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Abstrad

Today, organizations are collecting and storing huge amounts of data that could
potentially be verywaluable. Finding trends and patterns in historic data can allow
businesses to make more informed decision. Data scientists are therefore working to extract
meaning from the massive amount of data. However, 80% of the time in data science
projects is spenpreparing the data for analysis. Selecting an efficient tool for the job can
contribute to reducing the time spent on data transformation. Thus, this thesis will provide

some insights into existing tools and their performance.

A selection of common tools made in Chapte3. The tools are reviewed with
regards to a framework to identify the support of common data preparation tasks and an
evaluation of the tools argiven at the end of the chapter. In Chaptgrone declarative and
one procedural Data Manipulation Language (DML) are selected from the common data
transformation tools. Python pandas, a procedural language, and SQL, a declarative
language, are evaluated and compared in a case study. The case study delves deeper into
the tools through a use case and the comparative analysis at the end will provide som
insights into the differences in the two DMLs. Thus, the first contribution of this thesis is a
review of the support of common data preparation tasks provided by a selection of some
prevalent data transformation tools. The second contribution is anysmabf the
differences in a declarative vs procedural approach to data manipulation through a case

study comparing two popular DMLSs.

The findings of the review of tools in ChapB&irevealed that the most prevalent
data transformation tools support the majority of the common data preparation tasks. This
review gives some general insight into which tasks are supported, which tasks needs more
effort to perform, and vinich are not supported at all. The review is exclusively based on
information found in technical documentation of the tools, and no further experimentation
is done to investigate the support. The case study in Chajtevealed that the procedural
DML, Python pandas, is better suited for data manipulation as it is lesscom&uming and
provides higher flexibility and usability. Python pandas is also considefte/®high

readability and expressiveness, although SQL seems to beat pandas in these areas.
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1 Introduction

Today organizations are collecting and storing huge amounts of data. In the field of
Data Science, scientists are attempting to extract insight from the massive volume of data in
order to make more informetlusinessiecisionsThe large volume of data iften referred
G2 Fta . A3 5F4Fe® . A3 5FGF g1 a OKI(Ndne,P®ONRT SR
Volume as the volume of data is large in many environmevitgiety, as the data comes in a
wide variety of types. Anifelocity as the data often is coltéed at a high rate. Big Data has
sinced0 SSy OKI NI O SNRA T Sveracityand WaRkidW@racityfeieis to hdzOK | &

accuracy and truthfulness of the dadMaluerefers to the value that this data can provide.

The large amount of data allows for orgzations to extract insight into historical
trends in the data, which can put them in a better position to make decisions. It can also be
fed to machine learning algorithms in order for the algorithms to learn trends and predict
the future. However, theaw data that is collected cannot be used for data analytics. The
data comes in different formats and can be structured, ssmictured or unstructured.
Because it comes in so many different formats and structures, it is very difficult to make
sense of theaw data. Therefore, there is a need for data engineering processes to be

applied in advance.

The raw data must go through a process in order to be prepared for data analysis.
This process might consist of several steps, and they are often implemeraethiia
pipeline. In the pipeline, each step takes data as an input and produces data as an output,
which in turn is inputted to the next step. This continues until the data arrives at the desired
format and structure. Data pipelines must be designed sjedi§ for the particular case,
but some common steps used in data pipelines are data transformation, augmentation,

enrichment, filtering, grouping, and aggregati@nowflake, 2022)

A crucial phase in data analytic projects is the data transformation phase. This is
where the messy raw data is transformed into clean data that we are able to perform
analytcs on. As this is a very tirRoensuming and often tedious task, a lot of researchers are
focusing on the challenges connected to optimizing the efficiency of this process. The

efficiency of the process is obviously connected to the efficiency of the tsels in the

9
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process. Thus, data transformation tools will be investigated in this tHessalent data
transformation tools will be reviewetb provide some insights into what functionalities they
support. In a case studyedlarative and procedural DaManipulation Languages (DML) will
be comparedThe aim is to provide an overviewmbpulardata transformation tools and
DMLsand analyze their efficiency¥he results of this thesis can be used by data scientists
and data engineers to get insights inkthat tools are available and when to choose them

over other tools.

1.1 ProblemDescription

The aimin this thesigs to compare some of the mopbpular data transformation
tools, their strengths and weaknesses. Sopnevalent data transformation toolwill be
reviewed usingtheir technical documentationto find out if the tools support common data
preparation tasksThe results wilgive data scientists and engineers an overview of which

tools providethe support neeled for their projects.

In a case study, two tools will be selectad compared through a data
transformation use case. Omkeclarative anane procedural toolwill be compared,and the

results will provide insight into what the differences of the twgepaches are.

Finding a tool that makes the transformation task simple and effective is essential for
companies and organizations in order to gain valuable insight from their data witheut
process becoming toresourcedemandingand timeconsumingStructured Query Language
(SQLYW3Schools, n.dand Python Panda®andas, n.da)will be used to perform a data
transformation task and they will be compared usaffamework for comparisanThis will
give insight into the functionalitthey provide, and the ease of use of each of the Data
Manipulation Languageand will put data scientistat a better position to choose a tool that

fits their need.

1.2 Research Questions

The main research queshsthat will be answered in this thesse:

1 What is the support for common data preparation tasks provided by some of the
most prevalent data transformation todts

10



1 How does declarative vs. procedural Data Manipulation Langudiffesin terms of

time-consumption, flexibility, expressiveness, usability, and readability?
1.3 Research Design

In order to answer the research questions defined in Sedi@na conceptual
framework is defined for the comparison ddita transformation toolsThe framework used
in thisthesis is developed partly from the framework usedhtameed & Naumann, 202®)
compare commercial tools for data prepakati Some additional data preparation tasks will
be added,and some less relevant ones will be removEde framework will be used to
review some of the most prevaledata transformation tools, including DMLs and
applications. This review will lmsed eglusively on reviewing the technical documentation
of these tools. Later, a case study will be conducted to further investayatdection of
tools. The research questions will lrevestigated by defining a use case amhsidering
some dimensionto compare onaleclarativeand oneprocedural Data Manipulation
Language, namely SQL and Python Parfas is doné order to analyze their
functionalitiesand demonstrate the most important differences, limitations and advantages
in different contexts SQL and Python are two of the most frequently used Data
Manipulation Languages and are therefore highly relevant to consider in such an analysis

(Convertino & Echenique, 2017)
1.3.1Framework

The coe preparation tasksvere initially defined ifHameed & Naumann, 202@®)r
evaluating commercial data preparation too®me of the initial tasks from the paper has
been removed andome new ones has been addddesetaskswill be used in the
evaluation ofdata transformation toolsand the comparison afeclarativeand procedural
DMLs in this thesisThe data preparation tasks and their corresponding step in the process

are listed inTablel.1.

Tablel.1 Examples of data preparation tasksthe data transformation process

Stepin the process Preparationtasks

Data discovery Find null values

11



Find outliers

Search by pattern

Sort data

Data validation

Compare values (selection and
join)

Check data range

Check permitted characters

Check column uniqueness

Findtype-mismatched data

Find typemismatched datatypes

Data structuring

Change column data type

Delete column

Detect & change encoding

Pivot / unpivot

Rename column

Split column

Transform by example

Data enrichment

Assign semantic datgpe

Calculate column using
expressions

Discover & merge external date

Duplicate column

Generate primary key column

Join & Union

Merge columns

Normalize numeric values

Data filtering

Delete / Keep filtered rows

Delete empty andnvalid rows

Extract value parts

Filter with regular expressions

Data cleaning

Change date & time format

Change letter case

Change number format

Deduplicate data

Delete by pattern

Edit & replace cell data

Fill empty cells

Removeextra whitespace

Remove diacritics

12



Standardize strings by pattern
Standardize values in clusters

1.3.2Use Case

To evaluate SQL vs Python Pandas, datasets regarding food production will be used.
These datasets come in a couple of formats, namely CSV and XLSX. The datasets describe
agricultural enterprises, agricultural properties, deliveries for slaughterhousassiaegg
packaging businesses, grain buyers, and seed businesses, and the energy and nutrients
contained in the most frequently eaten foods in Norway. In order to evaluate the two DMLs,
aquestion will be defined and attempted answered by performing teeassary steps in the
transformation process to get the data in a format where meaning can be extracted from it.
Performing these transformation steps will give insights into whether or not SQL and Python
Pandas provides the necessary functionalities fier process, and also how easy the process

isusing the two DMLs.

1.4 Thesis Structure

The thesistructure is presented below.

1 Chapter2 Background and Related Wark he background theory will be presented
and some related work is summzaed in order tgprovide an understanding of why
this thesis work is necessary.

1 Chapter3 Review of Data Transformation TaoBome prevalent data transformation
tools will bereviewed in order to provide insight into which tools offer which
functionalities.

1 Chapterd Case Study: Comparing Declarative vs. Procedural Data Transformation
Tools Comparing SQL and Python Pandasieclarative DML will bempared to a
procedural DML in order tprovide some insight into the advantages and
disadvantages posed when working with the two approaches.

1 Chapters ConclusionThe results of the thesis work will be discusaaed concluded

and some suggestions forttue work in this field will be given.
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2 Background and Related Wark

In this chapter theheoretical backgrouneheeded to understand the issue of
efficiency in the data transformation phase will be presented. The first section will discuss
the data, how itactually looks initially when it is being collectaadthe challenges posed
when working with this raw data. In the next section the solution to the challenges will be
presented, namely data transformatioRere, tie data transformation stepom Tablel.1
will be explained. Lastlgometools typically used in data transformation will be presented

and reviewedand some of their characteristics will be highlighted

2.1 The Raw Data

Duringdata extractionraw datais typicallyretrieved from severaldifferent sources.
Companies and organizations can use both internal and external sources to extract data
from. Some examples of internal sources are transactional datzh)y as purchases made by
the company or organization, or purchases made by customers. Customer Relationship
Management systems (CRMs) can also add insights into geographical details of the
customers, and this data can be combined with the purchase histioaycustomer, for
instance. Companies and organizations often have internal documents containing
information about things like business activities, policies and proce&aasalytics, n.d.)

With the increase of Internet of Things (loT) solutions, companies and oatjang can also
collect data from sensors and devices. Examples of external sources are social media, official

records and publicly available data on the web.

Gathering data from all these different sources givedatsaises that are often
inconsistent.Same records can bemcomplete containing null values or missing values.
Sometimes records are duplicated in the datagstasets can also contain comments that
are meant for humans to read in order itaterpret the datatable. These are often irrelevant
for computers ancdcan even cause problems in an analyBisis, in order for data scientists
to be able to perform data analysis, the messy data has tcdened. This entaifer
instanceremoving missing values, fixing data type mismatches, deduplicd#itegThe
structure of the data should also be tidy.(Wickham, 2014)the author presents three

characteristics of tidy data. These are:
14



1. Each variable is a column
2. Each observation is a row
3. Each type obbservational unit is a table

The author states that this standard structure of data facilitates adaalysisand
the three characteristis will therefore be usetb defineclean data throughout this thesis.
The process of transforming data from the iaitformat and structure to a structure where
we are able to apply data analysis, is called data transformation. This process will be

explained in the next section.

