUNT() aggregate function is shown below:

1 SELECT COUNT(area_of_farmland)
2 FROM ac_properties;

The expression inside the COUNT() function, area_of_farmland, is one of the columns

in the ac_properties table. Other aggregate functions available are e.g. AVG(), MAX() and

MIN(), which returns the average, maximum and minimum values, respectively (MySQL, n.d.-

j). These can be used in the same way as COUNT() was in the example query shown above.

4.2.3 Data Preparation

77

When the data has been loaded into tables and data discovering is done, the data

preparation tasks can be performed. The next sections will consider each of the datasets and

their necessary data preparation steps.

Agricultural Properties

Create a dummy table for the data

The table for the agricultural properties data has already been created and Import

Wizard has been used to load the data into the table. The query used to create the table is

shown below:

1 CREATE TABLE ac_properties(
2 municipality_id INT NOT NULL,
3 area_of_farmland INT NOT NULL
4);

Now, the current data can be investigated using the query below:

1 SELECT * FROM ac_properties;

A sample of the output is shown in Figure 4.48. Since the table columns had to be

defined when the table was created, only the relevant columns were added during import.

This means that no columns need to be dropped in this case.

78

Figure 4.48 Sample of the Agricultural Properties Data

Investigating the data a bit more revealed that the table only has 215,413 rows, while

the original CSV had 314,866 rows. This was done using the query below to count the

number of rows:

1 SELECT COUNT(municipality_id) FROM ac_properties;

Inspecting the data a bit more revealed that the specific row where the Import

Wizard had stopped importing. This way, a new CSV file could be created and the remaining

rows from the original CSV could be copied over to the new CSV file. Another table named

ac_properties2 was created, and the new CSV with the remaining rows were loaded into the

new table in the same way as previously. Loading the original CSV file was attempted several

times, without all the rows being successfully imported. Thus, this seemed to be the only

way to load the entire file into the database. The LOAD DATA Statement might have solved

his problem, but this would have required the data to be preprepared, which would leave

only a few preparation tasks for the case study investigating the functionalities provided in

MySQL.

79

Checking for and removing null values

What is needed from this data is the area of farmland per municipality, as this will be

used to answer the analysis question. What can be difficult to see in the retrieved data,

especially with large datasets, is the null values. However, they can be found using the query

below:

1 SELECT * FROM ac_properties WHERE area_of_farmland=0;

This resulted in an empty table, meaning that the data does not contain any null

values. However, removing them could have been done by replacing “SELECT *” with

“DELETE” in the previous query, as shown below:

1 DELETE FROM ac_properties WHERE area_of_farmland=0;

This is done for both the ac_properties and the ac_properties2 tables.

Unioning the two tables of Agricultural properties data

Since the data had to be loaded into two different tables, they have to be unioned

before the rest of the data preparation tasks are performed. A new table is created named

ac_properties3 and the ac_properties and ac_properties2 tables are unioned as shown in the

line below using the UNION clause (MySQl, n.d.-g):

1 INSERT INTO ac_properties3 (municipality_id, area_of_farmland)
2 SELECT * FROM ac_properties
3 UNION
4 SELECT * FROM ac_properties2;

Grouping and aggregating the data

The sample shown in Figure 4.48 revealed that the data needs to be aggregated and

grouped by municipality ID in order to get the area of farmland per municipality. This can be

done first in a test query using the SELECT clause, as shown below:

1 SELECT municipality_id, SUM(area_of_farmland) AS total_area FROM ac_properties
2 GROUP BY municipality_id;

In order for the grouped data to be stored somewhere, the only solution found was

creating a new table and inserting the data from the old table into the new table using the

80

GROUP BY (MySQL, n.d.-b) clause to group the data by municipality ID and the SUM()

aggregate function (MySQL, n.d.-j) to summarize the total area of farmland per municipality.

Since the data is in two datasets, the new table is created in the exact same way as the

previous one, as shown below:

1 CREATE TABLE area_per_municipality(
2 municipality_id INT NOT NULL,
3 area_of_farmland INT NOT NULL
4);
5 SELECT * FROM area_per_municipality;
6
7 ## Insert the grouped data into the new table
8 INSERT INTO area_per_municipality (municipality_id, area_of_farmland)
9 SELECT municipality_id, SUM(area_of_farmland)
10 FROM ac_properties3
11 GROUP BY municipality_id;

In lines 1 to 4, the table is created. In lines 8 to 11 the data is grouped and

aggregated and inserted into the new table. Using the SELECT clause, the new table with the

aggregated data can be viewed. A sample of the data is shown in Figure 4.49.

Figure 4.49 A sample of the Agricultural Properties data.The data gas been aggregated and grouped by municipality ID.

Now this data is ready to be used in the final calculation. The dummy tables can be

removed, as it is no longer needed. This is done in the queries below:

81

1 DROP TABLE ac_properties;
2 DROP TABLE ac_properties2;
3 DROP TABLE ac_properties3;

Meat Deliveries

Creating a dummy table for the data

The meat deliveries data is loaded into a table with the following structure:

1 CREATE TABLE meats(
2 municipality_id INT NOT NULL,
3 and_kg INT NOT NULL,
4 kje_kg INT NOT NULL,
5 gris_kg INT NOT NULL,
6 purke_kg INT NOT NULL,
7 raane_kg INT NOT NULL,
8 gaas_kg INT NOT NULL,
9 hane_kg INT NOT NULL,
10 hons_kg INT NOT NULL,
11 kalkun_kg INT NOT NULL,
12 kalv_kg INT NOT NULL,
13 kylling_kg INT NOT NULL,
14 lam_kg INT NOT NULL,
15 lam_villsau_kg INT NOT NULL,
16 sau_kg INT NOT NULL,
17 ungsau_kg INT NOT NULL,
18 vaer_kg INT NOT NULL,
19 ku_kg INT NOT NULL,
20 kvige_kg INT NOT NULL,
21 okse_kg INT NOT NULL,
22 ungokse_kastrat_kg INT NOT NULL,
23 ungku_kg INT NOT NULL
24);

The final table should contain three columns: municipality ID, amount and type of

meat. It should also be grouped by municipality ID and the sum of the amount for each type

of food for each municipality should be calculated. This is a wide table with 21 columns. It

needs to be unpivoted to get the desired structure, which means some columns will be

converted to rows.

Grouping, aggregating and unpivoting the data

The data is first grouped and aggregated to simplify the types of meat. Because the

nutrients table (which will be discussed later) contains only some of these meat types, as

previously mentioned in Section 4.1.3, the meat types will be simplified. Some of them will

be removed, as they have no equivalent in the nutrients table. Others will be merged into

82

one broader category, as they are basically the same type. Again, before the grouping of

data can happen, a new table has to be created. This is done as shown below:

1 CREATE TABLE meat(
2 municipality_id INT NOT NULL,
3 type VARCHAR(100),
4 amount INT NOT NULL
5);

Now, the data can be both grouped and unpivoted in the same query. The grouping

and aggregation is done using the SUM() and GROUP BY clauses. The unpivoting is done by

selecting the old columns and setting a new column name and value for it. An amount

column gets the value from the different meat type columns and the type column is

manually set to a new type. This is to create some new and broader categories for some of

the types of meat.

