
ACIT5900

MASTER THESIS
in

Applied Computer and Information

Technology (ACIT)

May 2022

Biomedical Engineering

Creating a pipeline for functional connectivity

analysis in fNIRS motor control studies

Sindre Lilleseth

Department of Mechanical, Electronic and Chemical Engineering

Faculty of Technology, Art and Design

1

Preface

The work behind this thesis has been the most interesting and challenging project of my life.

I am tremendously enthusiastic about the opportunity to learn about one of the most

complex systems in the known universe, the human brain, alongside being humble over the

trust I have received from my supervisors during this period. With the objective of

developing a tool for analysis of the human brain’s functionality, I have done everything in

my power to create the best possible result.

I want to use this opportunity to thank the people who have shown love and support and

helped me during this exciting period of my life. I want to start with my partner, Gyda, who

has supported me unconditionally throughout the five years leading up to this final project. I

am also grateful for the support shown by my parents, Jenny and Erik, and my sister Emilie

during these years. My friends’ love and motivating words have also been essential in this

period. My friend and fellow student, Håkon, has also been an important person during

these years, and I am thankful for all the time we have spent learning, working, and having

fun together. Additionally, I would like to thank Ph.D. Candidate Haroon Khan for all his

important advice and helpful conversations.

Last but not least, I want to direct an extensive thank you to my supervisors Professor Olga

Korostynska and Professor Peyman Mirtaheri. The way they have shared their knowledge and

enthusiasm during these years has made me fall in love with science and the field of

biomedical engineering.

Sindre Lilleseth

Oslo, Norway, May 2022

2

Abstract

Functional near-infrared spectroscopy (fNIRS) has shown to be a useful imaging technique for

observing the human cortex. Its capabilities of imaging the hemodynamic variations in the

cerebral cortex during different experimental paradigms enable studies that can contribute

to unraveling the orchestration of the mind. With many questions regarding its workings still

unanswered, different techniques are being employed in the analysis of fNIRS data to

illuminate activation patterns and correlations between brain areas during different tasks.

One technique that is gotten more attention during the last years, is functional connectivity

analysis which aims to assess the temporal correlations between these areas. With the

potential of assessing the cortical connectivity, this technique can contribute to analyzing

people with different health challenges, both regarding mental and motor health.

However, with a lack of standards in pre-processing and processing techniques the analysis of

such studies is known to be time-consuming and challenging. The different processing

software and toolboxes are taking different approaches to perform these steps and with little

insight into how the data is processed during these steps, a consistent and transparent

pipeline is desired to enable reliable results in fNIRS motor control studies. This has led to

the aim of mapping the most promising techniques used in pre-processing and processing of

motor control fNIRS studies and implementing these techniques in an automatic processing

pipeline. Thus, the objective of this study has been to develop such a pipeline to facilitate

faster and more consistent functional connectivity analysis.

The developed pipeline is thoroughly described in this thesis, and its workings are presented

using data from an ongoing motor control study.

3

Table of contents
Preface .. 1

Abstract .. 2

List of figures .. 5

List of tables.. 7

List of abbreviations ... 8

1 Introduction ... 9

2 Background and literature review ... 11

2.1 Functional neuroimaging and cortical activity ... 11

2.2 fNIRS data processing ... 13

2.3 Functional connectivity .. 16

2.4 Frequencies in cortical hemodynamics .. 17

2.5 Motor control ... 18

2.6 Postural balance and gait studies ... 19

2.7 State-of-the-art fNIRS software .. 20

2.7.1 Software and toolboxes ... 20

2.7.2 File formats .. 22

2.8 Objective of the thesis .. 22

3 Methodology ... 23

3.1 Development of the pipeline.. 23

3.1.1 MATLAB as a platform ... 23

3.1.2 The Brain AnalyzIR Toolbox ... 25

3.2 Features of the pipeline ... 26

3.2.1 Loading data and creating the report.. 28

3.2.2 Pre-processing ... 28

3.2.3 Processing .. 33

4

3.3 The prior Gaitline experiment .. 35

3.3.1 Experimental design .. 36

3.3.2 Experimental details .. 37

3.4 Ethical considerations ... 38

4 Results ... 39

4.1 The output of the pipeline ... 39

4.2 FC analysis of experimental data – an example ... 44

4.2.1 Flat vs wedged sandal.. 45

4.2.2 Barefoot vs wedged Gaitline shoe ... 46

5 Discussion .. 48

5.1 The development process .. 48

5.2 The pipeline .. 50

5.2.1 Pre-processing ... 50

5.2.2 Processing for functional connectivity .. 51

5.2.3 The output from the pipeline .. 52

5.3 The analysis of the Gaitline data .. 52

6 Conclusion and future directions .. 54

References .. 57

Appendix A: Code for Live Script .. 67

Appendix B: Code for GUI in MATLAB App designer .. 77

Additional Appendices: Included in zip folder ... 86

Appendix C: The REK application nr: 322236 ... 86

Appendix D: Repository for connectivity pipeline .. 86

Appendix E: Example of report ... 86

5

List of figures

Figure 1: The cortical parcellation from Glasser et al. (2016).

(https://www.nature.com/articles/nature18933/figures/3). .. 12

Figure 2: Illustration of (A) the hemodynamic response measured in fNIRS and (B) the BOLD

response measured in fMRI. By Cinciute (2019). ... 13

Figure 3: Illustration of the photon path in fNIRS. By Pinti et al. (2018).

(https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13948).............................. 14

Figure 4: The optical absorption spectra of hemoglobin. By S. Prahl.

(https://omlc.org/spectra/hemoglobin/). .. 14

Figure 5: Types of pre-processing and processing techniques used in fNIRS studies. By Dans et

al. (2021). .. 15

Figure 6: Sample power spectral density (PSD) in fNIRS signals. By Pinto-Orellana (2022). ... 18

Figure 7: An excerpt of the live script interface of the pipeline. .. 24

Figure 8: An illustration of the GUI of the pipeline. ... 24

Figure 9: Overview of the pipeline. .. 27

Figure 10: An example of an included channel. ... 30

Figure 11: An example of a rejected channel. .. 30

Figure 12: Illustration of the photon scattering through tissue. By Shoaib et al. (2019). 32

Figure 13: The experimental paradigm. By Khan (2022). ... 36

Figure 14: Illustration of infinity walk. .. 37

Figure 15: An example of how the raw experimental data is plotted. 39

Figure 16: An example of how the trimmed experimental data is plotted. 39

Figure 17: An example of baseline-corrected data. ... 40

Figure 18: An example of data without 'bad' and short channels. .. 40

Figure 19: An example of the optical density plot. .. 41

Figure 20: An example of the plotted concentration data. .. 41

Figure 21: An example of the filtered concentration data. .. 41

Figure 22: An example of the adjacency/connectivity matrix from the functional connectivity

analysis. .. 42

Figure 23: An example of a thresholded adjacency matrix with a threshold of 75% positive

correlation. ... 43

6

Figure 24: An example of the connectivity plot (circular graph). The threshold is here 75%

positive correlation... 44

Figure 25: The connectivity plot of participant 3 from condition 2 (flat sole) data with R-

threshold = 75%. ... 45

Figure 26: The connectivity plot of participant 3 from condition 3 (wedged hell) data with R-

threshold = 75%. ... 45

Figure 27: The connectivity plot of participant 3 during condition 1 (barefoot) data with R-

threshold = 75%. ... 47

Figure 28: The connectivity plot of participant 3 during condition 5 (Gaitline shoe) data with

threshold = 75%. ... 47

7

List of tables

Table 1: Overview of well-known software and toolboxes in fNIRS analysis. 20

Table 2: The conditions of the Gaitline study. The information is taken from Khan (2022). ... 36

8

List of abbreviations

BOLD - Blood Oxygen Level Dependent

DPI - Dot Per Inch

DPF - Differential Pathlength Factor

EC - Effective Connectivity

EEG - Electroencephalography

FC - Functional Connectivity

fMRI - Functional Magnetic Resonance

fNIRS - Functional Near-Infrared Spectroscopy

GLM - General Linear Model

GUI - Graphical User Interface

Hb - Deoxygenated Hemoglobin

Hb02 - Oxygenated Hemoglobin

HCP - Human Connectome Project

mBLL - Modified Beer-Lambert Law

MEG - Magnetoencephalography

PET - Positron Emission Tomography

PFC - Prefrontal Cortex

PMA - Pre-Supplementary Motor Area

PMC - Premotor Cortex

PMS - Premotor and Supplementary Cortex

PPF - Partial Pathlength Factor

PSD - Power Spectral Density

PVF - Partial Volume Factor

QCoD - Quartile Coefficient of Dispersion

ROI - Region of Interest

SGWA - Supramarginal Gyrus of Wernicke’s Area

SMA - Supplementary Motor Area

SMC - Sensorimotor Cortex

9

1 Introduction

The famous scientist Michio Kaku (n.d.) once said “The human brain has 100 billion neurons,

each neuron connected to 10 thousand other neurons. Sitting on your shoulders is the most

complicated object in the known universe”. With the desire to unravel the workings of the

human mind, researchers worldwide are constantly investigating how the human brain

operates. As technological innovation continues to push science forward, the mysteries of

the brain are being dissected slowly. By assessing the correlations in activation between

different brain areas, the orchestration of the brain is being investigated.

One burgeoning technique in neuroimaging is functional near-infrared spectroscopy (fNIRS)

which can measure the changes in hemodynamic variations in the cerebral cortex (Irani et

al., 2007). Since its implementation in 1977, fNIRS has been a non-invasive neuroimaging

technique able to assess the activity in outer regions of the brain as it measures the

hemodynamical variations in the region of interest (ROI) (Yucel et al., 2021). Hemodynamic

variations depend on the neuronal metabolism that occurs in activated regions dependent

on glucose and oxygen. As oxygenated and deoxygenated hemoglobin is the main absorption

component of near-infrared light, the fNIRS imaging technique enables measurements of

hemodynamic cortical responses (Pinti et al., 2020).

The mobility of fNIRS brain imaging technology enables observations of the brain in different

states as the participants can perform different tasks regarding psychological behavior and

motor control (Dans et al., 2021). Its non-invasive, unharmful, and modest influence on the

participants has proven to be useful in a variety of studies (Yucel et al., 2021). Motor control

studies aim to map how the brain function and have previously been challenging to conduct.

Therefore, the development of portable imaging techniques enables studies to be conducted

in environments that are more closely related to real-life scenarios, which can lead to the

acquisition of new and valuable information (Dans et al., 2021).

The process of fNIRS studies is separated into several necessary stages starting with the data

acquisition and ending with result interpretations. The raw data from the acquisition using

the fNIRS cap goes through steps to convert the raw signals to plots and key coefficients for

result interpretation. This range of steps is key in processing the signals and often follows a

given set of processes to run through. However, with constant development within the field,

there are no current standard procedures for pre-processing and processing the fNIRS data.

10

This can lead to inconsistent representation and analysis of fNIRS data and unnecessary

processing time (Yucel et al., 2021). Together with an absence of transparent and

standardized study protocols in fNIRS studies, challenges related to comparability and

interpretation of studies can lead to limitations in the development of the field (Herold et al.,

2017).

Given the lack of a standardized and effective pipeline for fNIRS studies, this thesis aims to

map out how researchers are processing the fNIRS data and propose a pipeline to be used by

both researchers and students in the future fNIRS motor control studies. With a primary

motivation of facilitating effective, reliable, and transparent fNIRS functional connectivity

analysis for motor control studies the following research questions are raised:

1. What is the state-of-the-art procedure for analyzing motor control fNIRS data?

2. What features are most important to include in a pipeline for functional connectivity

analysis of fNIRS data from motor control studies?

These questions provide the basis for the objective of this thesis which has been to develop a

processing pipeline for fNIRS motor control studies to enable functional connectivity analysis.

To present the workings of the pipeline, data obtained in a recent motor control study by

OsloMet is processed and reviewed.

The structure of the thesis is based on the IMRaD structure where the following chapter

includes the background together with the relevant literature review behind this work. Then,

the methodology chapter that outlines how the development of the pipeline is conducted

alongside a description of its features. Then the result of this work is presented, followed by

discussions and a conclusive summary of the thesis. Lastly, recommendations for future

directions are provided.

11

2 Background and literature review

In this chapter, the foundational literature behind this work is presented to illustrate the

field’s status and progress and what challenges the researchers face. Moreover, to provide a

common understanding of critical aspects relevant to this thesis, the challenges related to

fNIRS pipelines and study protocols are presented together with some of the main ideas and

concepts related to neuroimaging and motor control studies.

2.1 Functional neuroimaging and cortical activity

The investigation of the human brain’s functionality is constantly moving forward. To explore

how the brain operates neuroimaging techniques are being employed to map the activation

areas and their connection to other areas. Some of the most important techniques that have

contributed to the field are functional magnetic resonance (fMRI), positron emission

tomography (PET), electroencephalography (EEG), and magnetoencephalography (MEG)

(Crosson et al., 2010). These techniques have enabled modeling of the spatiotemporal brain

activation and brought the study of brain network organization, known as connectomics,

further during the last decades (Bullmore et al., 2016).

Today the field of connectomics is working towards understanding the structural and

functional connectivity of the brain. The structural approach aims to map the physical

neuronal connections between different brain regions, while the functional approach

explores the operational relationship between different brain regions in a spatiotemporal

relation (Wong et al., 2020). Essential in the development of structural and functional

connectivity is the implementation of graph theory to view the brain regions as nodes and

edges and thereby generate a network representing the connectivity of the brain (Wang et

al., 2015). The brain analysis-related literature found in the work on this thesis shows that a

significant number of researchers focus on this approach for mapping connectivity.

The current paradigm related to cortical behavior within neuroscience and brain anatomy

includes the parcellation of the cerebral cortex where the different areas are given an

approximate location in the brain (Bullmore et al., 2016). One of the most recognized

parcellations in the field is the mapping conducted by K. Brodmann in 1909 who divided the

cortex into 48 areas based on the different cell types found in each area (Zilles, 2018). These

areas have some variations between individuals that hinder a general parcellation (Van

12

Essen, 2013). Moreover, limitations in the spatial and temporal resolution, and the usability

of the imaging techniques, have previously limited the interpretation of the collected data

(Sporns et al., 2005). The mapping of the different areas is ongoing research, but scientists

are getting closer to an understanding by using different approaches for parcellation. By

combining multimodal imaging techniques, neuroanatomical approaches and machine

learning algorithms for classification, a comprehensive study related to the Human

Connectome Project (HCP) conducted by Glasser et al. (2016) mapped the cortical areas of

210 healthy young adults. As shown in Figure 1, they reported an even more detailed

separation of the areas, and their study stands as one of the most important studies in this

field in recent times (Elam et al., 2021). However, the connectivity of the brain is still an

ongoing field of research with a lot of functionality that is still unknown.

Figure 1: The cortical parcellation from Glasser et al. (2016). (https://www.nature.com/articles/nature18933/figures/3).

One of the most utilized techniques within this field is fMRI which can measure the blood

oxygen level-dependent (BOLD) signals that are a direct measure of the oxygenation within a

brain area. The signal depends on the paramagnetic properties of the deoxygenated

hemoglobin and gives information regarding the activation of different areas in the brain

based on its neuronal metabolism and has brought the field forward during the last decades

https://www.nature.com/articles/nature18933/figures/3

13

(Huppert et al., 2006). However, as fNIRS enables the measurement of both the oxygenated

and the deoxygenated hemoglobin, the hemodynamic state in a specific cortical area can be

analyzed using an additional parameter compared to fMRI (von Luhmann et al., 2020). The

differences between the signal obtained by fNIRS and the BOLD signal from fMRI are

illustrated in Figure 2.

Figure 2: Illustration of (A) the hemodynamic response measured in fNIRS and (B) the BOLD response measured in
fMRI. By Cinciute (2019).

Additionally, the development of modern fNIRS equipment enables active monitoring of

brain activation in scenarios where other techniques are impossible to employ as they have

limitations regarding either wearability or spatiotemporal resolution (Pinti et al., 2020). This

makes fNIRS a promising tool for functional imaging of cortical activity.

2.2 fNIRS data processing

The optical nature of fNIRS imaging ensures a non-ionizing, non-invasive, and practical

detection of brain activity. By transmitting light in the near-infrared area through the tissue

of the skull, the photon path goes through several layers of different tissue (Pinti et al.,

2020). These layers are illustrated in Figure 33 and influence the fNIRS signal as the photons

are scattered and absorbed by the chromophores in the tissue outside the region of interest

(ROI). Additionally, the figure also illustrates the differences between short separation

channels and long separation channels.

14

Figure 3: Illustration of the photon path in fNIRS. By Pinti et al. (2018).
(https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13948)

As the most prominent chromophores in the near-infrared area (650-950 nm (Strangman et

al., 2003)) are the oxygenated and deoxygenated hemoglobin, these layers influence the

optical signal by the variations in blood flow in the areas outside of the cortex (Dans et al.,

2021). Figure 44 illustrates the optical absorption spectra of oxy- and deoxygenated

hemoglobin, which is the main enabler for fNIRS measurements. The combination of these

factors leads to the need for the processing of the signals.

Figure 4: The optical absorption spectra of hemoglobin. By S. Prahl. (https://omlc.org/spectra/hemoglobin/).

https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13948
https://omlc.org/spectra/hemoglobin/

15

This processing is divided into several steps that are necessary to obtain interpretable

information regarding the hemodynamics in the tissue. These steps are presented more

thoroughly in chapter 3.2 of this thesis, but a brief explanation is also provided in this

section. The first step in this data processing is to convert the signal from the raw voltages

received by the optodes in the acquisition equipment. The raw signal, which is a direct

representation of the voltages produced by the optical detectors after receiving the near-

infrared light, is converted to optical density. Then, the optical densities are converted to

hemoglobin concentrations using the modified Beer-Lambert Law (mBLL). This step employs

a factor, either the differential pathlength factor (DPF) or the partial pathlength factor (PPF),

to compensate for the increase in the photon’s pathlength within the tissues as it is

scattered. The difference between these two factors is further explained in chapter 3.3.2.