2.2 Data Transformation

Data transformation is any process that takes data as an input andupesddata as
an output. Since the data can come from different sources it can have all kinds of different
formats, structures, and values. Data transformation enables us to get the data in a format
and structure that is understandable both for humans anchputers, and especially for
systems and applications that requires a certain format or structure. It also enables us to
check for, and improve, data quality, which prevents problems later, for instance when
analysis is applied. Things like duplicate datmormalities and missing values can be taken
care of through data transformation. The data transformation process typically includes
some common steps such data discovery, data validation, data structuring, data
enrichmentanddata filtering(Hameed & Naumann, 2020)hese steps can be perfoed in
various orders and some steps grerformed several timedzigure2.1 illustrates the steps
of data transformation that will be considered in this theJike stepswvill be described in a

bit more detailbelow.

Data Data Data Data Data Data
Discovery Validation structuring Enrichment Filtering Cleaning

15



Figure2.1 The steps of Data Transformation

Data discoverys the first step of the procesés the raw data is often messy and
inconsistent, thefirst step is to look at the data and try to identify the format and structure
that the source data had'IBCO, n.d.)n order to be able to change the data to meet the
requirements of the target system, it is necessto understand where the data is at the

moment. This step is typically done using tools for data profiling.

Data validationentailschecking for data quality. This can inclutle correctness and
completenes®f the datg for instancgHameed & Naumann, 2020Jhe goal is to ensure
theRI G Qa 02y aAaTyeyddlidatighRaldjfalzindtakcédbé allowed
character checks, data type checks, format chegiduniqueness checksontributors,

2021) This is a step that might be conductselveral times throughout the process.

Data structuringentailstasksthat change the structure of the data. In soroases,
we want data to be in a long formathere data values repeat the columns. In other
caseswe want a wide format, where values dot repeat in the columngZach, 2021)
These formats ardlustrated inFigure2.2. The structuring of data can include taskgh as
pivoting,changing data types, deleting and renaming columtes(Hameed & Naumann,
2020) This is done in order to reach a structwvbere the data is better understood lwata

analysis tools

Wide Format Long Format
| Team Points | Assists |Rebounds Team | Variable | Value |
A | 88 | 12 | 22 A Points | 88
B 91 | 17 | 28 A | Assists | 12
C 99 | 24 | 30 A | Rebounds | 22
D 94 28 31 B Points 91
B | Assists | 17
B | Rebounds | 28
C Points 99
C | Assists | 24
C | Rebounds | 30
D | Points | 94
D | Assists | 28
D Rebounds 31

16



Figure2.2 lllustration of long and wide data formatZach, 2021)

Data enrichmentmeans adding value or spjfgmentary information to existing data
from separate sourcesnd it typically meangugmenting existing data with new or derived
data values using data lookups, primary key generation, and inserting metgdateeed &
Naumann, 2020)Enrichmentcan be achievetly combining first party data from internal
sources with either disparate data from other internal systems, or third party data from

external source¢Trifacta, n.d-a).

Data filteringis used tocreate a subset of datmom a dataset andan for instance
be used tdook at data for a particular period of timg exclude erroneous observations
from an analysigFaer, n.d.) It helps improve data qualityy using predefined criteria, such
as removing records that contain empty valweghat do not conform to some usetefined

pattern (Hameed & Naumann, 2020)

Data cleaningsa process that is done in order teachdata quality. This is typically
done several times throughout the data transformation. Data cleaning may include tasks
such asleduplication of datagediting and replacing cell data and removing whitespace
(Hameed & Naumann, 2020)he goal is t@nsureany corrupt or erroneougecords are

corrected or removed entirely from the data, and thuaprovingdata quality.

2.3 Data Transformation Tools

In this sectiortools used in the proces of data transformation will be discussed.
First, the two different approaches to data transformation tools will be presented, namely
applications and code. Thea review of data manipulation languages and data

transformation applications will be prestd in Sectior2.3.2

Data transformatioristypically done through the use of either applicationscode.
What to choose depends on thior knowledge and the gien context and loth ways have
advantages and disadvantag&ata Manipulation Languages (DML) such as Python Pandas,
SQL, and Ryeused to perform the data transformation through writing the code yourself.
Applications lets you do transformations using a graphical user interface to make the job

faster.However, there are some pros and cons of the two approachek.\Mkite highlights
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some ofthe pros and cons of applicatioirsan article on LinkedlfWhite, 2020andthese

are listed inTable2.1.

Table2.1 Pros and Cons of Applications vs. code for data transform@titmite, 2020)

Pros Cons

Quicker to learn, programming languages Cost money (often significant amounts)
has a steep learning curve

Easier to understand (not aglvanced as  Executes slower than code

code)

Have the potential to be easily integrated Do not integrate easily (or at all) into CI/C
into a wider data governance e@ystem workflow

2.3.1Declarative vs. Procedural

Data Manipulation Languages (DML) can belatative or procedural. Declarative
languagesire highlevel languagesyhile a procedural languagds a lowlevel language
embedded in a generglurpose programming languageclarative DMLspecify properties
of the data that is to be retrieved from ¢hdatabasewhile procedural languages specify
how to access the dat@zsu, 2017)Examples of popular declarative and procedural DMLs

are SQL anBythonPandadibrary, respectively.
2.3.2Review of Data Transformation Tools

In this section, somdata maniplation languages and some data transformation
FLILX AOFGA2ya oAttt 0S NBOA Sigighed. ¢t KS (122t 4aQ OK

Data ManipulationLanguags

Table2.2 shows the characteristics of Data Manipulation LangugB®4L) R is not in
itself a DML_however, it has additional packages that adds capabilidiedata
manipulation. As can be seenTiable2.2, the packagedplyrandtidyr provides functionality

to support data profiling, data restructuring andtdantegration.

Table2.2 Characteristics of Data Manipulation Languages

Language Characteristics
R(Foundation, Data analysis and statistical language
n.d.) Provides several Data Wrangling packages

18



Packageswueh as dplyr and tidyr include functionality to
support data profiling, data restructuring and data
integration

Packages such as ggplot2 provide powerful data
visualization functions

Many operations thagllow for populating new columns
and operations to ambine datasets

Lacks native support for Date/Time manipulation
operations

Main limitation is the steep learning curves for rRon
professionals and the lack of Data Wrangling functions
provided in native R, finding the required functions acros
several packaes can be tim&onsuming

Python
(Pandas)
(Pandas, n.da)

Python is a production ready language used in a wide re
of industries, research and engineering workflows
Supports extraction of data from many sources, such a
plain text files and CSV files, or the web

Provides functionality to also do analysis, such as
regression tests, time series manipulation, and statistica
analysis

Also offers machine learning frameworks tieveloping
ML algorithms to apply on the transformed data, and is
particularly well suited for deploying machine learning at
large scale

Iterative, readable, portable, broadly applicable approac
to data manipulation, fast

Easy to join data from sewarsources

In-memory processing (can be disadvantageous with lar
datasets)

Supported by a large community, continuously extendec
libraries and tools

Can be used with notebooks to collaborate

SQL
(W3Schools,
n.d.)

Supports extraction of data from databases

Simple functions, but also a narrow range of functions
compared to Python

Limited functions for processing, analyzing or
experimenting with data

Can run some data processes, but may be inefficient or
complicated because the ability to perform calculations
efficiently is not part of the languages design
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Specifically designed to query and extract data, and one
its mainstrengths is merging data from multiple tables
within a database

Higherlevel data manipulation, such as statistical analys
regression tests, and timseries data manipulation are
very difficult to achieve using SQL exclusively

Data TransformationAppications

Table2.3 shows the characteristics of Data Transformation Applications.

Table2.3 Characteristics of Data Transformation Applications

Tool

Characteristics

Altair Monarch
Data Preparation

Provides common data preparators for structured data, but also
transforms tables from within PDF and text fitegabular data

(Altair, n.d.) Extracted tables can be merged with other tables using a variety ¢
join and union operations
Paxata Sel Provides features for organizing and preparing structured data

Service Data
Preparation
(DataRobot, n.d.)

Deals efficiently with semstructured data
User experience is designed to fit rerperts

SAP Agile Data
Preparation

wdzya 2y (2L 2F {!t QAP nbp! RI{
Provides common data preparators with some specific system
features suchas Schedule Snapshot, interactive suggestions to he
users navigate and prepare data efficiently and mudter access that
enables collaboration

SAS Data
Preparation(SAS,
n.d.)

Part of SAS Viya System Management, which runs its operations
distributed irmemory processing

Has common data preparation features, but also offers ebdsed
transformations for uses to write and share custom code to
transform data, supporting resability of preparation pipeline

Tableau Prep
(Tableau, n.d.)

Implements a workflow approach to organize and prepare messy
Users can perform multiple operations simultaneously

Tableau Prep Builder is designed to develop workflows, manage ¢
and apply operations on data

Tableau Prep Conductordesigned to share, schedule, and monito
the flows

Tabula(Tabula,
n.d.)

Web-based Data Wrangling tool developed with focus on data forr
transformation
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Generates Excel, CSV or JSON data file format via extracting dat:
tables upoaded in PDF data file formats

Mr Data
Converter
(thdoan, nd.)

Similar to Tabula in terms of data format transformations

Does not support extraction from PDF files

Supports uploading files in either TSV or CSV

Generates output files in a number of formats, such as Actionscrif
ASP/VB Script, MySQL, RUByML, XML, or JSON

Trifacta(Trifacta,
n.d.-b)

Supports a comprehensive set of data profiling and data re
structuring functionality

Does notsupport extraction of data from PDF files

Can convert files from CSV or TSV to JSON

Allows for integration with a wide range of data science and data
ingestion technologies

OpenRefine
(OpenRefine,
n.d.)

Supports data profiling, data cleaning and data restructuring
Offers operations for dataleaning and string manipulations, but
lacks advanced statistical and restructuring operations

Supports moving and dropping columns, date/time operations anc
array operations

Limited support for extracting data from PDF files

Supports converting data fornmfrom JSON or TSV to CSV

Its big data capabilities have shown limitations to scale Gigabyte
order of magnitude

Talend Data
Preparation
(Talend, n.d.)

Designed for importing, structuring and transforming data
Web-based visual interface that enables users to develop data
preparation workflows

Offers common data cleaning and restructuring functionality, such
column manipulation operators, like renameeate or drop, and fill
in missing data

Provides functionality for string manipulation

Supports few operations for Date/Time manipulation compared to
Trifacta and OpenRefine

2.4 RelatedWorks

To address the issue of efficiency in the data transformation phase, several

researchers have taken a similar appro&ziprovide insights into the functionality of

different data transformatiortools. In (PetrovaAntonova & Tancheva, 202@he authors

presented a comparative analysiwidely used tools for data cleaninfhey alsgerform a
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case study where they compare OpenRefine and Trifacta Wrangler in ordddtess the
issueghey face using these toolBoth toolsprovide similarfunctionalities. Howeverthe
results of applying the functioren the same dataseR 2 Yy Qi Yy S 18D BetivkeNIhd &
tools. In Table2.4 the results of applying the different techniques using the two tools are
shown.As seen in the table, OpenRefine for instane@oved3 duplicated rows, which is
100% of theexisting duplicated rows. Trifacta only removed 2 out of 3 existing duplicated
rows. OpenRefine also performs better clustering of text facets. Except for these two

techniques, the toolperformthe same.

