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Abstract 

Functional near-infrared spectroscopy (fNIRS) has shown to be a useful imaging technique for 

observing the human cortex. Its capabilities of imaging the hemodynamic variations in the 

cerebral cortex during different experimental paradigms enable studies that can contribute 

to unraveling the orchestration of the mind. With many questions regarding its workings still 

unanswered, different techniques are being employed in the analysis of fNIRS data to 

illuminate activation patterns and correlations between brain areas during different tasks. 

One technique that is gotten more attention during the last years, is functional connectivity 

analysis which aims to assess the temporal correlations between these areas. With the 

potential of assessing the cortical connectivity, this technique can contribute to analyzing 

people with different health challenges, both regarding mental and motor health.  

However, with a lack of standards in pre-processing and processing techniques the analysis of 

such studies is known to be time-consuming and challenging. The different processing 

software and toolboxes are taking different approaches to perform these steps and with little 

insight into how the data is processed during these steps, a consistent and transparent 

pipeline is desired to enable reliable results in fNIRS motor control studies. This has led to 

the aim of mapping the most promising techniques used in pre-processing and processing of 

motor control fNIRS studies and implementing these techniques in an automatic processing 

pipeline. Thus, the objective of this study has been to develop such a pipeline to facilitate 

faster and more consistent functional connectivity analysis.   

The developed pipeline is thoroughly described in this thesis, and its workings are presented 

using data from an ongoing motor control study.   
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1 Introduction 

The famous scientist Michio Kaku (n.d.) once said “The human brain has 100 billion neurons, 

each neuron connected to 10 thousand other neurons. Sitting on your shoulders is the most 

complicated object in the known universe”. With the desire to unravel the workings of the 

human mind, researchers worldwide are constantly investigating how the human brain 

operates. As technological innovation continues to push science forward, the mysteries of 

the brain are being dissected slowly. By assessing the correlations in activation between 

different brain areas, the orchestration of the brain is being investigated. 

One burgeoning technique in neuroimaging is functional near-infrared spectroscopy (fNIRS) 

which can measure the changes in hemodynamic variations in the cerebral cortex (Irani et 

al., 2007). Since its implementation in 1977, fNIRS has been a non-invasive neuroimaging 

technique able to assess the activity in outer regions of the brain as it measures the 

hemodynamical variations in the region of interest (ROI) (Yucel et al., 2021). Hemodynamic 

variations depend on the neuronal metabolism that occurs in activated regions dependent 

on glucose and oxygen. As oxygenated and deoxygenated hemoglobin is the main absorption 

component of near-infrared light, the fNIRS imaging technique enables measurements of 

hemodynamic cortical responses (Pinti et al., 2020).  

The mobility of fNIRS brain imaging technology enables observations of the brain in different 

states as the participants can perform different tasks regarding psychological behavior and 

motor control (Dans et al., 2021). Its non-invasive, unharmful, and modest influence on the 

participants has proven to be useful in a variety of studies (Yucel et al., 2021). Motor control 

studies aim to map how the brain function and have previously been challenging to conduct. 

Therefore, the development of portable imaging techniques enables studies to be conducted 

in environments that are more closely related to real-life scenarios, which can lead to the 

acquisition of new and valuable information (Dans et al., 2021).  

The process of fNIRS studies is separated into several necessary stages starting with the data 

acquisition and ending with result interpretations. The raw data from the acquisition using 

the fNIRS cap goes through steps to convert the raw signals to plots and key coefficients for 

result interpretation. This range of steps is key in processing the signals and often follows a 

given set of processes to run through. However, with constant development within the field, 

there are no current standard procedures for pre-processing and processing the fNIRS data. 
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This can lead to inconsistent representation and analysis of fNIRS data and unnecessary 

processing time (Yucel et al., 2021). Together with an absence of transparent and 

standardized study protocols in fNIRS studies, challenges related to comparability and 

interpretation of studies can lead to limitations in the development of the field (Herold et al., 

2017).    

Given the lack of a standardized and effective pipeline for fNIRS studies, this thesis aims to 

map out how researchers are processing the fNIRS data and propose a pipeline to be used by 

both researchers and students in the future fNIRS motor control studies. With a primary 

motivation of facilitating effective, reliable, and transparent fNIRS functional connectivity 

analysis for motor control studies the following research questions are raised:  

1. What is the state-of-the-art procedure for analyzing motor control fNIRS data? 

2. What features are most important to include in a pipeline for functional connectivity 

analysis of fNIRS data from motor control studies? 

These questions provide the basis for the objective of this thesis which has been to develop a 

processing pipeline for fNIRS motor control studies to enable functional connectivity analysis. 

To present the workings of the pipeline, data obtained in a recent motor control study by 

OsloMet is processed and reviewed. 

The structure of the thesis is based on the IMRaD structure where the following chapter 

includes the background together with the relevant literature review behind this work. Then, 

the methodology chapter that outlines how the development of the pipeline is conducted 

alongside a description of its features. Then the result of this work is presented, followed by 

discussions and a conclusive summary of the thesis. Lastly, recommendations for future 

directions are provided.  
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2 Background and literature review 

In this chapter, the foundational literature behind this work is presented to illustrate the 

field’s status and progress and what challenges the researchers face. Moreover, to provide a 

common understanding of critical aspects relevant to this thesis, the challenges related to 

fNIRS pipelines and study protocols are presented together with some of the main ideas and 

concepts related to neuroimaging and motor control studies.   

2.1 Functional neuroimaging and cortical activity 

The investigation of the human brain’s functionality is constantly moving forward. To explore 

how the brain operates neuroimaging techniques are being employed to map the activation 

areas and their connection to other areas. Some of the most important techniques that have 

contributed to the field are functional magnetic resonance (fMRI), positron emission 

tomography (PET), electroencephalography (EEG), and magnetoencephalography (MEG) 

(Crosson et al., 2010). These techniques have enabled modeling of the spatiotemporal brain 

activation and brought the study of brain network organization, known as connectomics, 

further during the last decades (Bullmore et al., 2016).  

Today the field of connectomics is working towards understanding the structural and 

functional connectivity of the brain. The structural approach aims to map the physical 

neuronal connections between different brain regions, while the functional approach 

explores the operational relationship between different brain regions in a spatiotemporal 

relation (Wong et al., 2020). Essential in the development of structural and functional 

connectivity is the implementation of graph theory to view the brain regions as nodes and 

edges and thereby generate a network representing the connectivity of the brain (Wang et 

al., 2015). The brain analysis-related literature found in the work on this thesis shows that a 

significant number of researchers focus on this approach for mapping connectivity.  

The current paradigm related to cortical behavior within neuroscience and brain anatomy 

includes the parcellation of the cerebral cortex where the different areas are given an 

approximate location in the brain (Bullmore et al., 2016). One of the most recognized 

parcellations in the field is the mapping conducted by K. Brodmann in 1909 who divided the 

cortex into 48 areas based on the different cell types found in each area (Zilles, 2018). These 

areas have some variations between individuals that hinder a general parcellation (Van 
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Essen, 2013). Moreover, limitations in the spatial and temporal resolution, and the usability 

of the imaging techniques, have previously limited the interpretation of the collected data 

(Sporns et al., 2005). The mapping of the different areas is ongoing research, but scientists 

are getting closer to an understanding by using different approaches for parcellation. By 

combining multimodal imaging techniques, neuroanatomical approaches and machine 

learning algorithms for classification, a comprehensive study related to the Human 

Connectome Project (HCP) conducted by Glasser et al. (2016) mapped the cortical areas of 

210 healthy young adults. As shown in Figure 1, they reported an even more detailed 

separation of the areas, and their study stands as one of the most important studies in this 

field in recent times (Elam et al., 2021). However, the connectivity of the brain is still an 

ongoing field of research with a lot of functionality that is still unknown.  

 

Figure 1: The cortical parcellation from Glasser et al. (2016). (https://www.nature.com/articles/nature18933/figures/3).  

One of the most utilized techniques within this field is fMRI which can measure the blood 

oxygen level-dependent (BOLD) signals that are a direct measure of the oxygenation within a 

brain area. The signal depends on the paramagnetic properties of the deoxygenated 

hemoglobin and gives information regarding the activation of different areas in the brain 

based on its neuronal metabolism and has brought the field forward during the last decades 

https://www.nature.com/articles/nature18933/figures/3
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(Huppert et al., 2006). However, as fNIRS enables the measurement of both the oxygenated 

and the deoxygenated hemoglobin, the hemodynamic state in a specific cortical area can be 

analyzed using an additional parameter compared to fMRI (von Luhmann et al., 2020). The 

differences between the signal obtained by fNIRS and the BOLD signal from fMRI are 

illustrated in Figure 2.  