83

1 INSERT INTO meat (municipality_id, amount, type)
2 SELECT municipality_id, (SUM(gris_kg) + SUM(purke_kg) + SUM(raane_kg)) amount, 'svin' type
3 FROM meats
4 GROUP BY municipality_id, type
5 UNION ALL
6 SELECT municipality_id, (SUM(hane_kg) + SUM(hons_kg)) amount, 'hone' type
7 FROM meats
8 GROUP BY municipality_id, type
9 UNION ALL
10 SELECT municipality_id, (SUM(vaer_kg) + SUM(sau_kg) + SUM(ungsau_kg)) amount, 'sau' type
11 FROM meats
12 GROUP BY municipality_id, type
13 UNION ALL
14 SELECT municipality_id, (SUM(lam_kg) + SUM(lam_villsau_kg)) amount, 'lam' type
15 FROM meats
16 GROUP BY municipality_id, type
17 UNION ALL
18 SELECT municipality_id, (SUM(ku_kg) + SUM(kvige_kg) +
 SUM(okse_kg) + SUM(ungokse_kastrat_kg) +
 SUM(ungku_kg)) amount,
 'okse' type
19 FROM meats
20 GROUP BY municipality_id, type
21 UNION ALL
22 SELECT municipality_id, SUM(gaas_kg) amount, 'gaas' type
23 FROM meats
24 GROUP BY municipality_id, type
25 UNION ALL
26 SELECT municipality_id, SUM(and_kg) amount, 'and' type
27 FROM meats
28 GROUP BY municipality_id, type
29 UNION ALL
30 SELECT municipality_id, SUM(kalkun_kg) amount, 'kalkun' type
31 FROM meats
32 GROUP BY municipality_id, type
33 UNION ALL
34 SELECT municipality_id, SUM(kalv_kg) amount, 'kalv' type
35 FROM meats
36 GROUP BY municipality_id, type
37 UNION ALL
38 SELECT municipality_id, SUM(kylling_kg) amount, 'kylling' type
39 FROM meats
40 GROUP BY municipality_id, type;

Checking for and removing null values

This results in a lot of rows where amount is equal to 0, and these rows can be

removed as they are redundant. This is done using the DELETE Statement (MySQL, n.d.-d) as

shown below:

1 DELETE FROM meat WHERE amount=0;

The current data is in the desired structure and can be used for the final calculation.

A sample of the data is shown in Figure 4.50.

84

Figure 4.50 A sample of the current Meat Deliveries data.The data has been unpivoted, grouped and aggregated, and rows
where amount=0 has been removed.

Drop dummy table

Lastly, the dummy table meats is dropped as shown in the query below:

1 DROP TABLE meats;

Dairy Deliveries

Creating a dummy table for the data

The dairy deliveries data is loaded into a table with the following structure:

1 CREATE TABLE milk(
2 municipality_id INT NOT NULL,
3 melk INT NOT NULL,
4 geitmelk INT NOT NULL
5);

The columns are municipality ID, cow milk (“melk”) and goat milk (“geitmelk”). A

sample of the data is shown in Figure 4.51.

85

Figure 4.51 A sample of the Dairy Deliveries data before making any changes

Adding a “type” column

In order to get this data to match the other tables, it needs a type column which

shows what type of milk and the amount. First, a test query is written in order to ensure the

results are as desired before the changes to the table is made permanently. The query

shown below selects the municipality_id, melk, geitmelk and type columns. However, for the

type column a CASE statement (MySQL, n.d.-i) is used to determine what type of milk should

be assigned to it. The CASE statement says that if the melk column is equal to 0 then the

type is set to “geitmelk” (or goat milk in English), else the type is set to “melk” (meaning cow

milk). In the table, each row represents one organization’s production of milk. As each

organization only produces one type of milk, the rows will contain a 0 in either the “melk” or

“geitmelk” column. Thus, using the CASE statement the type for each row in the table can be

determined by using the 0’s as shown in the query below:

1 SELECT municipality_id, melk, geitmelk,
 CASE WHEN melk = 0 THEN 'geitmelk'
 ELSE 'melk'
 END AS type
 FROM milk;

As can be seen in Figure 4.52 this returns a table where the type is set to “melk”

when the melk column is not 0 (from the ELSE clause in the query above).

86

Figure 4.52 A sample of the Dairy Deliveries data with a “type” column

Now, the previous query only printed out temporary results. To make the changes to

the table, the ALTER TABLE Statement (MySQL, n.d.-c) is first used to add a type column of

type VARCHAR with a fixed length of 100.

1 ALTER TABLE milk ADD type VARCHAR(100);

The type column is now added, but it only contains null values still, as shown in

Figure 4.53.

Figure 4.53 A sample of the Dairy Deliveries table after adding the type column

The next thing to do is to update the type column with the correct milk type using the

UPDATE Statement (MySQL, n.d.-h), and the CASE Statement previously tested. This is done

in the query below:

1 UPDATE milk
2 SET type = CASE
3 WHEN melk = 0 THEN 'geitmelk'
4 ELSE 'melk'
5 END;

87

The milk table now looks similar to the table that was outputted when the test query

was executed, as can be seen in Figure 4.54.

Figure 4.54 A sample of the Dairy Deliveries data after setting the type

Merging columns into an “amount” column

Now that the type of milk is in the type column, the columns melk and geitmelk are

redundant. To match the other data tables, these two columns should be merged into one

column named amount.

The amount column is first added to the milk table, by again using the ALTER TABLE

Statement as shown below:

1 ALTER TABLE milk ADD amount INT NOT NULL;

Two UPDATE Statements are used to get the values from the melk and geitmelk

columns and add them to the amount columns. The first one, shown in line 1 to 3 below,

updates the milk table and sets the amount equal to the value in the melk column for all

rows where the geitmelk column contains a 0. The next one, shown in line 5 to 7 below,

updates the milk table and sets the amount equal to the values in the geitmelk column for all

rows where the melk column contains a 0.

1 UPDATE milk
2 SET amount=melk
3 WHERE geitmelk = 0;
4
5 UPDATE milk
6 SET amount=geitmelk
7 WHERE melk = 0;

88

A sample of the current data is shown Figure 4.55.

Figure 4.55 A sample of the Dairy Deliveries data with an “amount” column

Drop redundant columns

Now that the amount of milk of the different types are in the amount column, the

melk and geitmelk columns are no longer needed. To remove them, the ALTER TABLE and

DROP clauses are used. In MySQL several DROP clauses can be used in a single ALTER TABLE

clause, so both columns can be removed as shown below:

1 ALTER TABLE milk
2 DROP COLUMN melk,
3 DROP COLUMN geitmelk;

A sample of the current data is shown in Figure 4.56.

89

Figure 4.56 A sample of the Dairy Deliveries data. Redundant columns has been removed.

Grouping and aggregating the data

The last thing to do is to aggregate the data, to get the total amount of the different

types of milk produced in each municipality. This is done similarly to the meat deliveries

data, by creating a new table for the aggregated data and inserting the aggregated data from

the old table into the new table. The table is created as shown below:

1 CREATE TABLE dairy(
2 municipality_id INT NOT NULL,
3 amount INT NOT NULL,
4 type VARCHAR(100)
5);

The data is then aggregated, grouped and inserted into the new table using the query

shown below:

1 INSERT INTO dairy (municipality_id, amount, type)
2 SELECT municipality_id, SUM(amount), type
3 FROM milk
4 GROUP BY municipality_id;

The data now looks like the sample shown in Figure 4.57. It now shows the amount

of each type of milk produced in each municipality.