Table2.4 Results of the comparison of OpenRefine and Trif@a&rovaAntonova & Tancheva, 2020)

Technique Results (Number) OpenRefine  Trifacta
Duplicate rows Existing duplicate rows 3 3
removal

Removed duplicate rows 3 (100%) 2 (66.66%)
Cleaning of structural Fields with removed 413 413
errors whitespace

Fields with incorrect format 6 6

Fields with corrected format 6 (100%) 6 (100%)

Clustering of text Unified fields 413 98
facets
Ouitliers Existing outliers 1 1
Removed outliers 1 (100%) 1 (100%)
Missing values Existing missing values 14123 14123
Identified missing values 14123 (100%) 14123 (100%)

The authorslsohighlight some advantages and disadvantages of the two tools.

These aresshown h Table2.5.
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Table2.5 Advantages and Disadvantages of OpenRefine and TrifBetaoa-Antonova & Tancheva, 2020)

Advantages Disadvantages

(1) Easy modification of a singlefiel 6 M0 52 Say Qi & dzLJLJ2 NJ
(2) The field is not necessary to sati: datasets

agiven criterion to be changed

auljeyuado

(3) Multiple records processing
(4) Statistics on the number of
records processed with a given

operation

(1) Record the applied data (1) Single field cannot be modified
LINE OS&aaAay3d &iaSLla (2) Allows only modification of multiple

eoejl|

procedure fields that meet a given criterion

(2) Nonblocking processing of large (3) Missing information for the number of
datasets records processed with a giveperation
(3) Supports easier to ugenctions

(4) Different method for filling the

missing values

In (Patil & Hiremath, 2018}he authorsargue that in order for datareparationtools
to be efficient, seltservice solutionsising machine learning approache® required.n this
paper,the Trifact (22t Qa ¥ dags@dtiraughla takaiwfasgiing tadeRtutdy
demonstrate the efficiencyThecase study shows that Trifacta allows for human machine
interactive transformation of real world data, and thaenables business analysts to
iteratively explore predictive transformation scripts with the help of highly trained learning
algorithms(Patil & Hiremath, 2018)

A survey of commercial tools for data preparation is presentgtHameed &
Naumann, 2020)The authorscollected 42 commercial tooknd listed their data
preparation capabilities. Later they picked out seven tools which iimesstigated furtherA
preparator matrix showd eachpreparatoi@ availablity for each tool Theyselectedthree

examples of preparator® demonstrate their function. Then they gave examples of how
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one tool solved each of the preparatordirdugh the investigation of the tools, treuthors
found that all the tools neeeld the data that was being inputted to be clebeforehand.

They list a few assumptions that most tools mékameed & Naumann, 2020)

Single table file (no muiltable files)
Specific file encoding

No preambles, comment footnotes, etc.
No intermediate headers

Specific lineending symbol
Homogenous delimiters

Homogemus escape symbols

Same number of fields per row

= =2 =2 = A A A A

Relational data (no nested or gragtructured data, such as XML, JSON, or RDF)

The authors ofHameed & Naumann, 2028)so emphasizes the need for automated
and intelligent solution$or the data preparation tasks. Tlhealso found thatT- and domain
knowledgeis needed due to the shortcomingstbie tools.Although the papefocused on
preparing structured data, the authors also highlight thek ofbasic preparation steps for

unstructured data, such as textual data.

The comparative analysis (PetrovaAntonova & Tancheva, 2020hly focuses on a
few activitiesof the data cleaning process. In addition, it only consid@csapplications for
data transformation namely OpenRefine and Trifacta Wranglére case study ifPatil &
Hiremath, 2018pnly considers Trifacta and is focused on tieed for selservice in data
wrangling toolsThe survey ifHameed & Naumann, 202@)focused on commercial tools
and thelack of automation and intelligent solutionBhe reviews of data transformation
tools only consider a few tools ardfew common data preparation tasks. In this thesis,
more tools and preparation tasks will be consid&re order to provide darger overview of
prevalent tools and their support of data preparation tagisne of thecase studies are
comparing declarative and proceduddta manipulation languagesther. This area of
research does not seem to have beetpred Thus, tlese two things argvhat will be

investigated in this thesis.
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2.5 Ethicalconsiderations

When dealing with data, and particularly persdgadlentifiable information (PII),
there are some guides on measures in information security. For instdre CIA triad. CIA is
an abbreviation of Confidentiality, Integrity, and Availabilityinfiormation technology the
three things that typically are attacked by hackers e confidentiality of information, the
integrity of information, and also thevailability of informationln the data transformation
phase all three of these aspects should be considered. Making sure the data is not altered in
a way that makes it loose integrity is one measure to ensure the process is conducted
ethically.Another thing to consider is whether the temporary storage of Pll, from source to
target, is safe from attacks. This involves confidentiality particularly, as the data probably still

is available in the source.

The focus on the rights of individuals andl@ations of organizations has increased
over the yearsandlaws that regulates both the gathering and storage ohB# been
developed The General Data Protection Regulation (GDRRich applies to countries
within the European Union (EWas a goabf protecting personal dataand give users
control over their datgConsulting, n.d.)China has adopted lotof D5t wQ& LINR Yy OA LJX S
their Peopl® & wSLIJzof AO 2F [/ KAYlF otw/ 0 t JHE2YIf LYT
2021) In the U.S several laws have been implemented, but none of theriker&DPR and
PIPLTo mention a couple of them, théyvaveTheHealthcare Inswance Portability and
Accounting Act (HIPPA) that governs health informatiotecibnand The Childre@ & hy f Ay S
Privacy Protection Act (COPPA) that governs collection of minors information and prohibits
online companies from collectimgersonal information from children under the age of 12

unless parents have given verifiable cons@reen, 2021)

Another thing to consider is thethics around what the transformed data is used for.
Whether the data is to be used im &thical manner or not. For instance, many tech giants
are gathering information about how their consumers are behaving on theircgtjns.
Often their activities are sold to companies tis@nds targeted commercials to the
consumer.Consumers are often not aware of the effect thhistdata gatheringpason
them. This consideration is not specifically important in the data transféiongohase, but it
is still something to consider.
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3 Review of Data Transformation Tools

In this chapter, some popular data transformation tools and languagjébe
reviewed The review will provide some insights into wifedtureseach of the toolgprovide
andwhat they are lackingl'he results of the reviewill give some general guidant& data
engineers and data scientists that are looking for a tool for the data transformation process.
In Table3.1 an overview of the available data preparation tasks in each of the selected tools
is shownln the table, theRA F FSNB Yy & RI G LINB Lihdichtddd @NEGC G I a1 & Q
GF ¢ =0 ®NA X eRthe@ata preparation task can performed using apecific
methodor componentblock® inglicatesthe data preparation taskan be performed, but
it requires some extraffort to create a script or workflow that performs the tasks, and
there is nosingle method or componeftilock that solves the taskkd A Y RA OF Sa G K[
data preparation task is not availablEhis review is basegkclusively on reading the
technical documentation and without any exploration of the toloéyondthis. The
availability of preparation tasks for the tools will be provided in a table andrésilts for
eachtool will be discussed in Secti®8.1.1to 3.1.9 Lastly, the results of the review will be

presented in SectioB.2
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Table3.1 Overview of the support of common data preparation taSkee data preparation tasks supportedégch of the
data transformation languages and todse showd V& YSFya GKFG GKS REGE LINBLI NI GA2Y
methodfunction2 NJ 02 YLy Sy G 2F (GKS t1y3dz 3Skiz22td aré¢ YSlIya GKS RI
additional libraries or some kind of workaroyndeaning there is no specific method or component that solves the task
Ff2ywSarSd ya GKS REGE LINBLI NI GA2y GFal Aa yz2a

T w =T X — — —
s O Q Z =. 'g o Q
> — =3 = Q @ o) =3
o ol < o S S @
= = m § ™ 2 9
- = ('_Dh [
) a = o
> @ 2 3
o 8
(n
Data profiling | N N N N N N N N N

Z
Z
z
z
Z
z

Find missing or null value| N N N

Find outliers| * N N N N N N N N

Sort data| N N * N N N N - N
Filter data| N N * N N N N N N
Check permitted character{ * * * - N [N [N [N |-

Z
pd
pd
pzd
pd
pd

Check column uniquenes

Z
z
z

Z

Z
z
z

Z

Z

Change column data typ¢

Z
pd
pd
2
2
pd
pd
pd
pd

Delete column

Pivot / Unpivot | N | * | ” N N [N N |- N
Rename column N [N |7 N [N [N [N N |N
Split column| N | * * N [N N [N [N |N

N N |* N [N I[N IN [N |N

Grouping data

Z
pd
*
pzd
pzd
pd
pzd
pzd

Aggregating data

Fuzzy matching " * * N [N N [N [N |N

Z
pd
pd
pzd
pzd
pd
pd
pzd
pzd

Duplicate column

Z
pd
*
pzd
pzd
pd
pd
pzd
pzd

Join and Union

Z
z
z

Z

Z
z
z

Z

Z

Merge columns

Z
pd
*
pzd
pzd
pd
pd
pzd
pzd

Delete / Keep filtered rows
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Z
Z
Z
zZ
zZ
Z
Z
z
z

Delete empty or invalid rows

Z
Z
Z

Z

Z
Z
Z

Zz

Change date and timéormat

Z
Z
*
Z
Z
Z
Z
Zz
Zz

Change letter casg

7
Z
*
zZ
zZ
Z
Z
z

Deduplicate data

Z
Z
Z

Z

Z
Z
Z

Zz

Zz

Edit and replace cell dat:

Z

*

*

Z
1

=z

Z

Remove diacriticg

Z
Z
Z
zZ
zZ
Z

*
z
z

Remove whitespace

3.1 Functionalities of thalifferent tools

3.1.1Python pandas

The Python pandas library offerost of the data preparation tasks in simple
methods. However, some of the data preparation tasksstbe solved bygreating custom
scripts.This makes the job a little motane-consuming and requires a bit more
programmingexperiencethan what usingsimple methodsgprovided inthe librarywould.
Althoughsome of the tasksequiresa bit of programming experience, Python is not a very
challenging programminignguage to learnAs previously mentioned ifiable2.2 of Section
2.3.2 Python provides funa@bnalities for data analysis as well as data manipulatioalso
offers machine learning frameworks and is particulargll suited for deploying machine
learning algorithms at scale. Considering these factors, Pydhdrthe pandas library are
strong tolswhenworking withdata scienceThewide range of possibilities these teol

provide makes it aeffective andapplicable option for the entire data scienpeoject.
3.1.2SQL