 

Figure 2: Illustration of (A) the hemodynamic response measured in fNIRS and (B) the BOLD response measured in 
fMRI. By Cinciute (2019). 

Additionally, the development of modern fNIRS equipment enables active monitoring of 

brain activation in scenarios where other techniques are impossible to employ as they have 

limitations regarding either wearability or spatiotemporal resolution (Pinti et al., 2020). This 

makes fNIRS a promising tool for functional imaging of cortical activity.  

2.2 fNIRS data processing 

The optical nature of fNIRS imaging ensures a non-ionizing, non-invasive, and practical 

detection of brain activity. By transmitting light in the near-infrared area through the tissue 

of the skull, the photon path goes through several layers of different tissue (Pinti et al., 

2020). These layers are illustrated in Figure 33 and influence the fNIRS signal as the photons 

are scattered and absorbed by the chromophores in the tissue outside the region of interest 

(ROI). Additionally, the figure also illustrates the differences between short separation 

channels and long separation channels.  
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Figure 3: Illustration of the photon path in fNIRS. By Pinti et al. (2018). 
(https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13948) 

 

As the most prominent chromophores in the near-infrared area (650-950 nm (Strangman et 

al., 2003)) are the oxygenated and deoxygenated hemoglobin, these layers influence the 

optical signal by the variations in blood flow in the areas outside of the cortex (Dans et al., 

2021). Figure 44 illustrates the optical absorption spectra of oxy- and deoxygenated 

hemoglobin, which is the main enabler for fNIRS measurements. The combination of these 

factors leads to the need for the processing of the signals.    

 

Figure 4: The optical absorption spectra of hemoglobin. By S. Prahl. (https://omlc.org/spectra/hemoglobin/). 

  

https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1111/nyas.13948
https://omlc.org/spectra/hemoglobin/
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This processing is divided into several steps that are necessary to obtain interpretable 

information regarding the hemodynamics in the tissue. These steps are presented more 

thoroughly in chapter 3.2 of this thesis, but a brief explanation is also provided in this 

section. The first step in this data processing is to convert the signal from the raw voltages 

received by the optodes in the acquisition equipment. The raw signal, which is a direct 

representation of the voltages produced by the optical detectors after receiving the near-

infrared light, is converted to optical density. Then, the optical densities are converted to 

hemoglobin concentrations using the modified Beer-Lambert Law (mBLL). This step employs 

a factor, either the differential pathlength factor (DPF) or the partial pathlength factor (PPF), 

to compensate for the increase in the photon’s pathlength within the tissues as it is 

scattered. The difference between these two factors is further explained in chapter 3.3.2. 

Other steps that are often employed during pre-processing of the signals are the application 

of frequency filters, removing channels, wavelet filtering, correction of motion artifacts, and 

other techniques for deriving the signal of interest (Dans et al., 2021). These steps are 

presented in Figure 5.  

 

Figure 5: Types of pre-processing and processing techniques used in fNIRS studies. By Dans et al. (2021). 
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When the pre-processing of the data is conducted, different processing algorithms can be 

applied to derive statistical information from the dataset. During the last decade the three 

most used processing techniques are the general linear model (GLM), block averaging, and 

linear mixed models (Dans et al., 2021). These techniques are used based on the related aims 

of the studies and provide different data. GLM is a much-used technique in the fMRI field 

and has been employed in the processing of fNIRS data because of the similarities between 

the BOLD signals and the hemodynamic response signal (Monti, 2011). Block averaging and 

linear mixed models are also popular methods to use, but the GLM is known for its wide use.  

However, the most used techniques are known to not necessarily best (Dans et al., 2021). 

With a vast number of possible techniques to employ, and in a continuously evolving 

research environment, they are not to be depreciated. One of these techniques is functional 

connectivity (Fantini et al., 2018).  

2.3 Functional connectivity 

In mapping the connectivity of the human brain, researchers are using different statistical 

techniques to measure the dependencies between cortical areas (Bullmore et al., 2016). By 

assessing the temporal correlations and causality, and spectral coherence between spatially 

distant neurophysiological events, functional connectivity is a concept that is frequently 

implemented in brain connectivity studies (Friston, 2011). As functional connectivity looks at 

the similarities in the activation and behavior between the different areas in the brain, 

interesting information can be collected regarding cortical functionality.  

Functional connectivity can be measured in the time and frequency domain (NIRx Medical 

Technologies, 2019). The techniques used for time-domain analysis are related to the 

temporal correlation between time-series signals, while frequency-based techniques 

evaluate the coherence between frequencies between signals. Thus, the connectivity can be 

measured using different statistical measures for the relationship between the regions of 

interest and is a flexible tool for brain connectivity analysis (Eickhoff & Müller, 2015).  

One of the most used statistical measures for temporal correlation used in functional 

connectivity is the Pearson correlation coefficient (also known as Pearson’s R) which is a 

measure of the linear correlation between time series signals (Bullmore et al., 2016). This 

coefficient describes the correlation between the signals with a number ranging from -1 to 1, 

where 1 means an identical behavior between the time series data and -1 means a negative 
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correlation. An R-value close to zero indicates no linear correlation (Bullmore et al., 2016). 

Other measures of temporal correlation are cross-correlation and Spearman correlation (Xu 

et al., 2015).  

Other approaches used in connectivity analysis are Coherence and Granger causality which 

employ different techniques for detecting similarities in signals. Coherence is related to 

analyzing the frequency spectrum of the signals and can provide information regarding the 

functional connectivity within the frequency domain (Bowyer, 2016). This technique has 

proven useful in spectral analysis, but is known for being prone to changes in signal 

amplitude and can therefore have reduced precision in motion control studies (Bullmore et 

al., 2016). Granger causality is related to the concept of Effective Connectivity (EC) and goes 

one step further in the connectivity analysis as it looks for causality within the temporal brain 

data (Bowyer, 2016). This is a promising technique for connectivity analysis as it describes 

the directionality between brain areas. However, the technique is still being investigated for 

use in fNIRS studies as it has proven challenging to describe causality in connectivity analysis 

(Anwar et al., 2016).  

Even though Pearson’s R-value is the most used measure for FC, there is no current gold 

standard of which technique to apply for functional connectivity analysis (Blanco et al., 

2018). Researchers are encouraged to choose the best method for their experimental design 

(Yucel et al., 2021). However, one of the most promising techniques for conducting FC 

processing in fNIRS studies is the use of autoregressive models based on the pre-whitening 

of the signals (Blanco et al., 2018).  

The use of functional connectivity in fNIRS-based studies has previously been primarily used 

in resting-state experiments (Xu et al., 2015). With little implementation of the technique in 

motor control studies, guidelines related to its use is missing within the field. However, with 

an increasing number of published articles regarding functional connectivity in fNIRS studies 

each year, the field is moving forward (Fantini et al., 2018).  

2.4 Frequencies in cortical hemodynamics 

The data from the fNIRS measurements consists of a range of low-frequency bands 

connected to different physiological states. These oscillations erupt from the hemodynamic 

variations measured by the optodes and exist in the range from 0.0095 Hz to 2 Hz (Yücel et 

al., 2016). Within this frequency range, several areas are separated into subareas connected 
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to their associated physiological states. Figure 6 illustrates how these subareas are divided 

and how much influence they have on fNIRS signals.  

 

Figure 6: Sample power spectral density (PSD) in fNIRS signals. By Pinto-Orellana (2022). 

In the area of 3-20 mHz, endothelial waves (E) are a known influence on the signal, while the 

area of 20-50 mHz is connected to neurogenetic components (N). Myogenic waves (M) are 

observed in the 50-150 mHz area (Pinto-Orellana, 2022). In the 100 mHz area blood 

pressure-related oscillations, known as Mayer waves, are also known to influence the optical 

signal. Signal fluctuations related to respiration (R) are known to be in the area of 0.15-0.4 

Hz, and physiological noise caused by cardia noise (C) is in the area of 1-1.5 Hz (Klein & 

Kranczioch, 2019). These different frequency areas are necessary to consider when analyzing 

fNIRS signals as they influence the data that is analyzed. This concept is relevant for the 

filtering of the signal. 