90

Figure 4.57 A sample of the Dairy Deliveries data after grouping and aggregating

Check for and remove null values

Before moving on to the next dataset, the amount column can be checked for null

values using the query below. The second line of the query deletes the rows where amount

is equal to 0.

1 SELECT * FROM dairy WHERE amount=0;
2 DELETE FROM dairy WHERE amount=0;

Drop dummy table

Lastly, the dummy table milk can be dropped as shown below:

1 DROP TABLE milk;

Egg Deliveries

Creating a dummy table for the data

The egg deliveries data is loaded into a table with the structure shown below:

1 CREATE TABLE eggs(
2 municipality_id INT NOT NULL,
3 amount INT NOT NULL
4);
5 SELECT * FROM eggs;

A sample of the current data can be seen in Figure 4.58.

91

Figure 4.58 A sample of the Egg Deliveries data before making any changes

Check for and remove null values

As the figure only shows a sample of the data in the table, the data should be

checked for null values. In this case, any rows where amount is equal to 0 should be

removed. Using the first query shown below, the rows where amount equals 0 will be

outputted. Using the second query shown below, the rows where amount equals 0 is

deleted from the table.

1 SELECT * FROM eggs WHERE amount=0; -- outputs rows where amount=0
2 DELETE FROM eggs WHERE amount=0; -- deletes the rows where amount=0

Add a “type” column

The data currently has a municipality ID and amount column. The other datasets

contain different types of foods, and therefore also has a type column. To match the other

datasets, a type column is added to the egg deliveries data using the query below:

1 ALTER TABLE eggs ADD type VARCHAR(100);

92

Since this table only contains records of amount of eggs delivered, the type column

will be set equal to “egg”. This is done in the following query:

1 UPDATE eggs SET type = 'egg';

The data now looks as shown in Figure 4.59.

Figure 4.59 A sample of the Egg Delivery data with a “type” column

Grouping and aggregating the data

What is missing now is the aggregation of the data. First, a new table for the grouped

and aggregated data is created as shown below:

1 CREATE TABLE egg(
2 municipality_id INT NOT NULL,
3 amount INT NOT NULL,
4 type VARCHAR(100)
5);

The amount of egg delivered for each municipality is what is needed from the data;

therefore, the data needs to be grouped by municipality ID and the amount of eggs for each

municipality needs to be summarized. This is done in the query below:

1 INSERT INTO egg (municipality_id, amount, type)
2 SELECT municipality_id, SUM(amount), type
3 FROM eggs
4 GROUP BY municipality_id;

93

Comparing the previous data in Figure 4.59 and the data in Figure 4.60, we can see

that the two rows with municipality ID of 415 in Figure 4.59 is reduced to one row in Figure

4.60.

Figure 4.60 A sample of the Egg Delivery data after grouping and aggregating

Drop dummy table

Now that the new table egg contains the data, the dummy table eggs can be

dropped as it is no longer needed. This is done in the query below:

1 DROP TABLE eggs;

Now the egg deliveries data is prepared as well, and it is ready for the final

calculation.

Grain Deliveries

Creating a dummy table for the data

The structure of the table where the grain deliveries data is loaded is shown below:

1 CREATE TABLE grains(
2 municipality_id INT NOT NULL,
3 bygg INT NOT NULL,
4 erter INT NOT NULL,
5 hvete INT NOT NULL,
6 rug INT NOT NULL
7);

94

Grouping, aggregating and unpivoting the data

This table also needs to be unpivoted so that the types of grain is in a type column,

and the amount is in an amount column. It should also be grouped and aggregated as the

other datasets. Another table is created first. This table has the municipality ID, amount, and

type columns and is named grain, as shown below:

1 CREATE TABLE grain(
2 municipality_id INT NOT NULL,
3 amount INT NOT NULL,
4 type VARCHAR(100)
5);

The query for grouping, aggregating and unpivoting is similar to the one used for the

meat deliveries data, as can be seen below:

1 INSERT INTO grain (municipality_id, amount, type)
2 SELECT municipality_id, SUM(bygg) amount, 'byggmel' type
3 FROM grains
4 GROUP BY municipality_id, type
5 UNION ALL
6 SELECT municipality_id, SUM(erter) amount, 'erter' type
7 FROM grains
8 GROUP BY municipality_id, type
9 UNION ALL
10 SELECT municipality_id, SUM(hvete) amount, 'hvetemel' type
11 FROM grains
12 GROUP BY municipality_id, type
13 UNION ALL
14 SELECT municipality_id, SUM(rug) amount, 'rugmel' type
15 FROM grains
16 GROUP BY municipality_id, type

Removing null values

This results in a lot of rows where amount is equal to 0, as with the meat deliveries

data. These rows are deleted as shown below:

1 DELETE FROM grain WHERE amount=0;

The data is prepared for the final calculation. A sample of the current grain deliveries

data is shown in Figure 4.61.

95

Figure 4.61 A sample of the Grain Deliveries data.The data have been grouped, aggregated and unpivoted, and rows where
amount=0 has been removed.

Drop dummy table

The dummy table grains can be dropped as shown below:

1 DROP TABLE grains;

Nutrients Table

Create a dummy table for the data

The data is first loaded into a dummy table with the following structure:

1 CREATE TABLE nutrients_table(
2 food_type VARCHAR(100),
3 kcal INT NOT NULL
4);

Remove null data

As can be seen in Figure 4.62, there are several rows where kcal is equal to 0. The

first rows of the data contain a title and categories of food, or they are empty. These rows

are not relevant and should be removed. This is done in the query below:

1 DELETE FROM nutrients_table WHERE kcal=0;

96

Figure 4.62 A sample of the loaded nutrients table data

The data in the nutrients_table now looks as shown in Figure 4.63.

Figure 4.63 A sample of the Nutrients Table data. Rows where kcal=0 has been removed.

Split column and changing letter case

The food types in the nutrients table contains additional information which is not

necessary in this case. This information will be removed using the SUBSTRING_INDEX()

function, which returns a substring from a string before the specified number of occurrences

of the delimiter (MySQL, n.d.-a). The food type should be set equal to the first substring.

First, a type column is added to the table as shown below:

1 ALTER TABLE nutrients_table ADD type VARCHAR(100);

97

Now, the type column only contains NULL, as shown in Figure 4.64. This column

should be filled with the first part of the string in the initial food_type column. In addition,

the LOWER() function (MySQL, n.d.-a) is used to convert the string to lowercase. This is done

in the query below:

1 UPDATE nutrients_table
2 SET type=LOWER(SUBSTRING_INDEX(food_type, ', ', 1));

Figure 4.64 A sample of the Nutrients Table data after adding a type column

After filling the type column with the lowercase substring, the initial food_type

column can be removed as shown in the query below:

1 ALTER TABLE nutrients_table
2 DROP COLUMN food_type;

The nutrients table data now looks as shown in Figure 4.65.

