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Abstract 

Today, organizations are collecting and storing huge amounts of data that could 

potentially be very valuable. Finding trends and patterns in historic data can allow 

businesses to make more informed decision. Data scientists are therefore working to extract 

meaning from the massive amount of data. However, 80% of the time in data science 

projects is spent preparing the data for analysis. Selecting an efficient tool for the job can 

contribute to reducing the time spent on data transformation. Thus, this thesis will provide 

some insights into existing tools and their performance. 

A selection of common tools is made in Chapter 3. The tools are reviewed with 

regards to a framework to identify the support of common data preparation tasks and an 

evaluation of the tools are given at the end of the chapter. In Chapter 4, one declarative and 

one procedural Data Manipulation Language (DML) are selected from the common data 

transformation tools. Python pandas, a procedural language, and SQL, a declarative 

language, are evaluated and compared in a case study. The case study delves deeper into 

the tools through a use case and the comparative analysis at the end will provide some 

insights into the differences in the two DMLs. Thus, the first contribution of this thesis is a 

review of the support of common data preparation tasks provided by a selection of some 

prevalent data transformation tools. The second contribution is an analysis of the 

differences in a declarative vs procedural approach to data manipulation through a case 

study comparing two popular DMLs. 

The findings of the review of tools in Chapter 3, revealed that the most prevalent 

data transformation tools support the majority of the common data preparation tasks. This 

review gives some general insight into which tasks are supported, which tasks needs more 

effort to perform, and which are not supported at all. The review is exclusively based on 

information found in technical documentation of the tools, and no further experimentation 

is done to investigate the support. The case study in Chapter 4 revealed that the procedural 

DML, Python pandas, is better suited for data manipulation as it is less time-consuming and 

provides higher flexibility and usability. Python pandas is also considered to have high 

readability and expressiveness, although SQL seems to beat pandas in these areas. 
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1 Introduction 

Today organizations are collecting and storing huge amounts of data. In the field of 

Data Science, scientists are attempting to extract insight from the massive volume of data in 

order to make more informed business decisions. The large volume of data is often referred 

ǘƻ ŀǎ .ƛƎ 5ŀǘŀΦ .ƛƎ 5ŀǘŀ ǿŀǎ ŎƘŀǊŀŎǘŜǊƛȊŜŘ ōȅ 5ƻǳƎ [ŀƴŜȅ ƛƴ нллм ōȅ ǘƘǊŜŜ ±Ωǎ (Laney, 2001). 

Volume, as the volume of data is large in many environments. Variety, as the data comes in a 

wide variety of types. And Velocity, as the data often is collected at a high rate. Big Data has 

since ōŜŜƴ ŎƘŀǊŀŎǘŜǊƛȊŜŘ ōȅ ƳƻǊŜ ±ΩǎΣ ǎǳŎƘ ŀǎ Veracity and Value. Veracity refers to the 

accuracy and truthfulness of the data. Value refers to the value that this data can provide. 

The large amount of data allows for organizations to extract insight into historical 

trends in the data, which can put them in a better position to make decisions. It can also be 

fed to machine learning algorithms in order for the algorithms to learn trends and predict 

the future. However, the raw data that is collected cannot be used for data analytics. The 

data comes in different formats and can be structured, semi-structured or unstructured. 

Because it comes in so many different formats and structures, it is very difficult to make 

sense of the raw data. Therefore, there is a need for data engineering processes to be 

applied in advance. 

The raw data must go through a process in order to be prepared for data analysis. 

This process might consist of several steps, and they are often implemented in a data 

pipeline. In the pipeline, each step takes data as an input and produces data as an output, 

which in turn is inputted to the next step. This continues until the data arrives at the desired 

format and structure. Data pipelines must be designed specifically for the particular case, 

but some common steps used in data pipelines are data transformation, augmentation, 

enrichment, filtering, grouping, and aggregation (Snowflake, 2022). 

A crucial phase in data analytic projects is the data transformation phase. This is 

where the messy raw data is transformed into clean data that we are able to perform 

analytics on. As this is a very time-consuming and often tedious task, a lot of researchers are 

focusing on the challenges connected to optimizing the efficiency of this process. The 

efficiency of the process is obviously connected to the efficiency of the tools used in the 
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process. Thus, data transformation tools will be investigated in this thesis. Prevalent data 

transformation tools will be reviewed to provide some insights into what functionalities they 

support. In a case study, declarative and procedural Data Manipulation Languages (DML) will 

be compared. The aim is to provide an overview of popular data transformation tools and 

DMLs and analyze their efficiency. The results of this thesis can be used by data scientists 

and data engineers to get insights into what tools are available and when to choose them 

over other tools. 

1.1 Problem Description 

The aim in this thesis is to compare some of the most popular data transformation 

tools, their strengths and weaknesses. Some prevalent data transformation tools will be 

reviewed using their technical documentation, to find out if the tools support common data 

preparation tasks. The results will give data scientists and engineers an overview of which 

tools provide the support needed for their projects.  

In a case study, two tools will be selected and compared through a data 

transformation use case. One declarative and one procedural tool will be compared, and the 

results will provide insight into what the differences of the two approaches are.  

Finding a tool that makes the transformation task simple and effective is essential for 

companies and organizations in order to gain valuable insight from their data without the 

process becoming too resource-demanding and time-consuming. Structured Query Language 

(SQL) (W3Schools, n.d.) and Python Pandas (Pandas, n.d.-a) will be used to perform a data 

transformation task and they will be compared using a framework for comparison. This will 

give insight into the functionality they provide, and the ease of use of each of the Data 

Manipulation Languages and will put data scientists at a better position to choose a tool that 

fits their need. 

1.2 Research Questions 

The main research questions that will be answered in this thesis are: 

¶ What is the support for common data preparation tasks provided by some of the 

most prevalent data transformation tools? 



11 
 

¶ How does declarative vs. procedural Data Manipulation Languages differ in terms of 

time-consumption, flexibility, expressiveness, usability, and readability? 

1.3 Research Design 

In order to answer the research questions defined in Section 1.2, a conceptual 

framework is defined for the comparison of data transformation tools. The framework used 

in this thesis is developed partly from the framework used in (Hameed & Naumann, 2020) to 

compare commercial tools for data preparation. Some additional data preparation tasks will 

be added, and some less relevant ones will be removed. The framework will be used to 

review some of the most prevalent data transformation tools, including DMLs and 

applications. This review will be based exclusively on reviewing the technical documentation 

of these tools. Later, a case study will be conducted to further investigate a selection of 

tools. The research questions will be investigated by defining a use case and considering 

some dimensions to compare one declarative and one procedural Data Manipulation 

Language, namely SQL and Python Pandas. This is done in order to analyze their 

functionalities and demonstrate the most important differences, limitations and advantages 

in different contexts. SQL and Python are two of the most frequently used Data 

Manipulation Languages and are therefore highly relevant to consider in such an analysis 

(Convertino & Echenique, 2017). 

1.3.1 Framework 

The core preparation tasks were initially defined in (Hameed & Naumann, 2020) for 

evaluating commercial data preparation tools. Some of the initial tasks from the paper has 

been removed and some new ones has been added. These tasks will be used in the 

evaluation of data transformation tools, and the comparison of declarative and procedural 

DMLs in this thesis. The data preparation tasks and their corresponding step in the process 

are listed in Table 1.1. 

Table 1.1 Examples of data preparation tasks in the data transformation process 

Step in the process Preparation tasks 

Data discovery Find null values 
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 Find outliers 

Search by pattern 

Sort data 

Data validation Compare values (selection and 

join) 

Check data range 

Check permitted characters 

Check column uniqueness 

Find type-mismatched data 

Find type-mismatched datatypes 

Data structuring Change column data type 

Delete column 

Detect & change encoding 

Pivot / unpivot 

Rename column 

Split column 

Transform by example 

Data enrichment Assign semantic data type 

Calculate column using 

expressions 

Discover & merge external data 

Duplicate column 

Generate primary key column 

Join & Union 

Merge columns 

Normalize numeric values 

Data filtering Delete / Keep filtered rows 

Delete empty and invalid rows 

Extract value parts 

Filter with regular expressions 

Data cleaning Change date & time format 

Change letter case 

Change number format 

Deduplicate data 

Delete by pattern 

Edit & replace cell data 

Fill empty cells 

Remove extra whitespace 

Remove diacritics 
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Standardize strings by pattern 

Standardize values in clusters 

 

1.3.2 Use Case 

To evaluate SQL vs Python Pandas, datasets regarding food production will be used. 

These datasets come in a couple of formats, namely CSV and XLSX. The datasets describe 

agricultural enterprises, agricultural properties, deliveries for slaughterhouses, dairies, egg 

packaging businesses, grain buyers, and seed businesses, and the energy and nutrients 

contained in the most frequently eaten foods in Norway. In order to evaluate the two DMLs, 

a question will be defined and attempted answered by performing the necessary steps in the 

transformation process to get the data in a format where meaning can be extracted from it. 

Performing these transformation steps will give insights into whether or not SQL and Python 

Pandas provides the necessary functionalities for the process, and also how easy the process 

is using the two DMLs. 

1.4 Thesis Structure 

The thesis structure is presented below. 

¶ Chapter 2 Background and Related Works: The background theory will be presented 

and some related work is summarized in order to provide an understanding of why 

this thesis work is necessary. 

¶ Chapter 3 Review of Data Transformation Tools: Some prevalent data transformation 

tools will be reviewed in order to provide insight into which tools offer which 

functionalities. 

¶ Chapter 4 Case Study: Comparing Declarative vs. Procedural Data Transformation 

Tools: Comparing SQL and Python Pandas: A declarative DML will be compared to a 

procedural DML in order to provide some insight into the advantages and 

disadvantages posed when working with the two approaches. 

¶ Chapter 5 Conclusion: The results of the thesis work will be discussed and concluded 

and some suggestions for future work in this field will be given. 
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2 Background and Related Works 

In this chapter the theoretical background needed to understand the issue of 

efficiency in the data transformation phase will be presented. The first section will discuss 

the data, how it actually looks initially when it is being collected and the challenges posed 

when working with this raw data. In the next section the solution to the challenges will be 

presented, namely data transformation. Here, the data transformation steps from Table 1.1 

will be explained. Lastly, some tools typically used in data transformation will be presented 

and reviewed and some of their characteristics will be highlighted. 

2.1 The Raw Data 

During data extraction raw data is typically retrieved from several different sources. 

Companies and organizations can use both internal and external sources to extract data 

from. Some examples of internal sources are transactional data, such as purchases made by 

the company or organization, or purchases made by customers. Customer Relationship 

Management systems (CRMs) can also add insights into geographical details of the 

customers, and this data can be combined with the purchase history of a customer, for 

instance. Companies and organizations often have internal documents containing 

information about things like business activities, policies and processes. (aunalytics, n.d.) 

With the increase of Internet of Things (IoT) solutions, companies and organizations can also 

collect data from sensors and devices. Examples of external sources are social media, official 

records and publicly available data on the web. 

Gathering data from all these different sources gives us datasets that are often 

inconsistent. Some records can be incomplete, containing null values or missing values. 

Sometimes records are duplicated in the dataset. Datasets can also contain comments that 

are meant for humans to read in order to interpret the data table. These are often irrelevant 

for computers and can even cause problems in an analysis. Thus, in order for data scientists 

to be able to perform data analysis, the messy data has to be cleaned. This entails for 

instance removing missing values, fixing data type mismatches, deduplicating data. The 

structure of the data should also be tidy. In (Wickham, 2014), the author presents three 

characteristics of tidy data. These are: 
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1. Each variable is a column 

2. Each observation is a row 

3. Each type of observational unit is a table 

The author states that this standard structure of data facilitates data analysis, and 

the three characteristics will therefore be used to define clean data throughout this thesis. 