Other steps that are often employed during pre-processing of the signals are the application

of frequency filters, removing channels, wavelet filtering, correction of motion artifacts, and

other techniques for deriving the signal of interest (Dans et al., 2021). These steps are

presented in Figure 5.

Figure 5: Types of pre-processing and processing techniques used in fNIRS studies. By Dans et al. (2021).

16

When the pre-processing of the data is conducted, different processing algorithms can be

applied to derive statistical information from the dataset. During the last decade the three

most used processing techniques are the general linear model (GLM), block averaging, and

linear mixed models (Dans et al., 2021). These techniques are used based on the related aims

of the studies and provide different data. GLM is a much-used technique in the fMRI field

and has been employed in the processing of fNIRS data because of the similarities between

the BOLD signals and the hemodynamic response signal (Monti, 2011). Block averaging and

linear mixed models are also popular methods to use, but the GLM is known for its wide use.

However, the most used techniques are known to not necessarily best (Dans et al., 2021).

With a vast number of possible techniques to employ, and in a continuously evolving

research environment, they are not to be depreciated. One of these techniques is functional

connectivity (Fantini et al., 2018).

2.3 Functional connectivity

In mapping the connectivity of the human brain, researchers are using different statistical

techniques to measure the dependencies between cortical areas (Bullmore et al., 2016). By

assessing the temporal correlations and causality, and spectral coherence between spatially

distant neurophysiological events, functional connectivity is a concept that is frequently

implemented in brain connectivity studies (Friston, 2011). As functional connectivity looks at

the similarities in the activation and behavior between the different areas in the brain,

interesting information can be collected regarding cortical functionality.

Functional connectivity can be measured in the time and frequency domain (NIRx Medical

Technologies, 2019). The techniques used for time-domain analysis are related to the

temporal correlation between time-series signals, while frequency-based techniques

evaluate the coherence between frequencies between signals. Thus, the connectivity can be

measured using different statistical measures for the relationship between the regions of

interest and is a flexible tool for brain connectivity analysis (Eickhoff & Müller, 2015).

One of the most used statistical measures for temporal correlation used in functional

connectivity is the Pearson correlation coefficient (also known as Pearson’s R) which is a

measure of the linear correlation between time series signals (Bullmore et al., 2016). This

coefficient describes the correlation between the signals with a number ranging from -1 to 1,

where 1 means an identical behavior between the time series data and -1 means a negative

17

correlation. An R-value close to zero indicates no linear correlation (Bullmore et al., 2016).

Other measures of temporal correlation are cross-correlation and Spearman correlation (Xu

et al., 2015).

Other approaches used in connectivity analysis are Coherence and Granger causality which

employ different techniques for detecting similarities in signals. Coherence is related to

analyzing the frequency spectrum of the signals and can provide information regarding the

functional connectivity within the frequency domain (Bowyer, 2016). This technique has

proven useful in spectral analysis, but is known for being prone to changes in signal

amplitude and can therefore have reduced precision in motion control studies (Bullmore et

al., 2016). Granger causality is related to the concept of Effective Connectivity (EC) and goes

one step further in the connectivity analysis as it looks for causality within the temporal brain

data (Bowyer, 2016). This is a promising technique for connectivity analysis as it describes

the directionality between brain areas. However, the technique is still being investigated for

use in fNIRS studies as it has proven challenging to describe causality in connectivity analysis

(Anwar et al., 2016).

Even though Pearson’s R-value is the most used measure for FC, there is no current gold

standard of which technique to apply for functional connectivity analysis (Blanco et al.,

2018). Researchers are encouraged to choose the best method for their experimental design

(Yucel et al., 2021). However, one of the most promising techniques for conducting FC

processing in fNIRS studies is the use of autoregressive models based on the pre-whitening

of the signals (Blanco et al., 2018).

The use of functional connectivity in fNIRS-based studies has previously been primarily used

in resting-state experiments (Xu et al., 2015). With little implementation of the technique in

motor control studies, guidelines related to its use is missing within the field. However, with

an increasing number of published articles regarding functional connectivity in fNIRS studies

each year, the field is moving forward (Fantini et al., 2018).

2.4 Frequencies in cortical hemodynamics

The data from the fNIRS measurements consists of a range of low-frequency bands

connected to different physiological states. These oscillations erupt from the hemodynamic

variations measured by the optodes and exist in the range from 0.0095 Hz to 2 Hz (Yücel et

al., 2016). Within this frequency range, several areas are separated into subareas connected

18

to their associated physiological states. Figure 6 illustrates how these subareas are divided

and how much influence they have on fNIRS signals.

Figure 6: Sample power spectral density (PSD) in fNIRS signals. By Pinto-Orellana (2022).

In the area of 3-20 mHz, endothelial waves (E) are a known influence on the signal, while the

area of 20-50 mHz is connected to neurogenetic components (N). Myogenic waves (M) are

observed in the 50-150 mHz area (Pinto-Orellana, 2022). In the 100 mHz area blood

pressure-related oscillations, known as Mayer waves, are also known to influence the optical

signal. Signal fluctuations related to respiration (R) are known to be in the area of 0.15-0.4

Hz, and physiological noise caused by cardia noise (C) is in the area of 1-1.5 Hz (Klein &

Kranczioch, 2019). These different frequency areas are necessary to consider when analyzing

fNIRS signals as they influence the data that is analyzed. This concept is relevant for the

filtering of the signal.

2.5 Motor control

One of the clear advantages that fNIRS technology adds to the field of brain imaging, besides

its non-invasive and non-ionizing nature, is its portability (Yücel et al., 2017). This enables

19

brain imaging during tasks that require both spatial relocation and thereby exploration of

cortical activity during body movement. The study of neuronal behavior during movement is

known as motor control and is defined as the “area of science exploring natural laws that

define how the nervous system interacts with other body parts and the environment to

produce purposeful, coordinated movements” (Latash, 2012).

Motor control studies contribute to the revelation of how the nervous system communicates

these coordinated movements between the brain and the limbs. As the regions related to

motor functions are located near the skull, fNIRS imaging is considered a suitable technology

for measuring their activity.

2.6 Postural balance and gait studies

One of the complex movements humans perform is the postural balance required during gait

(Herold et al., 2017). This task requires the cooperation between several joints and muscles

which are controlled using different strategies. These strategies are often divided into three

main categories: motor, sensory, and cognitive strategies (Shumway-Cook & Woollacott,

2017, pp. 277-306). All these strategies contribute to the human gait and by analyzing the

cortical activity in different scenarios, researchers aim to map the spatiotemporal activation

of the brain.

Previous motor control studies have aimed to improve rehabilitation strategies by evaluating

brain activity from walking tasks and tasks that require postural balance. Some of these

studies have shown that activations in several areas occur during walking: the prefrontal

cortex (PFC), pre-supplementary motor area (PMA), premotor cortex (PMC), supplementary

motor area (SMA), and sensorimotor cortex (SMC) (Herold et al., 2017). It indicates that

walking is not only constricted to the activation of one single cortical area. In the analysis of

postural balance, studies have shown that PFC and SMA are the most prominent areas

(Herold et al., 2017). One study which investigated the functional connectivity using EEG

during walking measured a decrease in FC during walking compared to standing (Lau et al.,

2014).

During gait assessment, differences in the cortical activity have also been found related to

factors such as age, level of fitness and health, and the complexity of the tasks (Hamacher et

al., 2015). Such factors are also known to impact the different parameters used in the

processing of fNIRS, such as the PPF and DPF (Yucel et al., 2021). Even though studies have

20

revealed some of the activation and functional connectivity during gait and postural balance,

additional research is needed to map the complete orchestration of the brain during balance

and gait.

2.7 State-of-the-art fNIRS software

The field of fNIRS is in constant movement and the researchers are pushing the field forward

each year. The growing number of published studies that use fNIRS as the neuroimaging

technique generate new insight into how the human brain works. The lack of physical

constraints and its non-invasive nature enables brain activation studies to be performed in

settings that previously not have been available (Pinti et al., 2018). Data acquisition and

processing are getting better with the constant improvement in fNIRS technology. However,

like the early development of the fMRI field, fNIRS researchers are lacking standards in data

processing and analysis (Yucel et al., 2021).

2.7.1 Software and toolboxes

A large number of different optical imaging devices and software results in different

processing pipelines used by researchers. This leads to inconsistency in data interpretation

and reporting (Bonilauri et al., 2021). As presented in Table 1, there are many different tools

available for the analysis of fNIRS data. This gives a vast number of different scripts and

functions for handling the fNIRS data, which often lead to different processing and

interpretation methods (Dans et al., 2021).

Table 1: Overview of well-known software and toolboxes in fNIRS analysis.

Software Category Interface Platform

fNIRSOFT fNIRS analysis Stand-alone Stand-alone

fOSA-SPM fNIRS analysis GUI1 MATLAB-based

FC-NIRS (Xu et al., 2015) Functional Connectivity

Analysis

GUI MATLAB-based

fOLD (Zimeo Morais et al.,

2018)

Optode localization Toolbox and GUI MATLAB-based

1 GUI – Graphical User Interface

https://www.biopac.com/product/fnirsoft-professional-edition/?attribute_pa_size=fnir-software-professional-edition#product-tabs
https://www.ucl.ac.uk/medical-physics-biomedical-engineering/research/biomedical-optics-research-laboratory-borl/resources/functional-optical-signal-analysis

21

HOMER3 (Huppert et al.,

2009)

fNIRS analysis Toolbox and GUI MATLAB-based

HOMER2 (Huppert et al.,

2009)

fNIRS analysis Toolbox and GUI MATLAB-based

ICNNA (Orihuela-Espina et

al., 2017)

fNIRS analysis GUI MATLAB-based

MNE-NIRS (Gramfort et al.,

2013)

fNIRS analysis Toolbox Python-based

NeuroDOT (Muccigrosso &

Eggebrecht, 2018)

fNIRS analysis Toolbox MATLAB-based

NIRFAST (Dehghani et al.,

2009)

fNIRS analysis Toolbox MATLAB-based

nirsLAB (Xu et al., 2014) fNIRS analysis GUI MATLAB-based

NIRSite Optode localization GUI Stand-alone

NIRS-SPM (Ye et al., 2009) fNIRS analysis GUI MATLAB-based

NIRSTORM (Tadel et al.,

2019)

fNIRS analysis GUI MATLAB-based

NIRS Brain AnalyzIR (Santosa

et al., 2018)

fNIRS analysis Toolbox MATLAB-based

Open PoTATo (Sutoko et al.,

2016)

fNIRS analysis GUI MATLAB-based

Turbo Satori fNIRS analysis GUI Stand-alone

LIONirs (Tremblay et al.,

2022)

fNIRS analysis Toolbox MATLAB-based

https://nirx.net/nirsite
https://nirx.net/turbosatori

22

Another aspect within the field that is derived from Table 1 is the large number of graphical

user interfaces and toolboxes that is MATLAB-based. With 14 of the 18 most used software

utilizing MATLAB as the processing platform, the MATLAB engine seems to have an important

role in the development within the field.

For functional connectivity analysis in fNIRS studies, only one of the software mentioned in

Table 1 is designed with that functionality. However, some MATLAB toolboxes such as the

NIRS Brain AnalyzIR toolbox by Santosa et al. (2018) have functions designed for such

analysis.

2.7.2 File formats

The fNIRS data that is obtained by the measurement equipment is stored in different file

formats. Different formats are available, and it is the standards employed by the

manufacturer that decides which one is available for the specific device (NIRx Medical

Technologies, 2020). Two of the most used formats of today are the .nirs and .snirf formats.

They both have most of the same features, but the .snirf format is the newest format

developed by the fNIRS community which working on implementing it as a standard to

generate a common format for sharing data (fNIRS.org, 2022). This enables both formats to

be employed when generating a pipeline for fNIRS processing.

2.8 Objective of the thesis

With the lack of state-of-the-art processing pipelines within the field of fNIRS and no golden

standard for functional connectivity analysis of motor control studies, the objective of this

thesis has been to develop a processing pipeline for functional connectivity analysis for fNIRS

motor control studies. Motivated by the research collaboration between Oslo Metropolitan

University and Gaitline AS, this thesis aims to facilitate effective and reliable pre-processing

and processing of fNIRS data by implementing the most promising techniques found in the

literature. The pipeline will hopefully relieve researchers from the time-consuming task of

processing the data and let them perform what they do best, analyze and understand.

Ultimately, the pipeline will enable important studies that can make life better for people in

need and contribute to the unraveling of the workings of the human brain.

23

3 Methodology

This section presents the development of the pipeline and its features, followed by the

experimental design of the previous motor control study conducted by Gaitline and Oslo

Metropolitan University. Firstly, the rationale behind the design of the pipeline is presented

alongside information regarding its dependencies and functionality. A concise description of

each step employed in the pipeline is then provided to ensure understanding and

transparency of its workings. Lastly, the experimental design of the motor control study is

briefly presented as the fNIRS data collected in that study is used to illustrate the workings of

the pipeline.

3.1 Development of the pipeline

As the primary goal of this thesis has been to develop a pipeline for pre-processing and

processing of fNIRS data, state-of-the-art literature has been reviewed to map out the most

promising techniques employed by researchers within the field. The findings from this review

show that the field is under constant exploration and has no prominent golden standard for

pre-processing and processing of fNIRS data. Especially not related to motor control studies.

3.1.1 MATLAB as a platform

With a vast number of available platforms for fNIRS analysis (see table 1), no software is

known to be the golden standard for data processing of fNIRS signals. Some of the platforms

are developed by the industry and others are developed within academic institutions. The

stand-alone software from the industry often gives little transparency as the user is only

given the GUIs and the user manual, without little insight into the source code. This removes

important transparency within processing steps and can lead to the wrong interpretation of

results as the user cannot interpret the actual workings of the software. As presented in

table 1, the platforms developed by the academic institutions are often developed in the

MATLAB environment and are provided either as MATLAB-based GUIs or toolboxes. This

enables the user to utilize the GUI as a basic interface when processing the data or using the

toolbox to create their own processing pipeline.

However, these GUIs and toolboxes are known to be challenging to implement and utilize as

there are compatibility challenges related to fNIRS acquisition systems, data formats, and

MATLAB versions. This has led to the aim of creating a user-friendly processing pipeline that

24

utilizes the processing power of the MATLAB software together with an interface that is

easily interpreted and utilized. To ensure a transparent program that also enables processing

efficiency, the program developed in this work is both providing a stepwise live script in the

MATLAB R2021b environment and a simple GUI in the MATLAB R2021b app designer

environment. Figures 7 and 8 present the two interfaces.

Figure 7: An excerpt of the live script interface of the pipeline.

Figure 8: An illustration of the GUI of the pipeline.

25

The live script is developed to allow the user to run the pipeline stepwise as each

preprocessing and processing step is separated into code blocks that can be run separately.

Alternatively, the script can be run from start to finish by pressing the “run” button in the

MATLAB environment. This also ensures the possibility of using the code as a framework for

further changes to the pipeline and to have the flexibility that other GUIs do not provide.

However, by operating in the same window as the script, the user is prone to interfere with

the script in unwanted manners and make changes that might affect its functionality.

Therefore, a simple GUI is provided to remove the possibility of interference and to simplify

the user interaction.

3.1.2 The Brain AnalyzIR Toolbox

When developing a pipeline for fNIRS analysis, there are several aspects to consider and

challenges to overcome. With several available fNIRS systems and toolboxes for data

acquisition and processing, the fNIRS community has many contributors who work towards

improvement of the field (Yucel et al., 2021). Different standards, such as the ‘.snirf’ file

format, are also being suggested to facilitate consistency in fNIRS studies and cooperation

across institutions. However, from experience, these different factors can make it challenging

to perform the processing and to use the necessary functions when working with the data.

Incompatibility between MATLAB versions and the toolboxes is often creating challenges

during processing and can lead to more work for the researcher and a longer time between

measurement and research publishment.

As the current focus within the fNIRS community is to adapt the .snirf file format, I found it

necessary to use a toolbox that both were compatible with this format and also had the

necessary functions needed for the processing pipeline. During the preparations for the

pipeline development in this project, a review of the functionality of the different toolboxes

revealed that the toolbox provided with the HomER3 package by Huppert et al. (2009) had

the necessary functions and compatibility needed. However, during development, limitations

regarding its functionality together with compatibility issues regarding the .snirf format

occurred, and I found it necessary to rebuild the pipeline using another toolbox. The Brain

AnalyzIR Toolbox by Santosa et al. (2018) worked well together with the .nirs format and is

the implemented toolbox. The toolbox is developed by recognized researchers within the

field and has the functions necessary for building an fNIRS pipeline for motor control studies.

26

Alongside the need for the toolbox for fNIRS processing, the standard MATLAB toolbox called

the Signal Processing Toolbox is required for using the pipeline.

3.2 Features of the pipeline

The pipeline is developed with the aim of enabling fast and structured processing of fNIRS

data obtained from motor control studies conducted by Oslo Metropolitan University and

Gaitline AS. To facilitate such studies, pre-processing and processing steps that have shown

promising results in previous motor control studies are employed to streamline the process.

In this section, the chronological process of the pipeline is described focusing on the

functionality of the employed algorithms and the mathematics behind the most important

ones. This is provided to ensure transparency, work as a guideline for users, and enable

relevant referencing if using the pipeline for future studies. As presented in Figure 9, the

pipeline consists of 15 steps that include loading, pre-processing, and processing of the data,

parallel to generate a report with the outcomes of the pipeline. These steps are identical for

both the live script and the GUI. The only difference between them is the interface used by

the user. The design of the pipeline aims to adhere to the recommendations for fNIRS studies

presented in Yucel et al. (2021). A thorough description of the workings of the toolbox is

presented in Santosa et al. (2018).