Figure 4.65 A sample of the Nutrients Table data with new “type” column

Grouping and aggregating the data

The data now contains several rows where the food type is the same, but with

different kilocalorie values. This is because the initial data said something about whether the

food was prepared, how it was prepared, how much fat it contained, what part of the animal

the meat was from, etc. This information was removed from the initial food_type column in

98

order to match the food types of the food production datasets. As the food production

datasets don’t give any information about these kinds of things, a simplification has to be

made. The data is grouped by type and the average of the kilocalories of all records of each

type is calculated. First, a new table is created to insert the data into. This is done similarly as

before in the query below:

1 CREATE TABLE kcal_per_food(
2 type VARCHAR(100),
3 kcal INT NOT NULL
4);

Then, the data from the old table can be grouped by type and the average of the kcal

can be calculated. This is done in the query below:

1 INSERT INTO kcal_per_food (type, kcal)
2 SELECT type, AVG(kcal)
3 FROM nutrients_table
4 GROUP BY type;

The data now looks as shown in Figure 4.66. There is now only one row for each type

of food in the Nutrients Table, and the kcal value is an average of all the similar food types in

the initial data.

Figure 4.66 A sample of the final Nutrients Table data.The data has been grouped by type and the average of the kilocalories
of each type of food has been calculated.

4.2.4 Data Mapping and Integration

The current SQL tables are listed below:

1. area_per_municipality: Total area of farmland per municipality

2. grain: The amount of different types of grain produced in each municipality

3. egg: The amount of eggs produced in each municipality

4. milk: The amount of cow and goat milk produced in each municipality

99

5. meat: The amount of different kinds of meat produced in each municipality

6. kcal_per_food: The kilocalories contained in each type of food

Union Food Production data

The food production data (from point 2 to 5 in the list above) should be unioned into

a table of all the produced food. First, a new table is made for the unioned data as shown in

the query below:

1 CREATE TABLE food_production(
2 municipality_id INT NOT NULL,
3 type VARCHAR(100),
4 amount INT NOT NULL
5);

Then the data is unioned. While unioning, the data is grouped by municipality ID and

type and the total sum is calculated. This results in a table showing the amount of each type

of food produced in each municipality. The query is shown below:

1 INSERT INTO food_production (municipality_id, type, amount)
2 SELECT municipality_id, type, SUM(amount)
3 FROM eggs
4 GROUP BY municipality_id, type
5 UNION ALL
6 SELECT municipality_id, type, SUM(amount)
7 FROM milk
8 GROUP BY municipality_id, type
9 UNION ALL
10 SELECT municipality_id, type, SUM(amount)
11 FROM meat
12 GROUP BY municipality_id, type
13 UNION ALL
14 SELECT municipality_id, type, SUM(amount)
15 FROM grain
16 GROUP BY municipality_id, type;

Joining Food Production data with the rest of the data

In order to do the final calculation, the food production table should be joined with

the remaining tables (from point 1. and 6. in the list above). As before, a new table is created

for the joined data. The query is shown below:

100

1 CREATE TABLE results(
2 municipality_id INT NOT NULL,
3 amount INT NOT NULL,
4 type VARCHAR(100),
5 kcal INT NOT NULL,
6 area_of_farmland BIGINT NOT NULL
7);

Then the data is joined by selecting the relevant columns from the different datasets

and joining on some conditions. The conditions are:

• kcal_per_food is joined on the condition that the type of food in this data is equal to

the type of food in the food production data table

• area_per_municipality is joined on the condition that the municipality ID of this data

is equal to the municipality ID of the food production data table

Since the kilocalories of the food types are given in kilocalories per hectogram, the

values in the kcal column need to be converted to kilocalories per kilogram. This is done by

dividing the value by 0.1. The area of farmland is given in square kilometers, and as the final

calculation will find the kilocalories worth of food produced per square meter for each

municipality, this should be converted to square meters. This is done by multiplying the

values in the area_of_farmland column by 1,000,000. The query that joins the data, converts

kilocalories and area of farmland, and inserts it into the results table is shown below:

1 INSERT INTO results (municipality_id, amount, type, kcal, area_of_farmland)
2 SELECT food_production.municipality_id,
3 food_production.amount AS amount,
4 food_production.type,
5 kcal_per_food.kcal/0.1 AS kcal,
6 area_per_municipality.area_of_farmland*1000000 AS area_of_farmland
7 FROM food_production
8 JOIN kcal_per_food ON kcal_per_food.type = food_production.type
9 JOIN area_per_municipality ON
 area_per_municipality.municipality_id = food_production.municipality_id
10 ORDER BY municipality_id;

The joined data in the results table now looks as shown in Figure 4.67.

101

Figure 4.67 A sample of the joined data.The Food production data table have been with the area of farmland table and the
kilocalories per food table.

Final Calculation

From the joined data, the final calculation can either be done using the SELECT clause

to output and look at the results, or changes can be made to the existing table to simplify

the table to only the data necessary to answer the question. Using the query below, the data

can be viewed temporarily:

1 SELECT municipality_id, (amount*kcal/area_of_farmland) AS kcal_produced_per_m2
2 FROM results
3 GROUP BY municipality_id;

This results in the output shown in Figure 4.68, where the kilocalories worth of food

produced per municipality can be found. For instance, the municipality with ID of 513 has

produced 1101 kilocalories worth of food.

102

Figure 4.68 Results of the final calculation.The kilocalories worth of food produced per square meter in each municipality
can now be found from the table.

To change the results table to match this output, a new column

kcal_produced_per_m2 has to be added to the table and the amount, type, kcal, and

area_of_farmland columns need to be dropped. This is all done in the queries shown below:

1 # Add a new column
2 ALTER TABLE results
3 ADD kcal_produced_per_m2 INT NOT NULL;
4
5 # Insert data in the column by updating the table
6 UPDATE results
7 SET kcal_produced_per_m2=amount*kcal/area_of_farmland;
8
9 # Drop irrelevant columns
10 ALTER TABLE results
11 DROP COLUMN amount,
12 DROP COLUMN type,
13 DROP COLUMN kcal,
14 DROP COLUMN area_of_farmland;

4.2.5 Summary of the case study of MySQL

The importing of the CSV files caused some problems. It seems the data has to be

structured before it can be loaded into the database. This means the data has to be

preprocessed before the data preparation can be done in MySQL. This is a weakness of

working with data transformation inside a database. However, when the data is loaded, it

means the data already has some structure and the rest of the data preparation process

should be quite simple. MySQL comes with many simple functions, clauses and statements

which makes the process easy. However, it lacks the capabilities for updating a table with

the aggregated data. In fact, grouping, aggregating and unpivoting the data requires a new

table to be created and the modified data to be inserted into the new table. This is a bit

tedious. Dummy tables have to be created just to hold the data until the necessary

103

preparation steps have been performed, before the tables can be dropped again. Overall,

the language is very readable, as it is very similar to the way that humans would explain a

task. The declarative approach makes it easy for non-experts to read and understand the

queries.

4.3 Results

In this section, the results of the case study will be presented. The two Data

Manipulation Languages, Python pandas and SQL, studied in section 4.1 and 4.2 will be

evaluated in terms of some dimensions. The dimensions are time-consumption, readability,

usability, flexibility, and expressiveness. This evaluation can provide some insight into the

differences and advantages/disadvantages with the two programming paradigms.

In general, both languages provide functionality for most of the data preparation

tasks necessary in the case study. MySQL required some preprocessing of the data before

the data could be loaded into the database, for instance, converting the XLSX file to a CSV

file. In Python pandas, fuzzy matching was used to match the food types of the food

production and nutrients table data. While in MySQL, the food types were manually changed

to match. The categories included in the calculation therefore ended up being different. This

also resulted in the final calculation being different using the two languages. This can be

seen in Figure 4.69 and Figure 4.70.