2.5 Motor control 

One of the clear advantages that fNIRS technology adds to the field of brain imaging, besides 

its non-invasive and non-ionizing nature, is its portability (Yücel et al., 2017). This enables 
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brain imaging during tasks that require both spatial relocation and thereby exploration of 

cortical activity during body movement. The study of neuronal behavior during movement is 

known as motor control and is defined as the “area of science exploring natural laws that 

define how the nervous system interacts with other body parts and the environment to 

produce purposeful, coordinated movements” (Latash, 2012).  

Motor control studies contribute to the revelation of how the nervous system communicates 

these coordinated movements between the brain and the limbs. As the regions related to 

motor functions are located near the skull, fNIRS imaging is considered a suitable technology 

for measuring their activity.  

2.6 Postural balance and gait studies 

One of the complex movements humans perform is the postural balance required during gait 

(Herold et al., 2017). This task requires the cooperation between several joints and muscles 

which are controlled using different strategies. These strategies are often divided into three 

main categories: motor, sensory, and cognitive strategies (Shumway-Cook & Woollacott, 

2017, pp. 277-306). All these strategies contribute to the human gait and by analyzing the 

cortical activity in different scenarios, researchers aim to map the spatiotemporal activation 

of the brain.  

Previous motor control studies have aimed to improve rehabilitation strategies by evaluating 

brain activity from walking tasks and tasks that require postural balance. Some of these 

studies have shown that activations in several areas occur during walking: the prefrontal 

cortex (PFC), pre-supplementary motor area (PMA), premotor cortex (PMC), supplementary 

motor area (SMA), and sensorimotor cortex (SMC) (Herold et al., 2017). It indicates that 

walking is not only constricted to the activation of one single cortical area. In the analysis of 

postural balance, studies have shown that PFC and SMA are the most prominent areas 

(Herold et al., 2017). One study which investigated the functional connectivity using EEG 

during walking measured a decrease in FC during walking compared to standing (Lau et al., 

2014). 

During gait assessment, differences in the cortical activity have also been found related to 

factors such as age, level of fitness and health, and the complexity of the tasks (Hamacher et 

al., 2015). Such factors are also known to impact the different parameters used in the 

processing of fNIRS, such as the PPF and DPF (Yucel et al., 2021). Even though studies have 
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revealed some of the activation and functional connectivity during gait and postural balance, 

additional research is needed to map the complete orchestration of the brain during balance 

and gait.  

2.7 State-of-the-art fNIRS software 

The field of fNIRS is in constant movement and the researchers are pushing the field forward 

each year. The growing number of published studies that use fNIRS as the neuroimaging 

technique generate new insight into how the human brain works. The lack of physical 

constraints and its non-invasive nature enables brain activation studies to be performed in 

settings that previously not have been available (Pinti et al., 2018). Data acquisition and 

processing are getting better with the constant improvement in fNIRS technology. However, 

like the early development of the fMRI field, fNIRS researchers are lacking standards in data 

processing and analysis (Yucel et al., 2021).  

2.7.1 Software and toolboxes 

A large number of different optical imaging devices and software results in different 

processing pipelines used by researchers. This leads to inconsistency in data interpretation 

and reporting (Bonilauri et al., 2021). As presented in Table 1, there are many different tools 

available for the analysis of fNIRS data. This gives a vast number of different scripts and 

functions for handling the fNIRS data, which often lead to different processing and 

interpretation methods (Dans et al., 2021).  

 

Table 1: Overview of well-known software and toolboxes in fNIRS analysis. 

Software Category Interface Platform 

fNIRSOFT  fNIRS analysis Stand-alone Stand-alone 

fOSA-SPM  fNIRS analysis GUI1 MATLAB-based 

FC-NIRS (Xu et al., 2015) Functional Connectivity 

Analysis 

GUI MATLAB-based 

fOLD (Zimeo Morais et al., 

2018) 

Optode localization Toolbox and GUI MATLAB-based 

 
1 GUI – Graphical User Interface 

https://www.biopac.com/product/fnirsoft-professional-edition/?attribute_pa_size=fnir-software-professional-edition#product-tabs
https://www.ucl.ac.uk/medical-physics-biomedical-engineering/research/biomedical-optics-research-laboratory-borl/resources/functional-optical-signal-analysis
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HOMER3 (Huppert et al., 

2009) 

fNIRS analysis Toolbox and GUI MATLAB-based 

HOMER2 (Huppert et al., 

2009) 

fNIRS analysis Toolbox and GUI MATLAB-based 

ICNNA (Orihuela-Espina et 

al., 2017) 

fNIRS analysis GUI MATLAB-based 

 

MNE-NIRS (Gramfort et al., 

2013) 

fNIRS analysis Toolbox Python-based 

NeuroDOT (Muccigrosso & 

Eggebrecht, 2018) 

fNIRS analysis Toolbox MATLAB-based 

NIRFAST (Dehghani et al., 

2009) 

fNIRS analysis Toolbox MATLAB-based 

nirsLAB (Xu et al., 2014) fNIRS analysis GUI MATLAB-based 

NIRSite Optode localization GUI Stand-alone 

NIRS-SPM (Ye et al., 2009) fNIRS analysis GUI MATLAB-based 

NIRSTORM (Tadel et al., 

2019) 

fNIRS analysis GUI MATLAB-based 

NIRS Brain AnalyzIR (Santosa 

et al., 2018) 

fNIRS analysis Toolbox MATLAB-based 

Open PoTATo (Sutoko et al., 

2016) 

fNIRS analysis GUI MATLAB-based 

Turbo Satori  fNIRS analysis GUI Stand-alone 

LIONirs (Tremblay et al., 

2022) 

fNIRS analysis Toolbox MATLAB-based 

 

 

 

https://nirx.net/nirsite
https://nirx.net/turbosatori
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Another aspect within the field that is derived from Table 1 is the large number of graphical 

user interfaces and toolboxes that is MATLAB-based. With 14 of the 18 most used software 

utilizing MATLAB as the processing platform, the MATLAB engine seems to have an important 

role in the development within the field.  

For functional connectivity analysis in fNIRS studies, only one of the software mentioned in 

Table 1 is designed with that functionality. However, some MATLAB toolboxes such as the 

NIRS Brain AnalyzIR toolbox by Santosa et al. (2018) have functions designed for such 

analysis.  

2.7.2 File formats 

The fNIRS data that is obtained by the measurement equipment is stored in different file 

formats. Different formats are available, and it is the standards employed by the 

manufacturer that decides which one is available for the specific device (NIRx Medical 

Technologies, 2020). Two of the most used formats of today are the .nirs and .snirf formats. 

They both have most of the same features, but the .snirf format is the newest format 

developed by the fNIRS community which working on implementing it as a standard to 

generate a common format for sharing data (fNIRS.org, 2022). This enables both formats to 

be employed when generating a pipeline for fNIRS processing. 

2.8 Objective of the thesis 

With the lack of state-of-the-art processing pipelines within the field of fNIRS and no golden 

standard for functional connectivity analysis of motor control studies, the objective of this 

thesis has been to develop a processing pipeline for functional connectivity analysis for fNIRS 

motor control studies. Motivated by the research collaboration between Oslo Metropolitan 

University and Gaitline AS, this thesis aims to facilitate effective and reliable pre-processing 

and processing of fNIRS data by implementing the most promising techniques found in the 

literature. The pipeline will hopefully relieve researchers from the time-consuming task of 

processing the data and let them perform what they do best, analyze and understand. 

Ultimately, the pipeline will enable important studies that can make life better for people in 

need and contribute to the unraveling of the workings of the human brain. 
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3 Methodology 

This section presents the development of the pipeline and its features, followed by the 

experimental design of the previous motor control study conducted by Gaitline and Oslo 

Metropolitan University. Firstly, the rationale behind the design of the pipeline is presented 

alongside information regarding its dependencies and functionality. A concise description of 

each step employed in the pipeline is then provided to ensure understanding and 

transparency of its workings. Lastly, the experimental design of the motor control study is 

briefly presented as the fNIRS data collected in that study is used to illustrate the workings of 

the pipeline.  

3.1 Development of the pipeline 

As the primary goal of this thesis has been to develop a pipeline for pre-processing and 

processing of fNIRS data, state-of-the-art literature has been reviewed to map out the most 

promising techniques employed by researchers within the field. The findings from this review 

show that the field is under constant exploration and has no prominent golden standard for 

pre-processing and processing of fNIRS data. Especially not related to motor control studies.  