27

Figure 9: Overview of the pipeline.

28

3.2.1 Loading data and creating the report

The initialization of the pipeline is the only phase that requires user interaction. When

running the script, the user is asked to choose three folders: 1. The folder containing the

repository, 2. The folder containing the test data, and 3. The folder for storing the report.

After this phase, the pipeline runs until the report is entirely generated. Three MATLAB files

are also loaded as these provide the correct information related to the areas based on the

probe setup.

To load the data, the nirs toolbox function named “nirs.io.loadDotNirs” is employed to

enable the loading of the .nirs file format. This creates a data object with the “nirs.core.data”

structure. The content of the data object consists of the raw data, probe information,

accelerometer and gyroscope data, stimuli information, and the sampling frequency. A

further explanation of the data structure is presented in Santosa et al. (2018).

For each step of the pipeline, a report is generated consisting of the plots created after each

processing step. This feature is provided to enable the user to visually inspect the outcomes

of each step as well as having a document that includes all the relevant plots. Each plot is

also stored as single files within a folder that is placed in the same location as the report. The

plots are stored as .png files with 500 dots per inch (DPI) resolution to give high resolution

for implementation in scientific papers.

3.2.2 Pre-processing

Step 1 to 11 in the script consists of pre-processing steps that are implemented to enhance

the signal quality and are based on the most promising techniques stated in the literature.

These steps can all be found in motor control studies, but as there is no golden standard for

the order of the steps the design of the pipeline is based on the functionality of the toolbox

as well as the desired stepwise flow (Dans et al., 2021). The following paragraphs consist of a

brief description of each step.

Step 1: Rename stimuli

 Step 1 includes the renaming of the stimuli that are within the .nirs file. The automatic

property of the function makes it flexible for different types of stimuli and automatically

detects the stimuli information. As different studies can employ different stimuli, the only

change the user needs to do is to insert the names of the stimuli in the script when running

the script for the first time.

29

Step 2: Trimming data

Step 2 removes data points that are prone to noise from starting and stopping the

experiment. The chosen default values are the first 5 seconds and the last 10 seconds of data

recording. This is employed as it is common practice in motor control studies (Hocke et al.,

2018), and as noise within these areas was visually observed in the raw data. However, this

can arbitrarily be changed within the script as future experimental designs changes. The

toolbox function used here is called “nirs.modules.TrimBaseline”.

Step 3: Short separation channel labeling

Step 3 provides labeling of the short separation channels to be able to distinguish them from

the regular channels. This is done with the use of the “nirs.modules.LabelShortSeparation”

function. Short channels are used to remove physiological noise from the data (Yücel et al.,

2015).

Step 4: Baseline correction

Step 4 corrects the baseline shift within the raw data by removing the DC-shift provided by

motion artifacts. The utilized toolbox function is named “nirs.modules.BaselineCorrection”

and is further explained in Santosa et al. (2018).

Step 5: Bad channels rejection

A reported challenge in fNIRS motor control studies is to ensure good connections between

the optodes and the scalp (Yucel et al., 2021). This step is commonly conducted through the

time-consuming visual inspection of the spectral channel data. However, automatic spectral

analysis can be performed by using different techniques. One of the most utilized techniques

is calculating the power spectral density (PSD) and removing channels containing a high

power of frequencies outside of the frequency area of interest (Aarabi & Huppert, 2016).

Figure 10 and 11 illustrates the difference between an included channel and a rejected

channel by plotting their respective PSD. The included channel contains a higher spectral

power in the lower frequencies while the rejected channel has a more equal distribution of

the spectral power.

30

Figure 10: An example of an included channel.

Figure 11: An example of a rejected channel.

The automatic channel rejection step within the pipeline bases on an algorithm called

“pwelch” which calculates the PSD. This function bases on Welch’s power spectral density

estimate which calculates the power of the signal at different frequencies (Welch, 1967). The

function for channel rejection is borrowed from the open-access source code developed by

the fNIRS research group from the University of California (Burns, 2018).

The parameters used for channel rejection are the quartile coefficient of dispersion (QCoD)

and a saturation window length. The QCoD is a statistical measure that compares the 25-

percent quartile to the 75-percent quartile of the spectral data for each channel (Bonett,

2006) (Dieffenbach et al., 2020). The saturation length bases on the maximum time of

saturation within a given time. The employed saturation length is equal to the default length

of 2 seconds used within the function (Burns, 2018). These parameters are also verified in

this work by visual analysis of the spectral plots for each channel within the test data.

Step 6: Short channel removal

Step 6 includes the removal of the data in the short channels that are labeled in step 3. This

step is employed as the short separation data is not included in this test. However, this step

should be excluded if the experimental design requires data from the short separation

channels.

31

Step 7: Intensity to optical density

 One of the necessary functions in fNIRS processing is the conversion from raw intensity data

within each channel, to the optical density (Pfeifer et al., 2017). The optical density, also

known as the optical absorbance of a material, is the logarithmic intensity ratio between the

light transmitted through the tissue and the light received after the absorption. Equation 1

describes the relationship between these two intensities (Zhang & Hoshino, 2019).

𝐴(𝜆) = − log10 (
𝐼0

𝐼1
) (1)

For fNIRS measurements, the optical absorption occurs within the different layers of tissue as

the light travels through the outer region of the brain. As illustrated in figure 3, the

transmitted light has a banana-shaped path and is affected by different factors that need to

be considered.

Step 8: Optical density to concentrations

For deriving the information about the deoxy- and oxygenated hemoglobin from the optical

density data, conversion to hemoglobin concentrations is necessary. This is done by using the

modified Beer-Lambert law (mBLL) to convert the data obtained by the two wavelengths into

relative changes in concentrations (Pfeifer et al., 2017). An important aspect to consider

when performing this conversion is the light scattering that occurs along the photon’s path

within the tissue as illustrated in Figure 12.

32

Figure 12: Illustration of the photon scattering through tissue. By Shoaib et al. (2019).

This scattering results in the photon having a longer path and being influenced by tissue that

is outside of the region of interest. To compensate for this influence, a factor is implemented

into the conversion. As several potential mathematical algorithms can be implemented, the

factor is dependent on the available information regarding the participants of the study. The

differential path length factor (DPF) is one option that takes the age, wavelength, and type of

tissue of the participant into account (Scholkmann & Wolf, 2013). Another factor is the

partial pathlength factor (PPF) which is the product of the DPF and the partial volume factor

(PVF) (Whiteman et al., 2018). However, these factors are seldom precise in fNIRS processing

(NIRx Medical Technologies, 2020)

The utilized function within the script is the “nirs.modules.BeerLambertLaw” which is based

on the approach from Jacques (2013) which employs the PPF of 0.1 for the compensation of

the scattering.

Step 9: Bandpass filtering

To remove unwanted noise within the data it is necessary to apply an algorithm that excludes

the frequencies outside of the frequency area of interest. Without any golden standard, this

is a frequently discussed topic within the fNIRS community (Yucel et al., 2021). However,

Dans et al. (2021) report frequency filters to have been the most employed pre-processing

technique in motor control studies in the last decade and are thus employed in the current

33

pipeline.

To ensure that no important frequencies relevant for cortical activity are removed, a 4th order

IIR Butterworth filter is applied with a lower cutoff frequency of 0.01 Hz and an upper cutoff

frequency of 0.5 Hz (Dans et al., 2021). This bases on the existing bandpass filter function

within the toolbox called “eeg.modules.bandpass” (Santosa et al., 2018).

Step 10: Reorganization of the channels

To facilitate the plotting of the functional connectivity within the experimental data, it is

necessary to reorganize the channels by means of their position on the scalp. As the

channels within the .nirs format are ordered by their channel number, which is independent

of their position on the head, it is necessary to reposition them within the data matrix. The

new order of the channel data is based on an alphabetic order of their respective Brodmann

area (Zilles, 2018).

Step 11: Deleting short separation channels

To exclude the empty channels, that previously consisted of the data from the short

separation channels, their column within the data is removed from the data matrix. The new

data is thus only containing the information from the long separation channels.

3.2.3 Processing

The two processing steps taken in the pipeline are two prominent techniques used in the

processing of fNIRS data. However, the GLM is only included to enable further

implementation.

Step 12: GLM

As the main aim of this thesis is to explore functional connectivity, general linear model

analysis is outside of the scope of this work. However, to facilitate further implementation of

the GLM analysis within the pipeline, a GLM processing algorithm is included in the scripts to

illustrate how it processes the data. This is chosen based on the broad use of GLM analysis in

fNIRS motor control studies and as it can work as a framework for future development of the

pipeline (Dans et al., 2021).

Another reason for implementing this in this current pipeline version is that it can present

interesting information regarding the activation of the different areas. The activation is

plotted based on the t-statistics with a p-value < 0.05. These parameters are chosen to plot

34

the statistically significant activations of the different areas based on the stimuli information.

The statistically significant channel activations that are found after the GLM analysis can then

be employed in seed-based functional connectivity analysis. However, the current functional

connectivity analysis is based on a whole-brain approach and the utilization of the GLM

within the pipeline should be further investigated.

Step 13: Functional connectivity

The objective of this thesis has been to develop a pipeline for functional connectivity analysis

of motor control studies by using a whole-brain approach. As fNIRS functional connectivity

analysis both can be done in the time domain and the frequency domain, it is possible to

apply different algorithms in this approach. In this work, a time-domain correlation is utilized

to enable functional connectivity analysis for temporal correlations between brain areas.

Without any clear state-of-the-art methods for such analysis, the pipeline is developed

employing an algorithm that is known for its robustness and use of the Pearson correlation.

The function employed is called “nirs.sFC.ar_corr” which bases on a pre-whitening

autoregressive correlation model (Santosa et al., 2018). To ensure a robust analysis, the input

of the function sets the robust flag to “true” and leads the function to employ the

“nirs.math.robust_corrcoef2” for robust correlation analysis. This function bases on a robust

correlation coefficients approach by Shevlyakov and Smirnov (2011) that is frequently

employed in the Brain AnalyzIR toolbox. The pre-whitening properties of the function reduce

the autocorrelation in the data by removing the serially correlated data based on the

oversampling of the hemodynamic response data (NIRx Medical Technologies, 2020). The

technique employed in this algorithm is further explained in Barker et al. (2013).

The outputted correlation values calculated by the FC function come in the form of an

adjacency matrix that illustrates the connectivity between the channels. The adjacency

matrix is an N-by-N matrix where N is the channel number based on the alphabetic order of

the brain regions.

After the functional connectivity algorithm is applied, the correlated data is plotted in a

circular graph. This graph bases on the “circularGraph” open-source MATLAB function

created by Kassebaum (2022). Here, the adjacency matrix is converted into a network model

where the nodes in the circular plot represent the channels within the data and the edges

between them represent their respective correlation value. The magnitude of the correlation

35

value is illustrated by the width of the edges in the plot.

To enable analysis based on an increase in the correlation values, the adjacency matrix is

thresholded over several iterations. The iterations start at a 50% correlation and are stepwise

increased by 5% for each cycle. This value is chosen to enable an analysis of the strong

positive correlations between the channels (Nettleton, 2014). Both the adjacency matrix and

the circular graph are plotted for each iteration.

Step 14: Save workspace and generate the report

In the last step of the pipeline, the workspace variables are stored alongside the report’s

completion. The variables are stored as a .mat file containing all the variables and structures

generated along the way to enable further analysis of the data or the control check of the

different steps taken during the processing. To facilitate analysis that adheres to the

recommendations for fNIRS practice and studies published in Yucel et al. (2021), the report is

generated alongside individual storage of all the figures. This ensures that the user can

perform a visual inspection of the output from each step and be able to extract relevant

figures for the paper.

Another aspect of good practice in fNIRS studies is to give detailed descriptions of the pre-

processing and processing steps employed when generating the data (Yucel et al., 2021).

Thus, the pipeline produces a written presentation of the variables, coefficients, and

techniques used during the process. As these are also provided in the workspace file, the

presented information is selected based on the importance related to the study. This

information is presented on the last page of the report alongside the description of the

abbreviations included in the circular graph and the excluded channels.

3.3 The prior Gaitline experiment

The data used to illustrate the workings of the pipeline is obtained in an ongoing study by

Oslo Metropolitan University and Gaitline AS. The experiment is part of the doctoral thesis

work of Ph.D. Candidate Haroon Khan and the data are used with his and his supervisors’

permission. The experiment is conducted separately from the work on my thesis, and it is

important to clarify that I have not had any role in the experimental design or the data

collection process. The following sections include a presentation of the instrumentation used

during data collection and a brief description of the experimental paradigm. This is presented

to provide a basic understanding of the context of the experimental data. However, the

36

rationale behind the study is not provided as it is outside of the scope of this thesis.

3.3.1 Experimental design

With an aim of “investigating the human gait patterns with different footwear conditions

while doing infinity walk”, the study used fNIRS to assess the hemodynamics of the

participants during the experiment (Khan, 2022). The experimental paradigm consists of

initial rest, task, rest, and final rest. Figure 13 illustrates the process. The time points for the

onset and offset of the stimuli are recorded and are found in the data.

Figure 13: The experimental paradigm. By Khan (2022).

The paradigm is conducted for each of the 5 conditions presented in Table 2.

Table 2: The conditions of the Gaitline study. The information is taken from Khan (2022).

Condition nr. Description

1 Barefooted walk on the plane surface of the Gaitline research lab.

2 Walk with flat sole sandals.

3 Walk with the calculated wedge angle of pronation and put the corrected

wedge in a flat sandal wedge.

4 Walk with participant’s personal shoes.

5 Walk with Gaitline shoes

37

Infinity walk, illustrated in Figure 14, is a walking pattern that requires the participant to

perform complex gait behavior and is a recognized technique used in gait and balance

studies (Szymanski, 1997).

Figure 14: Illustration of infinity walk.

3.3.2 Experimental details

The instrumentation used for data acquisition is the NIRSport 2 mobile fNIRS system

delivered by NIRx Medical Technologies, Germany. The device utilized wavelengths of 760 nm

and 850 nm during acquisition and the current optode montage is based on a standard

motor cortex montage. The study consisted of 6 participants who all suffered from different

degrees of pronation (Khan, 2022). A further description of the research is presented in the

application to REK presented in Appendix C.

38

3.4 Ethical considerations

The work in this thesis is connected to the research project at Oslo Metropolitan University

led by Professor Peyman Mirtaheri. As presented in Appendix C, the project is approved by

REK under application number 322236. As the main goal of the project is to investigate the

potential of fNIRS technology, there are no additional requirements. Data gathering was

consent-based, and all participants consented.

As the pipeline is handling sensitive biomedical health information, the privacy of the

participants is important to handle. Measures regarding privacy are thus important to

consider. However, the data used in this thesis is presented anonymously and only for

illustrational purposes.

39

4 Results

The main objective of this thesis has been to develop a pipeline for fNIRS functional

connectivity analysis of motor control studies. Thus, the main results of this thesis evolve

around the workings of the pipeline and how it can be implemented in future studies. This

section is therefore including the presentation of the output from the pipeline followed by

an example of how to interpret the results.

4.1 The output of the pipeline

The pipeline generates a report that includes all the plots that are produced and relevant

information from the pre-processing and processing steps. In parallel, each plot is stored

separately in a folder with the same placement as the report. An example of the complete

report is provided in Appendix E and shows the output from one of the tests performed in

the Gaitline study. However, examples of some of the most important plots are presented in

this section as well. All the following plots are from the same experimental trial. This is

provided to give insights into what output the user receives, and how these plots can be

interpreted.

Figures 15 and 16 below illustrate the raw fNIRS data in the time domain against the raw

data where the 5 first seconds and the last 15 seconds are removed from the data. The graph

below the raw data represents the start and stop of the stimuli.

Figure 15: An example of how the raw experimental
data is plotted.

Figure 16: An example of how the trimmed
experimental data is plotted.

40

Figure 15 and 16 clearly illustrates how the data is distorted during the stimuli. As the stimuli

are based on movement, the fluctuation in the channels is most likely connected to motion

artifacts. As the fNIRS measurements are prone to such motion artifacts, it is necessary to

compensate for the baseline shift that can occur from them. This compensation is conducted

according to the recommendations from Dans et al. (2021) and is done for each channel that

qualifies for such adjustments. Figure 17 below illustrates this baseline shift, alongside the

plotting of the “good” channels presented in Figure 18.

Figure 17: An example of baseline-corrected data.

Figure 18: An example of data without 'bad' and
short channels.

After the channel removal is conducted in steps 5 and 6, the conversion from intensity to

optical density is performed. Figure 19 presents what the converted plots look like. The data

is now centered around zero, where each channel fluctuates based on the change in optical

density.

41

Figure 19: An example of the optical density plot.

After the optical density data is derived, the conversion to hemoglobin concentration is

performed. These concentrations are presented in Figure 20 which plots the graphs for both

deoxy- and oxygenated channels. Figure 21 presents the filtered concentrations data. The

differences between the plots are seen in the smoothing of the signals as the frequencies

beyond 0.5 Hz are removed. The lower cutoff frequency of 0.01 Hz removes some of the

longer fluctuations in the signals.

Figure 20: An example of the plotted concentration
data.

Figure 21: An example of the filtered concentration
data.

42

The plots of the hemoglobin concentrations are the last plots produced during the pre-

processing steps of the pipeline. After this phase, the processing steps are conducted

parallelly as presented in the overview of the pipeline in Figure 9. These steps include

general linear modeling and functional connectivity processing, and their respective plots are

produced. However, as the GLM is included in the pipeline to mainly facilitate future studies,

the functional connectivity analysis is the focus of the current analysis.