Figure 4.69 Results of final calculation using Python
pandas

Figure 4.70 Results of final calculation using MySQL

104

The results still seem to be in the same range. This inconsistency could be fixed by

matching the food types in the same way for both languages. Investigating the problems

further by checking the original CSV files to see what the final values should be, could reveal

where in the data preparation process the DMLs produces different results.

4.3.1 Time-consumption

The differences in time-consumption are clear from the start of the case study, as

MySQL requires a local instance to be installed before the data preparation can begin.

However, this is not always the case as MySQL can also be used in cloud environment where

a ready-to-use MySQL data management service. Python pandas can easily be installed and

used either in a notebook or an Integrated Development Environment (IDE). In the case

study, Jupyter Notebook was used and installing and importing the library took only a few

minutes. The Python pandas library was installed in the terminal using pip, which is a Python

package installer (pypi), but it could also have been installed directly in the Notebook using

also using pip. Python pandas works in-memory which compared to MySQL is faster.

Python pandas provides simple methods for reading the data files, which works

seamlessly and fast. However, in MySQL loading the messy data files into the database is a

challenge. Since the data is messy, the LOAD DATA INFILE statement raises several errors

regarding missing values and wrong data types, and therefore fails to load the data. It seems

the data has to be cleaned somewhat in advance in order to use this statement. Using the

Table Data Import Wizard in MySQL Workbench, the data was loaded into the database

without having to clean it in advance. However, this was very time-consuming, as mentioned

in section 4.2.1. One of the six data files took 3-4 hours to load into the database. Some

people suggest using LOAD DATA INFILE instead, as they claim it is faster. Cleaning the data a

bit in advance and using the LOAD DATA INFILE statement can therefore be considered to

decrease the time-consumption.

Apart from the loading of data, both Python pandas and MySQL performs the data

preparation tasks fast. What might take some time, especially for non-experts, is finding the

solutions for the different tasks from the documentation and forums online. Both Python

105

pandas and MySQL are well-documented and have large communities providing help for the

inexperienced.

4.3.2 Flexibility

The pandas library does not have methods for all the data preparation tasks

performed in this case study. However, Python still provides enough flexibility to solve the

tasks by creating our own scripts. This requires a bit of work, but it is still quite simple to

accomplish. Python also offers a lot of other libraries that can be used in combination with

pandas, which adds functionality and makes the DML even more flexible. This includes for

instance libraries that allows us to develop machine learning algorithms or perform

regression tests and statistical analysis, which are common next steps after the data

manipulation.

MySQL provides less flexibility, as it requires the data to be structured before it can

be loaded into the database. Missing values and inconsistencies in data types causes

problems. During the case study using Python pandas, there were no indications of problems

with the data files. Missing values, for instance, caused no problems at all. Thus, Python

seems to handle unstructured data much better than MySQL. This makes Python pandas

more flexible than MySQL. Moreover, MySQL does not provide much more functionality

beyond the data manipulation and simple calculations, such as the final calculation in the

case study.

4.3.3 Expressiveness

The declarative approach of MySQL is more expressive, as a query specifies what

data is wanted very clearly. This is fairly easy to understand even for inexperienced MySQL

users. The procedural approach of Python pandas is a bit less expressive, as a line of code

specifies how to get the data that is wanted. For an expert with programming experience,

this approach might be obvious. However, non-experts might find it harder to understand

what is happening in a line of code. If, for instance, we want to drop a column from a MySQL

table or pandas DataFrame, this would be done using the query below in MySQL:

106

1 ALTER TABLE table_name
2 DROP COLUMN col1;

The MySQL query’s function is clear: alter the table by dropping the column named

“col1”. Compared to the MySQL query, the Python pandas code is not as obvious, as seen in

the line of code below. One might understand that something will be dropped from the

DataFrame df in this line, but the axis parameter is not necessarily automatically interpreted

as determining column or index, especially by non-experts.

1 df.drop(‘col1’, axis=1)

More advanced Python pandas methods get even more difficult to understand for

non-experts.

4.3.4 Usability

As previously mentioned, the setup of the two DMLs is different, and MySQL requires

a bit more effort than Python pandas. This also affects the usability of the two DMLs.

Installing a local instance of MySQL, creating tables for the data, loading the data, running

one-time queries to prepare the data, and then deleting the tables again can be a bit

tedious. Python pandas is more usable as it is easier to set up. It works in-memory, which

also makes it faster and increases the usability. The methods provided in the pandas library

are simple and often self-explanatory. MySQL also provides some simple clauses to perform

data preparation tasks, but some of the tasks requires quite complex and long queries. For

instance, grouping, aggregating and unpivoting data in MySQL requires a long query of

several lines. Python pandas, on the other hand, uses one simple method to do each of these

tasks which requires only one line of code. In MySQL, the grouped and aggregated data has

to be loaded into a new table in order to get the data in the desired format permanently.

The table cannot be updated with the grouped and aggregated data, which is also a bit

tedious as dummy tables has to be created and dropped. However, this functionality might

be available in other DBMS.

4.3.5 Readability

107

Both the procedural and declarative approach is somewhat easy to read. The

simplest queries in MySQL might be considered a bit easier to read than Python pandas

code, especially for non-programming-experts. The example in Section 4.3.3 comparing a

SQL query and Python pandas code line for dropping a column also shows the differences in

readability of the two DMLs. The example showed that the MySQL query is very human-

readable, while the Python pandas code line required some more programming experience

to interpret.

108

5 Conclusion

In this chapter the thesis work will be concluded. The conclusion will consider the

contributions and research questions and discuss the findings from the review and analysis

of DMLs. Some suggestions for future work will also be added at the end of the chapter.

5.1 Discussion

The research questions defined in Section 1.2 has been investigated through a review

of common data transformation tools and a case study comparing declarative vs. procedural

DMLs. In the following sections each research question will be discussed.

5.1.1 What is the support for common data preparation tasks

provided by some of the most prevalent data transformation

tools?

The results of the review in Chapter 3 showed that all the selected tools provide most

of the data preparation tasks. The selected tools are some of the most prevalent tools for

data manipulation, it is therefore not surprising that most of the data preparation tasks are

available. The key findings of the review were the following:

• The programming languages (R, SQL, Python) more often requires workarounds and

custom scripts for solving tasks, which is more time-consuming and requires more

experience

• The applications, on the other hand, are very easy to understand and provide simple

components/blocks that performs the data preparation tasks. No coding is required

for most tasks, which makes it suitable for non-experts.

• Programming languages provide more flexibility, as tasks that are not supported by

applications are sometimes impossible to accomplish in the applications.

Programming languages allows for creating custom solutions to the tasks even if

there are no simple methods available to solve them.

• The context of which the tool will be used can also be considered when selecting a

tool. This might be interesting because where the data is stored and what tools and

109

technologies the organization already uses can affect what is the wisest choice of

tool for data manipulation. If the data is stored in a relational database, such as

MySQL, using SQL to perform the manipulation might be a good choice. Another

alternative might be to use Python libraries which enables us to run SQL queries in a

Jupyter notebook, for instance. In this case, SQL or Python might be better choices

than R, for instance. Another thing to mention is that learning a tool from scratch is

time-consuming. If the tool that is chosen can also be used for other parts of the data

science project, such as developing and deploying ML algorithms, it might be a wise

choice to spend time learning a tool that provides libraries that has these capabilities.