SQLsolves most tasks usimglatively simple queries. Some of the tagkswever,
requireacomplicatedworkaround in order to be solve@amples are pivoting dataor
removing diacritics. Thegaskstherefore become very timeconsuming to perform,
especially for norexperts.Thus SQLs efficient for performing most of the tasks but the

ones thatdo not have an obvious solution, gets very complicated requires experience.
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3.1.3R

R provides some data preparation tasks using sirfysietions However, R is made
for data analysis anddditional packages are required get the necessary data preparation
functionalities Using thee additional packagesll the data preparation tasks irable3.1
are possible to achieve with Rnedrawbacks of R as a data manipulation language is the
inefficiencyof the process due to the required additional packadesger half of the data
preparation tasks required, avasat least more efficientlperformed with, aditional
packages. Thdplyrpackage providenanyfunctions for data preparation tasks, e.tpr
sorting, filtering,aggregatingand deduplicating data-hetidyr package provide
functionalities for pivoting data and splitting columrer instance In addition, thegrepl
package was mentioned for checking permitted characters, angtiiregi package for
removing diacriticsSome of the data preparatiorasks are possible to perform without
additional packages, but not insimple ancefficientg @ ® ¢ KSaS I NB | f &2
Table3.1, as the addional packages provide more efficient ways of solving the tadks.
large set of packages required to dlbthe data preparation tasks makes the process more
time-consuming as a data scientist would have to look up the different packages needed to
perform thedata preparation process. However, this probably is only a problem the first few
times. Once the required packages are identified they prowigeenecessary functioniies.
As mentioned imable2.2 of Section2.3.2 R has a steep learning curve which is also worth
considering when choosing which tool to use for a dati@nce project. Overall, the lack of
native support for data preparation tasks and the steep learning curve folemperts

makes R a poorer ch@dhanfor instancePython pandas.
3.1.4RapidMiner

RapidMiner is one of the applications reviewed in tthapter. As seen ihable3.1,
RapidMiner provides most of the gparation tasks. However, three of them are marked as
unavailableThere might be ways to solve thetesks,but it is not clear from the
documentation,andit is therefore assumed that these tasks either are completely
unavailable or at leagequiresa workaround in order to solveRapidMiner still providea
simple solution to the data preparation tasks that are available, and therefore is considered

a highly efficient tool for data preparation.
29
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3.1.5KNIME

KNIMEis another application which providedl of the data preparation tasks$n
KNIME, the components which performs the different tasks are called nodes. Some of the
tasksrequires a few nodes in order to be solved, but they are still easy to perigfith. al
the data preparation tasks available in the application, KNS®Hns to provide even more

functionaliiesthan RapidMinerand is therefore considered a slightly more efficient tool.
3.1.6Trifacta

The Trifacta application only misses functionality for remg\dracritics The rest of
the data preparation tasks are easily performed in the applicattswith RapidMiner and
KNIME, this makes the application a highly efficient tool for data preparation. The simple
user interface and thavailability of data pregration tasks makes Trifacta a great tool to

consider especially for nomxperts.
3.1.70penRefine

TheOpenRefinepplicationis missing a few of the data preparation tasks seen in
Table3.1. Most importantisthe grouping and aggregation of data. These data preparation
tasks are included in all the previously reviewed applications EmgjuagesAlthough
OpenRefine offer many of the preparation task§able3.1, the lack of data preparation
tasks should be considered when choosing a tool for the data transformation prasdss
might affect the efficiency of the pressSpending timen workaroundsr having to use
additional tools to perform the data transformation makes the process more-time

consuming
3.1.8Talend Data Preparation

As shown imTable3.1, Talend Data Preparatias missing a couple of data
preparationtasks butprovide most of themAs with OpenRefine, the lack of data
preparation tasks has to deken into consideration when choosing a tpas workarounds

or use ofadditional tools is timeconsuming and inefficient.

3.1.9Tableau Prep
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Tableau Prep are missing quite a few data preparation tasks, as s€ahle8.1. It is
the tool that provideghe leasttasks Howeverwhat tasks are needed in the particular
context has to be considered when choosing a tool. If the missing preparation tasks are not

relevant in that context, Tableau can still be an efficient tool.

3.2 Resultof the review

Table3.1 provides a quick overview of which data preparation tasks are provided
from the different tools.This can be considered when selecting a foothe data
transformation process, in order et some insight into the efficiency of the tool. Many
missing data preparation tasks mightlicate that the tool is missing important functionality
and therefore is inefficient,. 1 Q& | f a2 ¢ ¢adlihekools &e/elvolvig/ ang’ 3
suggestions from the community often are taken into account in new releafstbe tools.
Thusthere is noguarantee that the tool thaturrentlyprovides the most data preparation

tasks will always be the better choice.

The review of the technical documentation revealed ttiadt the languages Python
pandas SQLand R often requires workarounds or additional packages and libraries
Therefore, the decision should be made also consideriegtntext it is being used ifor
instance, if the data is going to be used for Machine Learning, Python is a good elsoice
previously mentionedlf the purpose is to ddataanalysis, R is specifically desighedthat
and is particularlyvell suited.And as previously mentioned, th@nguages also require some
programming experiencé&.he applications, on the other hand, all provide a user interface
which makes the processuch easier for nomxperts However, theflexibility of the
applications shoulthe considered, as the user interface midjhtit the user to only a set of

specific operations.
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4 Case Study: Comparing Declarative vs. Procedural

Data Transformation Tools

In this chapter a case study @fselection of twalata transformation tool$rom the
review in Sectior3 will be conducted. One of the toolsdeclarative andhe other is
procedural. The case study considers a situatvbiere a data seintist is handed a set of

data files that needs to b#ansformed in order to answer a questiohhe question is:

How many calories worth of food did each municipality in Norway propleicequare

meter in 2019?

The question is to be answered using sixedént data files.The case will be solved
using Python pandas library, which is a procedural approach to data transformation, and
SQL, which is the declarative approach to the data transformation. The necessary data
preparation tasks will be performed am@ch of the tools will be evaluatdzhsed on
whether they provide the functionality for performing the tasks or Hataddition,the tools
will be evaluated with regards tome measuresamely,time-consumption flexibility,

expressivenessisability, and readability.

4.1 Python pandas library

In this chapter, lhe process of preparing the data for an analysis where the answer to
the questioncan be foundwill be demonstrated using the Python librgggndas(Pandas,
n.d-a). The process contains two general stepata Discovery and Data Preparation. During
the Data Discoverthe raw data will le investigatedand the necessary data preparation
steps will be identified. Later, duririge Data Preparation stephe necessary data
preparation tasks will be performed in order to reach the desired format and strudture.
the end thedifferent fieldsof the prepared datasets can beappedbefore the data can be

integrated The final data can be used to answer the question.

4.1.1lmporting pandas andhding the data
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In this case study the Anaconda distribution has been installed beforehand, and the
pandas library has also been installed using(pywi, n.d.) Pandas library ghen easily

importedinto a Jupyter NotebookJupyter, 2022as shown in the code line below:

1 import pandas as pd

The data is loaded simply by usingk Y RIF 8 Q NBF RSNJ Fdzy Ol A2yaod /
the read_csv(function (pandas, n.du) where thesepargumentspecifies the delimiter used
inthe files.y GKA& OFasS |ttt GKS, thergfaresepA & SaSdzaSlj dar e
The XL.SX file is read using thead_excefunction (pandas, n.dv). The code lines loading

the different data filesare shown below:

1 # Load the data

2 ac_businesses _init = pd.read_csv("foretak.csv", sep=";")

3 ac_properties _init = pd.read_csv("'grunneiendommer.csv", sep=";")
4 meat_deliveries _init = pd.read_csv("slakteri.csv", sep=";")

5 dairy_deliveries _init = pd.read_csv("meieri.csv", sep=";")

6 egg_deliveries _init = pd.read_csv("eggpakkeri.csv", sep=";")

7 grain_deliveries _init = pd.read_csv("korn.csv", sep=";")

8 nutrients_table  _init = pd.read_excel("matvaretabellen.xlsx")

4.1.2AgriculturalProperties

DataDiscovery

Thisdatafile is fromFelles Datakatalognd containsinformation about all the
agricultural properties in NorwayProperties in Norway have different identification
numbers calledgardsnummet, cbruksnummeé and dfestenummel. These are irrelevant
for this case stdy, but they are some of the columns in the raw data. In addition, the
properties have a column which holds the identification number of the municipality the
LINPLISNII & Aa Ayd ¢KAa O2fdzYy Ad yIFYSR a1 2YYNE
the columnsprovidesinformation about the area of land each of the properties has. Some of
the land is categorized as farmland, some is categorized as forest, along with a few other

categories. Most of these are not important in this case study. The colbatrig interesting

1 https://data.norge.no/datasets/0dabd5e814c466 7-adfcaadfe741142b
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https://data.norge.no/datasets/0dabd5e4-514c-4667-adfc-aa4fe741142b

A a
property.

To explore the datéhe head()method (pandas, n.dh) can beused.This method
outputs a small sample of a Series or DataFrame d€feult number of elements in the

sample i$ butadding a number inside thgarenthesewill output the given number of

elements.

idKS

2yS yIYSR

1 ac_properties_init.head()

This outputs thedata shown irFigure4.1.
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What needsto be done

Figure4.1 A sample of the agricultural properties data

What isneeded from this dataset is the total area of farmland of each municipality.

Toget this the following data preparation tasks are necessary:

91 Drop irrelevant columns

1 Remove null data

1 Group the data by Municipality ID and calculate the total arefaohland for each

municipality

DataPreparation

Dropirrelevant columns

In this case, the only columns that are relevant are Municipality ID (komnr) and area

of farmland (jordbruksareal)Since only two columns is needed d@®lcolumns are

irrelevant, it 5 easier tareate a subset of the data only containing the desired columns. This

is done in the following line of code:

34



1 AAmMDOT PAOOEAOMOOAOGADS » AAmDPOI PAOOEAOMET EOI

Remove null data

The properties in this dataset has area of farmland, forests and area of othes. ty
Some of the properties in the data only has forests, and the area of farmland is therefore
0.0.As mentioned in the previous sectiohese properties are not interesting in this case
and can therefore be removedhey are removed by creating anotherbset of datavhere
the rowsthat hasarea of farmland greater thani® included, and the rest is filtered out

This is shown in the following line of code:

1AAmMDOTI DAOOGEAOG » AAmMDOTI PAOOGEAOMODOAOGAOI AAMDPOT PAO

Looking at the current datat only contains the two columns we desired and the

rows where the area of farmland seem to be gone. This is showigure4.2.

komnr jordbruksareal

0 301 730.0

15 301 23.0

19 301 39.0

20 301 37.0

23 301 950.0

314825 5444 220

314828 5444 16.0

314830 5444 34.0

314831 5444 20.0

314832 5444 250
235262 rows x 2 columns

Figure4.2 Output of the current subset of the agricultural properties data

Group data by Municipality ID
Now, to find the area of farmland per municipality tgeupby()(pandas, n.dg)and
agg()(pandas, n.dc) methods can be used. Tlyegoupby()method groups the data by the

column that is added in the parentheses. In this cise data needs to be grouped by
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Municipality ID (komnr). Since the total area of farmland per municipalihat is needed,
the agg()method is usedo specify which aggregation functions to use on which columns.
Here, thearea of farmland needs to be summarized for each municipality. This results in the

following line of code:

1 AOAAMT AmEAOI 1 AT AmPAOMI OT EAEDPAT EOU ” AAmDOI DAOOEAC

t ACCs DHET OAAOOEOAOAAI R

Looking at the current dataset, it noanly contains thanunicipality ID and area of

farmland columns. This can be seerrigure4.3.

komnr jordbruksareal
0 301 9246.0
1 412 2.0
2 419 3.0
3 513 1.0
4 522 44.0

Figure4.3 Output ofthe prepared agricultural properties data
Comparing the initial dataset and the final datasstng theshapeattribute (pandas,

n.d-o0), it can be seen that the data has been significantly reduwéith about 314,500 rows
and 13 columns. The code lines and outprté shown inFigure4.4. The outputshows the
number of rows and columns, respectively, in parersie

ac_properties_init.shape

(314833, 15)
area_of_farmland_per_municipality.shape

(372, 2)

Figure4.4 Comparing thesize of the initial and final agricultural properties dataset

4.1.3Meat Deliveries
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Thisdatafile containsinformation about the deliveries of meat from each fafnit
contains columns for organization ID, name of the agricultural business/owner of the farm
and the municipality ID. In addition, each meat type has a column giving the amoeatiof

type of meat producedypeach farm.