3.1.1 MATLAB as a platform 

With a vast number of available platforms for fNIRS analysis (see table 1), no software is 

known to be the golden standard for data processing of fNIRS signals. Some of the platforms 

are developed by the industry and others are developed within academic institutions. The 

stand-alone software from the industry often gives little transparency as the user is only 

given the GUIs and the user manual, without little insight into the source code. This removes 

important transparency within processing steps and can lead to the wrong interpretation of 

results as the user cannot interpret the actual workings of the software. As presented in 

table 1, the platforms developed by the academic institutions are often developed in the 

MATLAB environment and are provided either as MATLAB-based GUIs or toolboxes. This 

enables the user to utilize the GUI as a basic interface when processing the data or using the 

toolbox to create their own processing pipeline.  

However, these GUIs and toolboxes are known to be challenging to implement and utilize as 

there are compatibility challenges related to fNIRS acquisition systems, data formats, and 

MATLAB versions. This has led to the aim of creating a user-friendly processing pipeline that 
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utilizes the processing power of the MATLAB software together with an interface that is 

easily interpreted and utilized. To ensure a transparent program that also enables processing 

efficiency, the program developed in this work is both providing a stepwise live script in the 

MATLAB R2021b environment and a simple GUI in the MATLAB R2021b app designer 

environment. Figures 7 and 8 present the two interfaces.   

      

Figure 7: An excerpt of the live script interface of the pipeline. 

 

Figure 8: An illustration of the GUI of the pipeline. 
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The live script is developed to allow the user to run the pipeline stepwise as each 

preprocessing and processing step is separated into code blocks that can be run separately. 

Alternatively, the script can be run from start to finish by pressing the “run” button in the 

MATLAB environment. This also ensures the possibility of using the code as a framework for 

further changes to the pipeline and to have the flexibility that other GUIs do not provide.  

However, by operating in the same window as the script, the user is prone to interfere with 

the script in unwanted manners and make changes that might affect its functionality. 

Therefore, a simple GUI is provided to remove the possibility of interference and to simplify 

the user interaction.  

3.1.2 The Brain AnalyzIR Toolbox 

When developing a pipeline for fNIRS analysis, there are several aspects to consider and 

challenges to overcome. With several available fNIRS systems and toolboxes for data 

acquisition and processing, the fNIRS community has many contributors who work towards 

improvement of the field (Yucel et al., 2021). Different standards, such as the ‘.snirf’ file 

format, are also being suggested to facilitate consistency in fNIRS studies and cooperation 

across institutions. However, from experience, these different factors can make it challenging 

to perform the processing and to use the necessary functions when working with the data. 

Incompatibility between MATLAB versions and the toolboxes is often creating challenges 

during processing and can lead to more work for the researcher and a longer time between 

measurement and research publishment.   

As the current focus within the fNIRS community is to adapt the .snirf file format, I found it 

necessary to use a toolbox that both were compatible with this format and also had the 

necessary functions needed for the processing pipeline. During the preparations for the 

pipeline development in this project, a review of the functionality of the different toolboxes 

revealed that the toolbox provided with the HomER3 package by Huppert et al. (2009) had 

the necessary functions and compatibility needed. However, during development, limitations 

regarding its functionality together with compatibility issues regarding the .snirf format 

occurred, and I found it necessary to rebuild the pipeline using another toolbox. The Brain 

AnalyzIR Toolbox by Santosa et al. (2018) worked well together with the .nirs format and is 

the implemented toolbox. The toolbox is developed by recognized researchers within the 

field and has the functions necessary for building an fNIRS pipeline for motor control studies. 
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Alongside the need for the toolbox for fNIRS processing, the standard MATLAB toolbox called 

the Signal Processing Toolbox is required for using the pipeline.  

3.2 Features of the pipeline 

The pipeline is developed with the aim of enabling fast and structured processing of fNIRS 

data obtained from motor control studies conducted by Oslo Metropolitan University and 

Gaitline AS. To facilitate such studies, pre-processing and processing steps that have shown 

promising results in previous motor control studies are employed to streamline the process. 

In this section, the chronological process of the pipeline is described focusing on the 

functionality of the employed algorithms and the mathematics behind the most important 

ones. This is provided to ensure transparency, work as a guideline for users, and enable 

relevant referencing if using the pipeline for future studies. As presented in Figure 9, the 

pipeline consists of 15 steps that include loading, pre-processing, and processing of the data, 

parallel to generate a report with the outcomes of the pipeline. These steps are identical for 

both the live script and the GUI. The only difference between them is the interface used by 

the user. The design of the pipeline aims to adhere to the recommendations for fNIRS studies 

presented in Yucel et al. (2021). A thorough description of the workings of the toolbox is 

presented in Santosa et al. (2018). 
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Figure 9: Overview of the pipeline. 
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3.2.1 Loading data and creating the report 

The initialization of the pipeline is the only phase that requires user interaction. When 

running the script, the user is asked to choose three folders: 1. The folder containing the 

repository, 2. The folder containing the test data, and 3. The folder for storing the report. 

After this phase, the pipeline runs until the report is entirely generated. Three MATLAB files 

are also loaded as these provide the correct information related to the areas based on the 

probe setup.  

To load the data, the nirs toolbox function named “nirs.io.loadDotNirs” is employed to 

enable the loading of the .nirs file format. This creates a data object with the “nirs.core.data” 

structure. The content of the data object consists of the raw data, probe information, 

accelerometer and gyroscope data, stimuli information, and the sampling frequency. A 

further explanation of the data structure is presented in Santosa et al. (2018). 

For each step of the pipeline, a report is generated consisting of the plots created after each 

processing step. This feature is provided to enable the user to visually inspect the outcomes 

of each step as well as having a document that includes all the relevant plots. Each plot is 

also stored as single files within a folder that is placed in the same location as the report. The 

plots are stored as .png files with 500 dots per inch (DPI) resolution to give high resolution 

for implementation in scientific papers.  

3.2.2 Pre-processing 

Step 1 to 11 in the script consists of pre-processing steps that are implemented to enhance 

the signal quality and are based on the most promising techniques stated in the literature. 

These steps can all be found in motor control studies, but as there is no golden standard for 

the order of the steps the design of the pipeline is based on the functionality of the toolbox 

as well as the desired stepwise flow (Dans et al., 2021). The following paragraphs consist of a 

brief description of each step. 

Step 1: Rename stimuli 

 Step 1 includes the renaming of the stimuli that are within the .nirs file. The automatic 

property of the function makes it flexible for different types of stimuli and automatically 

detects the stimuli information. As different studies can employ different stimuli, the only 

change the user needs to do is to insert the names of the stimuli in the script when running 

the script for the first time.  
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Step 2: Trimming data 

Step 2 removes data points that are prone to noise from starting and stopping the 

experiment. The chosen default values are the first 5 seconds and the last 10 seconds of data 

recording. This is employed as it is common practice in motor control studies (Hocke et al., 

2018), and as noise within these areas was visually observed in the raw data. However, this 

can arbitrarily be changed within the script as future experimental designs changes. The 

toolbox function used here is called “nirs.modules.TrimBaseline”. 

Step 3: Short separation channel labeling 

Step 3 provides labeling of the short separation channels to be able to distinguish them from 

the regular channels. This is done with the use of the “nirs.modules.LabelShortSeparation” 

function. Short channels are used to remove physiological noise from the data (Yücel et al., 

2015).  

Step 4: Baseline correction 

Step 4 corrects the baseline shift within the raw data by removing the DC-shift provided by 

motion artifacts. The utilized toolbox function is named “nirs.modules.BaselineCorrection” 

and is further explained in Santosa et al. (2018). 

Step 5: Bad channels rejection 

A reported challenge in fNIRS motor control studies is to ensure good connections between 

the optodes and the scalp (Yucel et al., 2021). This step is commonly conducted through the 

time-consuming visual inspection of the spectral channel data. However, automatic spectral 

analysis can be performed by using different techniques. One of the most utilized techniques 

is calculating the power spectral density (PSD) and removing channels containing a high 

power of frequencies outside of the frequency area of interest (Aarabi & Huppert, 2016). 

Figure 10 and 11 illustrates the difference between an included channel and a rejected 

channel by plotting their respective PSD. The included channel contains a higher spectral 

power in the lower frequencies while the rejected channel has a more equal distribution of 

the spectral power.  
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Figure 10: An example of an included channel.  

 

Figure 11: An example of a rejected channel. 