Figure 22 presents the adjacency matrix, also known as the connectivity matrix, which is the

result of the functional connectivity analysis.

Figure 22: An example of the adjacency/connectivity matrix from the functional connectivity analysis.

The plot displays the level of connectivity, in form of the Pearson’s R-value where 1

represents 100% positive correlation between the channels, and -1 represents 100% negative

correlation. Zero indicates that there is no correlation at all. The diagonal yellow line

illustrates the correlation the channel has with itself and will always have a 100% correlation

for this pipeline. The numbers of the channels are based on the alphabetic order of the brain

regions.

As one of the objectives of this thesis is to present the functional connectivity data using a

circular graph, the number of connections is advantageously reduced to improve the

43

interpretability of the circular graph. This is done by stepwise thresholding the adjacency

matrix and plotting it for each 5% increment in connectivity starting at 50% correlation.

Figure 23 illustrates an adjacency matrix with a 75% correlation between the channels. This

value is chosen based on that a 75% percent correlation is usually known as a very strong

correlation in time series data (Kozak, 2009).

Figure 23: An example of a thresholded adjacency matrix with a threshold of 75% positive correlation.

As shown in Figure 23, the correlated channels are heavily reduced. This enables a more

interpretable connectivity plot in the circular graph as the number of connections is reduced.

To explore the connectivity between the different regions of the brain, the circular graph in

Figure 24 shows the regions that have strongly correlating behavior. The abbreviations used

in the plot are further explained in the last pages of the example report provided in Appendix

E.

44

Figure 24: An example of the connectivity plot (circular graph). The threshold is here 75% positive correlation.

As illustrated in Figure 24, the connectivity between the brain regions (nodes) of the network

is represented by the graphs (edges) between them. With the relatively high threshold of

75% correlation, only the strongest correlations are plotted. The colors of the edges are not

connected to the correlation values as it only represents the area of connection. The

correlation value is represented by the linewidth of the edges but is not easily

distinguishable in high correlation plots.

4.2 FC analysis of experimental data – an example

In this section, an analysis of experimental data from one participant is conducted to

illustrate how the pipeline’s output can facilitate research. The analysis bases on the

functional connectivity plots from the cortical activity data from one participant during

different conditions. This analysis is provided for illustrational purposes and the experimental

data will further be analyzed in the Doctoral Thesis of Ph.D. Candidate H. Khan.

45

The following analysis is based on a region of interest approach which compares all regions

against each other. The plotting is conducted based on the HbO2/Hb time series that has

been filtered with a fourth-order Butterworth bandpass filter with the cutoff frequencies of

0.01-0.5 Hz. Additional information about the parameters and methods is found in the report

in Appendix E.

The following figures show the differences in connectivity from the different conditions of

the experiments. All the plots are from the same participant and employ a 75% correlation

threshold. This is chosen based on the relatively strong correlation represented by the 75%

correlation (R > 0.75) threshold. The participant is randomly chosen.

4.2.1 Flat vs wedged sandal

Figures 25 and 26 illustrate the differences between condition 2 (walking with flat sole

sandals) and condition 3 (walking on wedged heel sandals). These conditions are chosen to

assess the connectivity differences based on different wedge angles of the calcaneus.

Figure 25: The connectivity plot of participant 3 from
condition 2 (flat sole) data with R-threshold = 75%.

Figure 26: The connectivity plot of participant 3 from
condition 3 (wedged hell) data with R-threshold =
75%.

Both similarities and differences can be observed between condition 2 and condition 3.

Similarities in the connectivity can be seen as some of the same channels show correlations

over 75%. For example, correlations between the channels within the Supramarginal Gyrus

46

of Wernicke’s area (SGWA) show high correlations in both the oxygenated and the

deoxygenated channels. These deoxygenated channels are also showing a high correlation to

the deoxygenated channels in the Primary Motor Cortex (PMC) during both conditions.

Connectivity between channel PMS r 21 (deoxygenated channel in pre-motor and

supplementary motor cortex) and channel PMC r 17 (deoxygenated channel in primary

motor cortex) is shown to be strong in both plots. However, their respective oxygenated

channels are only showing a correlation of over 75% during condition 3.

Another difference is observed as the connection between the PMS r 19 (deoxygenated

channel in Pre-motor and Supplementary Motor Cortex) and SGWA r 31 (deoxygenated

channels in Supramarginal Gyrus of Wernicke’s Area) only occurs during condition 2.

Inversely, the correlation between the STG and MTG is only observed when walking with a

wedged heel. Another remark is that the majority of the correlating channels are the

deoxygenated channels.

4.2.2 Barefoot vs wedged Gaitline shoe

Figures 27 and 28 present the connectivity during condition 1 (walking barefoot) and

condition 5 (walking with Gaitline shoes). By comparing the connectivity between these

conditions, information about the potential impact of the Gaitline shoes can be assessed.

47

Figure 27: The connectivity plot of participant 3
during condition 1 (barefoot) data with R-threshold =
75%.

Figure 28: The connectivity plot of participant 3
during condition 5 (Gaitline shoe) data with
threshold = 75%.

Similar to the previous conditions a strong correlation between the PMS and the PMC is

observed together with the correlation between PMC and SGWA. The majority of correlation

between the deoxygenated channels compared to the oxygenated ones is also present

during these conditions.

The plot from the barefooted condition shows a stronger correlation between the PMS and

the SGWA than the condition using Gaitline shoes.

A comparison of the functional connectivity can be conducted with several approaches. By

comparing the FC between other conditions, assessment of different footwear and calcaneus

wedging may be addressed. Moreover, assessments between participants during the same

conditions can also provide interesting information. However, as these comparisons are

provided to illustrate the workings of the pipeline, further analysis of the data from the

experiment will be addressed in future studies.

48

5 Discussion

With the objective of developing a pipeline for functional connectivity analysis of fNIRS

motor control studies, this thesis has pointed toward several different concepts and areas

that need to be addressed. The final product from this work is a functioning pipeline with the

ability to streamline the pre-processing and processing step which can significantly reduce

the time related to this stage in research. To provide a solid foundation for the design of the

pipeline, the following research questions were raised:

1. What is the state-of-the-art procedure for analyzing motor control fNIRS data?

2. What features are most important to include in a pipeline for functional connectivity

analysis of fNIRS data from motor control studies?

Without any clear consensus within the field of fNIRS research, none of the research

questions were given conclusive answers. The design of the pipeline was thereby based on

the most promising techniques found in the literature. However, the following sections

include evaluations regarding the different aspects of the pipeline and the main findings in

this work. This is provided to give important insights behind this work and to help others

avoid pitfalls.

5.1 The development process

In the initial stage of the development of the pipeline, the different possibilities of its design

were explored. Three alternatives were found after reviewing the state-of-the-art literature

and software: 1. Create a pipeline within a stand-alone software, 2. Develop a pipeline based

on existing toolboxes, and 3. Develop a completely new repository of necessary functions.

The first alternative enables a fast development process as it has premade functions for

fNIRS pre-processing and processing. These allow the user to implement the desired steps

into the pipeline and can provide a given set of data. However, the flexibility of the usage is

limited as only a few processing steps are available to implement. Also, the lack of access to

the utilized scripts from the functions reduces the transparency of the pipeline. As it is

important to present the processing techniques used on the data, this alternative was

regarded as suboptimal (Yucel et al., 2021).

The third alternative included the development of a whole new repository to facilitate a

pipeline. This would enable a fully transparent pipeline with functionalities designed for the

49

current goal. However, the complexity of such a process was found to be disproportionate to

the given time frame for this thesis.

With several existing MATLAB toolboxes for fNIRS data processing, the second alternative

was selected for the development of the pipeline. As the majority of well-known toolboxes

are MATLAB-based (presented in Table 1) MATLAB was chosen as the platform for further

implementation. The different toolboxes provide reliable functions for different approaches

to fNIRS processing and are known for their utilization in several studies. However, the

implementation of these toolboxes can be challenging and time-consuming. After reviewing

potential toolboxes to implement, the HomER3 toolbox by Huppert et al. (2009) was found

to have the functionality required for the current objective. Alongside a broad variety of pre-

processing and processing functions available, its capabilities of processing the shared NIRS

file format (.snirf) contributed to it being selected.

Nevertheless, after several iterations of developing different versions of the pipeline,

challenges related to its useability made it necessary to investigate other solutions. This led

to the investigation of how to utilize the Brain AnalyzIR toolbox by Santosa et al. (2018) in the

pipeline instead. Even though the toolbox is in constant development, it proved to have the

relevant functions and compatibility necessary for creating a pipeline although some

functions needed slight modifications to work. Even though the Brain AnalyzIR toolbox was

used in this toolbox, a deeper comparison of its functionalities could have benefitted the

development process.

After generating it as a live script format in MATLAB, the pipeline was implemented in a

MATLAB-based GUI. The environment for creating the interface allows the development of

an interactive user experience, but the application designer platform has several limitations

regarding design possibilities. This led to a user interface with basic functionality and design.

The available user interactions are either a simple button interface or the actual script. Both

options enable the user to access the features of the pipeline, but there is no easy way of

changing its parameters or workflow. The GUI does not enable the user to change any of the

settings and changing the scripts require programming experience. By adding these options

to the two interfaces, the pipeline could have had more flexibility. The GUI relies on correct

use by the user and could benefit from additional “fail-safe”-functions to prevent program

failure. However, the necessary functionality for achieving the objective of having a

50

functioning pipeline was implemented and the GUI allows the user to run the pipeline.

5.2 The pipeline

The pipeline is designed to enable effective and robust functional connectivity analysis of

fNIRS motor control studies. This is done by implementing the most promising techniques

found in state-of-the-art literature within the field. As the review present that there is no

golden standard to base the design on, it is not achievable to provide a conclusive solution to

the processing steps. The pipeline is therefore based on techniques that show great potential

when processing motor control fNIRS data.

5.2.1 Pre-processing

The inconsequent use of pre-processing steps within the field makes it challenging to choose

what steps to implement. The chosen steps are therefore based on recommendations found

in the literature, available functions within the toolbox, and experience exchanges within the

research team at the university. To increase the validity of these decisions, a thorough review

of the produced results from all available processing functions should be performed.

One of the steps that could benefit from such review studies is the channel rejection step.

The channel rejection function bases on the automatic analysis of the power spectral density

by employing a given saturation period and a QCoD threshold. The value of these parameters

is based on what is used in similar studies (Burns, 2018). This could lead to too many or too

few channels being rejected. By conducting further analysis of the impact of these two

parameters, an even more robust solution could have been implemented. This could be done

alongside addressing the impact of other channel rejection techniques.

The removal of motion artifacts is done by utilizing the commonly used step of baseline

correction (Dans et al., 2021). Its effects can be seen by comparing the plots before and after

baseline correction and correcting the baseline of the signals containing significant baseline

shifts. However, as a common step in fNIRS data pre-processing is to manually remove

temporal data that contains bigger motion artifacts, automatic removal of such artifacts

could benefit the integrity of the results.

Other methods are also possible to implement or replace already utilized functions and

would also beneficially be reviewed against each other. However, common guidelines for

such decisions are an important contribution that the field of fNIRS is missing.

51

5.2.2 Processing for functional connectivity

Although the pre-processing steps employed in the pipeline are essential for the integrity of

the data, the processing steps need to be equally reliable. Integrity is aimed to be prevailed

in the processing step by implementing a processing algorithm for functional connectivity

analysis with features that are known to be reliable within the literature.

The algorithm employed in the pipeline bases on a pre-whitening approach that removes

temporal autocorrelation before calculating the Pearson’s R correlation. This technique has

shown to be important in resting-state FC fNIRS studies as it can remove autocorrelations

(Blanco et al., 2018). Autocorrelations within the data can lead to high levels of false

positives in the correlation and are thus important to remove to prevail the integrity of the

data (Pinti et al., 2018). With other existing methods for calculating the correlation, a

thorough comparison of their impact on the results would further strengthen the reliability

of the pipeline.

With only one method for connectivity implemented, false positives within the data might be

wrongly perceived as true positives as there is no analysis to compare the results to. This

could lead to a wrong interpretation of the data. The pre-whitening of the signals aims to

remove most of these autocorrelations, but the implementation of other connectivity

methods could provide an even stronger foundation for correct analysis.

The functional connectivity analyses are mostly employed in resting-state studies, where the

prevalence of motion artifacts is less than in motor control studies (Hu et al., 2020). Though

the features within the pipeline aim to remove these artifacts, more studies regarding

functional connectivity in task-evoked experimental paradigms would benefit the field.

The functional connectivity analysis is conducted on the signals within the 0.01 – 0.5 Hz

frequency area. This area includes the areas related to several physiological processes. By

separating the signals into smaller frequency bands before analysis, information about the

connectivity within these bands might be derived. As presented in Yucel et al. (2021), such

analysis could provide additional information about the connectivity based on their

physiological characteristics.

Another relevant analytical approach to include could be to analyze the changes in

connectivity during the different segments of the experimental paradigm. By separating the

52

data into segments of “left turn”, “right turn”, “straight forward”, and “pause”, analysis

between the segments could give additional information about the participant’s connectivity.

This might provide further insights into how the brain responds to different footwear and

gait patterns. This could technically be implemented by utilizing the already existing

accelerometer and gyroscope data to differentiate the segments.

5.2.3 The output from the pipeline

The results generated by the pipeline aim to make the research process more effective by

automating the processing pipeline and generating results for further analysis. This is done

by facilitating functional connectivity analysis. By having the data created as a report based

on the chronological plots from its process, the user has control of the data during the whole

process.

The functional connectivity plots come in the form of an adjacency matrix without any

threshold, an adjacency matrix with the thresholds, and a circular graph for all the

thresholded adjacency matrices. As connectivity analyses often are based on only the

adjacency matrix (NIRx Medical Technologies, 2019) the circular graph is providing an

alternative way of presenting the data. By plotting the connections in the form of edges

between the channels the data can be interpreted. The abbreviations for the brain areas are

described within every generated report to support its interpretability. To further increase

the interpretability of the connectivity analysis, plots of the optodes’ placement on the scalp

could be added together with the connectivity edges between them.

Other graphical actions could also be taken to further develop the plots. However, such

actions are inessential in this work as the circular graph includes the necessary information

to perform the analysis.

5.3 The analysis of the Gaitline data

To present how the pipeline can be utilized for FC analysis, data from one participant in the

Gaitline study were used as an example. Data from four conditions were assessed to address

the impact of wedging of the calcaneus and the impact of the Gaitline shoes.

The comparison of a flat sole against a wedged sole indicated that similar connectivity

occurred during both conditions. Both plots showed a strong correlation between the

deoxygenated channels between the PMS and the PMC, alongside a strong correlation

53

between the PMC and the SGWA. The same tendencies were observed during the

barefooted walking and when using the Gaitline shoe. As previous studies have shown that

the PMS and PMC are among the most active regions during walking (Herold et al., 2017),

the findings regarding their temporal correlation are interesting to consider.

The stronger correlation between the PFC and the PMS during barefooted walk compared to

walking with the Gaitline shoes is another indication that might be interesting to address

further. As these areas are known for their activation during balancing tasks, their stronger

correlating behavior might illustrate how the Gaitline shoes are impacting the users’

connectivity when wearing them.

Regarding the skewed distribution of deoxygenated channels showing correlation levels

above 75%, further assessment of their impact on the connectivity could provide a stronger

foundation for the FC analysis. Montero-Hernandez et al. (2018) have already shown that

this skew is expected when analyzing the functional connectivity using both hemoglobin

species. Without any consensus in the field, they recommend including both species in the

FC analysis to provide loss of information (Montero-Hernandez et al., 2018).

However, all the indications stated in this section are only based on one participant’s data

and can only work as an indication of what to address in future analysis.

54

6 Conclusion and future directions

With an aim of facilitating studies that try to map the functionality of the brain, the objective

of this thesis has been to develop a processing pipeline for fNIRS motor control studies. With

an ultimate goal of unraveling how the orchestration of the brain works, this program aims to

contribute to the further development of the field by enabling researchers and students to

perform reliable connectivity analysis. By reviewing state-of-the-art literature related to

fNIRS data processing and functional connectivity analysis, this work aimed to discover the

state-of-the-art steps needed to be implemented in such a pipeline. With no such standards

discovered within the field, the pipeline is developed based on the most promising

techniques employed in similar studies.

By mapping how the most utilized programs for fNIRS analysis are designed, this thesis found

that analysis using MATLAB is common practice within the field. This led to the development

of a MATLAB-based program utilizing the recognized NIRS Brain AnalyzIR toolbox by Santosa

et al. (2018). The program enables automatic processing of experimental fNIRS data and

generates a report consisting of the plots for each pre-processing and processing step taken.

By providing both a user-friendly GUI version of the pipeline and a live script version, the

user has the option of both conducting stepwise data processing or a fully automatic

process.

One of the most promising techniques used in functional connectivity analyses was found to

be autoregressive models that use pre-whitening of the signal to remove unwanted artifacts

and to ensure reliable results. As the most used measure in functional connectivity analysis

was found to be the Pearson’s R coefficient of correlation, the model is implemented to

perform a robust calculation of the correlation. The correlation between the channels is

plotted both as an adjacency matrix and a circular graph to enable intuitive and interpretable

analysis.

The workings of the pipeline are illustrated using data from a previous motor control

experiment conducted by Oslo Metropolitan University and Gaitline AS. Analysis of some of

the data illuminated how the connectivity plots provided by the pipeline can be used for

functional connectivity analysis of motor control studies. These indications would be

interesting to further analysis as they might lead to better rehabilitation for people in need.

To adhere to the recommendations for best practices in fNIRS studies by Yucel et al. (2021),

55

relevant information regarding the processing steps is implemented in the generated report.