The process of transforming data from the initial format and structure to a structure where 

we are able to apply data analysis, is called data transformation. This process will be 

explained in the next section. 

2.2 Data Transformation 

Data transformation is any process that takes data as an input and produces data as 

an output. Since the data can come from different sources it can have all kinds of different 

formats, structures, and values. Data transformation enables us to get the data in a format 

and structure that is understandable both for humans and computers, and especially for 

systems and applications that requires a certain format or structure. It also enables us to 

check for, and improve, data quality, which prevents problems later, for instance when 

analysis is applied. Things like duplicate data, abnormalities and missing values can be taken 

care of through data transformation. The data transformation process typically includes 

some common steps such as data discovery, data validation, data structuring, data 

enrichment and data filtering (Hameed & Naumann, 2020). These steps can be performed in 

various orders and some steps are performed several times. Figure 2.1 illustrates the steps 

of data transformation that will be considered in this thesis. The steps will be described in a 

bit more detail below. 
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Figure 2.1 The steps of Data Transformation 

Data discovery is the first step of the process. As the raw data is often messy and 

inconsistent, the first step is to look at the data and try to identify the format and structure 

that the source data has (TIBCO, n.d.). In order to be able to change the data to meet the 

requirements of the target system, it is necessary to understand where the data is at the 

moment. This step is typically done using tools for data profiling.  

Data validation entails checking for data quality. This can include the correctness and 

completeness of the data, for instance (Hameed & Naumann, 2020). The goal is to ensure 

the ŘŀǘŀΩǎ ŎƻƴǎƛǎǘŜƴŎȅ ŀƴŘ ǉǳŀƭƛǘȅ. Types of validations could for instance be allowed 

character checks, data type checks, format checks and uniqueness checks (contributors, 

2021). This is a step that might be conducted several times throughout the process. 

Data structuring entails tasks that change the structure of the data. In some cases, 

we want data to be in a long format, where data values repeat in the columns. In other 

cases, we want a wide format, where values do not repeat in the columns (Zach, 2021). 

These formats are illustrated in Figure 2.2. The structuring of data can include tasks such as 

pivoting, changing data types, deleting and renaming columns etc. (Hameed & Naumann, 

2020). This is done in order to reach a structure where the data is better understood by data 

analysis tools. 
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Figure 2.2 Illustration of long and wide data formats (Zach, 2021) 

Data enrichment means adding value or supplementary information to existing data 

from separate sources, and it typically means augmenting existing data with new or derived 

data values using data lookups, primary key generation, and inserting metadata (Hameed & 

Naumann, 2020). Enrichment can be achieved by combining first party data from internal 

sources with either disparate data from other internal systems, or third party data from 

external sources (Trifacta, n.d.-a).  

Data filtering is used to create a subset of data from a dataset and can for instance 

be used to look at data for a particular period of time or exclude erroneous observations 

from an analysis (Facer, n.d.). It helps improve data quality by using predefined criteria, such 

as removing records that contain empty values or that do not conform to some user-defined 

pattern (Hameed & Naumann, 2020). 

Data cleaning is a process that is done in order to reach data quality. This is typically 

done several times throughout the data transformation. Data cleaning may include tasks 

such as deduplication of data, editing and replacing cell data and removing whitespace 

(Hameed & Naumann, 2020). The goal is to ensure any corrupt or erroneous records are 

corrected or removed entirely from the data, and thus, improving data quality. 

2.3 Data Transformation Tools 

In this section tools used in the process of data transformation will be discussed. 

First, the two different approaches to data transformation tools will be presented, namely 

applications and code. Then, a review of data manipulation languages and data 

transformation applications will be presented in Section 2.3.2. 

Data transformation is typically done through the use of either applications or code. 

What to choose depends on the prior knowledge and the given context, and both ways have 

advantages and disadvantages. Data Manipulation Languages (DML) such as Python Pandas, 

SQL, and R, are used to perform the data transformation through writing the code yourself. 

Applications lets you do transformations using a graphical user interface to make the job 

faster. However, there are some pros and cons of the two approaches. Nick White highlights 
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some of the pros and cons of applications in an article on LinkedIn (White, 2020) and these 

are listed in Table 2.1. 

Table 2.1 Pros and Cons of Applications vs. code for data transformation (White, 2020) 

Pros Cons 

Quicker to learn, programming languages 

has a steep learning curve 

Cost money (often significant amounts) 

Easier to understand (not as advanced as 

code) 

Executes slower than code 

Have the potential to be easily integrated 

into a wider data governance eco-system 

Do not integrate easily (or at all) into CI/CD 

workflow 

 

2.3.1 Declarative vs. Procedural 

Data Manipulation Languages (DML) can be declarative or procedural. Declarative 

languages are high-level languages, while a procedural language is a low-level language 

embedded in a general-purpose programming language. Declarative DMLs specify properties 

of the data that is to be retrieved from the database, while procedural languages specify 

how to access the data (Özsu, 2017). Examples of popular declarative and procedural DMLs 

are SQL and Python Pandas library, respectively. 

2.3.2 Review of Data Transformation Tools 

In this section, some data manipulation languages and some data transformation 

ŀǇǇƭƛŎŀǘƛƻƴǎ ǿƛƭƭ ōŜ ǊŜǾƛŜǿŜŘΦ ¢ƘŜ ǘƻƻƭǎΩ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ǿƛƭƭ ōŜ highlighted. 

Data Manipulation Languages 

Table 2.2 shows the characteristics of Data Manipulation Languages (DML). R is not in 

itself a DML, however, it has additional packages that adds capabilities for data 

manipulation. As can be seen in Table 2.2, the packages dplyr and tidyr provides functionality 

to support data profiling, data restructuring and data integration.  

Table 2.2 Characteristics of Data Manipulation Languages 

Language Characteristics 

R (Foundation, 

n.d.) 

Data analysis and statistical language 

Provides several Data Wrangling packages 
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Packages such as dplyr and tidyr include functionality to 

support data profiling, data restructuring and data 

integration 

Packages such as ggplot2 provide powerful data 

visualization functions 

Many operations that allow for populating new columns 

and operations to combine datasets 

Lacks native support for Date/Time manipulation 

operations 

Main limitation is the steep learning curves for non-

professionals and the lack of Data Wrangling functions 

provided in native R, finding the required functions across 

several packages can be time-consuming 

Python 

(Pandas) 

(Pandas, n.d.-a) 

Python is a production ready language used in a wide range 

of industries, research and engineering workflows 

Supports extraction of data from many sources, such a 

plain text files and CSV files, or the web 

Provides functionality to also do analysis, such as 

regression tests, time series manipulation, and statistical 

analysis 

Also offers machine learning frameworks for developing 

ML algorithms to apply on the transformed data, and is 

particularly well suited for deploying machine learning at a 

large scale 

Iterative, readable, portable, broadly applicable approach 

to data manipulation, fast 

Easy to join data from several sources 

In-memory processing (can be disadvantageous with large 

datasets) 

Supported by a large community, continuously extended 

libraries and tools 

Can be used with notebooks to collaborate 

SQL 

(W3Schools, 

n.d.) 

Supports extraction of data from databases 

Simple functions, but also a narrow range of functions 

compared to Python 

Limited functions for processing, analyzing or 

experimenting with data 

Can run some data processes, but may be inefficient or 

complicated because the ability to perform calculations 

efficiently is not part of the languages design 
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Specifically designed to query and extract data, and one of 

its main strengths is merging data from multiple tables 

within a database 

Higher-level data manipulation, such as statistical analysis, 

regression tests, and time-series data manipulation are 

very difficult to achieve using SQL exclusively 

 

Data Transformation Applications 

Table 2.3 shows the characteristics of Data Transformation Applications. 

Table 2.3 Characteristics of Data Transformation Applications 

Tool Characteristics 

Altair Monarch 

Data Preparation 

(Altair, n.d.) 

Provides common data preparators for structured data, but also 

transforms tables from within PDF and text files to tabular data 

Extracted tables can be merged with other tables using a variety of 

join and union operations 

Paxata Self-

Service Data 

Preparation 

(DataRobot, n.d.) 

Provides features for organizing and preparing structured data 

Deals efficiently with semi-structured data 

User experience is designed to fit non-experts 

SAP Agile Data 

Preparation 

wǳƴǎ ƻƴ ǘƻǇ ƻŦ {!tΩǎ I!b! ŘŀǘŀōŀǎŜ ǎȅǎǘŜƳ (SAP, n.d.) 

Provides common data preparators with some specific system 

features such as Schedule Snapshot, interactive suggestions to help 

users navigate and prepare data efficiently and multi-user access that 

enables collaboration 

SAS Data 

Preparation (SAS, 

n.d.) 

Part of SAS Viya System Management, which runs its operations with 

distributed in-memory processing 

Has common data preparation features, but also offers code-based 

transformations for users to write and share custom code to 

transform data, supporting re-usability of preparation pipeline 

Tableau Prep 

(Tableau, n.d.) 

Implements a workflow approach to organize and prepare messy data 

Users can perform multiple operations simultaneously 

Tableau Prep Builder is designed to develop workflows, manage data 

and apply operations on data 

Tableau Prep Conductor is designed to share, schedule, and monitor 

the flows 

Tabula (Tabula, 

n.d.) 

Web-based Data Wrangling tool developed with focus on data format 

transformation 
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Generates Excel, CSV or JSON data file format via extracting data 

tables uploaded in PDF data file formats 

Mr Data 

Converter 

(thdoan, n.d.) 

Similar to Tabula in terms of data format transformations 

Does not support extraction from PDF files 

Supports uploading files in either TSV or CSV 

Generates output files in a number of formats, such as Actionscript, 

ASP/VB Script, MySQL, Ruby, HTML, XML, or JSON 

Trifacta (Trifacta, 

n.d.-b) 

Supports a comprehensive set of data profiling and data re-

structuring functionality 

Does not support extraction of data from PDF files 

Can convert files from CSV or TSV to JSON 

Allows for integration with a wide range of data science and data 

ingestion technologies 

OpenRefine 

(OpenRefine, 

n.d.) 

Supports data profiling, data cleaning and data restructuring 

Offers operations for data cleaning and string manipulations, but 

lacks advanced statistical and restructuring operations 

Supports moving and dropping columns, date/time operations and 

array operations 

Limited support for extracting data from PDF files 

Supports converting data formats from JSON or TSV to CSV 

Its big data capabilities have shown limitations to scale Gigabyte 

order of magnitude 

Talend Data 

Preparation 

(Talend, n.d.) 

Designed for importing, structuring and transforming data 

Web-based visual interface that enables users to develop data 

preparation workflows 

Offers common data cleaning and restructuring functionality, such as 

column manipulation operators, like rename, create or drop, and fill 

in missing data 

Provides functionality for string manipulation 

Supports few operations for Date/Time manipulation compared to 

Trifacta and OpenRefine 

 

2.4 Related Works 

To address the issue of efficiency in the data transformation phase, several 

researchers have taken a similar approach to provide insights into the functionality of 

different data transformation tools. In (Petrova-Antonova & Tancheva, 2020), the authors 

presented a comparative analysis of widely used tools for data cleaning. They also perform a 
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case study where they compare OpenRefine and Trifacta Wrangler in order to address the 

issues they face using these tools. Both tools provide similar functionalities. However, the 

results of applying the functions on the same dataset ŘƻƴΩǘ ƴŜŎŜǎǎŀǊƛƭȅ match between the 

tools. In Table 2.4 the results of applying the different techniques using the two tools are 

shown. As seen in the table, OpenRefine for instance removed 3 duplicated rows, which is 

100% of the existing duplicated rows. Trifacta only removed 2 out of 3 existing duplicated 

rows. OpenRefine also performs better in clustering of text facets. Except for these two 

techniques, the tools perform the same.  