 

The automatic channel rejection step within the pipeline bases on an algorithm called 

“pwelch” which calculates the PSD. This function bases on Welch’s power spectral density 

estimate which calculates the power of the signal at different frequencies (Welch, 1967). The 

function for channel rejection is borrowed from the open-access source code developed by 

the fNIRS research group from the University of California (Burns, 2018).  

The parameters used for channel rejection are the quartile coefficient of dispersion (QCoD) 

and a saturation window length. The QCoD is a statistical measure that compares the 25-

percent quartile to the 75-percent quartile of the spectral data for each channel (Bonett, 

2006) (Dieffenbach et al., 2020). The saturation length bases on the maximum time of 

saturation within a given time. The employed saturation length is equal to the default length 

of 2 seconds used within the function (Burns, 2018). These parameters are also verified in 

this work by visual analysis of the spectral plots for each channel within the test data.  

Step 6: Short channel removal 

Step 6 includes the removal of the data in the short channels that are labeled in step 3. This 

step is employed as the short separation data is not included in this test. However, this step 

should be excluded if the experimental design requires data from the short separation 

channels.  
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Step 7: Intensity to optical density 

 One of the necessary functions in fNIRS processing is the conversion from raw intensity data 

within each channel, to the optical density (Pfeifer et al., 2017). The optical density, also 

known as the optical absorbance of a material, is the logarithmic intensity ratio between the 

light transmitted through the tissue and the light received after the absorption. Equation 1 

describes the relationship between these two intensities (Zhang & Hoshino, 2019).  

𝐴(𝜆) =  − log10 (
𝐼0

𝐼1
)      (1) 

For fNIRS measurements, the optical absorption occurs within the different layers of tissue as 

the light travels through the outer region of the brain. As illustrated in figure 3, the 

transmitted light has a banana-shaped path and is affected by different factors that need to 

be considered. 

Step 8: Optical density to concentrations 

For deriving the information about the deoxy- and oxygenated hemoglobin from the optical 

density data, conversion to hemoglobin concentrations is necessary. This is done by using the 

modified Beer-Lambert law (mBLL) to convert the data obtained by the two wavelengths into 

relative changes in concentrations (Pfeifer et al., 2017). An important aspect to consider 

when performing this conversion is the light scattering that occurs along the photon’s path 

within the tissue as illustrated in Figure 12.  
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Figure 12: Illustration of the photon scattering through tissue. By Shoaib et al. (2019).  

This scattering results in the photon having a longer path and being influenced by tissue that 

is outside of the region of interest. To compensate for this influence, a factor is implemented 

into the conversion. As several potential mathematical algorithms can be implemented, the 

factor is dependent on the available information regarding the participants of the study. The 

differential path length factor (DPF) is one option that takes the age, wavelength, and type of 

tissue of the participant into account (Scholkmann & Wolf, 2013). Another factor is the 

partial pathlength factor (PPF) which is the product of the DPF and the partial volume factor 

(PVF) (Whiteman et al., 2018). However, these factors are seldom precise in fNIRS processing 

(NIRx Medical Technologies, 2020)  

The utilized function within the script is the “nirs.modules.BeerLambertLaw” which is based 

on the approach from Jacques (2013) which employs the PPF of 0.1 for the compensation of 

the scattering.  

Step 9: Bandpass filtering 

To remove unwanted noise within the data it is necessary to apply an algorithm that excludes 

the frequencies outside of the frequency area of interest. Without any golden standard, this 

is a frequently discussed topic within the fNIRS community (Yucel et al., 2021). However, 

Dans et al. (2021) report frequency filters to have been the most employed pre-processing 

technique in motor control studies in the last decade and are thus employed in the current 
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pipeline.  

To ensure that no important frequencies relevant for cortical activity are removed, a 4th order 

IIR Butterworth filter is applied with a lower cutoff frequency of 0.01 Hz and an upper cutoff 

frequency of 0.5 Hz (Dans et al., 2021). This bases on the existing bandpass filter function 

within the toolbox called “eeg.modules.bandpass” (Santosa et al., 2018). 

Step 10: Reorganization of the channels 

To facilitate the plotting of the functional connectivity within the experimental data, it is 

necessary to reorganize the channels by means of their position on the scalp. As the 

channels within the .nirs format are ordered by their channel number, which is independent 

of their position on the head, it is necessary to reposition them within the data matrix. The 

new order of the channel data is based on an alphabetic order of their respective Brodmann 

area (Zilles, 2018). 

Step 11: Deleting short separation channels 

To exclude the empty channels, that previously consisted of the data from the short 

separation channels, their column within the data is removed from the data matrix. The new 

data is thus only containing the information from the long separation channels.  

3.2.3 Processing  

The two processing steps taken in the pipeline are two prominent techniques used in the 

processing of fNIRS data. However, the GLM is only included to enable further 

implementation. 

Step 12: GLM 

As the main aim of this thesis is to explore functional connectivity, general linear model 

analysis is outside of the scope of this work. However, to facilitate further implementation of 

the GLM analysis within the pipeline, a GLM processing algorithm is included in the scripts to 

illustrate how it processes the data. This is chosen based on the broad use of GLM analysis in 

fNIRS motor control studies and as it can work as a framework for future development of the 

pipeline (Dans et al., 2021).  

Another reason for implementing this in this current pipeline version is that it can present 

interesting information regarding the activation of the different areas. The activation is 

plotted based on the t-statistics with a p-value < 0.05. These parameters are chosen to plot 
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the statistically significant activations of the different areas based on the stimuli information. 

The statistically significant channel activations that are found after the GLM analysis can then 

be employed in seed-based functional connectivity analysis. However, the current functional 

connectivity analysis is based on a whole-brain approach and the utilization of the GLM 

within the pipeline should be further investigated.  

Step 13: Functional connectivity 

The objective of this thesis has been to develop a pipeline for functional connectivity analysis 

of motor control studies by using a whole-brain approach. As fNIRS functional connectivity 

analysis both can be done in the time domain and the frequency domain, it is possible to 

apply different algorithms in this approach. In this work, a time-domain correlation is utilized 

to enable functional connectivity analysis for temporal correlations between brain areas.  

Without any clear state-of-the-art methods for such analysis, the pipeline is developed 

employing an algorithm that is known for its robustness and use of the Pearson correlation. 

The function employed is called “nirs.sFC.ar_corr” which bases on a pre-whitening 

autoregressive correlation model (Santosa et al., 2018). To ensure a robust analysis, the input 

of the function sets the robust flag to “true” and leads the function to employ the 

“nirs.math.robust_corrcoef2” for robust correlation analysis. This function bases on a robust 

correlation coefficients approach by Shevlyakov and Smirnov (2011) that is frequently 

employed in the Brain AnalyzIR toolbox. The pre-whitening properties of the function reduce 

the autocorrelation in the data by removing the serially correlated data based on the 

oversampling of the hemodynamic response data (NIRx Medical Technologies, 2020). The 

technique employed in this algorithm is further explained in Barker et al. (2013). 

The outputted correlation values calculated by the FC function come in the form of an 

adjacency matrix that illustrates the connectivity between the channels. The adjacency 

matrix is an N-by-N matrix where N is the channel number based on the alphabetic order of 

the brain regions.   

After the functional connectivity algorithm is applied, the correlated data is plotted in a 

circular graph. This graph bases on the “circularGraph” open-source MATLAB function 

created by Kassebaum (2022). Here, the adjacency matrix is converted into a network model 

where the nodes in the circular plot represent the channels within the data and the edges 

between them represent their respective correlation value. The magnitude of the correlation 
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value is illustrated by the width of the edges in the plot.  

To enable analysis based on an increase in the correlation values, the adjacency matrix is 

thresholded over several iterations. The iterations start at a 50% correlation and are stepwise 

increased by 5% for each cycle. This value is chosen to enable an analysis of the strong 

positive correlations between the channels (Nettleton, 2014). Both the adjacency matrix and 

the circular graph are plotted for each iteration.  

Step 14: Save workspace and generate the report 

In the last step of the pipeline, the workspace variables are stored alongside the report’s 

completion. The variables are stored as a .mat file containing all the variables and structures 

generated along the way to enable further analysis of the data or the control check of the 

different steps taken during the processing. To facilitate analysis that adheres to the 

recommendations for fNIRS practice and studies published in Yucel et al. (2021), the report is 

generated alongside individual storage of all the figures. This ensures that the user can 

perform a visual inspection of the output from each step and be able to extract relevant 

figures for the paper.  