Data Discovery

The next dataset is explored in the same waing thehead()method. This dataset
contains the amount of produced meper organization. The amount is also linked to a
municipality IDFrom this dataset, the amount of each type of meat for each municipality is

needed.The necessary steps to reach tisdisted below:

Drop irrelevantcolumns
Unpivot data

Remove null data

Split column

Simplify meat types

= =2 =A = A

Group by municipality ID and type of meat

Data Preparation

Dropirrelevant cdumns
The data contains three columns that are irrelevant for the case study, and these are
removed in the code line belowusing thedrop() method (pandas, n.df). Theaxisparameter

is set equal to 1, which means it will drop columns with the labels specified in the list.

1 meat_deliveries_  dropped = meat_deliveries_ init.drop([ pnavnR, porgnr R, pull _kgR], a xis=1)

Unpivot data
Thedata is in a wide format, meaning that it has many coluwindata. This is
because for each organization, there is one column for each meat Hpeever, one

organization typically produced one or a few types of meat. Therefore, in one row of data

2 https://data.norge.no/datasets/713abd22247-4287-a969cf0079318685
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there is one or a fewells giving the amount of produced meat, but most of thiéscill be
0 since no organization produces all types of meat. Referring basctmn?2.1, the

characteristics of tidy datdescribed ifWickham, 2014yvas:

9 Each variable is a column
i Each observation is a row

1 Each type of observational unit is a table

Starting from the bottomthe data table is one observational unit as this is a table of
the amount of meat produced by each organizati®he variables needed in this data is the
type of meat and the amounso these should be the columns. Each observatimuldin
this casébe the amount ofeachmeat type producedn each municipalityTherefore the
data isunpivoted into a long format, keeping theaunicipalitylD column and naminthe
ySg O2fdzvyya auellSé FyR al Y2dzyié

The unpivoting of the data is done using thelt() method (pandas, n.dl). In the
method, identifier variables (id_vars) and measured variables (value_vars) can be set.
Identifier variables are the ones that are kept the way they are, while measured variables
will be unpivoted.The line of code is shown below:

1 meat_deliveries_melted = pd.melt(meat_de liveries_dropped , id_vars= [ pkomnrR],

var_name=Rtype R,
value_ name=RamountR)

¢CKS RIGlF y2¢ O2yarada aidandad asAovaaYy y &
Figure4.5.
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komnr type amount
0 137 and_kg 0.0
1 1119 and_kg 0.0
2 528 and_kg 0.0
3 1101 and_kg 0.0
4 1426 and kg 0.0

Figure4.5 Meat deliveries data after unpivoting
Remove rows where amount =0
As there are many rows now having an amount of 0, these will be removed. This is
done by filtering the dataset and creating a subset of data only containing rows that has an

amount greaer than 0. The code line is shown below:

1 meat_deliveries_ subset = meat_d eliveries _melted[meat_deliveries_melted| pamountR] > 0]

The data looks pretty much the same, but as showRigure4.6 the first 5 rows

printed no longer has amount of 0.

komnr type amount

29 716 and_kg 51238.19
269 710 and_kg 10136.97
476 710 and_kg 16105.45

1609 712 and_kg 88126.59

2276 716 and_kg 12269.17

Figure4.6 Meat deliveries data after removing rows where amount is 0
Split columns
The tpe of meat also contairthe unit of the amount in the name&ince the unit is
the same for all rows, the unit can be removed from the naifeecolumn will be split and
the rows will be renamed to only the type of med&this is done by first splitting ¢hdifferent
parts of the name by the underscoas shown in the code line belawsing thesplit()

method (pandas, n.dx):
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11 AAOMAAT EOAOEAOMOAOEAAT AG » 1T AAOMAAT EOACEAOMOOADGA

This creates a series where each row is a list of the two parts of the name, the meat

type and the unit as shown irrigure4.7.

29 [and, kg]
269 [and, kg]
476 [and, kg]
1609 [and, kg]
2276 [and, kg]

686083 [ungku, kg]
686084 [ungku, kg]
686086 [ungku, kg]
686087 [ungku, kg]
686088 [ungku, kg]
Name: type, Length: 87601, dtype: object

Figure4.7 Lists of part®f the "type" columrof the meat deliveries data

Now, the next code lines first makes a copy of the previous subset ofustg the
copy()method (pandas, n.de), drops thetype column where the unit is still in thiype
name,add a newtype column where only the type is addeHastly, the newly addegpe
column will be added to the end of the table. To keep the same order for all datasets, the

columns araearrangedn the last line of code. All the code lines are shown below:

# Copy the old subset
meat_deliveries_subset_copy = meat_deliveries_subset.copy()

# Drop the old types

meat_deliveries_split = meat_deliveries_subset_copy.drop(['type], axis=1)
# Add a new type column with the values of the splitted types
meat_deliveries_split['type] = meat_deliveries_variables.str.get(0)

# Rearrange the order of the columns to match the other datasets
meat_deliveries_split = meat_deliveries_split[['komnr', ‘type’, 'amount']]

O~NOOOTRRWN -

The data now lookas shown irFigure4.8.
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komnr type amount

29 716 and 51238.19
269 710 and 10136.97
476 710 and 16105.45

1609 712 and 88126.59
2276 716 and 12269.17
7989 710 and 115180.90
11507 123 and 73974.89

Figure4.8 A sample of the curremdeat deliveries datdhedzy A i Kl & 0SSy NBY2OSR FTNBY G(GKS i
columnSimplify meattypes

The meat types are very specific and will not match the nutrients table that will be
described later. Therefore, some of the categories should be added togietioerne
ONRBIFRSNI OFGS32NEd 'y SEFYLES Aa (K& DF(iS32NE
Gdzy3&l dz YR GO SNE® ¢KS RAFFSNBYOS Aa (KS |
Ada | e2dzy3d aKSSLIE IyR a@F SN Aa | YIES akKSSL
ONBI RSNJ Ol (i b aAditoh, sama & S&rédatdypes are notthe nutrients table
at alland there is no substitute for it. For instance, horse and goat nida.meat deliveries
data also contains the amount of wool produced, which is not relevant in this These

types will be removed from the data.

To do thisthe new and broader categories of meat is first created by creatingpfists
the types that are to be considered the same category. Therrtdmekeys()method
(Python, n.db) is usel to create dictionaries from the lists. TRremkeys()method takes in
the keys and value and returns atibnaryand it is used to create a dictionary where each
element in the lists are set as keys and the specified value is set asMaduspecified value
is in this case the simplified types of me@new dictionary namedimplified_meat_types
cannow be created,and all the dictionaries can be added to thitie code lines are shown

below:
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L1 = [gris', 'purke’, 'raane’]

d1 = dict.fromkeys(L1, 'svin’)

L2 =['okse’, 'ungokse’, 'ku’, 'ungku’, 'kvige']
d2 = dict.fromkeys(L2, 'okse")
L3 =['hons', 'hane]

d3 = dict.fromkeys(L3, 'hgne’)
L4 = [lam’, 'lam_villsau']

d4 = dict.fromkeys(L4, 'lam")

L5 =['vaer, 'sau’, 'ungsau’]

10 d5 = dict.fromkeys(L5, 'sau’)
11 L6 =[kalv]

12 d6 = dict.fromkeys(L6, 'kalv')
13 L7 =[kylling

14 d7 = dict.fromkeys(L7, 'kylling")
15 L8 =[kal kun'

16 d8 = dict.fromkeys(L8, 'kalkun’)
17 L9 =[and]

18 d9 = dict.fromkeys(L9, 'and’)
19 L10 =['gaas’]

20 d10 = dict.fromkeys(L10, 'gas')

©CoOoO~NoO O wWNPRE

21
22 # Create a dictionaty and add all dictionaries to it (d1 to d10)
23 simplified_meat_types = {**d1, **d2, **d3, **d4, **d5, **d6, **d7,

*x(ig, *+d 9, **d10}

Thefinal dictionary now looks as shownhigure4.9.

{'gris': 'svin',
'purke': 'svin',
'raane’': 'svin',
'okse': 'okse',
‘ungokse': 'okse',
"ku': 'okse',
'ungku': 'okse',
'kvige': 'okse',
'hons': '"hgne',
"hane': 'hgne',
‘lam': 'lam’,
‘lam_villsau': 'lam’,
‘vaer': 'sau',

'sau': 'sau',
‘ungsau': 'sau',
‘kalv': 'kalv',
'kylling': 'kylling',
'kalkun': 'kalkun',
‘and': 'and',

'gaas': 'gas'}

Figure4.9 Dictionary of simplified meat types

The final dictionary can be used to map thienplified meat types to the initial meat

types in the meat delivergedataset. This is donsing themap() method, which mapshe
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values according to iaput mapping(pandas, n.dr). In this case, the values are mapped

according to the dictionaryThe line of code is shown below:
1 neat_deliveries_split[ ptype Rl = meat_de liveries_split] ptype Rl.map(simplified_me  at_types)

Themap() method will s¢ all values that it cannot find in the dictionaag keys to
NaN, which means that in this case whe¥ee.g. categories horse and goat are in the data,
there will beaNaNvalue.Therefore, a subset of data iseated from the previous datasget
where thedata is filtered using thaotnull() method (pandas, n.ds). Thenotnull() method
detectsexisting values and returnsteolean object that indicates if the valuenisll or not.
Nonmissing values are mapped to True, while missing values (for instance NaNp&sdmap
to Falseln this way, the subset of dataill only contains thesalues that are not NaN. The

code line is shown below:

1 meat_deliveries_s ubset = meat_deliveries_splitfmeat_deliveries_split[ ptype RJ.notnull()]

Group by municipality IDand type of meat
To get the amount of each type of meat delivered for each municipality, the data is
grouped by both municipality ID (komnr) and type of meat (type). The amount is then
summarized per municipality and meat type using the aggregation funstiorand pandas
agg()method.
1 meat_deliveries_  per_munici pality = meat_deliveries_s  pl it_subset.gr oupby([ pkomnrR ptype K,

as_index=False)
.agg({ pamountR psuniy})

43



komnr  type amount

0 101 kalv 1053.7
1 101  kylling 1317918.0
2 101 lam 5463 6
3 101  okse 2460222
4 101 sau 3086 4
5 101 svin  1129388.2
6 104 kalv 1211.0
7 104 lam 31378
8 104  okse 946.0
9 104 sau 3866
10 105  hane 17332.8
11 105 kalkun 7761909
12 105 kalv 8946 5
13 105 kylling 488286.1
14 105 lam 15183.3
15 105  okse 22447189
16 105 sau 32027
17 105 svin 1092929 4

Figure4.10 A sample of the findlleat deliveries datall the necessary data preparation tasks have been performed, and
the data now shows themount of each meat type for each municipality.