Table 2.4 Results of the comparison of OpenRefine and Trifacta (Petrova-Antonova & Tancheva, 2020) 

Technique Results (Number) OpenRefine Trifacta 

Duplicate rows 

removal 

Existing duplicate rows 

 

3 3 

Removed duplicate rows 3 (100%) 2 (66.66%) 

Cleaning of structural 

errors 

Fields with removed 

whitespace 

413 413 

Fields with incorrect format 6 6 

Fields with corrected format 6 (100%) 6 (100%) 

Clustering of text 

facets 

Unified fields 413 98 

Outliers Existing outliers 1 1 

Removed outliers 1 (100%) 1 (100%) 

Missing values Existing missing values 14123 14123 

Identified missing values 14123 (100%) 14123 (100%) 

 

The authors also highlight some advantages and disadvantages of the two tools. 

These are shown in Table 2.5. 
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Table 2.5 Advantages and Disadvantages of OpenRefine and Trifacta (Petrova-Antonova & Tancheva, 2020) 

 Advantages Disadvantages 

O
p

e
n

R
e
fin

e 

(1) Easy modification of a single field 

(2) The field is not necessary to satisfy 

a given criterion to be changed 

(3) Multiple records processing 

(4) Statistics on the number of 

records processed with a given 

operation 

όмύ 5ƻŜǎƴΩǘ ǎǳǇǇƻǊǘ ǇǊƻŎŜǎǎƛƴƎ ƻŦ ƭŀǊƎŜ 

datasets 

T
rifa

cta 

(1) Record the applied data 

ǇǊƻŎŜǎǎƛƴƎ ǎǘŜǇǎ ŀǎ ŀ άwŜŎƛǇŜέ 

procedure 

(2) Non-blocking processing of large 

datasets 

(3) Supports easier to use functions 

(4) Different method for filling the 

missing values 

(1) Single field cannot be modified 

(2) Allows only modification of multiple 

fields that meet a given criterion 

(3) Missing information for the number of 

records processed with a given operation 

 

In (Patil & Hiremath, 2018), the authors argue that in order for data preparation tools 

to be efficient, self-service solutions using machine learning approaches are required. In this 

paper, the Trifactŀ ǘƻƻƭΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘƛŜǎ ŀǊŜ tested through a data wrangling case study to 

demonstrate the efficiency. The case study shows that Trifacta allows for human machine 

interactive transformation of real world data, and that it enables business analysts to 

iteratively explore predictive transformation scripts with the help of highly trained learning 

algorithms (Patil & Hiremath, 2018). 

A survey of commercial tools for data preparation is presented in (Hameed & 

Naumann, 2020). The authors collected 42 commercial tools and listed their data 

preparation capabilities. Later they picked out seven tools which they investigated further. A 

preparator matrix showed each preparatorΩs availability for each tool. They selected three 

examples of preparators to demonstrate their function. Then they gave examples of how 
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one tool solved each of the preparators. Through the investigation of the tools, the authors 

found that all the tools needed the data that was being inputted to be clean beforehand. 

They list a few assumptions that most tools make (Hameed & Naumann, 2020): 

¶ Single table file (no multi-table files) 

¶ Specific file encoding 

¶ No preambles, comments, footnotes, etc. 

¶ No intermediate headers 

¶ Specific line-ending symbol 

¶ Homogenous delimiters 

¶ Homogenous escape symbols 

¶ Same number of fields per row 

¶ Relational data (no nested or graph-structured data, such as XML, JSON, or RDF)  

The authors of (Hameed & Naumann, 2020) also emphasizes the need for automated 

and intelligent solutions for the data preparation tasks. They also found that IT- and domain 

knowledge is needed due to the shortcomings of the tools. Although the paper focused on 

preparing structured data, the authors also highlight the lack of basic preparation steps for 

unstructured data, such as textual data.  

The comparative analysis in (Petrova-Antonova & Tancheva, 2020) only focuses on a 

few activities of the data cleaning process. In addition, it only considers two applications for 

data transformation, namely OpenRefine and Trifacta Wrangler. The case study in (Patil & 

Hiremath, 2018) only considers Trifacta and is focused on the need for self-service in data 

wrangling tools. The survey in (Hameed & Naumann, 2020) is focused on commercial tools 

and the lack of automation and intelligent solutions. The reviews of data transformation 

tools only consider a few tools and a few common data preparation tasks. In this thesis, 

more tools and preparation tasks will be considered in order to provide a larger overview of 

prevalent tools and their support of data preparation tasks. None of the case studies are 

comparing declarative and procedural data manipulation languages either. This area of 

research does not seem to have been explored. Thus, these two things are what will be 

investigated in this thesis.  
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2.5 Ethical considerations 

When dealing with data, and particularly personally identifiable information (PII), 

there are some guides on measures in information security. For instance, the CIA triad. CIA is 

an abbreviation of Confidentiality, Integrity, and Availability. In information technology the 

three things that typically are attacked by hackers are the confidentiality of information, the 

integrity of information, and also the availability of information. In the data transformation 

phase all three of these aspects should be considered. Making sure the data is not altered in 

a way that makes it loose integrity is one measure to ensure the process is conducted 

ethically. Another thing to consider is whether the temporary storage of PII, from source to 

target, is safe from attacks. This involves confidentiality particularly, as the data probably still 

is available in the source. 

The focus on the rights of individuals and obligations of organizations has increased 

over the years, and laws that regulates both the gathering and storage of PII has been 

developed. The General Data Protection Regulation (GDPR), which applies to countries 

within the European Union (EU), has a goal of protecting personal data and give users 

control over their data (Consulting, n.d.). China has adopted a lot of D5twΩǎ ǇǊƛƴŎƛǇƭŜǎ ƛƴ 

their PeopleΩǎ wŜǇǳōƭƛŎ ƻŦ /Ƙƛƴŀ όtw/ύ tŜǊǎƻƴŀƭ LƴŦƻǊƳŀǘƛƻƴ tǊƻǘŜŎǘƛƻƴ [ŀǿ όtLt[ύ (Laird, 

2021). In the U.S several laws have been implemented, but none of them are like GDPR and 

PIPL. To mention a couple of them, they have The Healthcare Insurance Portability and 

Accounting Act (HIPPA) that governs health information collection and The ChildrenΩǎ hƴƭƛƴŜ 

Privacy Protection Act (COPPA) that governs collection of minors information and prohibits 

online companies from collecting personal information from children under the age of 12 

unless parents have given verifiable consent (Green, 2021). 

Another thing to consider is the ethics around what the transformed data is used for. 

Whether the data is to be used in an ethical manner or not. For instance, many tech giants 

are gathering information about how their consumers are behaving on their applications. 

Often their activities are sold to companies that sends targeted commercials to the 

consumer. Consumers are often not aware of the effect that this data gathering has on 

them. This consideration is not specifically important in the data transformation phase, but it 

is still something to consider.  
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3 Review of Data Transformation Tools 

In this chapter, some popular data transformation tools and languages will be 

reviewed. The review will provide some insights into what features each of the tools provide 

and what they are lacking. The results of the review will give some general guidance for data 

engineers and data scientists that are looking for a tool for the data transformation process. 

In Table 3.1 an overview of the available data preparation tasks in each of the selected tools 

is shown. In the table, the ŘƛŦŦŜǊŜƴǘ Řŀǘŀ ǇǊŜǇŀǊŀǘƛƻƴ ǘŀǎƪǎΩ ŀǾŀƛƭŀōƛƭƛǘȅ ƛǎ indicated ōȅ άṊέΣ 

άϝέΣ ƻǊ ά-άΦ άṊέ ƛƴŘƛŎŀtes the data preparation task can be performed using a specific 

method or component/blockΦ άϝέ indicates the data preparation task can be performed, but 

it requires some extra effort to create a script or workflow that performs the tasks, and 

there is no single method or component/block that solves the task. ά-ά ƛƴŘƛŎŀǘŜǎ ǘƘŀǘ ǘƘŜ 

data preparation task is not available. This review is based exclusively on reading the 

technical documentation and without any exploration of the tools beyond this. The 

availability of preparation tasks for the tools will be provided in a table and the results for 

each tool will be discussed in Sections 3.1.1 to 3.1.9. Lastly, the results of the review will be 

presented in Section 3.2. 
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Table 3.1 Overview of the support of common data preparation tasks. The data preparation tasks supported by each of the 

data transformation languages and tools are shownΦ άṊέ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ Řŀǘŀ ǇǊŜǇŀǊŀǘƛƻƴ ǘŀǎƪ ƛǎ ŀǾŀƛƭŀōƭŜ ƛƴ ŀ ǎƛƳǇƭŜ 
method/function ƻǊ ŎƻƳǇƻƴŜƴǘ ƻŦ ǘƘŜ ƭŀƴƎǳŀƎŜκǘƻƻƭΦ άϝέ ƳŜŀƴǎ ǘƘŜ Řŀǘŀ ǇǊŜǇŀǊŀǘƛƻƴ ǘŀǎƪ Ŏŀƴ ōŜ ǇŜǊŦƻǊƳŜŘ ōǳǘ ƛǘ ǊŜǉǳƛǊŜǎ 

additional libraries or some kind of workaround, meaning there is no specific method or component that solves the task 
ŀƭƻƴŜΦ ά-ά ƳŜŀƴǎ ǘƘŜ Řŀǘŀ ǇǊŜǇŀǊŀǘƛƻƴ ǘŀǎƪ ƛǎ ƴƻǘ ŀǾŀƛƭŀōƭŜΦ 

 

P
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T
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b
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Data profiling Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Find missing or null values Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Find outliers *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Sort data Ṋ Ṋ * Ṋ Ṋ Ṋ Ṋ - Ṋ 

Filter data Ṋ Ṋ * Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Check permitted characters *  *  * - Ṋ Ṋ Ṋ Ṋ - 

Check column uniqueness Ṋ Ṋ Ṋ - Ṋ Ṋ - Ṋ - 

Change column data type Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Delete column Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Pivot / Unpivot Ṋ *  *  Ṋ Ṋ Ṋ Ṋ - Ṋ 

Rename column Ṋ Ṋ *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Split column Ṋ *  *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Grouping data Ṋ Ṋ *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Aggregating data Ṋ Ṋ *  Ṋ Ṋ Ṋ - Ṋ Ṋ 

Fuzzy matching *  *  *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Duplicate column Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Join and Union Ṋ Ṋ *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Merge columns Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Delete / Keep filtered rows Ṋ Ṋ *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 
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Delete empty or invalid rows Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Change date and time format Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ - 

Change letter case Ṋ Ṋ *  Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Deduplicate data Ṋ Ṋ * Ṋ Ṋ Ṋ Ṋ Ṋ - 

Edit and replace cell data Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ 

Remove diacritics Ṋ * *  - Ṋ - Ṋ Ṋ - 

Remove whitespace Ṋ Ṋ Ṋ Ṋ Ṋ Ṋ * Ṋ Ṋ 

 

3.1 Functionalities of the different tools 

3.1.1 Python pandas 

The Python pandas library offer most of the data preparation tasks in simple 

methods. However, some of the data preparation tasks must be solved by creating custom 

scripts. This makes the job a little more time-consuming and requires a bit more 

programming experience than what using simple methods provided in the library would. 

Although some of the tasks requires a bit of programming experience, Python is not a very 

challenging programming language to learn. As previously mentioned in Table 2.2 of Section 

2.3.2, Python provides functionalities for data analysis as well as data manipulation. It also 

offers machine learning frameworks and is particularly well suited for deploying machine 

learning algorithms at scale. Considering these factors, Python and the pandas library are 

strong tools when working with data science. The wide range of possibilities these tools 

provide makes it an effective and applicable option for the entire data science project. 