Another aspect of good practice in fNIRS studies is to give detailed descriptions of the pre-

processing and processing steps employed when generating the data (Yucel et al., 2021). 

Thus, the pipeline produces a written presentation of the variables, coefficients, and 

techniques used during the process. As these are also provided in the workspace file, the 

presented information is selected based on the importance related to the study. This 

information is presented on the last page of the report alongside the description of the 

abbreviations included in the circular graph and the excluded channels.  

3.3 The prior Gaitline experiment 

The data used to illustrate the workings of the pipeline is obtained in an ongoing study by 

Oslo Metropolitan University and Gaitline AS. The experiment is part of the doctoral thesis 

work of Ph.D. Candidate Haroon Khan and the data are used with his and his supervisors’ 

permission. The experiment is conducted separately from the work on my thesis, and it is 

important to clarify that I have not had any role in the experimental design or the data 

collection process. The following sections include a presentation of the instrumentation used 

during data collection and a brief description of the experimental paradigm. This is presented 

to provide a basic understanding of the context of the experimental data. However, the 
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rationale behind the study is not provided as it is outside of the scope of this thesis.   

3.3.1 Experimental design 

With an aim of “investigating the human gait patterns with different footwear conditions 

while doing infinity walk”, the study used fNIRS to assess the hemodynamics of the 

participants during the experiment (Khan, 2022). The experimental paradigm consists of 

initial rest, task, rest, and final rest. Figure 13 illustrates the process. The time points for the 

onset and offset of the stimuli are recorded and are found in the data.  

 

Figure 13: The experimental paradigm. By Khan (2022). 

 

The paradigm is conducted for each of the 5 conditions presented in Table 2. 

Table 2: The conditions of the Gaitline study. The information is taken from Khan (2022). 

Condition nr. Description 

1 Barefooted walk on the plane surface of the Gaitline research lab. 

2 Walk with flat sole sandals. 

3 Walk with the calculated wedge angle of pronation and put the corrected 

wedge in a flat sandal wedge. 

4 Walk with participant’s personal shoes. 

5 Walk with Gaitline shoes 
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Infinity walk, illustrated in Figure 14, is a walking pattern that requires the participant to 

perform complex gait behavior and is a recognized technique used in gait and balance 

studies (Szymanski, 1997).  

 

Figure 14: Illustration of infinity walk. 

3.3.2 Experimental details 

The instrumentation used for data acquisition is the NIRSport 2 mobile fNIRS system 

delivered by NIRx Medical Technologies, Germany. The device utilized wavelengths of 760 nm 

and 850 nm during acquisition and the current optode montage is based on a standard 

motor cortex montage. The study consisted of 6 participants who all suffered from different 

degrees of pronation (Khan, 2022). A further description of the research is presented in the 

application to REK presented in Appendix C. 
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3.4 Ethical considerations 

The work in this thesis is connected to the research project at Oslo Metropolitan University 

led by Professor Peyman Mirtaheri. As presented in Appendix C, the project is approved by 

REK under application number 322236. As the main goal of the project is to investigate the 

potential of fNIRS technology, there are no additional requirements. Data gathering was 

consent-based, and all participants consented.  

As the pipeline is handling sensitive biomedical health information, the privacy of the 

participants is important to handle. Measures regarding privacy are thus important to 

consider. However, the data used in this thesis is presented anonymously and only for 

illustrational purposes.   
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4 Results 

The main objective of this thesis has been to develop a pipeline for fNIRS functional 

connectivity analysis of motor control studies. Thus, the main results of this thesis evolve 

around the workings of the pipeline and how it can be implemented in future studies. This 

section is therefore including the presentation of the output from the pipeline followed by 

an example of how to interpret the results.  

4.1 The output of the pipeline 

The pipeline generates a report that includes all the plots that are produced and relevant 

information from the pre-processing and processing steps. In parallel, each plot is stored 

separately in a folder with the same placement as the report. An example of the complete 

report is provided in Appendix E and shows the output from one of the tests performed in 

the Gaitline study. However, examples of some of the most important plots are presented in 

this section as well. All the following plots are from the same experimental trial. This is 

provided to give insights into what output the user receives, and how these plots can be 

interpreted.  

Figures 15 and 16 below illustrate the raw fNIRS data in the time domain against the raw 

data where the 5 first seconds and the last 15 seconds are removed from the data. The graph 

below the raw data represents the start and stop of the stimuli.  

 

Figure 15: An example of how the raw experimental 
data is plotted. 

 

Figure 16: An example of how the trimmed 
experimental data is plotted. 
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Figure 15 and 16 clearly illustrates how the data is distorted during the stimuli. As the stimuli 

are based on movement, the fluctuation in the channels is most likely connected to motion 

artifacts. As the fNIRS measurements are prone to such motion artifacts, it is necessary to 

compensate for the baseline shift that can occur from them. This compensation is conducted 

according to the recommendations from Dans et al. (2021) and is done for each channel that 

qualifies for such adjustments. Figure 17 below illustrates this baseline shift, alongside the 

plotting of the “good” channels presented in Figure 18.  

 

 

Figure 17: An example of baseline-corrected data. 

 

Figure 18: An example of data without 'bad' and 
short channels. 

 

After the channel removal is conducted in steps 5 and 6, the conversion from intensity to 

optical density is performed. Figure 19 presents what the converted plots look like. The data 

is now centered around zero, where each channel fluctuates based on the change in optical 

density.  
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Figure 19: An example of the optical density plot. 

After the optical density data is derived, the conversion to hemoglobin concentration is 

performed. These concentrations are presented in Figure 20 which plots the graphs for both 

deoxy- and oxygenated channels. Figure 21 presents the filtered concentrations data. The 

differences between the plots are seen in the smoothing of the signals as the frequencies 

beyond 0.5 Hz are removed. The lower cutoff frequency of 0.01 Hz removes some of the 

longer fluctuations in the signals.  

 

Figure 20: An example of the plotted concentration 
data. 

 

Figure 21: An example of the filtered concentration 
data. 
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The plots of the hemoglobin concentrations are the last plots produced during the pre-

processing steps of the pipeline. After this phase, the processing steps are conducted 

parallelly as presented in the overview of the pipeline in Figure 9. These steps include 

general linear modeling and functional connectivity processing, and their respective plots are 

produced. However, as the GLM is included in the pipeline to mainly facilitate future studies, 

the functional connectivity analysis is the focus of the current analysis.  

Figure 22 presents the adjacency matrix, also known as the connectivity matrix, which is the 

result of the functional connectivity analysis.  

 

Figure 22: An example of the adjacency/connectivity matrix from the functional connectivity analysis. 

The plot displays the level of connectivity, in form of the Pearson’s R-value where 1 

represents 100% positive correlation between the channels, and -1 represents 100% negative 

correlation. Zero indicates that there is no correlation at all. The diagonal yellow line 

illustrates the correlation the channel has with itself and will always have a 100% correlation 

for this pipeline. The numbers of the channels are based on the alphabetic order of the brain 

regions.  

As one of the objectives of this thesis is to present the functional connectivity data using a 

circular graph, the number of connections is advantageously reduced to improve the 
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interpretability of the circular graph. This is done by stepwise thresholding the adjacency 

matrix and plotting it for each 5% increment in connectivity starting at 50% correlation. 

Figure 23 illustrates an adjacency matrix with a 75% correlation between the channels. This 

value is chosen based on that a 75% percent correlation is usually known as a very strong 

correlation in time series data (Kozak, 2009). 

 

Figure 23: An example of a thresholded adjacency matrix with a threshold of 75% positive correlation. 

As shown in Figure 23, the correlated channels are heavily reduced. This enables a more 

interpretable connectivity plot in the circular graph as the number of connections is reduced.  

To explore the connectivity between the different regions of the brain, the circular graph in 

Figure 24 shows the regions that have strongly correlating behavior. The abbreviations used 

in the plot are further explained in the last pages of the example report provided in Appendix 

E. 
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Figure 24: An example of the connectivity plot (circular graph). The threshold is here 75% positive correlation. 

As illustrated in Figure 24, the connectivity between the brain regions (nodes) of the network 

is represented by the graphs (edges) between them. With the relatively high threshold of 

75% correlation, only the strongest correlations are plotted. The colors of the edges are not 

connected to the correlation values as it only represents the area of connection. The 

correlation value is represented by the linewidth of the edges but is not easily 

distinguishable in high correlation plots.   