4.1.4Dairy Deliveries

Thedatafile from Felles Datakatalogontainsinformation about deliveries of cow
and goat milk It contains columns for organization 1D (orgnr), name of the owner of the

organization, municipality ID and amount of cow milk and goat milk.

Data Discovery

Since the goal is to finthe amount of each type of milk produced in each

municipality, the necesary data preparation tasks are:

3 hitps://data.norge.no/datasets/cel1f1df@04f43c8b13351f5a20ee406
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Drop irrelevant columns
Unpivot data
Remove null data

Split column

= =2 =2 =/

Group by municipality ID and type of milk

Data Preparation

Drop irrelevant columns

The organization ID and name of the owner is not relevant in this dasesfore
these columns should be droppe@olumns are dropped from a pandas DataFrame ubiag
drop() method, which drops the specified lats from rows or columng.heaxisparameter
is set to 1, which means it drops the columns with the specified labéhe inputted list.

The code line is shown below:

1 dairy _deliveries _dropped = dairy_deliveries_init .drop([ pnavnR, porgnr R], ax is=1)

The data now looks as shownRigure4.11.

komnr kumelk_liter geitemelk_liter
0 101 92957 0
1 101 533955 0
2 105 500496 0
3 105 147071 0
4 105 203632 0

Figure4.11 Dairy deliveries data after dropping irrelevant columns
Unpivot data
To get the dairy deliveries data in a similar format andcure as the meat
deliveries data, it is unpivoted using theelt() method. The municipality ID (komnr) columns
is kept as is, and the cow and goat milk columns are unpivdtked new columns are named

GGeLlSé yR alY2dzyiéd ¢KS O2RS tAYyS Aa akKz2gy
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1 dairy_deliveries_melted = pd.melt(dairy_deliveries_dr opped,
EAMOAOO" IpET I 1T OR#1t
OAOmi Ai A” ROUDPARH
OAl OAmi AT A" RAT T O1 OR%

The unpivoted data looks as showrFigure4.12.

komnr type amount

0 101 kumelk_liter ~ 92957
1 101 kumelk_liter 533955
2 105 kumelk_liter 500496
3 105 kumelk_liter 147071

4 105 kumelk_liter 203632

Figure4.12 Dairy deliveries data after unpivoting
Remove null data
Sincemost farms only produce one type of milk, there will be a lot of rows having an
amount of 0. These rows are redundant and can be removed. This is donefailoineng

line of code:

1 dairy_deliveries_  subset = dairy_deliveries_  melted [ dairy_deli veries_me lted[ pamountR] > 0.0]

Split column

Similarlyas inthe meat deliveries dataset, the type of milk also contains the unit. The
unit is liter for all entries in the data tahlso it can be removed from this dataset as well.
This is donén the same way as before and will not be described again in detail. See section

4.1.3for details on how this was done for the meat deliveries data.

The result after splitting the column arseitting the type to the first part, is shown in
Figure4.13.
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komnr type amount

0 101 kumelk 92957
1 101 kumelk 533955
2 105 kumelk 500496

3 105 kumelk 147071

4 105 kumelk 203632

Figure4.13 Dairy deliveries data after splitting the "type” column
Group by municipality ID and grain type
The dairy delivergata is grouped in the same way as the meat delivery data, by
using thegroupby()method. It is grouped by baotmunicipality ID (komnr) antype of milk
(type). The code line is shown below:
1 dairy_deliveries_  per_municipality = dairy_deliveries_  split.groupby( [ pkomnrR ptype R],

as_index=False )
.agg( { pamountr: psuni})

Thedairy deliveries data now looks as showrFigure4.14.

komnr type amount

0 101 kumelk 3612980
1 105 kumelk 4743006
2 106 kumelk 2162467
3 118 kumelk 623344

4 119 kumelk 1882796

Figure4.14 The finalDairy deliveries datéll data prearation steps havaeow been performed

4.1.5E9g Deliveries
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Thisdatafile containsinformation about the amount of eggs delivered from each
organizatior. It contains the columns organization ID (orgngme of organization owner

(navn), municipality ID (komn@nd the amount of eggs in kilograms (egg_kg).

Data Discovery

To find the amount of ags delivered in each municipalitjhe necessary data

preparation tasks are:

Drop irrelevant columns
Check for null values
l RR | ateéeLllSe O2f dzyy

Rename column

= =2 =2 2

Group by municipality 1D

Data Preparation

Drop irrelevant columns
Again using therop() method,the organization ID (orgnr) and owner (navn) is

dropped. The code line is shown below:
1ACCMAAI EOAOEAOMAOT PPAA ” ACCMAAI EOAOEAOMET EOt A

The data now only contains the columns municipality ID (komnr) an amount of eggs

(egg_kg), as shown Figure4.15.

4 https://data.norge.ro/datasets/d58a8898616243cd-9df8-5ae0b5fa9ebc
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komnr egg_kg

0 1120 131770

1 5004 129940

2 1120 133703

3 1445 121256

4 1432 8052

Figure4.15 Egg deliveries data after dropping irrelevant rows

Check for null values

There are several ways to chdok null values. One way is using tinéo() method
(pandas, n.dj). This wilbutput how many nomull values are in each column. If the number
of nonnull values are not equal to the total number of values in the column, theraaite
values in the columrAnother way is usinthe isnull() (pandas, n.dk) andany() (pandas,
n.d.-d) methods can be used in combination to check for null valuediiedout any null
values from the datarheany() methodreturns whether any element is True. In this case

over axis 1, which the columnsThis is done as shown in the code line below:

1 null_data =egg_deliveries_ drop ped[eg g_deliveries_dropped. isnull().any(axis=1)]

Since there are no null values in this dataset, the outputudf datais an empty

datatable, as shown ifrigure4.16.

null data

Out[59]:

komnr egg_kg

Figure4.16 Null values in the egg deliveries dataset
Add a new column

¢2 YIOGOK GKS 20KSNJRFGlFaAaShda y2GKSNJ 02t dzy
onlyO2y il Aya |Y2dzyd 2F S333x (GKS (eL)S gAratft o065 a

below:
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1ACCmAAI EOAOEAOMAOT PPAAIpOUDPARE " UVACCu

The data now looks as shownFkigure4.17.

komnr egg_kg type

0 1120 131770 egg
1 5004 129940 egg
2 1120 133703 egg
3 1445 121256 egg
4 1432 8052 egg

Figure4.179 33 RSt AGSNASa RIFGF FFAOGSNJ FRRAYy3I (KS aielL
Rename ctumn
¢CKS aS33ayl3é¢ O2fdzYy aKz2dzx R 0S NBYlFYSR (2
NBY I YSR  aising therepatag(Jiméthod (pandas, n.dm), which takes im
dictionary containinghe columns to rename and theew name to applyThe line of code is

shown below:

1 egg_deliveries = egg_deliveries_dropped .rename(c olumns={ pegg_kgR: pamountR})

The data now looks as shownFRigure4.18.
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komnr amount type

0 1120 131770 egg
1 5004 129940 egg
2 1120 133703 egg
3 1445 121256 eqg
4 1432 8052 egg

Figure4.18 Egg deliveries data after renaming the "egg_kg" column to "amount"
Rearrange columns
To get the egg deliveries data to match thther dataset, the order of the columns is
rearranged ly extracting the columns in the desired order and saving them to the dataset

egg_deliveriesThis is done in the following line of code:

1 egg_deliveries = egg_deliveries [[ pkomnrR, ptype R, pamountR] ]

The columns are now in theesired order, as shown Figure4.19.

komnr type amount

0 1120 egg 131770
1 5004 egg 129940
2 1120 egg 133703

3 1445 egg 121256

4 1432 egg 8052

Figure4.19 Egg deliveries data after rearranging the columns
Group by municipalityD
Lastly, theegg deliveries data needs to be grouped by municipaligni®the
amount is summarizedrhis is done ithe code line below:
1ACCmAATl EOACEAOMPAOMI OT EAEDPATI EOU » AcCcmAAI EOAOQE

as_index=False) -
t ACCsDHAIT OT ORk pOOI
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Thisresults in the dataset only containing one raivthe amount of egg producefer
eachmunicipality ID. A sample of the data is showikigure4.20, whereyou can se¢hat

there is only one row for each municipality ID (komnr).

komnr type amount

0 101 egg 246774
1 105 egg 867467
2 106 egg 107854

3 118 egg 146253

4 119 egg 291154

Figure4.20 FinalEgg deliveries datafter preparation

4.1.6Grain Deliveries

Thisdatafile containsinformation about the deliveries of different types of gréairt
contains thecolumns organization ID (orgnr), name of owner of organization (revh)
municipality ID (komnr)in addition, each type of graindsvided into three categories:
animal feed, food andeedsEach of the types of grain, and each categurthe type, has

its own column.

Data Discovery

The data has a wide format and each grain type has its own column, similar to the
meat and eggleliveries data. A lot of these categories are irrelevantot in the nutrients
table and should therefore be removedll the necessarglata preparation tasks are listed

below:

Drop irrelevant columns
Unpivot data

Remove null data

= =2 =/ =

Split column

5 https://data.norge.no/datasets/2cda2088629-4098-835¢59b473e4a785
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1 Group by municipality ID

DataPreparation

Drop irrelevant columns

Theonly relevant columns in the grain deliveries datasetthe municipality ID
(komnr) and amount of each type of food. Since there are some colofrersimal feed and
seeds, these can be removed firshis is done by getting the column lahetsnvertingthem

to a list using theolist() method (pandas, rd.-q), and storing them in a list named

grain_deliveriescolumnsas shown in the code line below:

1 grain_deliveries_cols = grain_deliveries_init.columns.tolist()

The list now looks as shownhigure4.21.