3.1.2 SQL 

SQL solves most tasks using relatively simple queries. Some of the tasks, however, 

require a complicated workaround in order to be solved. Examples are pivoting data or 

removing diacritics. These tasks therefore become very time-consuming to perform, 

especially for non-experts. Thus, SQL is efficient for performing most of the tasks but the 

ones that do not have an obvious solution, gets very complicated and requires experience. 
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3.1.3 R 

R provides some data preparation tasks using simple functions. However, R is made 

for data analysis and additional packages are required to get the necessary data preparation 

functionalities. Using these additional packages, all the data preparation tasks in Table 3.1 

are possible to achieve with R. The drawbacks of R as a data manipulation language is the 

inefficiency of the process due to the required additional packages. Over half of the data 

preparation tasks required, or was at least more efficiently performed with, additional 

packages. The dplyr package provide many functions for data preparation tasks, e.g., for 

sorting, filtering, aggregating, and deduplicating data. The tidyr package provide 

functionalities for pivoting data and splitting columns, for instance. In addition, the grepl 

package was mentioned for checking permitted characters, and the stringi package for 

removing diacritics. Some of the data preparation tasks are possible to perform without 

additional packages, but not in a simple and efficient ǿŀȅΦ ¢ƘŜǎŜ ŀǊŜ ŀƭǎƻ ƳŀǊƪŜŘ ŀǎ άϝέ ƛƴ 

Table 3.1, as the additional packages provide more efficient ways of solving the tasks. The 

large set of packages required to do all the data preparation tasks makes the process more 

time-consuming, as a data scientist would have to look up the different packages needed to 

perform the data preparation process. However, this probably is only a problem the first few 

times. Once the required packages are identified they provide the necessary functionalities. 

As mentioned in Table 2.2 of Section 2.3.2, R has a steep learning curve which is also worth 

considering when choosing which tool to use for a data science project. Overall, the lack of 

native support for data preparation tasks and the steep learning curve for non-experts 

makes R a poorer choice than for instance Python pandas. 

3.1.4 RapidMiner 

RapidMiner is one of the applications reviewed in this chapter. As seen in Table 3.1, 

RapidMiner provides most of the preparation tasks. However, three of them are marked as 

unavailable. There might be ways to solve these tasks, but it is not clear from the 

documentation, and it is therefore assumed that these tasks either are completely 

unavailable or at least requires a workaround in order to solve. RapidMiner still provides a 

simple solution to the data preparation tasks that are available, and therefore is considered 

a highly efficient tool for data preparation. 
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3.1.5 KNIME 

KNIME is another application which provides all of the data preparation tasks. In 

KNIME, the components which performs the different tasks are called nodes. Some of the 

tasks requires a few nodes in order to be solved, but they are still easy to perform. With all 

the data preparation tasks available in the application, KNIME seems to provide even more 

functionalities than RapidMiner, and is therefore considered a slightly more efficient tool. 

3.1.6 Trifacta 

The Trifacta application only misses functionality for removing diacritics. The rest of 

the data preparation tasks are easily performed in the application. As with RapidMiner and 

KNIME, this makes the application a highly efficient tool for data preparation. The simple 

user interface and the availability of data preparation tasks makes Trifacta a great tool to 

consider, especially for non-experts. 

3.1.7 OpenRefine 

The OpenRefine application is missing a few of the data preparation tasks, as seen in 

Table 3.1. Most important is the grouping and aggregation of data. These data preparation 

tasks are included in all the previously reviewed applications and languages. Although 

OpenRefine offer many of the preparation tasks in Table 3.1, the lack of data preparation 

tasks should be considered when choosing a tool for the data transformation process as it 

might affect the efficiency of the process. Spending time on workarounds or having to use 

additional tools to perform the data transformation makes the process more time-

consuming. 

3.1.8 Talend Data Preparation 

As shown in Table 3.1, Talend Data Preparation is missing a couple of data 

preparation tasks but provide most of them. As with OpenRefine, the lack of data 

preparation tasks has to be taken into consideration when choosing a tool, as workarounds 

or use of additional tools is time-consuming and inefficient. 

3.1.9 Tableau Prep 
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Tableau Prep are missing quite a few data preparation tasks, as seen in Table 3.1. It is 

the tool that provides the least tasks. However, what tasks are needed in the particular 

context has to be considered when choosing a tool. If the missing preparation tasks are not 

relevant in that context, Tableau can still be an efficient tool.  

3.2 Results of the review 

Table 3.1 provides a quick overview of which data preparation tasks are provided 

from the different tools. This can be considered when selecting a tool for the data 

transformation process, in order to get some insight into the efficiency of the tool. Many 

missing data preparation tasks might indicate that the tool is missing important functionality 

and therefore is inefficient. LǘΩǎ ŀƭǎƻ ǿƻǊǘƘ ƳŜƴǘƛƻƴƛƴƎ that the tools are evolving, and 

suggestions from the community often are taken into account in new releases of the tools. 

Thus, there is no guarantee that the tool that currently provides the most data preparation 

tasks will always be the better choice.  

The review of the technical documentation revealed that that the languages Python 

pandas, SQL, and R often requires workarounds or additional packages and libraries. 

Therefore, the decision should be made also considering the context it is being used in. For 

instance, if the data is going to be used for Machine Learning, Python is a good choice, as 

previously mentioned. If the purpose is to do data analysis, R is specifically designed for that 

and is particularly well suited. And as previously mentioned, the languages also require some 

programming experience. The applications, on the other hand, all provide a user interface 

which makes the process much easier for non-experts. However, the flexibility of the 

applications should be considered, as the user interface might limit the user to only a set of 

specific operations.  
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4 Case Study: Comparing Declarative vs. Procedural 

Data Transformation Tools 

In this chapter a case study of a selection of two data transformation tools from the 

review in Section 3 will be conducted. One of the tools is declarative and the other is 

procedural. The case study considers a situation where a data scientist is handed a set of 

data files that needs to be transformed in order to answer a question. The question is: 

How many calories worth of food did each municipality in Norway produce per square 

meter in 2019? 

The question is to be answered using six different data files. The case will be solved 

using Python pandas library, which is a procedural approach to data transformation, and 

SQL, which is the declarative approach to the data transformation. The necessary data 

preparation tasks will be performed and each of the tools will be evaluated based on 

whether they provide the functionality for performing the tasks or not. In addition, the tools 

will be evaluated with regards to some measures, namely, time-consumption, flexibility, 

expressiveness, usability, and readability. 

4.1 Python pandas library 

In this chapter, the process of preparing the data for an analysis where the answer to 

the question can be found will be demonstrated using the Python library pandas (Pandas, 

n.d.-a). The process contains two general steps: Data Discovery and Data Preparation. During 

the Data Discovery the raw data will be investigated, and the necessary data preparation 

steps will be identified. Later, during the Data Preparation step, the necessary data 

preparation tasks will be performed in order to reach the desired format and structure. In 

the end the different fields of the prepared datasets can be mapped before the data can be 

integrated. The final data can be used to answer the question. 

4.1.1 Importing pandas and loading the data 
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In this case study the Anaconda distribution has been installed beforehand, and the 

pandas library has also been installed using pip (pypi, n.d.). Pandas library is then easily 

imported into a Jupyter Notebook (Jupyter, 2022) as shown in the code line below: 

1 import pandas as pd  
 

The data is loaded simply by using ǇŀƴŘŀǎΩ ǊŜŀŘŜǊ ŦǳƴŎǘƛƻƴǎΦ /{± ŦƛƭŜǎ ŀǊŜ ǊŜŀŘ ǳǎƛƴƎ 

the read_csv() function (pandas, n.d.-u) where the sep argument specifies the delimiter used 

in the files. Iƴ ǘƘƛǎ ŎŀǎŜ ŀƭƭ ǘƘŜ /{± ŦƛƭŜǎ ǳǎŜ άΤέ ŀǎ ŘŜƭƛƳƛǘŜǊ, therefore sep ƛǎ ǎŜǘ Ŝǉǳŀƭ ǘƻ άΤέΦ 

The XLSX file is read using the read_excel function (pandas, n.d.-v). The code lines loading 

the different data files are shown below: 

1 # Load the data  
2 ac_businesses _init  = pd.read_csv("foretak.csv", sep=";")  
3 ac_properties _init  = pd.read_csv("grunneiendommer.csv", sep=";")  
4 meat_deliveries _init  = pd.read_csv("slakteri.csv", sep=";")  
5 dairy_deliveries _init  = pd.read_csv("meieri.csv", sep=";")  
6 egg_deliveries _init  = pd.read_csv("eggpakkeri.csv", sep=";")  
7 grain_deliveries _init  = pd.read_csv("korn.csv", sep=";")  
8 nutrients_table _init  = pd .read_excel("matvaretabellen.xlsx")  

 

4.1.2 Agricultural Properties 

Data Discovery 

This data file is from Felles Datakatalog and contains information about all the 

agricultural properties in Norway1. Properties in Norway have different identification 

numbers called άgardsnummerέ, άbruksnummerέ and άfestenummer". These are irrelevant 

for this case study, but they are some of the columns in the raw data. In addition, the 

properties have a column which holds the identification number of the municipality the 

ǇǊƻǇŜǊǘȅ ƛǎ ƛƴΦ ¢Ƙƛǎ ŎƻƭǳƳƴ ƛǎ ƴŀƳŜŘ άƪƻƳƴǊέ ŀƴŘ ƛǎ ŜǎǎŜƴǘƛŀƭ ŦƻǊ ǘƘƛǎ ŎŀǎŜ ǎǘǳŘȅΦ ¢ƘŜ ǊŜǎǘ ƻŦ 

the columns provides information about the area of land each of the properties has. Some of 

the land is categorized as farmland, some is categorized as forest, along with a few other 

categories. Most of these are not important in this case study. The column that is interesting 

 

 

1 https://data.norge.no/datasets/0dabd5e4-514c-4667-adfc-aa4fe741142b 

https://data.norge.no/datasets/0dabd5e4-514c-4667-adfc-aa4fe741142b
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ƛǎ ǘƘŜ ƻƴŜ ƴŀƳŜŘ άƧƻǊŘōǊǳƪǎŀǊŜŀƭέΣ ŀǎ ǘƘƛǎ ƛǎ ǘƘŜ ƻƴŜ ǘƘŀǘ ǘŜƭƭǎ ǳǎ ǘƘŜ ŀǊŜŀ ƻŦ ŦŀǊƳƭŀƴŘ ƻŦ ǘƘŜ 

property. 

To explore the data the head() method (pandas, n.d.-h) can be used. This method 

outputs a small sample of a Series or DataFrame. The default number of elements in the 

sample is 5 but adding a number inside the parentheses will output the given number of 

elements. 

1 ac_properties_init.head()  

 

This outputs the data shown in Figure 4.1. 

 

Figure 4.1 A sample of the agricultural properties data 

What needs to be done 

What is needed from this dataset is the total area of farmland of each municipality. 

To get this, the following data preparation tasks are necessary: 

¶ Drop irrelevant columns 

¶ Remove null data 

¶ Group the data by Municipality ID and calculate the total area of farmland for each 

municipality 

Data Preparation 

Drop irrelevant columns 

In this case, the only columns that are relevant are Municipality ID (komnr) and area 

of farmland (jordbruksareal). Since only two columns is needed and 13 columns are 

irrelevant, it is easier to create a subset of the data only containing the desired columns. This 

is done in the following line of code: 
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1 ÁÃʍÐÒÏÐÅÒÔÉÅÓʍÓÕÂÓÅÔ ˮ ÁÃʍÐÒÏÐÅÒÔÉÅÓʍÉÎÉÔǁǁƥËÏÍÎÒƦƗ ƥÊÏÒÄÂÒÕËÓÁÒÅÁÌƦǂǂ 

 

Remove null data 

The properties in this dataset has area of farmland, forests and area of other types. 

Some of the properties in the data only has forests, and the area of farmland is therefore 

0.0. As mentioned in the previous section, these properties are not interesting in this case 

and can therefore be removed. They are removed by creating another subset of data where 

the rows that has area of farmland greater than 0 is included, and the rest is filtered out. 