With the lack of standardized pre-processing and processing steps in the field of fNIRS,

conclusive answers to how a pipeline should be designed cannot be provided. More research

regarding several important aspects is thus relevant to pursue.

During the work on this thesis, several gaps within the field were discovered. One of these

gaps includes the lack of structural comparisons between existing toolboxes for fNIRS

processing and analysis. By providing a thorough comparison between their functionalities

and transparency, researchers and students would have a stronger foundation for conducting

fNIRS research.

The low number of studies related to functional connectivity during motor control studies

indicates that there is potential for further investigation in the field. Hopefully, the developed

pipeline will both work as a helpful tool in such processing and also work as a framework

that could inspire future studies. By constantly following the developments within the field,

further development of this pipeline could be conducted. Natural future actions would be to

compare the results generated in this pipeline to results from other FC tools, such as FC-NIRS

by Xu et al. (2015). This could provide additional reliability to the outcomes of the pipeline.

The steps included within this pipeline are based on recommendations found in the

literature. However, a thorough review of the differences caused by the implementation of

different pre-processing and processing techniques would have a positive impact on the

further development of the pipeline. By assessing the impact of interesting techniques such

as DASAR, COFRE, MCLM, and SCAU as mentioned in Pinto-Orellana (2022), improvements in

the analysis might occur. Implementation of promising machine learning techniques for

better processing and feature extraction of cortical activation is another natural direction to

pursue in the future of fNIRS motor control studies.

With the current focus of the research project within Oslo Metropolitan University regarding

the exploration of a hybrid solution for fNIRS and EEG (Appendix C), functions for EEG

processing should be implemented within the pipeline. Such processing functions are

available in the NIRS Brain AnalyzIR toolbox and could give additional information regarding

the spatiotemporal functional activity in the brain. Additional information might also be

acquired by facilitating for processing of the short separation channel data and the IMU data

56

from the NIRS Wing system. Moreover, by separating the experimental data into both

temporal and spectral segments, analysis of the cortical activity might reveal important

information about the complex human brain.

Functional Near-Infrared Technology is a neuroimaging technique showing great potential in

the field of neuroimaging and further developments in its processing techniques can help us

understand the orchestration of the human brain.

57

References

Aarabi, A., & Huppert, T. (2016). Characterization of the relative
contributions from systemic physiological noise to whole-brain
resting-state functional near-infrared spectroscopy data using
single-channel independent component analysis.
Neurophotonics, 3(2), 025004.
https://doi.org/10.1117/1.NPh.3.2.025004

Anwar, A. R., Muthalib, M., Perrey, S., Galka, A., Granert, O., Wolff, S.,
Heute, U., Deuschl, G., Raethjen, J., & Muthuraman, M. (2016).
Effective Connectivity of Cortical Sensorimotor Networks During
Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.
Brain Topography, 29(5), 645-660.
https://doi.org/10.1007/s10548-016-0507-1

Barker, J. W., Aarabi, A., & Huppert, T. J. (2013). Autoregressive model
based algorithm for correcting motion and serially correlated
errors in fNIRS. Biomedical Optics Express, 4(8), 1366-1379.
https://doi.org/10.1364/BOE.4.001366

Blanco, B., Molnar, M., & Caballero-Gaudes, C. (2018). Effect of
prewhitening in resting-state functional near-infrared
spectroscopy data. Neurophotonics, 5(04), 1.
https://doi.org/10.1117/1.nph.5.4.040401

Bonett, D. G. (2006). Confidence interval for a coefficient of quartile
variation. Computational Statistics & Data Analysis, 50(11),
2953-2957.
https://doi.org/https://doi.org/10.1016/j.csda.2005.05.007

Bonilauri, A., Sangiuliano Intra, F., Baselli, G., & Baglio, F. (2021).
Assessment of fNIRS Signal Processing Pipelines: Towards Clinical
Applications. Applied Sciences, 12(1), 316.
https://doi.org/10.3390/app12010316

Bowyer, S. M. (2016). Coherence a measure of the brain networks:
past and present. Neuropsychiatric Electrophysiology, 2(1).
https://doi.org/10.1186/s40810-015-0015-7

BrainyQuote.com. (n.d.). Michio Kaku Quotes. BrainyQuote.com.
Retrieved 14th of May from
https://www.brainyquote.com/quotes/michio_kaku_615181

https://doi.org/10.1117/1.NPh.3.2.025004
https://doi.org/10.1007/s10548-016-0507-1
https://doi.org/10.1364/BOE.4.001366
https://doi.org/10.1117/1.nph.5.4.040401
https://doi.org/https:/doi.org/10.1016/j.csda.2005.05.007
https://doi.org/10.3390/app12010316
https://doi.org/10.1186/s40810-015-0015-7
https://www.brainyquote.com/quotes/michio_kaku_615181

58

Bullmore, E. T., Fornito, A., & Zalesky, A. (2016). Fundamentals of brain
network analysis. Elsevier.

Burns, S. (2018). UCLA SCN preprocessing of fNIRS data. In UCLA SCN.
https://github.com/smburns47/preprocessingfNIRS/tree/master/
Matlab

Cinciute, S. (2019). Translating the hemodynamic response: why
focused interdisciplinary integration should matter for the future
of functional neuroimaging. PeerJ, 7, e6621.
https://doi.org/10.7717/peerj.6621

Crosson, B., Ford, A., McGregor, K. M., Meinzer, M., Cheshkov, S., Li, X.,
Walker-Batson, D., & Briggs, R. W. (2010). Functional imaging and
related techniques: an introduction for rehabilitation
researchers. Journal of rehabilitation research and development,
47(2), vii-xxxiv. https://doi.org/10.1682/jrrd.2010.02.0017

Dans, P. W., Foglia, S. D., & Nelson, A. J. (2021). Data Processing in
Functional Near-Infrared Spectroscopy (fNIRS) Motor Control
Research. Brain Sci, 11(5).
https://doi.org/10.3390/brainsci11050606

Dehghani, H., Eames, M. E., Yalavarthy, P. K., Davis, S. C., Srinivasan, S.,
Carpenter, C. M., Pogue, B. W., & Paulsen, K. D. (2009). Near
infrared optical tomography using NIRFAST: Algorithm for
numerical model and image reconstruction. Communications in
Numerical Methods in Engineering, 25(6), 711-732.
https://doi.org/10.1002/cnm.1162

Dieffenbach, M. C., Gillespie, G. S. R., Burns, S. M., McCulloh, I. A.,
Ames, D. L., Dagher, M. M., Falk, E. B., & Lieberman, M. D.
(2020). Neural reference groups: a synchrony-based classification
approach for predicting attitudes using fNIRS. Social Cognitive
and Affective Neuroscience, 16(1-2), 117-128.
https://doi.org/10.1093/scan/nsaa115

Eickhoff, S. B., & Müller, V. I. (2015). Functional Connectivity. In A. W.
Toga (Ed.), Brain Mapping (pp. 187-201). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-12-397025-
1.00212-8

Elam, J. S., Glasser, M. F., Harms, M. P., Sotiropoulos, S. N., Andersson,

https://github.com/smburns47/preprocessingfNIRS/tree/master/Matlab
https://github.com/smburns47/preprocessingfNIRS/tree/master/Matlab
https://doi.org/10.7717/peerj.6621
https://doi.org/10.1682/jrrd.2010.02.0017
https://doi.org/10.3390/brainsci11050606
https://doi.org/10.1002/cnm.1162
https://doi.org/10.1093/scan/nsaa115
https://doi.org/https:/doi.org/10.1016/B978-0-12-397025-1.00212-8
https://doi.org/https:/doi.org/10.1016/B978-0-12-397025-1.00212-8

59

J. L. R., Burgess, G. C., Curtiss, S. W., Oostenveld, R., Larson-Prior,
L. J., Schoffelen, J.-M., Hodge, M. R., Cler, E. A., Marcus, D. M.,
Barch, D. M., Yacoub, E., Smith, S. M., Ugurbil, K., & Van Essen, D.
C. (2021). The Human Connectome Project: A retrospective.
NeuroImage, 244, 118543.
https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.1185
43

Fantini, S., Frederick, B., & Sassaroli, A. (2018). Perspective: Prospects
of non-invasive sensing of the human brain with diffuse optical
imaging. APL Photonics, 3(11), 110901.
https://doi.org/10.1063/1.5038571

fNIRS.org. (2022, 13th of March 2022). Shared Near Infrared
Spectroscopy Format Specification. The Sciety for functional Near
Infrared Spectroscopy. Retrieved 5th of May from
https://github.com/fNIRS/snirf/blob/master/snirf_specification.
md#snirf-data-format-summary

Friston, K. J. (2011). Functional and effective connectivity: a review.
Brain Connect, 1(1), 13-36.
https://doi.org/10.1089/brain.2011.0008

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J.,
Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson,
M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal
parcellation of human cerebral cortex. Nature, 536(7615), 171-
178. https://doi.org/10.1038/nature18933

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D.,
Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., &
Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-
Python [Methods]. Frontiers in Neuroscience, 7.
https://doi.org/10.3389/fnins.2013.00267

Hamacher, D., Herold, F., Wiegel, P., Hamacher, D., & Schega, L. (2015).
Brain activity during walking: A systematic review. Neuroscience
& Biobehavioral Reviews, 57, 310-327.
https://doi.org/10.1016/j.neubiorev.2015.08.002

Herold, F., Wiegel, P., Scholkmann, F., Thiers, A., Hamacher, D., &
Schega, L. (2017). Functional near-infrared spectroscopy in

https://doi.org/https:/doi.org/10.1016/j.neuroimage.2021.118543
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2021.118543
https://doi.org/10.1063/1.5038571
https://github.com/fNIRS/snirf/blob/master/snirf_specification.md#snirf-data-format-summary
https://github.com/fNIRS/snirf/blob/master/snirf_specification.md#snirf-data-format-summary
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1038/nature18933
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.neubiorev.2015.08.002

60

movement science: a systematic review on cortical activity in
postural and walking tasks. Neurophotonics, 4(4), 041403.
https://doi.org/10.1117/1.nph.4.4.041403

Hocke, L., Oni, I., Duszynski, C., Corrigan, A., Frederick, B., & Dunn, J.
(2018). Automated Processing of fNIRS Data—A Visual Guide to
the Pitfalls and Consequences. Algorithms, 11(5), 67.
https://doi.org/10.3390/a11050067

Hu, Z., Liu, G., Dong, Q., & Niu, H. (2020). Applications of Resting-State
fNIRS in the Developing Brain: A Review From the Connectome
Perspective. Front Neurosci, 14, 476.
https://doi.org/10.3389/fnins.2020.00476

Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A.
(2009). HomER: a review of time-series analysis methods for
near-infrared spectroscopy of the brain. Applied Optics, 48(10),
D280. https://doi.org/10.1364/ao.48.00d280

Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., & Boas,
D. A. (2006). A temporal comparison of BOLD, ASL, and NIRS
hemodynamic responses to motor stimuli in adult humans.
NeuroImage, 29(2), 368-382.
https://doi.org/10.1016/j.neuroimage.2005.08.065

Irani, F., Platek, S. M., Bunce, S., Ruocco, A. C., & Chute, D. (2007).
Functional near infrared spectroscopy (fNIRS): an emerging
neuroimaging technology with important applications for the
study of brain disorders. Clin Neuropsychol, 21(1), 9-37.
https://doi.org/10.1080/13854040600910018

Jacques, S. L. (2013). Optical properties of biological tissues: a review.
Physics in Medicine and Biology, 58(11), R37-R61.
https://doi.org/10.1088/0031-9155/58/11/r37

Kassebaum, P. (2022). circularGraph. In GitHub.
https://github.com/paul-kassebaum-mathworks/circularGraph

Khan, H. (2022). Experimental details of the Gaitline study
[Experimental design]. Oslo Metropolitan University.

Klein, F., & Kranczioch, C. (2019). Signal Processing in fNIRS: A Case for
the Removal of Systemic Activity for Single Trial Data. Front Hum
Neurosci, 13, 331. https://doi.org/10.3389/fnhum.2019.00331

https://doi.org/10.1117/1.nph.4.4.041403
https://doi.org/10.3390/a11050067
https://doi.org/10.3389/fnins.2020.00476
https://doi.org/10.1364/ao.48.00d280
https://doi.org/10.1016/j.neuroimage.2005.08.065
https://doi.org/10.1080/13854040600910018
https://doi.org/10.1088/0031-9155/58/11/r37
https://github.com/paul-kassebaum-mathworks/circularGraph
https://doi.org/10.3389/fnhum.2019.00331

61

Kozak, M. (2009). What is Strong Correlation? Teaching Statistics,
31(3), 85-86. https://doi.org/https://doi.org/10.1111/j.1467-
9639.2009.00387.x

Latash, M. L. (2012). 1 - A philosophical introduction. In M. L. Latash
(Ed.), Fundamentals of Motor Control (pp. 1-4). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-12-415956-
3.00001-4

Lau, T. M., Gwin, J. T., & Ferris, D. P. (2014). Walking reduces
sensorimotor network connectivity compared to standing.
Journal of NeuroEngineering and Rehabilitation, 11(1), 14.
https://doi.org/10.1186/1743-0003-11-14

Montero-Hernandez, S., Orihuela-Espina, F., Sucar, L., Pinti, P.,
Hamilton, A., Burgess, P., & Tachtsidis, I. (2018). Estimating
Functional Connectivity Symmetry between Oxy- and Deoxy-
Haemoglobin: Implications for fNIRS Connectivity Analysis.
Algorithms, 11(5), 70. https://doi.org/10.3390/a11050070

Monti, M. (2011). Statistical Analysis of fMRI Time-Series: A Critical
Review of the GLM Approach [Review]. Frontiers in Human
Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00028

Muccigrosso, D., & Eggebrecht, A. (2018, 2018/04/03). NeuroDOT: A
New Neuroimaging Toolbox for DOT.OSA Technical Digest
Biophotonics Congress: Biomedical Optics Congress 2018
(Microscopy/Translational/Brain/OTS), Hollywood, Florida.

Nettleton, D. (2014). Chapter 6 - Selection of Variables and Factor
Derivation. In D. Nettleton (Ed.), Commercial Data Mining (pp.
79-104). Morgan Kaufmann.
https://doi.org/https://doi.org/10.1016/B978-0-12-416602-
8.00006-6

NIRx Medical Technologies. (2019, 4th of April 2019). NIRx Webinar
Studying functional connectivity with fNIRS [Webinar]. YouTube.
https://www.youtube.com/watch?v=0lIrUszlBdI&t=12s&ab_chan
nel=NIRxMedicalTechnologies

NIRx Medical Technologies. (2020, 24th of April 2020). Introduction to
NIRS Toolbox: Installation and Getting Started [Webinar].
YouTube.

https://doi.org/https:/doi.org/10.1111/j.1467-9639.2009.00387.x
https://doi.org/https:/doi.org/10.1111/j.1467-9639.2009.00387.x
https://doi.org/https:/doi.org/10.1016/B978-0-12-415956-3.00001-4
https://doi.org/https:/doi.org/10.1016/B978-0-12-415956-3.00001-4
https://doi.org/10.1186/1743-0003-11-14
https://doi.org/10.3390/a11050070
https://doi.org/10.3389/fnhum.2011.00028
https://doi.org/https:/doi.org/10.1016/B978-0-12-416602-8.00006-6
https://doi.org/https:/doi.org/10.1016/B978-0-12-416602-8.00006-6
https://www.youtube.com/watch?v=0lIrUszlBdI&t=12s&ab_channel=NIRxMedicalTechnologies
https://www.youtube.com/watch?v=0lIrUszlBdI&t=12s&ab_channel=NIRxMedicalTechnologies

62

https://www.youtube.com/watch?v=zlAC3aWW8kc&ab_channel
=NIRxMedicalTechnologies

Orihuela-Espina, F., Leff, D. R., James, D. R. C., Darzi, A. W., & Yang, G.-
Z. (2017). Imperial College near infrared spectroscopy
neuroimaging analysis framework. Neurophotonics, 5(01), 1.
https://doi.org/10.1117/1.nph.5.1.011011

Pfeifer, M. D., Scholkmann, F., & Labruyere, R. (2017). Signal Processing
in Functional Near-Infrared Spectroscopy (fNIRS):
Methodological Differences Lead to Different Statistical Results.
Front Hum Neurosci, 11, 641.
https://doi.org/10.3389/fnhum.2017.00641

Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., & Tachtsidis, I.
(2018). Current Status and Issues Regarding Pre-processing of
fNIRS Neuroimaging Data: An Investigation of Diverse Signal
Filtering Methods Within a General Linear Model Framework.
Front Hum Neurosci, 12, 505.
https://doi.org/10.3389/fnhum.2018.00505

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S.,
& Burgess, P. W. (2020). The present and future use of functional
near-infrared spectroscopy (fNIRS) for cognitive neuroscience.
Annals of the New York Academy of Sciences, 1464(1), 5-29.
https://doi.org/10.1111/nyas.13948

Pinto-Orellana, M. A. (2022). Time-spectral modeling of biomedical
signals [Doctoral thesis, Oslo Metropolitan University].

Santosa, H., Zhai, X., Fishburn, F., & Huppert, T. (2018). The NIRS Brain
AnalyzIR Toolbox. Algorithms, 11(5).
https://doi.org/10.3390/a11050073

Scholkmann, F., & Wolf, M. (2013). General equation for the
differential pathlength factor of the frontal human head
depending on wavelength and age. Journal of Biomedical Optics,
18(10), 1-6. https://doi.org/10.1117/1.JBO.18.10.105004

Shevlyakov, G., & Smirnov, P. (2011). Robust Estimation of the
Correlation Coefficient: An Attempt of Survey. Austrian Journal of
Statistics, 40, 147-156.