To remove theolumns that are not relevant, themove()method (Python, n.d-a)
is used. The columnsdhare needed aréhe municipality ID and all types of grain that is
YSI y 3020 S yaa| 20WNE AWVAR 3 fGfK S

T22RP® ¢ KA A

['orgnr',
"navn’,
"komnr',
‘'bygg_for_kg’,
'bygg saakorn_kg',
‘bygg_mat_kg",
"erter_for_kg',
"erter_mat_kg’,
"erter_saakorn_kg',
"havre_for_kg',
"havre_saakorn_kg',
"hvete_for_kg’,
"hvete_mat_kg',
"hvete_saakorn_kg',
‘oljefro_kg',
'oljefro_saakorn_kg',
'rug_for_kg',
'rug_mat_kg',
'rug_saakorn_kg"',
'rughvete_for_kg',
'rughvete_saakorn_kg']

Figure4.21 List of column labels of the grain deliveries data

g2 NR

Norwegian).The irrelevant column labels are removed from the list using a while loop that

loops as long agsless than tle length of the list of columns labels. An If statnt is used
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to check if thecolumn labedoes notconsist2 ¥  KS & dzaddis Nakegjual toa Y I § €
Gl12YYNED ¢KSAS St SYS Fisathaisincrensed bytiTheiill I NS NI Y 2
increaseuntil each element has been checked and the irrelevant column labels are removed.

The code lines are shown below:

1 # Extract only column headers containing the substring "mat"

2 substring = "mat"

3i=0

4 while i < len(grain_deliveries_co | s):

5 if (substring not in grain_deliveries_col s[i]) & (grain_deliveries_col s[i] = "komnr"):
7 print(f"{grain_deliveries_col s[i]}" does not contain the substring "mat™)

8 grain_deliveries_col s.remove(grain_deliveries_col s[i])

9 else:

10 i+=1

11 print(f*{grain_deliveries_col s[i]}" does contain the substring "mat™)

The list now looks as shownHigure4.22.

grain_deliveries_cols

[ 'komnr', 'bygg mat_kg', 'erter_mat_kg', 'hvete_mat_kg',
"rug_mat_kg']

Figure4.22 Relevant columns of the grain deliveries data

Now, the relevant columns can be extracted from the dataset. This is done in the

code line below:
1 grain_deliveries_dropped = grain_deliveries_init[grain_deliveries_co | s]

A sample ofhe current data can be seen Figure4.23.
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komnr bygg_mat_kg erter_mat_kg hvete_mat_kg rug_mat_kg
0 5038 0 0 0 0
1 412 0 0 0 0
2 124 0 0 0 0
3 624 0 0 0 0
4 712 0 0 0 0

Figure4.23 Grain deliveries data after removing irrelevant columns
Unpivot
¢KS RIFIGF A& dzyLW@20SR (G2 YIFGOK GKS 20KSNJ
O2y Gl AyAy3a GKS (@&L)S 2 FonmiNihgkhg antoyhRof grain@2 t dzY'y &
kilograms. The code line is shown below:
1 grain_deliveries_  melted = pd.melt( grain_deliveries_  dropped,

id_vars=[ pkomnrR],

var_ name=Rtype R,
value_name=RamountR)

The unpivoted data is shown igure4.24.

komnr type amount

0 5038 bygg _mat_kg 0
1 412 bygg_mat_kg
124 bygg_mat_kg
624 bygg_mat_kg

B~ LW N
o O o o

712 bygg_mat_kg

Figure4.24 Grain deliveries data after unpivoting

Remove null data
There are now a lot of rows with amount of 0. Thase removed in the code line

below:

1 grain_deliveries_  subset = grain_deliveries_  melted[grain_deliv  eries_melted[ pamountR] > 0]
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Split column
The type is formatted like this: [type ofain] _ jmat] _ [kg]. All rows are grain used
for food and are in kilograms, so these parts of the name can be remdhedcolumns
strings are split on underscore and the first part of the string is assigned as the value of the

NREga 27F dolnth. Thdicddeldieé is shown below:

grain_deliveries_  variables = grain_deliveries_ subset[ ptype Rl.str.  split( p_R)
# Copy the old subset

grain_deliveries_subset_copy = grain_deliveries_subset.copy()

# Drop the old types

grain_deliveries_split = grain_deliveries_subset_copy.drop(['type’], axis=1)

# Add a new type column with the values of the splitted types

grain_deliver ies_splitf['type'] = grain_deliveries_variables.str.get(0)

# Rearrange the order of the columns to match the other datasets

grain_deliveries_split = grain_deliveries_split[['komnr', 'type', 'amount]

O©CoO~NOOOOITS, WN PP

The data now looks as shownkigure4.25.

komnr type amount

130 5037 bygg 90000
19503 231 hvete 54771
19506 417 hvete 51845
19512 119 hvete 16718
19516 214 hvete 53754

Figure4.25 Grain deliveries data after splitting the "type" column
Group bymunicipality ID and type of grain
To get the amount of each type of grain per municipality, the data needs to be
grouped bymunicipality ID (komnr) and type gfain (type). This is done in the code line
below:
1 grain_deliveries_  per_municipality =~ = grain_deliveries_  splitgroup  by(ll fomnrR ptype K],

as_index= False)

.agg( { pamountr: psuny})

A sample of the grouped data is showrfigure4.26.
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komnr type amount

0 101 hvete 3901835
1 105 hvete 3797783
2 105 rug 15895
3 106 hvete 2945609

4 106 rug 5265

Figure4.26 A sample of the currer@rain deliveries datéll the necessargata preparation tasks haveow been performed

4.1.7Nutrients Table

Thisdatafile contains the nuttional contents of different types of foddAs this file

KFa mmc O2fdzyYyas KS g buptiese Qréfor instahcecolBnndRdd & ONR 6 SR

the type of food, an ID for each type of food, and one column for each aymutrient

Data Discovery
This is a very messy dataset with many empty rows of data and one row dedicated to
the title. It also has comments and in some cells the unit of the value is divEigure4.27
you can see a small sample of ihéial nutrients table data, where only Iéut of 116
columns and ®ut of 2152 rowsare shownThere is a lot of NaN values, comments and

generally irrelevantlata that should be removed.

Unnamed: Den norske Unnamed: Unr 1: Unr 1: Unr 1: Unr l: Unnamed: Unnamed: Unnamed:
matvaretabellen

0 2 3 4 5 6 7 8 9
2021

0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

1 MatvarelD Matvare Splse;\ggl Ref Vann Ref Kilojoule Ref Kilokalorier Ref
Forkortelser: M =
manglende

2 NaN verdi. Ref = % NaN g NaN kJ NaN kcal NaN
refer...

3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Melk og

4 melkeprodukter NaN NaN NaN NaN NaN NaN NaN NaN

Figure4.27 A small sample of the initial nutrient table data

The necessary steps get the desired data formaind structure is:

6 https://data.norge.no/datasets/9d08291-83d4-4ae28efd-e7d025dfd52d
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https://data.norge.no/datasets/9d082918-e3d4-4ae2-8efd-e7d025dfd52d

il
)l
)l
T

Change column header

Drop redundant rows

Extract only relevant columns

Split column

Data Preparation

Change column header

02t

this row. Thefirst row only contains NaN values, as seefigure4.27, and this can also be
removed. The actual column headers areaw 2 (with index 1), so this row should be set as
column headerThis is done by usirtge pandas indexeiloc[] (pandas, n.di), whichgets

the row(s) of the inputted index. In this case, ttwav with index 1 should be set as column

header.This is done by setting the column labels equal torthe as shown in the code line

below:

1 nutrients_table_init.columns = nutrients_table_init.iloc[1]

Since theéheaderrow only contains a title in one of the columns and the rest of the
! yyFYSRY

dzyya FNB yI YSR

A sampe of the current data is shown Figure4.28.

a!' Yy YSRY

neé¢zx

Spiselig

melkeprodukter

1 MatvarelD Matvare del Ref Vann Ref Kilojoule Ref Kilokalorier Ref
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 MatvarelD Matvare Spiszlg Ref Vann Ref Kilojoule Ref Kilokalorier Ref
Forkortelser: M
2 NaN = Mmanglende % NaN g NaN kJ NaN kcal NaN
verdi. Ref =
refer...
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 Melkog  NaN NaN  NaN NaN NaN NaN NaN NaN

Figure4.28 A sample of the nutrients table data with the new column headers

Drop redundant rows

0) consist of only NaN values. The second row (with index 1) is set as the column header and

There is still a lot afedundant rows. As seen Figure4.28, the first row (wth index
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should be removedThe third row (with index 2) has a comment in the second column and

the rest of the columns are units and NaN valudse foods are abdivided into categories,

ddzOK & daAf {1 I yrRareRdows ta& onlyJbbBt&nit® Galegoty indthi S

Gal @ NBs¢but@h festaf the columns consists of NaN values. None aitibee
mentionedrows are relevant in this case and shoblElremoved. One thing to note is that

the comment tells me that any missisfgl £ dzS& ' NB RSY20SR dati GKAO

in order to remove this data lateRows of index 83 are removed in the code line below:

1 # Drop rows containing redundant information or null values
2 nutrients_table_dropped = nutrients_table_init.drop([0, 1, 2, 3])

This removed the first four rows. Now, all the rows containing the categories of food
Oty 06S NBY2@OSR® {AyOS (KS&AS NRga 2yfe KIFa |
NaN value irthe rest of the columns. Choosing one of these columns, a subskett@tan
be made by filtering out the rows where the column contains a NaN vhiuhis case, the
G{LA&SEt AT RSt¢& O2fdzyYy I NB Q&I Sethpd restlfsin S NA y 3
a subset of data where all valsi@re noamissing values (ndtaN values). The code line is
shown below:

1 # Remove food category rows

2 nutrients_table_subset = nutrients_table_dropped[nutrients_table_dropped['Spiselig del]
.notnul 1() 1]

A sample of the current data is shownHigure4.29.
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1 MatvarelD Matvare Sp'sec:'e% Ref Vann Ref Kilojoule  Ref Kilokalorier  Ref

6  01.013 Emnn=l 100 0 89 MI0142 286 MI0114 69 MI0O115
langtidsholdbar

7 01272 Helmelk 3,5% 100 0 90 MI0142 249 MIO114 60 MIO115
fett, laktosefri

8 01001 Helmelk, 3,5% 100 0 89 MI0142 264 MI0114 63 MI0O115
fett, Tine
Helmelk, 3,9 %

o 01235 fett, Q- 100 0 88 132 279 MIO114 67 MIO115
meieriene

10 01283 Helmelk, 4,1 % 100 0 88 MI0142 279 MI0114 67 MIO115
fett, ekologisk

Figure4.29 Nutrients table data after removing redundant rows

Extract relevant columns

In order to get the kilocalories of eachtype oftio 4§ KS F22R (@8 LJS 0O2f dz
FYR GKS 1Af20Ff2NARSa O2fdzyYy yIFYSR aYPis2]1 Il f 2N
is done in the code line below:

1 nutrients_table = nutrients_table_  subset[[p- AOGRAPAET T EAIR] OEA«

A sample of the current data is shownFigure4.30.