4.2 FC analysis of experimental data – an example 

In this section, an analysis of experimental data from one participant is conducted to 

illustrate how the pipeline’s output can facilitate research. The analysis bases on the 

functional connectivity plots from the cortical activity data from one participant during 

different conditions. This analysis is provided for illustrational purposes and the experimental 

data will further be analyzed in the Doctoral Thesis of Ph.D. Candidate H. Khan.  
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The following analysis is based on a region of interest approach which compares all regions 

against each other. The plotting is conducted based on the HbO2/Hb time series that has 

been filtered with a fourth-order Butterworth bandpass filter with the cutoff frequencies of 

0.01-0.5 Hz. Additional information about the parameters and methods is found in the report 

in Appendix E. 

The following figures show the differences in connectivity from the different conditions of 

the experiments. All the plots are from the same participant and employ a 75% correlation 

threshold. This is chosen based on the relatively strong correlation represented by the 75% 

correlation (R > 0.75) threshold. The participant is randomly chosen.  

4.2.1 Flat vs wedged sandal 

Figures 25 and 26 illustrate the differences between condition 2 (walking with flat sole 

sandals) and condition 3 (walking on wedged heel sandals). These conditions are chosen to 

assess the connectivity differences based on different wedge angles of the calcaneus.  

 

Figure 25: The connectivity plot of participant 3 from 
condition 2 (flat sole) data with R-threshold = 75%. 

 

Figure 26: The connectivity plot of participant 3 from 
condition 3 (wedged hell) data with R-threshold = 
75%. 

 

Both similarities and differences can be observed between condition 2 and condition 3. 

Similarities in the connectivity can be seen as some of the same channels show correlations 

over 75%. For example, correlations between the channels within the Supramarginal Gyrus 
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of Wernicke’s area (SGWA) show high correlations in both the oxygenated and the 

deoxygenated channels. These deoxygenated channels are also showing a high correlation to 

the deoxygenated channels in the Primary Motor Cortex (PMC) during both conditions.  

Connectivity between channel PMS r 21 (deoxygenated channel in pre-motor and 

supplementary motor cortex) and channel PMC r 17 (deoxygenated channel in primary 

motor cortex) is shown to be strong in both plots. However, their respective oxygenated 

channels are only showing a correlation of over 75% during condition 3. 

Another difference is observed as the connection between the PMS r 19 (deoxygenated 

channel in Pre-motor and Supplementary Motor Cortex) and SGWA r 31 (deoxygenated 

channels in Supramarginal Gyrus of Wernicke’s Area) only occurs during condition 2. 

Inversely, the correlation between the STG and MTG is only observed when walking with a 

wedged heel. Another remark is that the majority of the correlating channels are the 

deoxygenated channels.  

4.2.2 Barefoot vs wedged Gaitline shoe 

Figures 27 and 28 present the connectivity during condition 1 (walking barefoot) and 

condition 5 (walking with Gaitline shoes). By comparing the connectivity between these 

conditions, information about the potential impact of the Gaitline shoes can be assessed.  
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Figure 27: The connectivity plot of participant 3 
during condition 1 (barefoot) data with R-threshold = 
75%. 

 

Figure 28: The connectivity plot of participant 3 
during condition 5 (Gaitline shoe) data with 
threshold = 75%. 

 

Similar to the previous conditions a strong correlation between the PMS and the PMC is 

observed together with the correlation between PMC and SGWA. The majority of correlation 

between the deoxygenated channels compared to the oxygenated ones is also present 

during these conditions.  

The plot from the barefooted condition shows a stronger correlation between the PMS and 

the SGWA than the condition using Gaitline shoes.  

A comparison of the functional connectivity can be conducted with several approaches. By 

comparing the FC between other conditions, assessment of different footwear and calcaneus 

wedging may be addressed. Moreover, assessments between participants during the same 

conditions can also provide interesting information. However, as these comparisons are 

provided to illustrate the workings of the pipeline, further analysis of the data from the 

experiment will be addressed in future studies. 

 

 

  



48 
 

5 Discussion 

With the objective of developing a pipeline for functional connectivity analysis of fNIRS 

motor control studies, this thesis has pointed toward several different concepts and areas 

that need to be addressed. The final product from this work is a functioning pipeline with the 

ability to streamline the pre-processing and processing step which can significantly reduce 

the time related to this stage in research. To provide a solid foundation for the design of the 

pipeline, the following research questions were raised:  

1. What is the state-of-the-art procedure for analyzing motor control fNIRS data? 

2. What features are most important to include in a pipeline for functional connectivity 

analysis of fNIRS data from motor control studies? 

Without any clear consensus within the field of fNIRS research, none of the research 

questions were given conclusive answers. The design of the pipeline was thereby based on 

the most promising techniques found in the literature. However, the following sections 

include evaluations regarding the different aspects of the pipeline and the main findings in 

this work. This is provided to give important insights behind this work and to help others 

avoid pitfalls. 

5.1 The development process 

In the initial stage of the development of the pipeline, the different possibilities of its design 

were explored. Three alternatives were found after reviewing the state-of-the-art literature 

and software: 1. Create a pipeline within a stand-alone software, 2. Develop a pipeline based 

on existing toolboxes, and 3. Develop a completely new repository of necessary functions.  

The first alternative enables a fast development process as it has premade functions for 

fNIRS pre-processing and processing. These allow the user to implement the desired steps 

into the pipeline and can provide a given set of data. However, the flexibility of the usage is 

limited as only a few processing steps are available to implement. Also, the lack of access to 

the utilized scripts from the functions reduces the transparency of the pipeline. As it is 

important to present the processing techniques used on the data, this alternative was 

regarded as suboptimal (Yucel et al., 2021).  

The third alternative included the development of a whole new repository to facilitate a 

pipeline. This would enable a fully transparent pipeline with functionalities designed for the 
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current goal. However, the complexity of such a process was found to be disproportionate to 

the given time frame for this thesis.  

With several existing MATLAB toolboxes for fNIRS data processing, the second alternative 

was selected for the development of the pipeline. As the majority of well-known toolboxes 

are MATLAB-based (presented in Table 1) MATLAB was chosen as the platform for further 

implementation. The different toolboxes provide reliable functions for different approaches 

to fNIRS processing and are known for their utilization in several studies. However, the 

implementation of these toolboxes can be challenging and time-consuming. After reviewing 

potential toolboxes to implement, the HomER3 toolbox by Huppert et al. (2009) was found 

to have the functionality required for the current objective. Alongside a broad variety of pre-

processing and processing functions available, its capabilities of processing the shared NIRS 

file format (.snirf) contributed to it being selected.  

Nevertheless, after several iterations of developing different versions of the pipeline, 

challenges related to its useability made it necessary to investigate other solutions. This led 

to the investigation of how to utilize the Brain AnalyzIR toolbox by Santosa et al. (2018) in the 

pipeline instead. Even though the toolbox is in constant development, it proved to have the 

relevant functions and compatibility necessary for creating a pipeline although some 

functions needed slight modifications to work. Even though the Brain AnalyzIR toolbox was 

used in this toolbox, a deeper comparison of its functionalities could have benefitted the 

development process. 

After generating it as a live script format in MATLAB, the pipeline was implemented in a 

MATLAB-based GUI. The environment for creating the interface allows the development of 

an interactive user experience, but the application designer platform has several limitations 

regarding design possibilities. This led to a user interface with basic functionality and design. 

The available user interactions are either a simple button interface or the actual script. Both 

options enable the user to access the features of the pipeline, but there is no easy way of 

changing its parameters or workflow. The GUI does not enable the user to change any of the 

settings and changing the scripts require programming experience. By adding these options 

to the two interfaces, the pipeline could have had more flexibility. The GUI relies on correct 

use by the user and could benefit from additional “fail-safe”-functions to prevent program 

failure. However, the necessary functionality for achieving the objective of having a 
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functioning pipeline was implemented and the GUI allows the user to run the pipeline. 

5.2 The pipeline 

The pipeline is designed to enable effective and robust functional connectivity analysis of 

fNIRS motor control studies. This is done by implementing the most promising techniques 

found in state-of-the-art literature within the field. As the review present that there is no 

golden standard to base the design on, it is not achievable to provide a conclusive solution to 

the processing steps. The pipeline is therefore based on techniques that show great potential 

when processing motor control fNIRS data.  