This is shown in the following line of code: 

1 ÁÃʍÐÒÏÐÅÒÔÉÅÓ ˮ ÁÃʍÐÒÏÐÅÒÔÉÅÓʍÓÕÂÓÅÔǁÁÃʍÐÒÏÐÅÒÔÉÅÓʍÓÕÂÓÅÔǁƥÊÏÒÄÂÒÕËÓÁÒÅÁÌƦ ˲ ʣǂǂ 

 

Looking at the current data, it only contains the two columns we desired and the 

rows where the area of farmland seem to be gone. This is shown in Figure 4.2. 

 

Figure 4.2 Output of the current subset of the agricultural properties data 

Group data by Municipality ID 

Now, to find the area of farmland per municipality the groupby() (pandas, n.d.-g) and 

agg() (pandas, n.d.-c) methods can be used. The groupby() method groups the data by the 

column that is added in the parentheses. In this case, the data needs to be grouped by 
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Municipality ID (komnr). Since the total area of farmland per municipality is what is needed, 

the agg() method is used to specify which aggregation functions to use on which columns. 

Here, the area of farmland needs to be summarized for each municipality. This results in the 

following line of code: 

1 ÁÒÅÁʍÏÆʍÆÁÒÍÌÁÎÄʍÐÅÒʍÍÕÎÉÃÉÐÁÌÉÔÙ ˮ ÁÃʍÐÒÏÐÅÒÔÉÅÓƚÇÒÏÕÐÂÙƽǁƥËÏÍÎÒƦǂƗ ÁÓʍÉÎÄÅØˮ&ÁÌÓÅƾ 
       ƚÁÇÇƽǅƥÊÏÒÄÂÒÕËÓÁÒÅÁÌƦƙ ƥÓÕÍƦǆƾ 

 

Looking at the current dataset, it now only contains the municipality ID and area of 

farmland columns. This can be seen in Figure 4.3. 

 

Figure 4.3 Output of the prepared agricultural properties data 

Comparing the initial dataset and the final dataset using the shape attribute (pandas, 

n.d.-o), it can be seen that the data has been significantly reduced, with about 314,500 rows 

and 13 columns. The code lines and output are shown in Figure 4.4. The output shows the 

number of rows and columns, respectively, in parentheses. 

 

Figure 4.4 Comparing the size of the initial and final agricultural properties dataset 

4.1.3 Meat Deliveries 
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This data file contains information about the deliveries of meat from each farm2. It 

contains columns for organization ID, name of the agricultural business/owner of the farm 

and the municipality ID. In addition, each meat type has a column giving the amount of each 

type of meat produced by each farm.  

Data Discovery 

The next dataset is explored in the same way using the head() method. This dataset 

contains the amount of produced meat per organization. The amount is also linked to a 

municipality ID. From this dataset, the amount of each type of meat for each municipality is 

needed. The necessary steps to reach this is listed below: 

¶ Drop irrelevant columns 

¶ Unpivot data 

¶ Remove null data 

¶ Split column 

¶ Simplify meat types 

¶ Group by municipality ID and type of meat 

Data Preparation 

Drop irrelevant columns 

The data contains three columns that are irrelevant for the case study, and these are 

removed in the code line below using the drop() method (pandas, n.d.-f). The axis parameter 

is set equal to 1, which means it will drop columns with the labels specified in the list. 

1 meat_deliveries_ dropped  = meat_deliveries_ init.drop([ ƥnavnƦ, ƥorgnr Ʀ, ƥull _kgƦ], a xis=1)  
 

Unpivot data 

The data is in a wide format, meaning that it has many columns of data. This is 

because for each organization, there is one column for each meat type. However, one 

organization typically produced one or a few types of meat. Therefore, in one row of data 

 

 

2 https://data.norge.no/datasets/713abd23-2247-4287-a969-cf0079318685 

https://data.norge.no/datasets/713abd23-2247-4287-a969-cf0079318685
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there is one or a few cells giving the amount of produced meat, but most of the cells will be 

0 since no organization produces all types of meat. Referring back to section 2.1, the 

characteristics of tidy data described in (Wickham, 2014) was: 

¶ Each variable is a column 

¶ Each observation is a row 

¶ Each type of observational unit is a table 

Starting from the bottom, the data table is one observational unit as this is a table of 

the amount of meat produced by each organization. The variables needed in this data is the 

type of meat and the amount, so these should be the columns. Each observation should in 

this case be the amount of each meat type produced in each municipality. Therefore, the 

data is unpivoted into a long format, keeping the municipality ID column and naming the 

ƴŜǿ ŎƻƭǳƳƴǎ άǘȅǇŜέ ŀƴŘ άŀƳƻǳƴǘέ.  

The unpivoting of the data is done using the melt() method (pandas, n.d.-l). In the 

method, identifier variables (id_vars) and measured variables (value_vars) can be set. 

Identifier variables are the ones that are kept the way they are, while measured variables 

will be unpivoted. The line of code is shown below: 

1 meat_deliveries_melted = pd.melt(meat_de liveries_dropped ,  id_vars= [ƥkomnrƦ],  
       var_ name=Ʀtype Ʀ,  
       value_ name=ƦamountƦ)  

 

¢ƘŜ Řŀǘŀ ƴƻǿ Ŏƻƴǎƛǎǘǎ ƻŦ ǘƘŜ ŎƻƭǳƳƴǎ άƪƻƳƴǊέΣ άǘȅǇŜέ and amount, as shown in 

Figure 4.5. 
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Figure 4.5 Meat deliveries data after unpivoting 

Remove rows where amount = 0 

As there are many rows now having an amount of 0, these will be removed. This is 

done by filtering the dataset and creating a subset of data only containing rows that has an 

amount greater than 0. The code line is shown below: 

1 meat_deliveries_ subset = meat_d eliveries _melted[meat_deliveries_melted[ ƥamountƦ] > 0]  
 

The data looks pretty much the same, but as shown in Figure 4.6 the first 5 rows 

printed no longer has amount of 0. 

 

Figure 4.6 Meat deliveries data after removing rows where amount is 0 

Split columns 

The type of meat also contains the unit of the amount in the name. Since the unit is 

the same for all rows, the unit can be removed from the name. The column will be split and 

the rows will be renamed to only the type of meat. This is done by first splitting the different 

parts of the name by the underscore as shown in the code line below using the split() 

method (pandas, n.d.-x): 
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1 ÍÅÁÔʍÄÅÌÉÖÅÒÉÅÓʍÖÁÒÉÁÂÌÅÓ ˮ ÍÅÁÔʍÄÅÌÉÖÅÒÉÅÓʍÓÕÂÓÅÔǁƥÔÙÐÅƦǂƚÓÔÒƚÓÐÌÉÔƽƥʍƦƾ 
 

This creates a series where each row is a list of the two parts of the name, the meat 

type and the unit, as shown in Figure 4.7. 

 

Figure 4.7 Lists of parts of the "type" column of the meat deliveries data 

Now, the next code lines first makes a copy of the previous subset of data using the 

copy() method (pandas, n.d.-e), drops the type column where the unit is still in the type 

name, add a new type column where only the type is added. Lastly, the newly added type 

column will be added to the end of the table. To keep the same order for all datasets, the 

columns are rearranged in the last line of code. All the code lines are shown below: 

1 # Copy the old subset  
2 meat_deliveries_subset_copy = meat_deliveries_subset.copy()  
3 # Drop the old types  
4 meat_deliveries_split = meat_deliveries_subset_copy.drop(['type'], axis=1)  
5 # Add a new type column with the values of the splitted types  
6 meat_deliveries_split['type'] = meat_deliveries_variables.str.get(0)  
7 # Rearrange the order of the columns to match the other datasets  
8 meat_deliveries_split = meat_deliveries_split[['komnr', 'type', 'amount']]  

 

The data now looks as shown in Figure 4.8. 
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Figure 4.8 A sample of the current Meat deliveries data.The ǳƴƛǘ Ƙŀǎ ōŜŜƴ ǊŜƳƻǾŜŘ ŦǊƻƳ ǘƘŜ ǘȅǇŜǎ ƛƴ ǘƘŜ άǘȅǇŜέ 

column.Simplify meat types 

The meat types are very specific and will not match the nutrients table that will be 

described later. Therefore, some of the categories should be added together into one 

ōǊƻŀŘŜǊ ŎŀǘŜƎƻǊȅΦ !ƴ ŜȄŀƳǇƭŜ ƛǎ ǘƘŜ ŎŀǘŜƎƻǊȅ άǎƘŜŜǇέΣ ǿƘƛŎƘ ƛǎ ŎŀǘŜƎƻǊƛȊŜŘ ŀǎ άǎŀǳέΣ 

άǳƴƎǎŀǳέ ŀƴŘ άǾŀŜǊέΦ ¢ƘŜ ŘƛŦŦŜǊŜƴŎŜ ƛǎ ǘƘŜ ŀƎŜ ŀƴŘ ǎŜȄ ƻŦ ǘƘŜ ǎƘŜŜǇΦ CƻǊ ƛƴǎǘŀƴŎŜΣ άǳƴƎǎŀǳέ 

ƛǎ ŀ ȅƻǳƴƎ ǎƘŜŜǇΣ ŀƴŘ άǾŀŜǊέ ƛǎ ŀ ƳŀƭŜ ǎƘŜŜǇΦ ¢ƘŜǎŜ ǘƘǊŜŜ ŎŀǘŜƎƻǊƛŜǎ ŎƻǳƭŘ ōŜ ƎƛǾŜƴ ǘƘŜ 

ōǊƻŀŘŜǊ ŎŀǘŜƎƻǊȅ άǎƘŜŜǇέΦ In addition, some of the meat types are not in the nutrients table 

at all and there is no substitute for it. For instance, horse and goat meat. The meat deliveries 

data also contains the amount of wool produced, which is not relevant in this case. These 

types will be removed from the data. 

To do this, the new and broader categories of meat is first created by creating lists of 

the types that are to be considered the same category. Then the fromkeys() method 

(Python, n.d.-b) is used to create dictionaries from the lists. The fromkeys() method takes in 

the keys and value and returns a dictionary and it is used to create a dictionary where each 

element in the lists are set as keys and the specified value is set as value. The specified value 

is in this case the simplified types of meat. A new dictionary named simplified_meat_types 

can now be created, and all the dictionaries can be added to this. The code lines are shown 

below: 



42 
 

1 L1 = ['gris', 'purke', 'raane']  
2 d1 = dict.fromkeys(L1, 'svin')  
3 L2 = ['okse', 'ungokse', 'ku', 'ungku', 'kvige']  
4 d2 = dict.fromkeys(L2, 'okse')  
5 L3 = ['hons', 'hane']  
6 d3 = dict.fromkeys(L3, 'høne')  
7 L4 = ['lam', 'lam_villsau']  
8 d4 = dict.fromkeys(L4, 'lam')  
9 L5 = ['vaer', 'sau', 'ungsau']  
10 d5 = dict.fromkeys(L5, 'sau')  
11 L6 = ['kalv']  
12 d6 = dict.fromkeys(L6, 'kalv')  
13 L7 = ['kylling']  
14 d7 = dict.fromkeys(L7, 'kylling')  
15 L8 = ['kal kun']  
16 d8 = dict.fromkeys(L8, 'kalkun')  
17 L9 = ['and']  
18 d9 = dict.fromkeys(L9, 'and')  
19 L10 = ['gaas']  
20 d10 = dict.fromkeys(L10, 'gås')  
21 
22 # Create a dictionaty and add all dictionaries to it (d1 to d10)  
23 simplified_meat_types = {**d1, **d2, **d3, **d4, **d5, **d6, **d7,  
     **d8, **d     9, **d10}  

 

The final dictionary now looks as shown in Figure 4.9. 