Shoaib, Z., Ahmad Kamran, M., Mannan, M. M. N., & Jeong, M. Y.

https://www.youtube.com/watch?v=zlAC3aWW8kc&ab_channel=NIRxMedicalTechnologies
https://www.youtube.com/watch?v=zlAC3aWW8kc&ab_channel=NIRxMedicalTechnologies
https://doi.org/10.1117/1.nph.5.1.011011
https://doi.org/10.3389/fnhum.2017.00641
https://doi.org/10.3389/fnhum.2018.00505
https://doi.org/10.1111/nyas.13948
https://doi.org/10.3390/a11050073
https://doi.org/10.1117/1.JBO.18.10.105004

63

(2019). Approach to optimize 3-dimensional brain functional
activation image with high resolution: a study on functional near-
infrared spectroscopy. Biomedical Optics Express, 10(9), 4684.
https://doi.org/10.1364/boe.10.004684

Shumway-Cook, A., & Woollacott, M. H. (2017). Motor control :
translating research into clinical practice.

Sporns, O., Tononi, G., & Kötter, R. (2005). The Human Connectome: A
Structural Description of the Human Brain. PLoS Computational
Biology, 1(4), e42. https://doi.org/10.1371/journal.pcbi.0010042

Strangman, G., Franceschini, M. A., & Boas, D. A. (2003). Factors
affecting the accuracy of near-infrared spectroscopy
concentration calculations for focal changes in oxygenation
parameters. NeuroImage, 18(4), 865-879.
https://doi.org/10.1016/s1053-8119(03)00021-1

Sutoko, S., Sato, H., Maki, A., Kiguchi, M., Hirabayashi, Y., Atsumori, H.,
Obata, A., Funane, T., & Katura, T. (2016). Tutorial on platform for
optical topography analysis tools. Neurophotonics, 3(1), 010801.
https://doi.org/10.1117/1.NPh.3.1.010801

Szymanski, T. J. (1997). Infinity Walk: Preparing Your Mind to Learn!
[Infinity Walk: Preparing your mind to learn!, D. Sunbeck].
Research and Teaching in Developmental Education, 13(2), 113-
115. http://www.jstor.org/stable/42801971

Tadel, F., Bock, E., Niso, G., Mosher, J. C., Cousineau, M., Pantazis, D.,
Leahy, R. M., & Baillet, S. (2019). MEG/EEG Group Analysis With
Brainstorm [Methods]. Frontiers in Neuroscience, 13.
https://doi.org/10.3389/fnins.2019.00076

Tremblay, J., Martínez-Montes, E., Hüsser, A., Caron-Desrochers, L.,
Lepage, C., Pouliot, P., Vannasing, P., & Gallagher, A. (2022).
LIONirs: flexible Matlab toolbox for fNIRS data analysis. Journal of
Neuroscience Methods, 370, 109487.
https://doi.org/https://doi.org/10.1016/j.jneumeth.2022.10948
7

Van Essen, D. C. (2013). Cartography and Connectomes. Neuron, 80(3),
775-790. https://doi.org/10.1016/j.neuron.2013.10.027

von Luhmann, A., Ortega-Martinez, A., Boas, D. A., & Yucel, M. A.

https://doi.org/10.1364/boe.10.004684
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1016/s1053-8119(03)00021-1
https://doi.org/10.1117/1.NPh.3.1.010801
http://www.jstor.org/stable/42801971
https://doi.org/10.3389/fnins.2019.00076
https://doi.org/https:/doi.org/10.1016/j.jneumeth.2022.109487
https://doi.org/https:/doi.org/10.1016/j.jneumeth.2022.109487
https://doi.org/10.1016/j.neuron.2013.10.027

64

(2020). Using the General Linear Model to Improve Performance
in fNIRS Single Trial Analysis and Classification: A Perspective.
Front Hum Neurosci, 14, 30.
https://doi.org/10.3389/fnhum.2020.00030

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA:
a graph theoretical network analysis toolbox for imaging
connectomics. Front Hum Neurosci, 9, 386.
https://doi.org/10.3389/fnhum.2015.00386

Welch, P. (1967). The use of fast Fourier transform for the estimation
of power spectra: A method based on time averaging over short,
modified periodograms. IEEE Transactions on Audio and
Electroacoustics, 15(2), 70-73.
https://doi.org/10.1109/TAU.1967.1161901

Whiteman, A. C., Santosa, H., Chen, D. F., Perlman, S., & Huppert, T.
(2018). Investigation of the sensitivity of functional near-infrared
spectroscopy brain imaging to anatomical variations in 5- to 11-
year-old children. Neurophotonics, 5(1), 011009-011009.
https://doi.org/10.1117/1.NPh.5.1.011009

Wong, J. K., Middlebrooks, E. H., Grewal, S. S., Almeida, L., Hess, C. W.,
& Okun, M. S. (2020). A Comprehensive Review of Brain
Connectomics and Imaging to Improve Deep Brain Stimulation
Outcomes. Movement Disorders, 35(5), 741-751.
https://doi.org/10.1002/mds.28045

Xu, J., Liu, X., Zhang, J., Li, Z., Wang, X., Fang, F., & Niu, H. (2015). FC-
NIRS: A Functional Connectivity Analysis Tool for Near-Infrared
Spectroscopy Data. Biomed Res Int, 2015, 248724.
https://doi.org/10.1155/2015/248724

Xu, Y., Graber, H. L., & Barbour, R. L. (2014, 2014/04/26). nirsLAB: A
Computing Environment for fNIRS Neuroimaging Data
Analysis.OSA Technical Digest (online) Biomedical Optics 2014,
Miami, Florida.

Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM:
Statistical parametric mapping for near-infrared spectroscopy.
NeuroImage, 44(2), 428-447.
https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.08.0

https://doi.org/10.3389/fnhum.2020.00030
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1117/1.NPh.5.1.011009
https://doi.org/10.1002/mds.28045
https://doi.org/10.1155/2015/248724
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2008.08.036

65

36
Yücel, M., Selb, J., Aasted, C., Petkov, M., Becerra, L., Borsook, D., &

Boas, D. (2015). Short separation regression improves statistical
significance and better localizes the hemodynamic response
obtained by near-infrared spectroscopy for tasks with differing
autonomic responses. Neurophotonics, 2(3), 035005.
https://doi.org/10.1117/1.NPh.2.3.035005

Yucel, M. A., Luhmann, A. V., Scholkmann, F., Gervain, J., Dan, I., Ayaz,
H., Boas, D., Cooper, R. J., Culver, J., Elwell, C. E., Eggebrecht, A.,
Franceschini, M. A., Grova, C., Homae, F., Lesage, F., Obrig, H.,
Tachtsidis, I., Tak, S., Tong, Y., . . . Wolf, M. (2021). Best practices
for fNIRS publications. Neurophotonics, 8(1), 012101.
https://doi.org/10.1117/1.NPh.8.1.012101

Yücel, M. A., Selb, J., Aasted, C. M., Lin, P.-Y., Borsook, D., Becerra, L., &
Boas, D. A. (2016). Mayer waves reduce the accuracy of
estimated hemodynamic response functions in functional near-
infrared spectroscopy. Biomedical Optics Express, 7(8), 3078.
https://doi.org/10.1364/boe.7.003078

Yücel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A., & Boas, D. A.
(2017). Functional Near Infrared Spectroscopy: Enabling routine
functional brain imaging. Current Opinion in Biomedical
Engineering, 4, 78-86.
https://doi.org/10.1016/j.cobme.2017.09.011

Zhang, J. X. J., & Hoshino, K. (2019). Chapter 5 - Optical transducers:
Optical molecular sensing and spectroscopy. In J. X. J. Zhang & K.
Hoshino (Eds.), Molecular Sensors and Nanodevices (Second
Edition) (pp. 231-309). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-12-814862-
4.00005-3

Zilles, K. (2018). Brodmann: a pioneer of human brain mapping—his
impact on concepts of cortical organization. Brain, 141(11),
3262-3278. https://doi.org/10.1093/brain/awy273

Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes’
Location Decider (fOLD): a toolbox for probe arrangement
guided by brain regions-of-interest. Scientific Reports, 8(1).

https://doi.org/https:/doi.org/10.1016/j.neuroimage.2008.08.036
https://doi.org/10.1117/1.NPh.2.3.035005
https://doi.org/10.1117/1.NPh.8.1.012101
https://doi.org/10.1364/boe.7.003078
https://doi.org/10.1016/j.cobme.2017.09.011
https://doi.org/https:/doi.org/10.1016/B978-0-12-814862-4.00005-3
https://doi.org/https:/doi.org/10.1016/B978-0-12-814862-4.00005-3
https://doi.org/10.1093/brain/awy273

66

https://doi.org/10.1038/s41598-018-21716-z

https://doi.org/10.1038/s41598-018-21716-z

67

Appendix A: Code for Live Script

Pipeline for fNIRS connectivity analysis

Live script as a supplementary approach for GUI.

Created by Sindre Lilleseth 2022.

Initialization: Load data

clear all;

clc;

close all;

%%Choose folder for repository

lib_folder = uigetdir([], 'Choose the folder containing the repository'); %

Choose the folder containing the library for this pipeline.

addpath(genpath(lib_folder)); % Sets the library folder as a path.

%%Load necessary data.

load("BrainRegions_table.mat"); % Table with the different brain regions and

related data. Based on the table from OsloMet Phd candidate Haroon Khan.

load("orderOfChan_mat.mat"); % The order of the channels based on brain

regions and optode placement.

load("labelCells_comp.mat"); % The organised order of the regions for the

Circular Plot.

%%Choose folder

test_folder = uigetdir([], 'Choose folder containing the test data');

subjsplit = split(test_folder, '\'); % Split folder path into cells. Based on

the hierarchy of this experiment data.

%%Load nirs with nirs toolbox function

addpath(genpath(test_folder)); % Adds the test folder to the path.

nirsfile = strcat(subjsplit(length(subjsplit)),'.nirs'); % Find the name of

the nirs file.

raw_nirs = nirs.io.loadDotNirs(nirsfile); % Loads the nirs file.

%%Create pdf name

pdf_name = cell2str(strcat(subjsplit(length(subjsplit)-1),'-

',subjsplit(length(subjsplit)),'.pdf'));

%%Choose folder for storing the report

[filename_report, filepath_report] = uiputfile(pdf_name,'Choose folder for

storing the report');

%%Create folder for storing the report and figures.

folder_name = cell2str(strcat(subjsplit(length(subjsplit)-1),'-

',subjsplit(length(subjsplit))));

new_folder = strcat(filepath_report,folder_name);

68

mkdir(new_folder);

%%Defining some variables:

satlength = 2; % The saturation length of the bad channel rejection

algorithm.

QCoDthresh = 0.1; % The Quartile Coeffisient of Dispersion threshold used in

the bad channel rejection function.

Step 1: Rename stimuli data.

job1 = nirs.modules.RenameStims; % Define the first job: Rename stimuli.

job1.listOfChanges = {'stim_channel1' 'Start/stop'}; % Rename the stimuli.

raw_nirs_ReStim = job1.run(raw_nirs); % Perform job1 on the raw data.

figure(1); % Define a figure.

raw_nirs_ReStim.draw % Plot the figure.

xlabel('Seconds'), ylabel('Amplitude');

title('Raw data w/stimuli');

ax1 = gca; % Get the properties of the axes.

exportgraphics(ax1, [filepath_report filename_report], 'Resolution', 500); %

Export the plot to the report.

exportgraphics(ax1, fullfile(new_folder, strcat(folder_name,'-',

'Raw_stimuli','.png')),"Resolution",500);

%StatusEditField.Value = 'Data is renamed'; % Updating the status field.

close(figure(1));

Step 2: Trim data

job2 = nirs.modules.TrimBaseline; % Defining the second job: Trimming of the

data.

job2.preBaseline = -5; % Removing the first 5 seconds of the data.

raw_nirs_Trimmed = job2.run(raw_nirs_ReStim); % Performing job2 on the ReStim

data.

job2.postBaseline = -10; % Removing the last 10 seconds of the data.

raw_nirs_Trimmed = job2.run(raw_nirs_Trimmed); % Performing the updated job2

on the data.

figure(2); % Defining a new figure.

raw_nirs_Trimmed.draw; % Plotting the trimmed data.

xlabel('Seconds'), ylabel('Amplitude');

title('Trimmed raw data');

ax2 = gca; % Get the properties of the axes.

69

exportgraphics(ax2, [filepath_report filename_report], 'Resolution', 500,

'append', true); % Export the plot to the report.

exportgraphics(ax2, fullfile(new_folder, strcat(folder_name,'-

','Raw_trimmed','.png')),"Resolution",500);

close(figure(2));

Step 3: Label short separation channels

job3 = nirs.modules.LabelShortSeperation(job2); % Defining the third job:

Label the short separation channels.

job3.max_distance = 15; % Setting the max source detector distance to 15 mm.

raw_nirs_Labeled = job2.run(raw_nirs_Trimmed); % Perform job 3 on the trimmed

data.

Step 4: Correct baseline

StatusEditField.Value = 'Correcting baseline...'; % Updating the status

field.

job4 = nirs.modules.BaselineCorrection(job3); % Defining the fourth job:

Correction of the baseline.

Baseline_corrected = job4.run(raw_nirs_Labeled); % Perform job4 on the

labeled data.

figure(4);

Baseline_corrected.draw; % Plotting of the baseline corrected data.

xlabel('Seconds'), ylabel('Amplitude');

title('Baseline corrected raw data');

ax4 = gca; % Get the properties of the axes.

exportgraphics(ax4, [filepath_report filename_report], 'Resolution', 500,

'append', true); % Exporting the plot to the report.

exportgraphics(ax4, fullfile(new_folder, strcat(folder_name,'-

','Raw_baselineCorr','.png')),"Resolution",500); % Exporting the plot as a

single file.

close(figure(4));

Step 5: Remove bad channels

% Finding the bad channels in the data.

[temp_data, channelmask] =

removeBadChannels_modified(Baseline_corrected.data, Baseline_corrected.Fs,

satlength, QCoDthresh);

bad_chans_str_temparr = strings(1,length(channelmask)); %Defining a temporary

string array.

bad_chans_count = 1;

for i=1: length(channelmask)

 % Removing bad channels from the data.

70

 if channelmask(1,i) == 0

 Baseline_corrected.data(:,i) = 0;

 bad_chans_str_temparr(1,bad_chans_count) = i; bad_chans_count =

bad_chans_count + 1; % Store the bad channel number for reporting.

 end

end

if bad_chans_count == 1

 bad_chans_str = 'No bad channels detected';

else

 % Create string of the bad channels detected.

 bad_chans_str_arr = strings(1,bad_chans_count-1);

 for k=1: bad_chans_count-1

 bad_chans_str_arr(1,k) = bad_chans_str_temparr(1,k);

 end

 bad_chans_str = strjoin(bad_chans_str_arr,', ');

end

Step 6: Removing short channels

noshortchans = Baseline_corrected; % Creates a copy of the baseline corrected

data.

rangeOfLoop = length(Baseline_corrected.probe.link.ShortSeperation); %

Creates an integer for the removal loop.

for i=1: rangeOfLoop

 % For-loop for removing the short separation optodes from

 % the data

 if Baseline_corrected.probe.link.ShortSeperation(rangeOfLoop-i+1) == 1

 noshortchans.data(:,rangeOfLoop-i+1) = 0;

 end

end

figure(6);

noshortchans.draw; % Plotting of the data without short channels.

xlabel('Seconds'), ylabel('Amplitude');

title('Removed short and bad channels');

ax6 = gca; % Get the properties of the axes.

exportgraphics(ax6, [filepath_report filename_report], 'Resolution', 500,

'append', true); % Exporting the plot to the report.

exportgraphics(ax6, fullfile(new_folder, strcat(folder_name,'-

','Channels_removed','.png')),"Resolution",500); % exporting the plot as

single file.

close(figure(6));

Step 7: Intensity to Optical Density

71

job7 = nirs.modules.OpticalDensity(job4); % Defining job 7. Includes job4 to

log the process.

OD = job7.run(noshortchans); % Perform job7 on the data.

for i=1:length(channelmask)

 % Necessary step to ensure the correct format of the data

 % after this pre-processing step as the short channels are set to NaN.

 if channelmask(1,i) == 0

 OD.data(:,i) = 0;

 end

end

figure(7);

OD.draw; % Plots the OD data.

xlabel('Seconds'), ylabel('OD');

title('Optical Density');

ax7 = gca;

exportgraphics(ax7, [filepath_report filename_report], 'Resolution', 500,

'append', true); % Exporting the plot to report.

exportgraphics(ax7, fullfile(new_folder, strcat(folder_name,'-

','OD','.png')),"Resolution",500); % Exporting the plot as single file.

close(figure(7));

Step 8: Optical density to hbo and hbr concentrations

job8 = nirs.modules.BeerLambertLaw(); % By default: PPF = 0.1. Used by

Santosa et al. 2018.

hb = job8.run(OD); % Performing the mBLL on the OD data.

for i=1:length(channelmask)

 %To prevent cells from being 'NaN'.

 if isnan(hb.data(1,i))

 hb.data(:,i) = 0;

 end

end

% Plot the figure

figure(8);

hb.draw;

xlabel('Seconds'), ylabel('Conc');

title('Concentrations');

% Export plot.

ax8 = gca;

exportgraphics(ax8, [filepath_report filename_report], 'Resolution', 500,

'append', true);

exportgraphics(ax8, fullfile(new_folder, strcat(folder_name,'-

','Conc','.png')),"Resolution",500);

72

close(figure(8));

Step 9: Bandpass filtering

hb_filter_job = eeg.modules.BandPassFilter(); % Applying a bandpass filter to

the process.

hb_filter_job.do_downsample = false; %Do not downsample data

hb_filter_job.lowpass = 0.5; % Setting the cutoff frequency for the lowpass

filter = 0.5 Hz. Based on Yucel et al. 2021.

hb_filter_job.highpass = 0.01; % Setting the cutoff frequency for the

highpass filter = 0.01 Hz. Based on Yucel et al. 2021.

hb_filtered = hb_filter_job.run(hb); % Execute the filter job on the

concentration data.