To summarize, the main factors to consider is experience and context. A non-expert

might find an application a better choice if the necessary functionalities is available. An

expert might find it is better to use tools which are more flexible, even for simple tasks,

because they also offer functionalities for developing ML algorithms or are particularly well-

suited for data analysis.

5.1.2 How does declarative vs. procedural DMLs differ in terms of

time-consumption, flexibility, expressiveness, usability, and

readability?

Based on the case study, Python pandas seems to be a better choice for data

manipulation. An overview of the main advantages and disadvantages of the DMLs found in

the case study are shown in Table 5.1. The main reasons why Python pandas is considered a

better choice than MySQL is that the time consumption is less, and the flexibility and

usability is better. This is due to the ease of setting up Python pandas compared to MySQL,

the wide range of methods provided with the library, and the availability of additional

libraries offering more functionalities and increasing the flexibility.

The expressiveness of MySQL queries is good, and especially well-suited for non-

experts. However, the DML is less flexible, provides less functionalities, and is not suitable

for complex computations. The requirement to install a local instance of MySQL also

decreases the usability of the DML.

110

Table 5.1 Advantages and disadvantages of Python pandas and MySQL

 Advantages Disadvantages

P
yth

o
n

 p
an

d
as

(1) Setup is simple and fast

(2) Relatively easy to learn

(1) Requires some programming

experience

(2) Not very readable, especially for non-

experts

M
ySQ

L

(1) Expressiveness is good, especially

for non-experts

(2) Readability is good for simple

queries, but becomes poorer the more

complex the query gets

(3) Relational databases provide

powerful data management

capabilities

(1) Installation of local instance is required

(2) Provides less functions for data

preparation tasks and for the execution of

complex computation compared to

pandas

(3) Requires some preprocessing in order

to load the data into the database

Considering the framework defined in Table 1.1 in Section 1.3.1, the data preparation

tasks performed in the case study is reviewed to provide some insights into the differences

of the DMLs. The results are shown in Table 5.2.

Table 5.2 Reviewing the functionalities of MySQL and Python pandas

Data preparation tasks Comparison

Drop irrelevant columns Both Python pandas and MySQL provide simple functions for

dropping a column. Python requires some parameters to

specify which column to drop, and also whether a column of

row should be dropped.

Remove null/missing

data

Null/missing values can be removed easily using both

languages. The expressiveness of SQL is better than Python

pandas, as previously mentioned. However, Python pandas

also provides a simple way to filter the data.

Group data Python pandas allows for grouping the data permanently,

while SQL requires that a new table is created and the

grouped data is inserted into the new table. This is a bit

more tedious than the Python pandas approach.

Aggregate data The aggregation in SQL also requires a new table to be

created and the aggregated data has to be inserted into the

new table. Python pandas provides a simple method agg()

that take in what column to aggregate and what aggregation

111

function to apply. It can all be done in one code line,

compared to SQL that requires several lines of code.

Unpivot Python pandas provides a simple method, melt(), to unpivot

the data. The method takes in the columns to keep as they

are, the columns to convert to rows, and new column labels

for the unpivoted data. In SQL this task is much more

complicated, as each of the columns has to be selected one

by one and then be unioned to create an unpivoted table.

This requires several lines of code, as compared to Python

pandas that solves this in one code line.

Split columns This task is solved in a similar way in Python pandas and

MySQL. Python pandas has a method, split(), which takes in

what to split on and returns a list of the substrings. Similarily,

in MySQL, SUBSTRING_INDEX takes in the column to split,

the string to split on, and an index of the desired substring.

This function returns the selected substring directly, as

opposed to Python pandas’ split() method. Both languages

require that a new column is created and the column is set

equal to the desired substring.

Merging columns This task can be performed similarly in Python pandas and

MySQL. In the case study, the merging of columns is done

only in the MySQL part. This was done by adding a new

column and updating this column with values from the old

columns based on a condition. This can be accomplished in

Python pandas as well, for instance by setting a new column

equal to the two old columns added together simply using

the ‘+’ operator. However, this requires the data types to be

the same. If they are not, the data type needs to be changed.

Rename column This task has only been performed using Python pandas but

is performed just as easily by using MySQL’s RENAME

function and providing the old and new name of the column.

Add column Both Python pandas and SQL provides simple functions to

accomplish this. The only difference is the expressiveness in

the declarative and procedural approach, as mentioned

previously.

Drop rows In Python pandas rows can be filtered out and the filtered

data is stored in a new dataframe. In SQL the DELETE and

WHERE clause can be used to delete the data where a

specific column is equal to a specific value. Other operators

112

such as greater than, less than and not equal to, can also be

used.

Changing letter case In Python pandas, changing the letter case requires adding a

new column, extracting the string from the old column and

applying the lower()method to the string, and saving this

new lower case string to the new column. In SQL, this is done

in a similar way by adding a new column, using the LOWER()

String function to change letter case of the old column and

add the lower case string to the new column.

Join/Union data Python pandas provides several methods for joining and

unioning data. In the case study, the concat() method is used

to union data. This method can be used to join data as well,

by changing the axis parameter. Only one code line is

required.

In MySQL, the same process has to be done in several steps

and lines of code. A new table has to be created, the data

can then be unioned or joined using the UNION or JOIN

clauses. Lastly, the joined/unioned data has to be inserted

into the new table. This approach is much more tedious than

Python pandas.

Most of the data preparation tasks in Table 5.2 are solved in similar and simple ways

for both DMLs. However, there are differences in the grouping, aggregation, unpivoting,

joining and unioning data. These tasks are easily performed in Python pandas using one

simple function and only requires one code line. MySQL, however, requires the manipulated

data to be inserted into a new table, and the query becomes quite long. This is a bit more

time-consuming and it also reduces the readability a bit. Readability and expressiveness are

what seems to be advantages of MySQL. However, Python pandas provides simpler solutions

for more of the data preparation tasks. Based on this, Python pandas is considered slightly

better than MySQL.

It’s worth mentioning that these tools are often used in combination, and the

decision should be made considering the system in which the data science project will be

conducted. However, this thesis gives an overview of the strengths and weaknesses of the

DMLs. Thus, using this work, a data scientist or data engineer can get an overview of which

steps in the data preparation process the DMLs are suited for.

113

5.2 Future work

In future work one might consider applications as well in a case study comparing

DMLs to applications. Some of the literature reviewed in the background chapter have

already compared different applications’ performance and features (Hameed & Naumann,

2020), (Petrova-Antonova & Tancheva, 2020). Evaluating the usability of applications

compared to DMLs could be interesting, as they seem very user-friendly and doesn’t require

users to be experienced programmers. The flexibility should also be considered, as the

applications might limit the functionality of the tools to a set of preparation tasks. Complex

data preparation tasks might be impossible to perform. This could reveal if the high usability

reduces the flexibility of the applications.

In the case study, only a few simple data preparation tasks are evaluated. Testing the

usability and flexibility further by reviewing some of the more complex data preparation

tasks could be considered in future work. This would provide some additional insights into

the performance of the tools in more advanced data preparations. One example is fuzzy

matching in SQL. In Python the library thefuzz was used to do fuzzy matching. Creating an

algorithm for calculating the Levenshtein distance (Wikipedia, 2022) using SQL could be

interesting.