 

Figure 4.9 Dictionary of simplified meat types 

The final dictionary can be used to map the simplified meat types to the initial meat 

types in the meat deliveries dataset. This is done using the map() method, which maps the 
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values according to a input mapping (pandas, n.d.-r). In this case, the values are mapped 

according to the dictionary. The line of code is shown below: 

1 meat_deliveries_split[ ƥtype Ʀ] = meat_de liveries_split[ ƥtypeƦ].map(simplified_me at_types)  
 

The map() method will set all values that it cannot find in the dictionary as keys to 

NaN, which means that in this case wherever e.g. categories horse and goat are in the data, 

there will be a NaN value. Therefore, a subset of data is created from the previous dataset, 

where the data is filtered using the notnull() method (pandas, n.d.-s). The notnull() method 

detects existing values and returns a boolean object that indicates if the value is null or not. 

Non-missing values are mapped to True, while missing values (for instance NaN) is mapped 

to False. In this way, the subset of data will only contains the values that are not NaN. The 

code line is shown below: 

1 meat_deliveries_s ubset = meat_deliveries_split[meat_deliveries_split[ ƥtype Ʀ].notnull()]  
 

Group by municipality ID and type of meat 

To get the amount of each type of meat delivered for each municipality, the data is 

grouped by both municipality ID (komnr) and type of meat (type). The amount is then 

summarized per municipality and meat type using the aggregation function sum and pandas 

agg() method. 

1 meat_deliveries_ per_munici pality  = meat_deliveries_s pl it_subset.gr oupby( [ƥkomnrƦ, ƥtype Ʀ],  
         as_index=False)  
         .agg({ ƥamountƦ:  ƥsumƦ})  
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Figure 4.10 A sample of the final Meat deliveries data.All the necessary data preparation tasks have been performed, and 
the data now shows the amount of each meat type for each municipality. 

4.1.4 Dairy Deliveries 

The data file from Felles Datakatalog contains information about deliveries of cow 

and goat milk3. It contains columns for organization ID (orgnr), name of the owner of the 

organization, municipality ID and amount of cow milk and goat milk.  

Data Discovery 

Since the goal is to find the amount of each type of milk produced in each 

municipality, the necessary data preparation tasks are: 

 

 

3 https://data.norge.no/datasets/ce1f1dfc-704f-43c8-b133-51f5a20ee406 

https://data.norge.no/datasets/ce1f1dfc-704f-43c8-b133-51f5a20ee406
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¶ Drop irrelevant columns 

¶ Unpivot data 

¶ Remove null data 

¶ Split column 

¶ Group by municipality ID and type of milk 

Data Preparation 

Drop irrelevant columns 

The organization ID and name of the owner is not relevant in this case, therefore 

these columns should be dropped. Columns are dropped from a pandas DataFrame using the 

drop() method, which drops the specified labels from rows or columns. The axis parameter 

is set to 1, which means it drops the columns with the specified labels in the inputted list. 

The code line is shown below: 

1 dairy _deliveries _dropped = dairy_deliveries_init .drop([ ƥnavnƦ, ƥorgnr Ʀ], ax is=1)  
 

The data now looks as shown in Figure 4.11. 

 

Figure 4.11 Dairy deliveries data after dropping irrelevant columns 

Unpivot data 

To get the dairy deliveries data in a similar format and structure as the meat 

deliveries data, it is unpivoted using the melt() method. The municipality ID (komnr) columns 

is kept as is, and the cow and goat milk columns are unpivoted. The new columns are named 

άǘȅǇŜέ ŀƴŘ άŀƳƻǳƴǘέΦ ¢ƘŜ ŎƻŘŜ ƭƛƴŜ ƛǎ ǎƘƻǿƴ ōŜƭƻǿΥ 
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1 dairy_deliveries_melted = pd.melt(dairy_deliveries_dr opped,  
     ÉÄʍÖÁÒÓˮǁƥËÏÍÎÒƦǂƗ  
     ÖÁÒʍÎÁÍÅˮƦÔÙÐÅƦƗ  
     ÖÁÌÕÅʍÎÁÍÅˮƦÁÍÏÕÎÔƦƾ 

 

The unpivoted data looks as shown in Figure 4.12. 

 

Figure 4.12 Dairy deliveries data after unpivoting 

Remove null data 

Since most farms only produce one type of milk, there will be a lot of rows having an 

amount of 0. These rows are redundant and can be removed. This is done in the following 

line of code: 

1 dairy_deliveries_ subset  = dairy_deliveries_ melted [ dairy_deli veries_me lted[ ƥamountƦ]  > 0.0]  
 

Split column 

Similarly as in the meat deliveries dataset, the type of milk also contains the unit. The 

unit is liter for all entries in the data table, so it can be removed from this dataset as well. 

This is done in the same way as before and will not be described again in detail. See section 

4.1.3 for details on how this was done for the meat deliveries data. 

The result after splitting the column and setting the type to the first part, is shown in 

Figure 4.13. 
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Figure 4.13 Dairy deliveries data after splitting the "type" column 

Group by municipality ID and grain type 

The dairy delivery data is grouped in the same way as the meat delivery data, by 

using the groupby() method. It is grouped by both municipality ID (komnr) and type of milk 

(type). The code line is shown below: 

1 dairy_deliveries_ per_municipality =  dairy_deliveries_ split.groupby( [ƥkomnrƦ, ƥtype Ʀ],  
             as_index=False )  
             .agg( {ƥamountƦ: ƥsumƦ} )  

 

The dairy deliveries data now looks as shown in Figure 4.14. 

 

Figure 4.14 The final Dairy deliveries data.All data preparation steps have now been performed. 

4.1.5 Egg Deliveries 
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This data file contains information about the amount of eggs delivered from each 

organization4. It contains the columns organization ID (orgnr), name of organization owner 

(navn), municipality ID (komnr), and the amount of eggs in kilograms (egg_kg). 

Data Discovery 

To find the amount of eggs delivered in each municipality, the necessary data 

preparation tasks are: 

¶ Drop irrelevant columns 

¶ Check for null values 

¶ !ŘŘ ŀ άǘȅǇŜέ ŎƻƭǳƳƴ 

¶ Rename column 

¶ Group by municipality ID 

Data Preparation 

Drop irrelevant columns 

Again using the drop() method, the organization ID (orgnr) and owner (navn) is 

dropped. The code line is shown below: 

1 ÅÇÇʍÄÅÌÉÖÅÒÉÅÓʍÄÒÏÐÐÅÄ ˮ ÅÇÇʍÄÅÌÉÖÅÒÉÅÓʍÉÎÉÔƚÄÒÏÐƽǁƥÏÒÇÎÒƦƗ ƥÎÁÖÎƦǂƗ ÁØÉÓˮʦƾ 
 

The data now only contains the columns municipality ID (komnr) an amount of eggs 

(egg_kg), as shown in Figure 4.15. 

 

 

4 https://data.norge.no/datasets/d58a8898-6162-43cd-9df8-5ae0b5fa9ebc 

https://data.norge.no/datasets/d58a8898-6162-43cd-9df8-5ae0b5fa9ebc
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Figure 4.15 Egg deliveries data after dropping irrelevant rows 

Check for null values 

There are several ways to check for null values. One way is using the info() method 

(pandas, n.d.-j). This will output how many non-null values are in each column. If the number 

of non-null values are not equal to the total number of values in the column, there are null 

values in the column. Another way is using the isnull() (pandas, n.d.-k) and any() (pandas, 

n.d.-d) methods can be used in combination to check for null values and filter out any null 

values from the data. The any() method returns whether any element is True. In this case 

over axis 1, which is the columns. This is done as shown in the code line below: 

1 null_data  = egg_deliveries_ drop ped[eg g_deliveries_dropped. isnull().any(axis=1)]  
 

Since there are no null values in this dataset, the output of null_data is an empty 

data table, as shown in Figure 4.16. 

 

Figure 4.16 Null values in the egg deliveries dataset 

Add a new column 

¢ƻ ƳŀǘŎƘ ǘƘŜ ƻǘƘŜǊ ŘŀǘŀǎŜǘǎ ŀƴƻǘƘŜǊ ŎƻƭǳƳƴ ƛǎ ŀŘŘŜŘ ƴŀƳŜŘ άǘȅǇŜέΦ {ƛƴŎŜ ǘƘƛǎ Řŀǘŀ 

only Ŏƻƴǘŀƛƴǎ ŀƳƻǳƴǘ ƻŦ ŜƎƎΣ ǘƘŜ ǘȅǇŜ ǿƛƭƭ ōŜ ǎŜǘ ǘƻ άŜƎƎέ ŦƻǊ ŀƭƭ ǊƻǿǎΦ ¢ƘŜ ŎƻŘŜ ƭƛƴŜ ƛǎ ǎƘƻǿƴ 

below: 
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1 ÅÇÇʍÄÅÌÉÖÅÒÉÅÓʍÄÒÏÐÐÅÄǁƥÔÙÐÅƦǂ ˮ ƯÅÇÇư 
 

The data now looks as shown in Figure 4.17. 

 

Figure 4.17 9ƎƎ ŘŜƭƛǾŜǊƛŜǎ Řŀǘŀ ŀŦǘŜǊ ŀŘŘƛƴƎ ǘƘŜ άǘȅǇŜέ ŎƻƭǳƳƴ 

Rename column 

¢ƘŜ άŜƎƎψƪƎέ ŎƻƭǳƳƴ ǎƘƻǳƭŘ ōŜ ǊŜƴŀƳŜŘ ǘƻ ƳŀǘŎƘ ǘƘŜ ƻǘƘŜǊ ŘŀǘŀǎŜǘǎΦ ¢Ƙƛǎ ŎƻƭǳƳƴ ƛǎ 

ǊŜƴŀƳŜŘ ǘƻ άŀƳƻǳƴǘέ using the rename() method (pandas, n.d.-m), which takes in a 

dictionary containing the columns to rename and the new name to apply. The line of code is 

shown below: 

1 egg_deliveries  = egg_deliveries_dropped .rename(c olumns={ƥegg_kgƦ: ƥamountƦ})  
 

The data now looks as shown in Figure 4.18. 
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Figure 4.18 Egg deliveries data after renaming the "egg_kg" column to "amount" 

Rearrange columns 

To get the egg deliveries data to match the other dataset, the order of the columns is 

rearranged by extracting the columns in the desired order and saving them to the dataset 

egg_deliveries. This is done in the following line of code: 

1 egg_deliveries = egg_deliveries [[ ƥkomnrƦ,  ƥtype Ʀ, ƥamountƦ] ]  
 

The columns are now in the desired order, as shown in Figure 4.19. 

 

Figure 4.19 Egg deliveries data after rearranging the columns 

Group by municipality ID 

Lastly, the egg deliveries data needs to be grouped by municipality ID and the 

amount is summarized. This is done in the code line below: 

1 ÅÇÇʍÄÅÌÉÖÅÒÉÅÓʍÐÅÒʍÍÕÎÉÃÉÐÁÌÉÔÙ ˮ ÅÇÇʍÄÅÌÉÖÅÒÉÅÓƚÇÒÏÕÐÂÙƽǁƥËÏÍÎÒƦƗ ƥÔÙÐÅƦǂƗ  
          as_index=False)  
         ƚÁÇÇƽǅƥÁÍÏÕÎÔƦƙ ƥÓÕÍƦǆƾ 
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This results in the dataset only containing one row of the amount of egg produced for 

each municipality ID. A sample of the data is shown in Figure 4.20, where you can see that 

there is only one row for each municipality ID (komnr). 

 

Figure 4.20 Final Egg deliveries data after preparation 

4.1.6 Grain Deliveries 

This data file contains information about the deliveries of different types of grain5. It 

contains the columns organization ID (orgnr), name of owner of organization (navn) and 

municipality ID (komnr). In addition, each type of grain is divided into three categories: 

animal feed, food and seeds. Each of the types of grain, and each category of the type, has 

its own column. 