1 Matvare Kilokalorier
6 Geitmelk, langtidsholdbar 69
7 Helmelk, 3,5 % fett, laktosefri 60
8 Helmelk, 3,5 % fett, Tine 63
9 Helmelk, 3,9 % fett, Q-meieriene 67
10 Helmelk, 4,1 % fett, ekologisk 67

Figure4.30 Nutrients table data after extracting only relevant columns
Split column

¢CKS (eSS 2F F22R Ay I mdvideStiReitypeYol/food, but G O NI ¢
also some additional information about the food type, such as whether it is cooked or not,
how many percent of fat it contains, the manufacturer of the food, &tas information is
not relevant in this case. The rest of the dataset food production data are not very
specific. For instance, the meat delikes data only says pig meat, and does not specify
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which part of the pig the meat is frorim the nutrients table, this information is included.
However, as the information is hoonsistent in both datasets, there is no point in
considering which part of the pig the meat is from. Thus, the type column (Matvare) will be
split on comma and spacéa & and the first string will be the value that is assigned to the

type column.

Spliting the string on underscore is done in the code line below:

1 # Split the string on underscore
2 nutrients_table_variables = nutrients_table[ pMatvare R].str.split( p, b)

This gives a Series of lists containing the parts of the string, as shéugune4.31.

6 [Geitmelk, langtidsholdbar]
7 [Helmelk, 3,5 % fett, laktosefri]
8 [Helmelk, 3,5 % fett, Tine]
9 [Helmelk, 3,9 % fett, Q-meieriene]
1@ [Helmelk, 4,1 % fett, okologisk]
2142 [Sinlac spesialgre¢t, pulver, Nestlé]
2143 [Sinlac spesialgr¢t, spiseklar, Nestlé]
2144 [Tilskuddsblanding, fra 6 mnd, drikkeklar]
2145 [Tilskuddsblanding, fra 6 mnd, ferdig utblandet]
2146 [Tilskuddsblanding, fra 6 mnd, pulver]
Name: Matvare, Length: 1983, dtype: object

Figure4.31 Lists ofsubstrings ofhe type of food from the NutrienfBable data.

Next, a copy of the previous dataset is mattie, old types of food are dropped and a

new column with the first part of the string is created. This is shown in the code lines below:

1 # Copy the old subset

2 nutrients_table_copy = nutrients_table.copy( )

3 # Drop the old types

4 nutrients_table_split = nutrients_table_copy.drop(['Matvare'], axis=1)
5 # Add a new type column with the values of the splitted types

6 nutrients_table_split['Matvare'] = nutrients_table variables.str.get(0)

The data now looks as shownkigure4.32.
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1 Kilokalorier Matvare
6 69 Geitmelk
7 60 Helmelk
8 63 Helmelk
9 67 Helmelk
10 67 Helmelk

Figure4.32 Nutrients table data after splitting the "Matvare" colun@nlythe first part of the strindias been assigneas
the valueof the column

Rename columns

¢2 3IASG GkKAAa RIFIGFEaSOG G2 YIFGOK

C N
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This is done using thename()method. The code line is shown below:

1 nutrients_table_renamed = nutrients_ table_split.rename(c olumns={
pMatvare R ptype R,
pKilokalorier =~ R pkcal R
})

The data now looks as shownRigure4.33.

1 kcal type

6 69 Geitmelk
7 60 Helmelk
8 63 Helmelk
9 67 Helmelk

10 67 Helmelk

Figure4.33 Nutrients table data after renaming the columns to "type” and "kcal”
Remove missing values

As previously mentioned, a commign the data said that missing values where
RSYy2GSR Ga¢d ! adzaSi 2F GKS RFGF akKz2dZ R GKS
kilocalorieshavel &G aé | & @I fdzS® ¢KAA A& R2yS Ay GKS O

1 nutrients_table_re duced = nutrients_table_ren amed[nutrients_table_renamed[  pkcal Rl != pM]
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Using theshapeattribute the number of rows of the datasets can be checked to see
if it has been reduced. As seenFigure4.34, the reduced nutrients table data h4980
rows and the old dataset had 1983. This means three rows of dataneereved from the

nutrients table data.

nutrients_table reduced.shape

(1980, 2)

nutrients_table_ renamed.shape

(1983, 2)

Figure4.34 Comparing the size of the dataframes after removing missing values.

Group bytype of food

t NEGA2dzates (GKS aal (3 NB splitCedd thiz¥igt padtyiz 6 y I Y

the string was set as the value of the column. This means there will be a lot of rows with the
samefood type. Previously thererere more informationabout the food type that specified

the difference between these types, however, as this additional information is now removed
these types can be grouped togeth&ince these types in the initial datasets where

different, they all have different values the kilocaloriescolumn. As the food production
datasets are not specific enough to distinguish between these typeilocalories values

will be aggregated for each type, returning the meanhef kilocalories for each type of

food. First thecolumn data type has to be changed tllypefloat. This is done in the code

line below:

1 # Change data type (dtype) of the kilocalories column
2 nutrients_table_numeric = nutrients_table_reduced.astype({'kcal': float})

Then the data can be grouped by the food tygseshown in the code line below:

1 # Group by type of food
2 nutrients_table_grouped = nutrients_table _numeric.groupby(['type'],
as_index=False)
.agg({'kcal": 'mean'})

This further reduces the datay more than 1,000 rows, as shownHigure4.35.
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nutrients_table_grouped.shape

(942, 2)

Figure4.35 Checking the size of the Nutrients Table data after grouping the data.

Changing letter case
The food types in the nutrients table datave a capitalized first letter. This does not
match the other datasets, and the letter case will therefoeednangedThis is done by first

creating a copy of the previous dataset as shown in the code line below:
1 kcal_o f_foods _copy = nutrients_table_grouped .copy()

CKSY (KS aGel)sSé¢ O02fdzyy A& RNRLILISR FTNRY

below:
1 kcal_of foods = kcal_of foods _copy.drop([ ptype R], a xis=1)
Next,;] yS¢ adelLlSé¢ O2fdzyYy A& | RRS&the yR aSi
previous nutrients table data, applying th@wver() method to convert thestrings to
lowercase. This is done in the code line below:

1 kcal_of foods [ptype Rl = nutrients _table grouped[ ptype R].str.low er()

Thisresults in thedata shown irFigure4.36.

kcal type

0 310.0 adzukibenner
1 11.0 agurk
2 370 agurker
3 230 agurksalat
4

728.0 aioli

Figure4.36 Nutrients table data after performing all data preparation tasks
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4.1.8Data Mapping and Integration

The datasets have now been individually prepared for integrafitve. types of

datasets that are available are:

One dataset containing information aboatea of farmland of each municipality

Four datasets containing information about the amount of food produced in each
municipality

One dataset containing information about how many kilocalories each type of food

contains

In order to answer the question frothe use casgethe data needs to be integrated.

Thenecessary steps in order to integrate the data is:

l

T

The food production datasetseed to be concatenated to form one large datasets of
all the produces food of each municipality

The food types of the nuents table data and the food production data needs to be
mapped

Do the final calculation

Concatenatinghe Food Production datasets

= == =2 =

The food production datasets are listed below:

meat_deliveries_per_municipality
dairy_deliveries_per_municipality
egg_deliveies_per_municipality

grain_deliveries_per_municipality

These datasets can now be concatenated usingctreat()method (pandas, n.db).

This method concatenates pandas objects along aqadar axis. In this case, the axiagd

setin the code line, which means it will be setthe default which is O or indeXhe code

line is shown below:

1 food _prod uced_per_municipality = pd.concat([meat_deliveries_per_municipal ity,

dairy_deliveries_per_municipality
egg_deliveries_per_municipality,
grain_deliverie  s_per_municipality])
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Thetail() method (pandas, n.dp) is used to output a sample of the data and by
default returns the five last rows of the data framfes shown irFigure4.37 and Figure4.38,
the fivefirst and last rows of data in the concatenated food puwotion dataare meat types
and grain types, respectivelyhisis consistent with the code line above, where the meat
deliveries data was in the first element of the list given to ¢bacat()method, and the grain

deliveries datavas the last element of this list.

komnr type amount komnr type amount

0 101 kalv 1053.7 3437 5037 bygg 90000.0

1 101 kyling 1317918.0 3438 5037 hvete 192099.0

2 101 lam 5463.6 3439 5038 hvete 21757.0

3 101 okse  246022.2 3440 5053 hvete 103184.0

4 101 sau 3086.4 3441 5054 hvete  8575.0
Figure4.37 First five rows of caratenated food Figure4.38 Last five rows athe food production data

production daa

Mapping food types of the Nutrients Table and Food Production dataset

In order to integrate the nutrients tabldataand food productiordata, the food
types in both the datasets mels to be mappedrThis is done by first getting the unique food
types from the food production data by using theique() method (pandas, n.dy), which
returns all uniquevalues in a SerieJhetolist() method is also used to create a list of the

unique values. This is done in the code line below:
1 unique_food_types = food_produced_per_municipality['type'].unique().tolist()

After some exploration using a python library named thefigeatgeek, n.dfo do
fuzzy matching between the food types in the two datasatiew food typeglid not get a
high enoughmatching score and therefore had to be changed manually before the rest of
the types was matched using fuzzy matchifige types of food that had to be manually
mapped are three types of flour, where in the nutrients table it said the flour type and
G Tt 2 dzdNénd. Anllexainle 8 K @S (i S Y S f vh&at flouk In @& nukiénts table, the
F22R (@ LIS (wheatddadnSEinglisy)ut irkthe food production data the food
type isonly a ¥etes (wheat in English)lo solve thisthesetypes of foodis addd tothe list

of uniquefood types from the food production datdhis way, thedod types are written in
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the exact same way in both datasetsK A & a K2 dzf Ry Qi 06S ySOSaal NB
matching, but as fewcharacters was missing from the type in flo@d production dataset,
the threshold set to select a match had to be &b low. When the threshold is tolow,
some of the other types got several matches that wereagbod match at all. After the
foodtypes are added to the list, th®od types that could not be fuzzy matchbkds to be
removed from the list. This is done by creating a list with tatypes, iterating over the
list using a for loo@nd checking whether the element is in the list ofique food types or
not using an if statement. If the element is in the list of unique food types, it is removed
using theremove()method. The code lines are shown below:

Ol ENOAMATI T AMOUDAOG 1 I AEOCAOAT Al At Apoidegull AR A t

@ I KEOAOAKt AKAOOCA+t ,Apdkee®CA+ pEOI Al ER

if f in unique_food_types:
unique_food_types.remove(f)

The list now contains thivod typesthat matchthe nutrients tableand theones
that could not be fuzzy matcheate removedIn total, the food production data now

contains 16 unique food typeas shown ifrigure4.39.

Figure4.39 List of unique food types in the food production data

A list of uniquevalues is created for the nutrients tabilethe same way as shown

the code line below:

1 nutrients _types _unique = kcal_of_foods[ ptype R].unique().tolis t()
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