114

6 References

Altair. (n.d.). Altair Monarch. Retrieved from https://web.altair.com/monarch-free-trial
aunalytics. (n.d.). Understanding Analytics Part 1: Top Internal Sources of Big Data. Retrieved from

https://www.aunalytics.com/understanding-analytics-part-1-top-internal-sources-of-big-
data/

Consulting, I. (n.d.). General Data Protection Regulation. Retrieved from https://gdpr-info.eu/
contributors, W. (2021). Data Validation. In: Wikipedia, The Free Encyclopedia.
Convertino, G., & Echenique, A. (2017). Self-service data preparation and analysis by business users:

New needs, skills, and tools. Paper presented at the Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems.

DataRobot. (n.d.). Data Preparation. Retrieved from
https://www.datarobot.com/platform/dataprep/?redirect_source=paxata.com

Facer, C. (n.d.). What is Data Filtering? Retrieved from https://www.displayr.com/what-is-data-
filtering/

Foundation, T. R. (n.d.). Documentation. Retrieved from https://www.r-project.org/other-docs.html
Green, A. (2021). Complete Guide to Privacy Laws in the US. Retrieved from

https://www.varonis.com/blog/us-privacy-laws
Hameed, M., & Naumann, F. (2020). Data preparation: A survey of commercial tools. ACM SIGMOD

Record, 49(3), 18-29.
Jupyter. (2022). Jupyter Notebook. Retrieved from https://jupyter.org/
Laird, J. (2021). The GDPR vs China's PIPL. Retrieved from

https://www.privacypolicies.com/blog/gdpr-vs-pipl/
Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group

research note, 6(70), 1.
MySQL. (2021). MySQL Workbench 8.0. Retrieved from

https://www.mysql.com/products/workbench/
MySQL. (n.d.-a). 12.8 String Functions and Operators. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
MySQL. (n.d.-b). 12.20.2 GROUP BY Modifiers. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/group-by-modifiers.html
MySQL. (n.d.-c). 13.1.9 ALTER TABLE Statement. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
MySQL. (n.d.-d). 13.2.2 DELETE Statement. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/delete.html
MySQL. (n.d.-e). 13.2.7 LOAD DATA Statement. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
MySQL. (n.d.-f). 13.2.10 SELECT Statement. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/select.html
MySQl. (n.d.-g). 13.2.10.3 UNION Clause. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/union.html
MySQL. (n.d.-h). 13.2.13 UPDATE Statement. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/update.html
MySQL. (n.d.-i). 13.6.5.1 CASE Statement. Retrieved from

https://dev.mysql.com/doc/refman/5.7/en/case.html
MySQL. (n.d.-j). Aggregate Function Descriptions. MySQL 8.0 Reference Manual. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html
OpenRefine. (n.d.). OpenRefine. Retrieved from https://github.com/OpenRefine/OpenRefine
Özsu, M. T. (2017). Data Manipulation Language (DML). In L. Liu & M. T. Özsu (Eds.), Encyclopedia of

Database Systems (pp. 1-2). New York, NY: Springer New York.

https://web.altair.com/monarch-free-trial
https://www.aunalytics.com/understanding-analytics-part-1-top-internal-sources-of-big-data/
https://www.aunalytics.com/understanding-analytics-part-1-top-internal-sources-of-big-data/
https://gdpr-info.eu/
https://www.datarobot.com/platform/dataprep/?redirect_source=paxata.com
https://www.displayr.com/what-is-data-filtering/
https://www.displayr.com/what-is-data-filtering/
https://www.r-project.org/other-docs.html
https://www.varonis.com/blog/us-privacy-laws
https://jupyter.org/
https://www.privacypolicies.com/blog/gdpr-vs-pipl/
https://www.mysql.com/products/workbench/
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/group-by-modifiers.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/case.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html
https://github.com/OpenRefine/OpenRefine

115

Pandas. (n.d.-a). pandas documentation. Retrieved from https://pandas.pydata.org/docs/
pandas. (n.d.-b). pandas.concat. Retrieved from https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.concat.html?highlight=concat#pandas.concat
pandas. (n.d.-c). pandas.DataFrame.agg. Retrieved from

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.agg.html?highlight=agg#p
andas.DataFrame.agg

pandas. (n.d.-d). pandas.DataFrame.any. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.any.html?highlight=any#pandas.DataFrame.an
y

pandas. (n.d.-e). pandas.DataFrame.copy. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.copy.html?highlight=copy#pandas.DataFrame.
copy

pandas. (n.d.-f). pandas.DataFrame.drop. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.drop.html?highlight=drop#pandas.DataFrame.
drop

pandas. (n.d.-g). pandas.DataFrame.groupby. Retrieved from
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html?highlight=g
roupby#pandas.DataFrame.groupby

pandas. (n.d.-h). pandas.DataFrame.head. Retrieved from
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.head.html?highlight=head
#pandas.DataFrame.head

pandas. (n.d.-i). pandas.DataFrame.iloc. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.iloc.html?highlight=iloc#pandas.DataFrame.ilo
c

pandas. (n.d.-j). pandas.DataFrame.info. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.info.html?highlight=info#pandas.DataFrame.in
fo

pandas. (n.d.-k). pandas.DataFrame.isnull. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.isnull.html?highlight=isnull#pandas.DataFram
e.isnull

pandas. (n.d.-l). pandas.DataFrame.melt. Retrieved from
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.melt.html?highlight=melt
#pandas.DataFrame.melt

pandas. (n.d.-m). pandas.DataFrame.rename. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.rename.html?highlight=rename#pandas.DataF
rame.rename

pandas. (n.d.-n). pandas.DataFrame.reset_index. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.reset_index.html?highlight=reset_index#pand
as.DataFrame.reset_index

pandas. (n.d.-o). pandas.DataFrame.shape. Retrieved from
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html?highlight=sha
pe#pandas.DataFrame.shape

pandas. (n.d.-p). pandas.DataFrame.tail. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.tail.html?highlight=tail#pandas.DataFrame.tail

pandas. (n.d.-q). pandas.DataFrame.tolist. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.tolist.html?highlight=tolist#pandas.Series.tolist

pandas. (n.d.-r). pandas.Index.map.
pandas. (n.d.-s). pandas.Index.notnull. Retrieved from https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.Index.notnull.html?highlight=notnull#pandas.Index.notnu
ll