Data Discovery 

The data has a wide format and each grain type has its own column, similar to the 

meat and egg deliveries data. A lot of these categories are irrelevant or not in the nutrients 

table and should therefore be removed. All the necessary data preparation tasks are listed 

below: 

¶ Drop irrelevant columns 

¶ Unpivot data 

¶ Remove null data 

¶ Split column 

 

 

5 https://data.norge.no/datasets/2cda2089-8629-4098-835c-59b473e4a785 

https://data.norge.no/datasets/2cda2089-8629-4098-835c-59b473e4a785
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¶ Group by municipality ID 

Data Preparation 

Drop irrelevant columns 

The only relevant columns in the grain deliveries dataset are the municipality ID 

(komnr) and amount of each type of food. Since there are some columns of animal feed and 

seeds, these can be removed first. This is done by getting the column labels, converting them 

to a list using the tolist() method (pandas, n.d.-q), and storing them in a list named 

grain_deliveries_columns as shown in the code line below: 

1 grain_deliveries_cols = grain_deliveries_init.columns.tolist()  
 

The list now looks as shown in Figure 4.21. 

 

Figure 4.21 List of column labels of the grain deliveries data 

To remove the columns that are not relevant, the remove() method (Python, n.d.-a) 

is used. The columns that are needed are the municipality ID and all types of grain that is 

ŦƻƻŘΦ ¢Ƙƛǎ ƳŜŀƴǎ ǘƘŜ άƪƻƳƴǊέ ŀƴŘ ŀƭƭ ŎƻƭǳƳƴǎ ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ǿƻǊŘ άƳŀǘέ όŦƻƻŘ ƛƴ 

Norwegian). The irrelevant column labels are removed from the list using a while loop that 

loops as long as i is less than the length of the list of columns labels. An If statement is used 
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to check if the column label does not consist ƻŦ ǘƘŜ ǎǳōǎǘǊƛƴƎ άƳŀǘέ and is not equal to 

άƪƻƳƴǊέΦ ¢ƘŜǎŜ ŜƭŜƳŜƴǘǎ ƛƴ ǘƘŜ ƭƛǎǘ ŀǊŜ ǊŜƳƻǾŜŘΦ Else, the i is increased by 1. The i will 

increase until each element has been checked and the irrelevant column labels are removed. 

The code lines are shown below: 

1 # Extract only column headers containing the substring "mat"  
2 substring = "mat"  
3 i = 0  
4 while i < len(grain_deliveries_co l s):  
5  if (substring not in grain_deliveries_col s[i]) & (grain_deliveries_col s[i] != "komnr"):  
7    print(f'"{grain_deliveries_col s[i]}" does not contain the substring "mat"')  
8    grain_deliveries_col s.remove(grain_deliveries_col s[i])  
9  else:  
10   i += 1  
11   print(f'"{grain_deliveries_col s[i]}" does contain the substring "mat"')  

 

The list now looks as shown in Figure 4.22. 

 

Figure 4.22 Relevant columns of the grain deliveries data 

Now, the relevant columns can be extracted from the dataset. This is done in the 

code line below: 

1 grain_deliveries_dropped = grain_deliveries_init[grain_deliveries_co l s]  
 

A sample of the current data can be seen in Figure 4.23. 
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Figure 4.23 Grain deliveries data after removing irrelevant columns 

Unpivot 

¢ƘŜ Řŀǘŀ ƛǎ ǳƴǇƛǾƻǘŜŘ ǘƻ ƳŀǘŎƘ ǘƘŜ ƻǘƘŜǊ ŘŀǘŀǎŜǘǎΣ ŎǊŜŀǘƛƴƎ ŀ ŎƻƭǳƳƴ άǘȅǇŜέ 

ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ǘȅǇŜ ƻŦ ƎǊŀƛƴ ŀƴŘ ŀ ŎƻƭǳƳƴ άŀƳƻǳƴǘέ containing the amount of grain in 

kilograms. The code line is shown below: 

1 grain_deliveries_ melted  = pd.melt( grain_deliveries_ dropped ,  
    id_vars=[ ƥkomnrƦ],  
    var_ name=Ʀtype Ʀ,  
    value_name=ƦamountƦ)  

 

The unpivoted data is shown in Figure 4.24. 

 

Figure 4.24 Grain deliveries data after unpivoting 

Remove null data 

There are now a lot of rows with amount of 0. These are removed in the code line 

below: 

1 grain_deliveries_ subset  = grain_deliveries_ melted[grain_deliv eries_melted[ ƥamountƦ] > 0]  
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Split column 

The type is formatted like this: [type of grain] _ [mat] _ [kg]. All rows are grain used 

for food and are in kilograms, so these parts of the name can be removed. The columns 

strings are split on underscore and the first part of the string is assigned as the value of the 

Ǌƻǿǎ ƻŦ ǘƘŜ άǘȅǇŜέ column. The code line is shown below: 

1 grain_deliveries_ variables  = grain_deliveries_ subset[ ƥtype Ʀ].str. split( ƥ_Ʀ)  
2 # Copy the old subset  
3 grain_deliveries_subset_copy = grain_deliveries_subset.copy()  
4 # Drop the old types  
5 grain_deliveries_split = grain_deliveries_subset_copy.drop(['type'], axis=1)  
6 # Add a new type column with the values of the splitted types  
7 grain_deliver ies_split['type'] = grain_deliveries_variables.str.get(0)  
8 # Rearrange the order of the columns to match the other datasets  
9 grain_deliveries_split = grain_deliveries_split[['komnr', 'type', 'amount']]  

 

The data now looks as shown in Figure 4.25. 

 

Figure 4.25 Grain deliveries data after splitting the "type" column 

Group by municipality ID and type of grain 

To get the amount of each type of grain per municipality, the data needs to be 

grouped by municipality ID (komnr) and type of grain (type). This is done in the code line 

below: 

1 grain_deliveries_ per_municipality  = grain_deliveries_ split.group by(ǁƥkomnrƦ, ƥtype Ʀ] ,  
             as_index= False)  
             .agg( {ƥamountƦ: ƥsumƦ})  

 

A sample of the grouped data is shown in Figure 4.26. 
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Figure 4.26 A sample of the current Grain deliveries data.All the necessary data preparation tasks have now been performed 

4.1.7 Nutrients Table 

This data file contains the nutritional contents of different types of food6. As this file 

Ƙŀǎ ммс ŎƻƭǳƳƴǎΣ ǘƘŜȅ ǿƻƴΩǘ ŀƭƭ ōŜ ŘŜǎŎǊƛōŜŘ ƘŜǊŜ, but there are for instance columns for 

the type of food, an ID for each type of food, and one column for each type of nutrient. 

Data Discovery 

This is a very messy dataset with many empty rows of data and one row dedicated to 

the title. It also has comments and in some cells the unit of the value is given. In Figure 4.27 

you can see a small sample of the initial nutrients table data, where only 10 out of 116 

columns and 5 out of 2152 rows are shown. There is a lot of NaN values, comments and 

generally irrelevant data that should be removed. 

 

Figure 4.27 A small sample of the initial nutrient table data 

The necessary steps to get the desired data format and structure is: 

 

 

6 https://data.norge.no/datasets/9d082918-e3d4-4ae2-8efd-e7d025dfd52d 

https://data.norge.no/datasets/9d082918-e3d4-4ae2-8efd-e7d025dfd52d


58 
 

¶ Change column header 

¶ Drop redundant rows 

¶ Extract only relevant columns 

¶ Split column 

Data Preparation 

Change column header 

Since the header row only contains a title in one of the columns and the rest of the 

ŎƻƭǳƳƴǎ ŀǊŜ ƴŀƳŜŘ ά¦ƴƴŀƳŜŘΥ лέΣ ά¦ƴƴŀƳŜŘΥ мέΣ ŀƴŘ ǎƻ ƻƴΣ ǘƘŜǊŜ ƛǎ ƴƻ Ǉƻƛƴǘ ƛƴ ƪŜŜǇƛƴƎ 

this row. The first row only contains NaN values, as seen in Figure 4.27, and this can also be 

removed. The actual column headers are in row 2 (with index 1), so this row should be set as 

column header. This is done by using the pandas indexer .iloc[] (pandas, n.d.-i), which gets 

the row(s) of the inputted index. In this case, the row with index 1 should be set as column 

header. This is done by setting the column labels equal to the row as shown in the code line 

below: 

1 nutrients_table_init.columns = nutrients_table_init.iloc[1]  
 

A sample of the current data is shown in Figure 4.28. 

 

Figure 4.28 A sample of the nutrients table data with the new column headers 

Drop redundant rows 

There is still a lot of redundant rows. As seen in Figure 4.28, the first row (with index 

0) consist of only NaN values. The second row (with index 1) is set as the column header and 
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should be removed. The third row (with index 2) has a comment in the second column and 

the rest of the columns are units and NaN values. The foods are also divided into categories, 

ǎǳŎƘ ŀǎ άaƛƭƪ ŀƴŘ ŘŀƛǊȅ ǇǊƻŘǳŎǘǎέΦ ¢ƘŜre are rows that only contain the category in the 

άaŀǘǾŀǊŜέ ŎƻƭǳƳƴs, but the rest of the columns consists of NaN values. None of the above-

mentioned rows are relevant in this case and should be removed. One thing to note is that 

the comment tells me that any missing ǾŀƭǳŜǎ ŀǊŜ ŘŜƴƻǘŜŘ άaέΣ ǿƘƛŎƘ ƛǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ƪƴƻǿ 

in order to remove this data later. Rows of index 0-3 are removed in the code line below: 

1 # Drop rows containing redundant information or null values  
2 nutrients_table_dropped = nutrients_table_init.drop([0, 1, 2, 3])  

 

This removed the first four rows. Now, all the rows containing the categories of food 

Ŏŀƴ ōŜ ǊŜƳƻǾŜŘΦ {ƛƴŎŜ ǘƘŜǎŜ Ǌƻǿǎ ƻƴƭȅ Ƙŀǎ ŀ ǾŀƭǳŜ ƛƴ ǘƘŜ άaŀǘǾŀǊŜέ ŎƻƭǳƳƴΣ ƛǘ ǿƛƭƭ ƘŀǾŜ ŀ 

NaN value in the rest of the columns. Choosing one of these columns, a subset of data can 

be made by filtering out the rows where the column contains a NaN value. In this case, the 

ά{ǇƛǎŜƭƛƎ ŘŜƭέ ŎƻƭǳƳƴ ŀǊŜ ŎƘƻǎŜƴΦ CƛƭǘŜǊƛƴƎ ǘƘŜ Ǌƻǿǎ ōȅ ǳǎƛƴƎ ǘƘŜ notnull() method results in 

a subset of data where all values are non-missing values (not NaN values). The code line is 

shown below: 

1 # Remove food category rows  
2 nutrients_table_subset = nutrients_table_dropped[nutrients_table_dropped['Spiselig del']  
             .notnul l() ]  

 

A sample of the current data is shown in Figure 4.29. 
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Figure 4.29 Nutrients table data after removing redundant rows 

Extract relevant columns 

In order to get the kilocalories of each type of foodΣ ǘƘŜ ŦƻƻŘ ǘȅǇŜ ŎƻƭǳƳƴ άaŀǘǾŀǊŜέ 

ŀƴŘ ǘƘŜ ƪƛƭƻŎŀƭƻǊƛŜǎ ŎƻƭǳƳƴ ƴŀƳŜŘ άYƛƭƻƪŀƭƻǊƛŜǊέ ǎƘƻǳƭŘ ōŜ ŜȄǘǊŀŎǘŜŘ ŦǊƻƳ ǘƘŜ ŘŀǘŀǎŜǘΦ This 

is done in the code line below: 

1 nutrients_table  = nutrients_table_ subset [ [ƥ-ÁÔÖÁÒÅƦƗ ƥ+ÉÌÏËÁÌÏÒÉÅÒƦ]]  
 

A sample of the current data is shown in Figure 4.30. 