% Plot figure

figure(9);

hb_filtered.draw;

xlabel('Seconds'), ylabel('Conc');

title('Concentrations - filtered');

% Export data.

ax9 = gca;

exportgraphics(ax9, [filepath_report filename_report], 'Resolution', 500,

'append', true);

exportgraphics(ax9, fullfile(new_folder, strcat(folder_name,'-

','Conc_filtered','.png')),"Resolution",500);

close(figure(9));

Step 10: Reorganize the data based on the brain regions.

reOrg_data =

zeros(numel(hb_filtered.data(:,1)),numel(hb_filtered.data(1,:))); % Defining a

new matrix with the dimensions of the filtered data.

for i=1: numel(hb_filtered.data(1,:))

 % Reorganizing the data.

 reOrg_data(:,i) = hb_filtered.data(:,orderOfChan_mat(i));

end

Step 11: Delete the short seperation channels

%%Deletes the short channels from the reorganized data

for i=18:49 % i=18: 49 is based on the removal of the channels starting from

the last column.

 reOrg_data(:,rangeOfLoop-i) = [];

 %Reorganized data has the alphabetic order of the brain region table.

 %F.ex: Column 1 = Channel 39 (hbo channel of the "Area between

73

 %brodmann 42L and 02L Ant. & posterior transverse temporal and

 %Primary Somatosensory Cortex").

 %This needs to be changed when

end

Step 12: GLM

jobs_GLM = nirs.modules.Resample();

%app.jobs_GLM = nirs.modules.RenameStims(app.jobs_GLM); % Experience unknown

error

%in this step

%app.jobs_GLM.listOfChanges = {'stim_channel1' 'Start/stop' 'stim_channel1'

%'Start/stop'}; % Rename the stimuli. % Experience unknown error in this

%step.

jobs_GLM = nirs.modules.OpticalDensity(jobs_GLM);

jobs_GLM = nirs.modules.BeerLambertLaw(jobs_GLM);

hb_GLM=jobs_GLM.run(raw_nirs);

jobs_GLM_hb=nirs.modules.GLM(); %Starts a new group of jobs.

jobs_GLM_hb=nirs.modules.ExportData(jobs_GLM_hb);

jobs_GLM_hb.Output="GLM_analysis";

data_GLM=jobs_GLM_hb.run(hb_GLM);

data_GLM.draw('tstat', [-10 10], 'p<0.05');

ax12a = gca(1);

ax12b = gca(2);

%app.StatusEditField.Value = 'GLM completed'; % Updating the status field.

exportgraphics(ax12a, [filepath_report filename_report], 'Resolution', 500,

'append', true);

exportgraphics(ax12a, fullfile(new_folder, strcat(folder_name,'-

','GLM_1','.png')),"Resolution",500);

exportgraphics(ax12b, [filepath_report filename_report], 'Resolution', 500,

'append', true);

exportgraphics(ax12b, fullfile(new_folder, strcat(folder_name,'-

','GLM_2','.png')),"Resolution",500);

close all;

Step 13: Functional Connectivity

[R_vals_ar, P_vals_ar, dfe_ar] = nirs.sFC.ar_corr(reOrg_data);

threshold = [0.5:0.05:1]; % The thresholds for the connectivity matrix.

Increases by 5% each plot.

74

conn_mat = R_vals_ar; %Copy the R-values (correlation values) matrix. Change

R-values matrix depending on utilized FC function.

figure(13);

imagesc(conn_mat); title('Connectivity matrix'); xlabel('Channels');

ylabel('Channels');

ax13a = gca; colorbar; %app.ax13a.Name = "Connectivity matrix";

exportgraphics(ax13a, [filepath_report filename_report], 'Resolution', 500,

'append', true);

exportgraphics(ax13a, fullfile(new_folder, strcat(folder_name,'-

','Connectivity_matrix','.png')),"Resolution",500);

close(figure(13)); pause(1);

%%Creating connectivity matrices with thresholded values.

for t=1:length(threshold)

 thresholded_connmat = zeros(length(conn_mat),length(conn_mat)); %%Create

an empty matrix.

 for i=1:length(conn_mat)

 for j=1:length(conn_mat)

 if conn_mat(i,j) > threshold(t)

 thresholded_connmat(i,j) = conn_mat(i,j);

 end

 end

 end

 % Plots and exports the thresholded matrix.

 mat_title_2 = sprintf('Thresholded matrix. Threshold = %d',

threshold(t));

 figure(14);

 imagesc(thresholded_connmat); title(mat_title_2); xlabel('Channels');

ylabel('Channels');

 ax13b = gca; colorbar; %app.ax13b.Name = "Connectivity matrix

(thresholded)";

 exportgraphics(ax13b, [filepath_report filename_report], 'Resolution',

500, 'append', true);

 exportgraphics(ax13b, fullfile(new_folder, strcat(folder_name,'-

','Thresholded_ConnMat_',num2str(t),'.png')),"Resolution",500);

 close(figure(14)); pause(1);

 % Plots and exports the circular graph.

 figure(15);

 CircGraphName = sprintf('Circular graph. Threshold = %d',threshold(t));

 circularGraph(thresholded_connmat,'Label',labelCells(2,:)); %Input: The

adjacency matrix.

 ax13c = gcf;

 ax13c.Name = CircGraphName;

75

 ax13c.Position = [200 200 1000 1000]; %Changes the size of the plot to

ensure space between labels.

 exportgraphics(ax13c, [filepath_report filename_report], 'Resolution',

500, 'append', true);

 exportgraphics(ax13c, fullfile(new_folder, strcat(folder_name,'-

','Thresholded_CircGraph_',num2str(threshold(t)),'.png')),"Resolution",500);

 close(figure(15)); pause(1);

end

pause(3);

Step 14: Save all workspace variables in report folder and relevant information.

save(strcat(new_folder,'\', folder_name,'.mat')); % Save the workspace

variable to the subject folder.

% The bad channels detected.

str_bad_chans = strcat(['Bad channels: ', bad_chans_str]);

% Add bad channel information to the report.

figure(18);

annotation('textbox', [.2 .3 .7 .7], 'String', str_bad_chans,'FontSize', 8);

ax18 = gcf;

exportgraphics(ax18, [filepath_report filename_report], 'Resolution', 500,

'append', true);

close(figure(18));

% The acronyms for the Brodmann areas.

str_BA = sprintf(['Description of acronyms for the Brodmann Areas: \n' ...

 'o: Oxygenated channel\n' ...

 'r: Deoxygenated channel\n\n' ...

 '42L/02L: Area between brodmann 42L and 02L Ant. & posterior

transverse temporal and Primary Somatosensory Cortex (Secondary auditory

cortex)\n' ...

 '41R/01R: Area between 41R and 01R Ant. & posterior transverse temporal

and primary somatosensory cortex\n' ...

 'MTG: Middle Temporal Gyrus\n' ...

 'MTSG: Middle Temporal Gyrus and Superior Temporal Gyrus\n' ...

 'PTB: Pars Triangularis Brocas Area\n' ...

 'PMS: Pre-motor and Supplementary Motor Cortex\n' ...

 'PFC: Prefrontal Cortex\n' ...

 'PMC: Primary Motor cortex\n' ...

 'RSA: Retrosubicular Area\n' ...

 'SCA: Subcentral Area\n' ...

 'STG: Superior Temporal Gyrus\n' ...

 'SGWA: Supramarginal Gyrus of Wernickes Area\n' ...

 '\n']);

% Add abbrevations to the report.

76

figure(16);

annotation('textbox', [.2 .3 .7 .7], 'String', str_BA,'FontSize', 8);

ax16 = gcf;

exportgraphics(ax16, [filepath_report filename_report], 'Resolution', 500,

'append', true);

close(figure(16));

% The summary of the processing.

str_sum = sprintf(['The variables and functions used in this pipeline: \n'...

 'Partial Path Length Factor: 0.1 (default in nirs toolbox).\n'...

 'Quartile Coeffisient of Dispersion: %s.\n'... %add QCoD as first

variable.

 'Saturation length (bad channel rejection): %ds.\n'...

 '\n' ...

 'Filter: 4th order butterworth bandpass filter.\n' ...

 'Lowpass cutoff: %dHz\n' ...

 'Highpass cutoff: %dHz\n' ...

 '\n' ...

 'FC function: Positive correlation prewhitened with an autoregressive

(AR) model.\n' ...

 'FC measure: Pearsons R.\n' ...

 '\n' ...

 'General Linear Model: Autoregressive model based algorithm for

correcting motion and serially correlated errors in fNIRS by Barker et al.

(2013)'],num2str(QCoDthresh), satlength, hb_filter_job.lowpass,

hb_filter_job.highpass);

% Add summary to the report.

figure(17);

annotation('textbox', [.2 .3 .7 .7], 'String', str_sum, 'FontSize', 8);

ax17 = gcf;

exportgraphics(ax17, [filepath_report filename_report], 'Resolution', 500,

'append', true);

close(figure(17));

close all;

77

Appendix B: Code for GUI in MATLAB App designer

classdef fNIRS_Connectivity_GUI_exported < matlab.apps.AppBase

 % Properties that correspond to app components
 properties (Access = public)
 fNIRSConnectivityGUIOsloMetUIFigure matlab.ui.Figure
 PipelineforfNIRSconnectivityanalysisv1Label matlab.ui.control.Label
 Image matlab.ui.control.Image
 StatusEditField matlab.ui.control.EditField
 StatusEditFieldLabel matlab.ui.control.Label
 RunpipelineButton matlab.ui.control.Button
 end

 properties (Access = private)
 %%Defining all variables and objects.

 %%Loading data:
 lib_folder; % Folder containing all necessary functions.
 test_folder; % Folder containing the subject data.
 subjsplit; % Cells containing the folder path in splitted format.
 raw_nirs; % The raw nirs data.
 nirsfile; % Name of the nirs loaded nirs file.
 pdf_name; % Name of the created pdf report for the current subject.
 filename_report; % File name of the report.
 filepath_report; % Path of the report.
 folder_name; % The name of the new folder.
 new_folder; % The path of the new folder.

 %%Step 1: Rename stimuli
 job1; % Definition of the job: RenameStims.
 raw_nirs_ReStim; % The data with new stimuli name.
 ax1; % The axes information of the rename stims plot.

 %%Step 2: Trimming data
 job2; % Definition of the job: TrimBaseline.
 raw_nirs_Trimmed; % The trimmed data.
 ax2; % The axes information of the TrimBaseline plot.

 %%Step 3: Label short separation channels
 job3; % Definition of the job: LabelShortSeparation.
 raw_nirs_Labeled; % The labeled data.

 %%Step 4: Correct baseline
 job4; % Definition of the job: BaselineCorrection.
 Baseline_corrected; % The baseline corrected data.
 ax4; %The axes information of the Baseline plot.

 %%Step 5: Remove bad channels
 QCoDthresh = 0.1; % Defining the threshold value of the Quartile Coefissient of Dispersion.
 satlength = 2; % Defining the saturation length. 2 s by default.
 temp_data; % Temporary storage of unneccesary data.
 channelmask; % The matrix labeling bad channels.
 bad_chans_str; % String for bad channels

 %%Step 6: Remove short channels
 noshortchans; % The data without the short channels
 rangeOfLoop; % Variable for data removal.
 ax6; % The axes information of the data without short and bad channels.

 %%Step 7: Intensity to Optical Density
 job7; % Defintion of the job: OpticalDensity
 OD; % The optical density data.
 ax7; % The axes information of the OD data.

 %%Step 8: Optical denisity to Concentrations
 job8; % Definition of the job: BeerLambertLaw.
 hb; % The concentration data.

78

 ax8; % The axes informtation of the concentration data.

 %%Step 9: Bandpass filtering
 hb_filter_job; % Definition of the filtering job.
 hb_filtered; % The filtered data.
 ax9; % The axes information of the filtered plot.

 %%Step 10: Reorganizing the data
 reOrg_data; % The reorganized data.

 %%Step 12: GLM
 jobs_GLM; % Defining the GLM jobs.
 hb_GLM; % The concentration data before the GLM.
 jobs_GLM_hb; % Defining the second part of jobs.
 data_GLM; % The data from the GLM processing.
 ax12a; % The axes information of the GLM hbo
 ax12b; % The axes information of the GLM hbr

 %%Step 13: Functional Connectivity
 R_vals_ar; % R-values from the AR model.
 P_vals_ar; % P-values from the AR model.
 dfe_ar; % The degrees of freedom from the AR model.
 threshold; % The threshold value given by the user.
 conn_mat; % The connectivity matrix
 thresholded_connmat; % The thresholded connectivity matrix.
 bin_mat; % The binarized matrix
 ax13a;
 ax13b;
 ax13c;
 end

 % Callbacks that handle component events
 methods (Access = private)

 % Button pushed function: RunpipelineButton
 function RunpipelineButtonPushed(app, event)
 %% Initialization: Load data
 %%Choose folder for repository
 app.lib_folder = uigetdir([], 'Choose the folder containing the repository'); % Choose the folder containing the library for this
pipeline.
 addpath(genpath(app.lib_folder)); % Sets the library folder as a path.

 %%Load necessary data.
 load("BrainRegions_table.mat"); % Table with the different brain regions and related data. Based on the table from H. Khan.
 load("orderOfChan_mat.mat"); % The order of the channels based on brain regions and optode placement.
 load("labelCells_comp.mat"); % The organised order of the regions for the Circular Plot.

 %%Choose folder
 app.test_folder = uigetdir([], 'Choose folder containing the test data');
 app.subjsplit = split(app.test_folder, '\'); % Split folder path into cells. Based on the hierarchy of this experiment data.

 %%Load nirs with nirs toolbox function
 addpath(genpath(app.test_folder)); % Adds the test folder to the path.
 app.nirsfile = strcat(app.subjsplit(length(app.subjsplit)),'.nirs'); % Find the name of the nirs file.
 app.raw_nirs = nirs.io.loadDotNirs(app.nirsfile); % Loads the nirs file.

 %%Create pdf name
 app.pdf_name = cell2str(strcat(app.subjsplit(length(app.subjsplit)-1),'-',app.subjsplit(length(app.subjsplit)),'.pdf'));

 %%Choose folder for storing the report
 [app.filename_report, app.filepath_report] = uiputfile(app.pdf_name,'Choose folder for storing the report');

 %%Create folder for storing the report and figures.
 app.folder_name = cell2str(strcat(app.subjsplit(length(app.subjsplit)-1),'-',app.subjsplit(length(app.subjsplit))));
 app.new_folder = strcat(app.filepath_report,app.folder_name);
 mkdir(app.new_folder);

 app.StatusEditField.Value = 'Data is loaded'; % Updating the status field.

79

 %% Step 1: Rename stimuli data.
 app.job1 = nirs.modules.RenameStims; % Define the first job: Rename stimuli.
 app.job1.listOfChanges = {'stim_channel1' 'Start/stop'}; % Rename the stimuli.
 app.raw_nirs_ReStim = app.job1.run(app.raw_nirs); % Perform job1 on the raw data.

 figure(1); % Define a figure.
 app.raw_nirs_ReStim.draw % Plot the figure.
 xlabel('seconds'), ylabel('amplitude');
 title('Raw data w/stimuli');

 app.ax1 = gca; % Get the properties of the axes.
 exportgraphics(app.ax1, [app.filepath_report app.filename_report], 'Resolution', 500); % Export the plot to the report.
 exportgraphics(app.ax1, fullfile(app.new_folder, strcat(app.folder_name,'-', 'Raw_stimuli','.png')),"Resolution",500); % Export the
plot to the folder.

 app.StatusEditField.Value = 'Data is renamed'; % Updating the status field.
 close(figure(1));

 %% Step 2: Trim data
 app.job2 = nirs.modules.TrimBaseline; % Defining the second job: Trimming of the data.
 app.job2.preBaseline = -5; % Removing the first 5 seconds of the data.
 app.raw_nirs_Trimmed = app.job2.run(app.raw_nirs_ReStim); % Performing job2 on the ReStim data.

 app.job2.postBaseline = -10; % Removing the last 10 seconds of the data.
 app.raw_nirs_Trimmed = app.job2.run(app.raw_nirs_Trimmed); % Performing the updated job2 on the data.

 figure(2); % Defining a new figure.
 app.raw_nirs_Trimmed.draw; % Plotting the trimmed data.
 xlabel('seconds'), ylabel('amplitude');
 title('Trimmed raw data');

 app.ax2 = gca; % Get the properties of the axes.
 exportgraphics(app.ax2, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Export the plot to the
report.
 exportgraphics(app.ax2, fullfile(app.new_folder, strcat(app.folder_name,'-','Raw_trimmed','.png')),"Resolution",500);

 app.StatusEditField.Value = 'Data is trimmed'; % Updating the status field.
 close(figure(2));

 %% Step 3: Label short separation channels
 app.job3 = nirs.modules.LabelShortSeperation(app.job2); % Defining the third job: Label the short separation channels.
 app.job3.max_distance = 15; % Setting the max source detector distance to 15 mm.
 app.raw_nirs_Labeled = app.job2.run(app.raw_nirs_Trimmed); % Perform job 3 on the trimmed data.

 app.StatusEditField.Value = 'Stimuli is labeled'; % Updating the status field.