https://pandas.pydata.org/docs/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html?highlight=concat#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html?highlight=concat#pandas.concat
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.agg.html?highlight=agg#pandas.DataFrame.agg
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.agg.html?highlight=agg#pandas.DataFrame.agg
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html?highlight=any#pandas.DataFrame.any
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html?highlight=any#pandas.DataFrame.any
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html?highlight=any#pandas.DataFrame.any
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html?highlight=copy#pandas.DataFrame.copy
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html?highlight=copy#pandas.DataFrame.copy
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html?highlight=copy#pandas.DataFrame.copy
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html?highlight=drop#pandas.DataFrame.drop
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html?highlight=drop#pandas.DataFrame.drop
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html?highlight=drop#pandas.DataFrame.drop
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html?highlight=groupby#pandas.DataFrame.groupby
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html?highlight=groupby#pandas.DataFrame.groupby
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.head.html?highlight=head#pandas.DataFrame.head
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.head.html?highlight=head#pandas.DataFrame.head
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html?highlight=iloc#pandas.DataFrame.iloc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html?highlight=iloc#pandas.DataFrame.iloc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html?highlight=iloc#pandas.DataFrame.iloc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html?highlight=info#pandas.DataFrame.info
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html?highlight=info#pandas.DataFrame.info
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html?highlight=info#pandas.DataFrame.info
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html?highlight=isnull#pandas.DataFrame.isnull
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html?highlight=isnull#pandas.DataFrame.isnull
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html?highlight=isnull#pandas.DataFrame.isnull
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.melt.html?highlight=melt#pandas.DataFrame.melt
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.melt.html?highlight=melt#pandas.DataFrame.melt
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html?highlight=rename#pandas.DataFrame.rename
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html?highlight=rename#pandas.DataFrame.rename
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html?highlight=rename#pandas.DataFrame.rename
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html?highlight=reset_index#pandas.DataFrame.reset_index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html?highlight=reset_index#pandas.DataFrame.reset_index
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html?highlight=reset_index#pandas.DataFrame.reset_index
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html?highlight=shape#pandas.DataFrame.shape
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html?highlight=shape#pandas.DataFrame.shape
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.tail.html?highlight=tail#pandas.DataFrame.tail
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.tail.html?highlight=tail#pandas.DataFrame.tail
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.tolist.html?highlight=tolist#pandas.Series.tolist
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.tolist.html?highlight=tolist#pandas.Series.tolist
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.notnull.html?highlight=notnull#pandas.Index.notnull
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.notnull.html?highlight=notnull#pandas.Index.notnull
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.notnull.html?highlight=notnull#pandas.Index.notnull

116

pandas. (n.d.-t). pandas.merge. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.merge.html?highlight=merge#pandas.merge

pandas. (n.d.-u). pandas.read_csv. Retrieved from
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

pandas. (n.d.-v). pandas.read_excel. Retrieved from
https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html

pandas. (n.d.-w). pandas.Series.round. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.round.html?highlight=round#pandas.Series.round

pandas. (n.d.-x). pandas.Series.str.split. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.str.split.html?highlight=str%20split#pandas.Series.s
tr.split

pandas. (n.d.-y). pandas.Series.unique. Retrieved from https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.unique.html?highlight=unique

Patil, M. M., & Hiremath, B. N. (2018). A systematic study of data wrangling. Int. J. Inf. Technol.
Comput. Sci.(IJITCS), 1, 32-39.

Petrova-Antonova, D., & Tancheva, R. (2020). Data Cleaning: A Case Study with OpenRefine and
Trifacta Wrangler. Paper presented at the International Conference on the Quality of
Information and Communications Technology.

pypi. (n.d.). pip 22.0.4. Retrieved from https://pypi.org/project/pip/
Python. (n.d.-a). array.remove(x). Retrieved from

https://docs.python.org/3/library/array.html?highlight=remove#array.array.remove
Python. (n.d.-b). classmethod fromkeys(iterable[,value]). Retrieved from

https://docs.python.org/3/library/stdtypes.html?highlight=fromkeys#dict.fromkeys
SAP. (n.d.). SAP HANA. Retrieved from https://www.sap.com/norway/products/hana.html
SAS. (n.d.). SAS Data Preparation. Retrieved from https://www.sas.com/en_us/software/data-

preparation.html
seatgeek. (n.d.). TheFuzz. Retrieved from https://github.com/seatgeek/thefuzz
Snowflake. (2022). What is a data pipeline? Retrieved from

https://www.snowflake.com/guides/data-pipeline
Stackoverflow. (2019). MySQL workbench table data import wizard extremely slow. Retrieved from

https://stackoverflow.com/questions/33296569/mysql-workbench-table-data-import-
wizard-extremely-slow

Tableau. (n.d.). Tableau Prep. Retrieved from https://www.tableau.com/products/prep
Tabula. (n.d.). Retrieved from https://tabula.technology/
Talend. (n.d.). Talend. Retrieved from https://www.talend.com/
thdoan. (n.d.). Mr Data Converter. Retrieved from https://github.com/thdoan/mr-data-converter
TIBCO. (n.d.). What is Data Discovery? Retrieved from https://www.tibco.com/reference-

center/what-is-data-discovery
Trifacta. (n.d.-a). Data Enrichment. Retrieved from https://www.trifacta.com/7-ways-data-

enrichment-boosts-your-business/
Trifacta. (n.d.-b). Trifacta. Retrieved from https://www.trifacta.com/
W3Schools. (n.d.). SQL Tutorial. Retrieved from https://www.w3schools.com/sql/
White, N. (2020). Data Transformation Tools: Application or Code? Retrieved from

https://www.linkedin.com/pulse/data-transformation-tools-application-code-nick-white/
Wickham, H. (2014). Tidy data. The American Statistician, 14. doi:10.18637/jss.v059.i10
Wikipedia. (2022). Retrieved from

https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1082661551
Zach. (2021). Long vs. Wide Data: What's the Difference. Retrieved from

https://www.statology.org/long-vs-wide-data/

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html?highlight=merge#pandas.merge
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html?highlight=merge#pandas.merge
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.round.html?highlight=round#pandas.Series.round
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.round.html?highlight=round#pandas.Series.round
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.split.html?highlight=str%20split#pandas.Series.str.split
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.split.html?highlight=str%20split#pandas.Series.str.split
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.split.html?highlight=str%20split#pandas.Series.str.split
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.unique.html?highlight=unique
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.unique.html?highlight=unique
https://pypi.org/project/pip/
https://docs.python.org/3/library/array.html?highlight=remove#array.array.remove
https://docs.python.org/3/library/stdtypes.html?highlight=fromkeys#dict.fromkeys
https://www.sap.com/norway/products/hana.html
https://www.sas.com/en_us/software/data-preparation.html
https://www.sas.com/en_us/software/data-preparation.html
https://github.com/seatgeek/thefuzz
https://www.snowflake.com/guides/data-pipeline
https://stackoverflow.com/questions/33296569/mysql-workbench-table-data-import-wizard-extremely-slow
https://stackoverflow.com/questions/33296569/mysql-workbench-table-data-import-wizard-extremely-slow
https://www.tableau.com/products/prep
https://tabula.technology/
https://www.talend.com/
https://github.com/thdoan/mr-data-converter
https://www.tibco.com/reference-center/what-is-data-discovery
https://www.tibco.com/reference-center/what-is-data-discovery
https://www.trifacta.com/7-ways-data-enrichment-boosts-your-business/
https://www.trifacta.com/7-ways-data-enrichment-boosts-your-business/
https://www.trifacta.com/
https://www.w3schools.com/sql/
https://www.linkedin.com/pulse/data-transformation-tools-application-code-nick-white/
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1082661551
https://www.statology.org/long-vs-wide-data/

117

List of Appendices

The appendices are included in the .zip folder submitted with the thesis. Appendix A

is the Jupyter Notebook with all the Python pandas code from the case study. Appendix B is

all the MySQL-queries used in the case study. The appendices with the file names are listed

below:

• Appendix A Case_study_of_Python_pandas.ipynb

• Appendix B mysql_review.sql