 

Figure 4.30 Nutrients table data after extracting only relevant columns 

Split column 

¢ƘŜ ǘȅǇŜ ƻŦ ŦƻƻŘ ƛƴ ǘƘŜ ŎƻƭǳƳƴ άaŀǘǾŀǊŜέ ƴƻǘ ƻƴƭȅ provides the type of food, but 

also some additional information about the food type, such as whether it is cooked or not, 

how many percent of fat it contains, the manufacturer of the food, etc. This information is 

not relevant in this case. The rest of the datasets of food production data are not very 

specific. For instance, the meat deliveries data only says pig meat, and does not specify 
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which part of the pig the meat is from. In the nutrients table, this information is included. 

However, as the information is not consistent in both datasets, there is no point in 

considering which part of the pig the meat is from. Thus, the type column (Matvare) will be 

split on comma and space (άΣ έ) and the first string will be the value that is assigned to the 

type column. 

Splitting the string on underscore is done in the code line below: 

1 # Split the string on underscore  
2 nutrients_table_variables = nutrients_table[ ƥMatvareƦ].str.split( ƥ, ƥ)  

 

This gives a Series of lists containing the parts of the string, as shown in Figure 4.31. 

 

Figure 4.31 Lists of substrings of the type of food from the Nutrients Table data. 

Next, a copy of the previous dataset is made, the old types of food are dropped and a 

new column with the first part of the string is created. This is shown in the code lines below: 

1 # Copy the old subset  
2 nutrients_table_copy = nutrients_table.copy( )  
3 # Drop the old types  
4 nutrients_table_split = nutrients_table_copy.drop(['Matvare'], axis=1)  
5 # Add a new type column with the values of the splitted types  
6 nutrients_table_split['Matvare'] = nutrients_table_variables.str.get(0)  

 

The data now looks as shown in Figure 4.32. 
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Figure 4.32 Nutrients table data after splitting the "Matvare" column.Only the first part of the string has been assigned as 
the value of the column 

Rename columns 

¢ƻ ƎŜǘ ǘƘƛǎ ŘŀǘŀǎŜǘ ǘƻ ƳŀǘŎƘ ǘƘŜ ǊŜǎǘΣ ǘƘŜ ŎƻƭǳƳƴǎ ŀǊŜ ǊŜƴŀƳŜŘ ǘƻ άǘȅǇŜέ ŀƴŘ άƪŎŀƭέΦ 

This is done using the rename() method. The code line is shown below: 

1 nutrients_table_renamed = nutrients_ table_split.rename(c olumns={  
             ƥMatvareƦ: ƥtype Ʀ,  
             ƥKilokalorier Ʀ: ƥkcal Ʀ 
             } )  

 

The data now looks as shown in Figure 4.33. 

 

Figure 4.33 Nutrients table data after renaming the columns to "type" and "kcal" 

Remove missing values 

As previously mentioned, a comment in the data said that missing values where 

ŘŜƴƻǘŜŘ άaέΦ ! ǎǳōǎŜǘ ƻŦ ǘƘŜ Řŀǘŀ ǎƘƻǳƭŘ ǘƘŜǊŜŦƻǊŜ ōŜ ƳŀŘŜΣ ŦƛƭǘŜǊƛƴƎ ƻǳǘ ǘƘŜ Ǌƻǿǎ ǿƘŜǊŜ 

kilocalories have ŀ άaέ ŀǎ ǾŀƭǳŜΦ ¢Ƙƛǎ ƛǎ ŘƻƴŜ ƛƴ ǘƘŜ ŎƻŘŜ ƭƛƴŜ ōŜƭƻǿΥ 

1 nutrients_table_re duced = nutrients_table_ren amed[nutrients_table_renamed[ ƥkcal Ʀ] != ƥMƦ]  
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Using the shape attribute the number of rows of the datasets can be checked to see 

if it has been reduced. As seen in Figure 4.34, the reduced nutrients table data has 1980 

rows and the old dataset had 1983. This means three rows of data were removed from the 

nutrients table data. 

 

Figure 4.34 Comparing the size of the dataframes after removing missing values. 

Group by type of food 

tǊŜǾƛƻǳǎƭȅΣ ǘƘŜ άaŀǘǾŀǊŜέ ŎƻƭǳƳƴ όƴƻǿ ƴŀƳŜŘ άǘȅǇŜέύ ǿŀǎ split, and the first part of 

the string was set as the value of the column. This means there will be a lot of rows with the 

same food type. Previously there were more information about the food type that specified 

the difference between these types, however, as this additional information is now removed 

these types can be grouped together. Since these types in the initial datasets where 

different, they all have different values in the kilocalories column. As the food production 

datasets are not specific enough to distinguish between these types, the kilocalories values 

will be aggregated for each type, returning the mean of the kilocalories for each type of 

food. First the column data type has to be changed to dtype float. This is done in the code 

line below: 

1 # Change data type (dtype) of the kilocalories column  
2 nutrients_table_numeric = nutrients_table_reduced.astype({'kcal': float})  

 

Then the data can be grouped by the food type as shown in the code line below: 

1 # Group by type of food  
2 nutrients_table_grouped = nutrients_table_numeric.groupby(['type'],  
                 as_index=False)  
                .agg({'kcal': 'mean'})  

 

This further reduces the data by more than 1,000 rows, as shown in Figure 4.35. 
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Figure 4.35 Checking the size of the Nutrients Table data after grouping the data. 

Changing letter case 

The food types in the nutrients table data have a capitalized first letter. This does not 

match the other datasets, and the letter case will therefore be changed. This is done by first 

creating a copy of the previous dataset as shown in the code line below: 

1 kcal_o f_foods _copy = nutrients_table_grouped .copy()  
 

¢ƘŜƴ ǘƘŜ άǘȅǇŜέ ŎƻƭǳƳƴ ƛǎ ŘǊƻǇǇŜŘ ŦǊƻƳ ǘƘŜ ŎƻǇƛŜŘ Řŀǘŀ ŀǎ ǎƘƻǿƴ ƛƴ ǘƘŜ ŎƻŘŜ ƭƛƴŜ 

below: 

1 kcal_of_foods  = kcal_of_foods _copy.drop([ ƥtype Ʀ], a xis=1)  
 

Next, ŀ ƴŜǿ άǘȅǇŜέ ŎƻƭǳƳƴ ƛǎ ŀŘŘŜŘ ŀƴŘ ǎŜǘ Ŝǉǳŀƭ ǘƻ ǘƘŜ άǘȅǇŜέ ŎƻƭǳƳƴ of the 

previous nutrients table data, applying the lower() method to convert the strings to 

lowercase. This is done in the code line below: 

1 kcal_of_foods [ƥtype Ʀ]  = nutrients _table_grouped[ ƥtype Ʀ].str.low er()  
 

This results in the data shown in Figure 4.36. 

 

Figure 4.36 Nutrients table data after performing all data preparation tasks 
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4.1.8 Data Mapping and Integration 

The datasets have now been individually prepared for integration. The types of 

datasets that are available are: 

1. One dataset containing information about area of farmland of each municipality 

2. Four datasets containing information about the amount of food produced in each 

municipality 

3. One dataset containing information about how many kilocalories each type of food 

contains 

In order to answer the question from the use case, the data needs to be integrated. 

The necessary steps in order to integrate the data is: 

¶ The food production datasets need to be concatenated to form one large datasets of 

all the produces food of each municipality 

¶ The food types of the nutrients table data and the food production data needs to be 

mapped 

¶ Do the final calculation 

Concatenating the Food Production datasets 

The food production datasets are listed below: 

¶ meat_deliveries_per_municipality 

¶ dairy_deliveries_per_municipality 

¶ egg_deliveries_per_municipality 

¶ grain_deliveries_per_municipality 

These datasets can now be concatenated using the concat() method (pandas, n.d.-b). 

This method concatenates pandas objects along a particular axis. In this case, the axis is not 

set in the code line, which means it will be set to the default which is 0 or index. The code 

line is shown below: 

1 food _prod uced_per_municipality = pd.concat([meat_deliveries_per_municipal ity,  
     dairy_deliveries_per_municipality ,  
     egg_deliveries_per_municipality,  
     grain_deliverie s_per_municipality])  
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The tail() method (pandas, n.d.-p) is used to output a sample of the data and by 

default returns the five last rows of the data frame. As shown in Figure 4.37 and Figure 4.38, 

the five first and last rows of data in the concatenated food production data are meat types 

and grain types, respectively. This is consistent with the code line above, where the meat 

deliveries data was in the first element of the list given to the concat() method, and the grain 

deliveries data was the last element of this list. 

 

Figure 4.37 First five rows of concatenated food 
production data 

 

Figure 4.38 Last five rows of the food production data 

Mapping food types of the Nutrients Table and Food Production dataset 

In order to integrate the nutrients table data and food production data, the food 

types in both the datasets needs to be mapped. This is done by first getting the unique food 

types from the food production data by using the unique() method (pandas, n.d.-y), which 

returns all unique values in a Series. The tolist() method is also used to create a list of the 

unique values. This is done in the code line below: 

1 unique_food_types = food_produced_per_municipality['type'].unique().tolist()  
 

After some exploration using a python library named thefuzz (seatgeek, n.d.) to do 

fuzzy matching between the food types in the two datasets, a few food types did not get a 

high enough matching score and therefore had to be changed manually before the rest of 

the types was matched using fuzzy matching. The types of food that had to be manually 

mapped are three types of flour, where in the nutrients table it said the flour type and 

άŦƭƻǳǊέ ŀǘ ǘƘe end. An example is άƘǾŜǘŜƳŜƭέΣ ǿƘƛŎƘ ƛǎ wheat flour. In the nutrients table, the 

ŦƻƻŘ ǘȅǇŜ ƛǎ άƘǾŜǘŜƳŜƭέ (wheat flour in English), but in the food production data the food 

type is only άƘveteέ (wheat in English). To solve this, these types of food is added to the list 

of unique food types from the food production data. This way, the food types are written in 
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the exact same way in both datasets. ¢Ƙƛǎ ǎƘƻǳƭŘƴΩǘ ōŜ ƴŜŎŜǎǎŀǊȅ ǿƘŜƴ ŘƻƛƴƎ ŦǳȊȊȅ 

matching, but as a few characters was missing from the type in the food production dataset, 

the threshold set to select a match had to be set too low. When the threshold is too low, 

some of the other types got several matches that were not a good match at all. After the 

food types are added to the list, the food types that could not be fuzzy matched has to be 

removed from the list. This is done by creating a list with the food types, iterating over the 

list using a for loop and checking whether the element is in the list of unique food types or 

not using an if statement. If the element is in the list of unique food types, it is removed 

using the remove() method. The code lines are shown below: 

1 ÕÎÉÑÕÅʍÆÏÏÄʍÔÙÐÅÓ ˩ˮ ǁʎÈÖÅÔÅÍÅÌʎƗ ʎÒÕÇÍÅÌʎƗ ʎÂÙÇÇÍÅÌʎƗ ƥÍÅÌËƦ, ƥokserull Ʀ]  
2 Ø ˮ ǁʎÈÖÅÔÅʎƗ ʎÒÕÇʎƗ ʎÂÙÇÇʎƗ ƥËÕÍÅÌËƦ, ƥokseƦ]  
3 for f in x:  
4    if f in unique_food_types:  
5        unique_food_types.remove(f)  

 

The list now contains the food types that match the nutrients table, and the ones 

that could not be fuzzy matched are removed. In total, the food production data now 

contains 16 unique food types, as shown in Figure 4.39. 

 

Figure 4.39 List of unique food types in the food production data 

A list of unique values is created for the nutrients table in the same way as shown in 

the code line below: 

1 nutrients _types _unique = kcal_of_foods[ ƥtype Ʀ].unique().tolis t()  
 






































































