 %% Step 4: Correct baseline
 app.StatusEditField.Value = 'Correcting baseline...'; % Updating the status field.
 app.job4 = nirs.modules.BaselineCorrection(app.job3); % Defining the fourth job: Correction of the baseline.
 app.Baseline_corrected = app.job4.run(app.raw_nirs_Labeled); % Perform job4 on the labeled data.

 figure(4);
 app.Baseline_corrected.draw; % Plotting of the baseline corrected data.
 xlabel('seconds'), ylabel('amplitude');
 title('Baseline corrected raw data');

 app.ax4 = gca; % Get the properties of the axes.
 exportgraphics(app.ax4, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Exporting the plot to the
report.
 exportgraphics(app.ax4, fullfile(app.new_folder, strcat(app.folder_name,'-','Raw_baselineCorr','.png')),"Resolution",500);

 app.StatusEditField.Value = 'Baseline is corrected'; % Updating the status field.
 close(figure(4));

 %% Step 5: Remove bad channels
 app.StatusEditField.Value = 'Removing bad channels...'; % Updating the status field.

 % Finding the bad channels in the data.

80

 [app.temp_data, app.channelmask] = removeBadChannels_modified(app.Baseline_corrected.data, app.Baseline_corrected.Fs,
app.satlength, app.QCoDthresh);

 bad_chans_str_temparr = strings(1,length(app.channelmask));
 bad_chans_count = 1;

 for i=1: length(app.channelmask)
 % Removing bad channels from the data.
 if app.channelmask(1,i) == 0
 app.Baseline_corrected.data(:,i) = 0;
 bad_chans_str_temparr(1,bad_chans_count) = i; bad_chans_count = bad_chans_count + 1; % Store the bad channel number for
reporting.
 end
 end

 if bad_chans_count == 1
 app.bad_chans_str = 'No bad channels detected';

 else
 bad_chans_str_arr = strings(1,bad_chans_count-1);
 for k=1: bad_chans_count-1
 bad_chans_str_arr(1,k) = bad_chans_str_temparr(1,k);
 end
 app.bad_chans_str = strjoin(bad_chans_str_arr,', ');
 end

 app.StatusEditField.Value = 'Bad channels are removed'; % Updating the status field.

 %% Step 6: Removing short channels
 app.StatusEditField.Value = 'Removing short channels...'; % Updating the status field.

 app.noshortchans = app.Baseline_corrected; % Creates a copy of the baseline corrected data.
 app.rangeOfLoop = length(app.Baseline_corrected.probe.link.ShortSeperation); % Creates an integer for the removal loop.

 for i=1: app.rangeOfLoop
 % For loop for removing the short separation optodes from
 % the data
 if app.Baseline_corrected.probe.link.ShortSeperation(app.rangeOfLoop-i+1) == 1
 app.noshortchans.data(:,app.rangeOfLoop-i+1) = 0;
 end
 end

 figure(6);
 app.noshortchans.draw; % Plotting of the data without short channels.
 xlabel('seconds'), ylabel('amplitude');
 title('Removed short and bad channels');

 app.ax6 = gca; % Get the properties of the axes.
 exportgraphics(app.ax6, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Exporting the plot to the
report.
 exportgraphics(app.ax6, fullfile(app.new_folder, strcat(app.folder_name,'-','Channels_removed','.png')),"Resolution",500);

 close(figure(6));
 app.StatusEditField.Value = 'Short channels are removed'; % Updating the status field.

 %% Step 7: Intensity to Optical Density
 app.StatusEditField.Value = 'Converting int2OD...'; % Updating the status field.
 app.job7 = nirs.modules.OpticalDensity(app.job4); % Defining job 7. Includes job4 to log the process.
 app.OD = app.job7.run(app.noshortchans); % Perform job7 on the data.

 for i=1:length(app.channelmask)
 % Necessary step to ensure the correct format of the data
 % after this pre-processing step.
 if app.channelmask(1,i) == 0
 app.OD.data(:,i) = 0;
 end
 end

 figure(7);
 app.OD.draw; % Plots the OD data.
 xlabel('seconds'), ylabel('amplitude');

81

 title('Optical Density');

 app.ax7 = gca;
 exportgraphics(app.ax7, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Exporting the plot.
 exportgraphics(app.ax7, fullfile(app.new_folder, strcat(app.folder_name,'-','OD','.png')),"Resolution",500);

 close(figure(7));
 app.StatusEditField.Value = 'Converted intensity to OD'; % Updating the status field.

 %% Step 8: Optical density to hbo and hbr concentrations
 app.StatusEditField.Value = 'Converting OD to conc...'; % Updating the status field.
 app.job8 = nirs.modules.BeerLambertLaw(); % By default: PPF = 0.1. Used by Santosa et al. 2018.
 app.hb = app.job8.run(app.OD); % Performing the mBLL on the OD data.

 for i=1:length(app.channelmask)
 %To prevent cells from being 'NaN'.
 if isnan(app.hb.data(1,i))
 app.hb.data(:,i) = 0;
 end
 end

 figure(8);
 app.hb.draw;
 xlabel('seconds'), ylabel('amplitude');
 title('Concentrations');

 app.ax8 = gca;
 exportgraphics(app.ax8, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax8, fullfile(app.new_folder, strcat(app.folder_name,'-','Conc','.png')),"Resolution",500);

 close(figure(8));
 app.StatusEditField.Value = 'Converted OD to concentrations'; % Updating the status field.

 %% Step 9: Bandpass filtering
 app.StatusEditField.Value = 'Filter data...'; % Updating the status field.
 app.hb_filter_job = eeg.modules.BandPassFilter(); % Applying a bandpass filter to the process.

 app.hb_filter_job.do_downsample = false; %Do not downsample data
 app.hb_filter_job.lowpass = 0.5; % Setting the cutoff frequency for the lowpass filter = 0.5 Hz.
 app.hb_filter_job.highpass = 0.01; % Setting the cutoff frequency for the highpass filter = 0.01 Hz. Based on Yucel et al. 2021.

 app.hb_filtered = app.hb_filter_job.run(app.hb); % Execute the filter job on the concentration data.

 figure(9);
 app.hb_filtered.draw;
 xlabel('seconds'), ylabel('amplitude');
 title('Concentrations - filtered');

 app.ax9 = gca;
 exportgraphics(app.ax9, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax9, fullfile(app.new_folder, strcat(app.folder_name,'-','Conc_filtered','.png')),"Resolution",500);

 close(figure(9));
 app.StatusEditField.Value = 'Data is filtered'; % Updating the status field.

 %% Step 10: Reorganize the data based on the brain regions.
 app.reOrg_data = zeros(numel(app.hb_filtered.data(:,1)),numel(app.hb_filtered.data(1,:))); % Defining a new matrix with the
dimensions of the filtered data.

 for i=1: numel(app.hb_filtered.data(1,:))
 % Reorganizing the data.
 app.reOrg_data(:,i) = app.hb_filtered.data(:,orderOfChan_mat(i));
 end

 app.StatusEditField.Value = 'Data is reorganized'; % Updating the status field.

 %% Step 11: Delete the short seperation channels
 %%Deletes the short channels from the reorganized data
 for i=18:49 % i=18: 49 is based on the removal of the channels starting from the last column.
 app.reOrg_data(:,app.rangeOfLoop-i) = [];
 %Reorganized data has the alphabetic order of the brain region table.

82

 %F.ex: Column 1 = Channel 39 (hbo channel of the "Area between
 %brodmann 42L and 02L Ant. & posterior transverse temporal and
 %Primary Somatosensory Cortex")
 end

 %% Step 12: GLM
 app.StatusEditField.Value = 'Running GLM...'; % Updating the status field.

 app.jobs_GLM = nirs.modules.Resample();
 %app.jobs_GLM = nirs.modules.RenameStims(app.jobs_GLM);
 %app.jobs_GLM.listOfChanges = {'stim_channel1' 'Start/stop' 'stim_channel1' 'Start/stop'}; % Rename the stimuli.
 app.jobs_GLM = nirs.modules.OpticalDensity(app.jobs_GLM);
 app.jobs_GLM = nirs.modules.BeerLambertLaw(app.jobs_GLM);

 app.hb_GLM=app.jobs_GLM.run(app.raw_nirs);

 app.jobs_GLM_hb=nirs.modules.GLM(); %Starts a new group of jobs.
 app.jobs_GLM_hb=nirs.modules.ExportData(app.jobs_GLM_hb);
 app.jobs_GLM_hb.Output="GLM_analysis";
 app.data_GLM=app.jobs_GLM_hb.run(app.hb_GLM);

 app.data_GLM.draw('tstat', [-10 10], 'p<0.05');

 app.ax12a = gca(1);
 app.ax12b = gca(2);

 app.StatusEditField.Value = 'GLM completed'; % Updating the status field.

 exportgraphics(app.ax12a, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax12a, fullfile(app.new_folder, strcat(app.folder_name,'-','GLM_1','.png')),"Resolution",500);
 exportgraphics(app.ax12b, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax12b, fullfile(app.new_folder, strcat(app.folder_name,'-','GLM_2','.png')),"Resolution",500);

 close all;

 %% Step 13: Functional Connectivity
 app.StatusEditField.Value = 'Calculating FC...'; % Updating the status field.

 [app.R_vals_ar, app.P_vals_ar, app.dfe_ar] = nirs.sFC.ar_corr(app.reOrg_data);

% prompt = {'Enter threshold for Functional Connectivity'};
% dlgtitle = 'Threshold';
% dims = [1];
% definput = {'0.6'};
% app.threshold = str2double(inputdlg(prompt,dlgtitle,dims,definput));

 app.threshold = [0.5:0.05:1]; % The thresholds for the connectivity matrix. Increases by 5% each plot.

 app.conn_mat = app.R_vals_ar; %Copy the R-values (correlation values) matrix. Change R-values matrix depending on utilized FC
function.

 figure(13);
 imagesc(app.conn_mat); title('Connectivity matrix');
 app.ax13a = gca; %app.ax13a.Name = "Connectivity matrix";
 exportgraphics(app.ax13a, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax13a, fullfile(app.new_folder, strcat(app.folder_name,'-','Connectivity_matrix','.png')),"Resolution",500);
 close(figure(13)); pause(1);

 %%Creating connectivity matrices with thresholded values.
 for t=1:length(app.threshold)
 app.thresholded_connmat = zeros(length(app.conn_mat),length(app.conn_mat)); %%Create an empty matrix.

 for i=1:length(app.conn_mat)
 for j=1:length(app.conn_mat)
 if app.conn_mat(i,j) > app.threshold(t)
 app.thresholded_connmat(i,j) = app.conn_mat(i,j);
 end
 end
 end

 mat_title_2 = sprintf('Thresholded matrix. Threshold = %d', app.threshold(t));

83

 figure(14);
 imagesc(app.thresholded_connmat); title(mat_title_2);
 app.ax13b = gca; %app.ax13b.Name = "Connectivity matrix (thresholded)";
 exportgraphics(app.ax13b, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax13b, fullfile(app.new_folder, strcat(app.folder_name,'-
','Thresholded_ConnMat_',num2str(t),'.png')),"Resolution",500);
 close(figure(14)); pause(1);

 figure(15);
 CircGraphName = sprintf('Circular graph. Threshold = %d',app.threshold(t));
 circularGraph(app.thresholded_connmat,'Label',labelCells(2,:)); %Input: The adjacency matrix.
 app.ax13c = gcf;
 app.ax13c.Name = CircGraphName;
 app.ax13c.Position = [200 200 1000 1000]; %Changes the size of the plot to ensure space between labels.
 exportgraphics(app.ax13c, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 exportgraphics(app.ax13c, fullfile(app.new_folder, strcat(app.folder_name,'-
','Thresholded_CircGraph_',num2str(app.threshold(t)),'.png')),"Resolution",500);

 close(figure(15)); pause(1);
 end

 pause(1);
 app.StatusEditField.Value = 'Report is completed'; % Updating the status field.

 %% Step 14: Save all workspace variables in report folder.
 save(strcat(app.new_folder,'\', app.folder_name,'.mat'));

 % The bad channels detected.
 str_bad_chans = strcat(['Bad channels: ', app.bad_chans_str]);

 % Add bad channel information to the report.
 figure(18);
 annotation('textbox', [.2 .3 .7 .7], 'String', str_bad_chans,'FontSize', 8);
 ax18 = gcf;
 exportgraphics(ax18, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 close(figure(18));

 % The acronyms for the Brodmann areas.
 str_BA = sprintf(['Description of acronyms for the Brodmann Areas: \n' ...
 'o: Oxygenated channel\n' ...
 'r: Deoxygenated channel\n\n' ...
 '42L/02L: Area between brodmann 42L and 02L Ant. & posterior transverse temporal and Primary Somatosensory Cortex
(Secondary auditory cortex)\n' ...
 '41R/01R: Area between 41R and 01R Ant. & posterior transverse temporal and primary somatosensory cortex\n' ...
 'MTG: Middle Temporal Gyrus\n' ...
 'MTSG: Middle Temporal Gyrus and Superior Temporal Gyrus\n' ...
 'PTB: Pars Triangularis Brocas Area\n' ...
 'PMS: Pre-motor and Supplementary Motor Cortex\n' ...
 'PFC: Prefrontal Cortex\n' ...
 'PMC: Primary Motor cortex\n' ...
 'RSA: Retrosubicular Area\n' ...
 'SCA: Subcentral Area\n' ...
 'STG: Superior Temporal Gyrus\n' ...
 'SGWA: Supramarginal Gyrus of Wernickes Area\n' ...
 '\n']);

 % Add summary to the report.
 figure(16);
 annotation('textbox', [.2 .3 .7 .7], 'String', str_BA,'FontSize', 8);
 ax16 = gcf;
 exportgraphics(ax16, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);
 close(figure(16));

 % The summary of the processing.
 str_sum = sprintf(['The variables and functions used in this pipeline: \n'...
 'Partial Path Length Factor: 0.1 (default in nirs toolbox).\n'...
 'Quartile Coeffisient of Dispersion: %s.\n'...

84

 'Saturation length (bad channel rejection): %ds.\n'...
 '\n' ...
 'Filtertype: 4th order butterworth bandpass filter.\n' ...
 'Lowpass cutoff: %d Hz\n' ...
 'Highpass cutoff: %d Hz\n' ...
 '\n' ...
 'FC function: Correlation prewhitened with an autoregressive (AR) model.\n' ...
 'FC measure: Pearsons R.\n'],num2str(app.QCoDthresh), app.satlength, app.hb_filter_job.lowpass, app.hb_filter_job.highpass);

 % Add summary to the report.
 figure(17);
 annotation('textbox', [.2 .3 .7 .7], 'String', str_sum, 'FontSize', 8);
 ax17 = gcf;
 exportgraphics(ax17, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true);

 app.StatusEditField.Value = 'Variables are stored in report folder'; % Updating the status field.
 close(figure(17));

 app.StatusEditField.Value = 'Pipeline completed. Ready for another run.'; % Updating the status field.

 end
 end

 % Component initialization
 methods (Access = private)

 % Create UIFigure and components
 function createComponents(app)

 % Create fNIRSConnectivityGUIOsloMetUIFigure and hide until all components are created
 app.fNIRSConnectivityGUIOsloMetUIFigure = uifigure('Visible', 'off');
 app.fNIRSConnectivityGUIOsloMetUIFigure.Position = [100 100 640 480];
 app.fNIRSConnectivityGUIOsloMetUIFigure.Name = 'fNIRS Connectivity GUI - OsloMet';

 % Create RunpipelineButton
 app.RunpipelineButton = uibutton(app.fNIRSConnectivityGUIOsloMetUIFigure, 'push');
 app.RunpipelineButton.ButtonPushedFcn = createCallbackFcn(app, @RunpipelineButtonPushed, true);
 app.RunpipelineButton.Position = [62 330 100 22];
 app.RunpipelineButton.Text = 'Run pipeline';

 % Create StatusEditFieldLabel
 app.StatusEditFieldLabel = uilabel(app.fNIRSConnectivityGUIOsloMetUIFigure);
 app.StatusEditFieldLabel.HorizontalAlignment = 'right';
 app.StatusEditFieldLabel.Position = [236 330 43 22];
 app.StatusEditFieldLabel.Text = 'Status:';

 % Create StatusEditField
 app.StatusEditField = uieditfield(app.fNIRSConnectivityGUIOsloMetUIFigure, 'text');
 app.StatusEditField.Position = [294 330 252 22];

 % Create Image
 app.Image = uiimage(app.fNIRSConnectivityGUIOsloMetUIFigure);
 app.Image.Position = [2 381 100 100];
 app.Image.ImageSource = 'OsloMet logo for nett.png';

 % Create PipelineforfNIRSconnectivityanalysisv1Label
 app.PipelineforfNIRSconnectivityanalysisv1Label = uilabel(app.fNIRSConnectivityGUIOsloMetUIFigure);
 app.PipelineforfNIRSconnectivityanalysisv1Label.FontSize = 18;
 app.PipelineforfNIRSconnectivityanalysisv1Label.FontWeight = 'bold';
 app.PipelineforfNIRSconnectivityanalysisv1Label.Position = [129 419 390 23];
 app.PipelineforfNIRSconnectivityanalysisv1Label.Text = 'Pipeline for fNIRS connectivity analysis - v.1';

 % Show the figure after all components are created
 app.fNIRSConnectivityGUIOsloMetUIFigure.Visible = 'on';
 end
 end

 % App creation and deletion
 methods (Access = public)

85

 % Construct app
 function app = fNIRS_Connectivity_GUI_exported

 % Create UIFigure and components
 createComponents(app)

 % Register the app with App Designer
 registerApp(app, app.fNIRSConnectivityGUIOsloMetUIFigure)

 if nargout == 0
 clear app
 end
 end

 % Code that executes before app deletion
 function delete(app)

 % Delete UIFigure when app is deleted
 delete(app.fNIRSConnectivityGUIOsloMetUIFigure)
 end
 end
end

86

Additional Appendices: Included in zip folder

Appendix C: The REK application nr: 322236

Appendix D: Repository for connectivity pipeline

Appendix E: Example of report