5.2.1 Pre-processing 

The inconsequent use of pre-processing steps within the field makes it challenging to choose 

what steps to implement. The chosen steps are therefore based on recommendations found 

in the literature, available functions within the toolbox, and experience exchanges within the 

research team at the university. To increase the validity of these decisions, a thorough review 

of the produced results from all available processing functions should be performed.  

One of the steps that could benefit from such review studies is the channel rejection step. 

The channel rejection function bases on the automatic analysis of the power spectral density 

by employing a given saturation period and a QCoD threshold. The value of these parameters 

is based on what is used in similar studies (Burns, 2018). This could lead to too many or too 

few channels being rejected. By conducting further analysis of the impact of these two 

parameters, an even more robust solution could have been implemented. This could be done 

alongside addressing the impact of other channel rejection techniques. 

The removal of motion artifacts is done by utilizing the commonly used step of baseline 

correction (Dans et al., 2021). Its effects can be seen by comparing the plots before and after 

baseline correction and correcting the baseline of the signals containing significant baseline 

shifts. However, as a common step in fNIRS data pre-processing is to manually remove 

temporal data that contains bigger motion artifacts, automatic removal of such artifacts 

could benefit the integrity of the results.  

Other methods are also possible to implement or replace already utilized functions and 

would also beneficially be reviewed against each other. However, common guidelines for 

such decisions are an important contribution that the field of fNIRS is missing.  
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5.2.2 Processing for functional connectivity 

Although the pre-processing steps employed in the pipeline are essential for the integrity of 

the data, the processing steps need to be equally reliable. Integrity is aimed to be prevailed 

in the processing step by implementing a processing algorithm for functional connectivity 

analysis with features that are known to be reliable within the literature.  

The algorithm employed in the pipeline bases on a pre-whitening approach that removes 

temporal autocorrelation before calculating the Pearson’s R correlation. This technique has 

shown to be important in resting-state FC fNIRS studies as it can remove autocorrelations 

(Blanco et al., 2018). Autocorrelations within the data can lead to high levels of false 

positives in the correlation and are thus important to remove to prevail the integrity of the 

data (Pinti et al., 2018). With other existing methods for calculating the correlation, a 

thorough comparison of their impact on the results would further strengthen the reliability 

of the pipeline.  

With only one method for connectivity implemented, false positives within the data might be 

wrongly perceived as true positives as there is no analysis to compare the results to. This 

could lead to a wrong interpretation of the data. The pre-whitening of the signals aims to 

remove most of these autocorrelations, but the implementation of other connectivity 

methods could provide an even stronger foundation for correct analysis.    

The functional connectivity analyses are mostly employed in resting-state studies, where the 

prevalence of motion artifacts is less than in motor control studies (Hu et al., 2020). Though 

the features within the pipeline aim to remove these artifacts, more studies regarding 

functional connectivity in task-evoked experimental paradigms would benefit the field.  

The functional connectivity analysis is conducted on the signals within the 0.01 – 0.5 Hz 

frequency area. This area includes the areas related to several physiological processes. By 

separating the signals into smaller frequency bands before analysis, information about the 

connectivity within these bands might be derived. As presented in Yucel et al. (2021), such 

analysis could provide additional information about the connectivity based on their 

physiological characteristics.  

Another relevant analytical approach to include could be to analyze the changes in 

connectivity during the different segments of the experimental paradigm. By separating the 
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data into segments of “left turn”, “right turn”, “straight forward”, and “pause”, analysis 

between the segments could give additional information about the participant’s connectivity. 

This might provide further insights into how the brain responds to different footwear and 

gait patterns. This could technically be implemented by utilizing the already existing 

accelerometer and gyroscope data to differentiate the segments.  

5.2.3 The output from the pipeline 

The results generated by the pipeline aim to make the research process more effective by 

automating the processing pipeline and generating results for further analysis. This is done 

by facilitating functional connectivity analysis. By having the data created as a report based 

on the chronological plots from its process, the user has control of the data during the whole 

process.  

The functional connectivity plots come in the form of an adjacency matrix without any 

threshold, an adjacency matrix with the thresholds, and a circular graph for all the 

thresholded adjacency matrices. As connectivity analyses often are based on only the 

adjacency matrix (NIRx Medical Technologies, 2019) the circular graph is providing an 

alternative way of presenting the data. By plotting the connections in the form of edges 

between the channels the data can be interpreted. The abbreviations for the brain areas are 

described within every generated report to support its interpretability. To further increase 

the interpretability of the connectivity analysis, plots of the optodes’ placement on the scalp 

could be added together with the connectivity edges between them.  

Other graphical actions could also be taken to further develop the plots. However, such 

actions are inessential in this work as the circular graph includes the necessary information 

to perform the analysis.  

5.3 The analysis of the Gaitline data 

To present how the pipeline can be utilized for FC analysis, data from one participant in the 

Gaitline study were used as an example. Data from four conditions were assessed to address 

the impact of wedging of the calcaneus and the impact of the Gaitline shoes.  

The comparison of a flat sole against a wedged sole indicated that similar connectivity 

occurred during both conditions. Both plots showed a strong correlation between the 

deoxygenated channels between the PMS and the PMC, alongside a strong correlation 
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between the PMC and the SGWA. The same tendencies were observed during the 

barefooted walking and when using the Gaitline shoe. As previous studies have shown that 

the PMS and PMC are among the most active regions during walking (Herold et al., 2017), 

the findings regarding their temporal correlation are interesting to consider.  

The stronger correlation between the PFC and the PMS during barefooted walk compared to 

walking with the Gaitline shoes is another indication that might be interesting to address 

further. As these areas are known for their activation during balancing tasks, their stronger 

correlating behavior might illustrate how the Gaitline shoes are impacting the users’ 

connectivity when wearing them.  

Regarding the skewed distribution of deoxygenated channels showing correlation levels 

above 75%, further assessment of their impact on the connectivity could provide a stronger 

foundation for the FC analysis. Montero-Hernandez et al. (2018) have already shown that 

this skew is expected when analyzing the functional connectivity using both hemoglobin 

species. Without any consensus in the field, they recommend including both species in the 

FC analysis to provide loss of information (Montero-Hernandez et al., 2018). 

However, all the indications stated in this section are only based on one participant’s data 

and can only work as an indication of what to address in future analysis. 
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6 Conclusion and future directions 

With an aim of facilitating studies that try to map the functionality of the brain, the objective 

of this thesis has been to develop a processing pipeline for fNIRS motor control studies. With 

an ultimate goal of unraveling how the orchestration of the brain works, this program aims to 

contribute to the further development of the field by enabling researchers and students to 

perform reliable connectivity analysis. By reviewing state-of-the-art literature related to 

fNIRS data processing and functional connectivity analysis, this work aimed to discover the 

state-of-the-art steps needed to be implemented in such a pipeline. With no such standards 

discovered within the field, the pipeline is developed based on the most promising 

techniques employed in similar studies.  

By mapping how the most utilized programs for fNIRS analysis are designed, this thesis found 

that analysis using MATLAB is common practice within the field. This led to the development 

of a MATLAB-based program utilizing the recognized NIRS Brain AnalyzIR toolbox by Santosa 

et al. (2018). The program enables automatic processing of experimental fNIRS data and 

generates a report consisting of the plots for each pre-processing and processing step taken. 

By providing both a user-friendly GUI version of the pipeline and a live script version, the 

user has the option of both conducting stepwise data processing or a fully automatic 

process.  

One of the most promising techniques used in functional connectivity analyses was found to 

be autoregressive models that use pre-whitening of the signal to remove unwanted artifacts 

and to ensure reliable results. As the most used measure in functional connectivity analysis 

was found to be the Pearson’s R coefficient of correlation, the model is implemented to 

perform a robust calculation of the correlation. The correlation between the channels is 

plotted both as an adjacency matrix and a circular graph to enable intuitive and interpretable 

analysis.  

The workings of the pipeline are illustrated using data from a previous motor control 

experiment conducted by Oslo Metropolitan University and Gaitline AS. Analysis of some of 

the data illuminated how the connectivity plots provided by the pipeline can be used for 

functional connectivity analysis of motor control studies. These indications would be 

interesting to further analysis as they might lead to better rehabilitation for people in need. 

To adhere to the recommendations for best practices in fNIRS studies by Yucel et al. (2021), 
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relevant information regarding the processing steps is implemented in the generated report.  

With the lack of standardized pre-processing and processing steps in the field of fNIRS, 

conclusive answers to how a pipeline should be designed cannot be provided. More research 

regarding several important aspects is thus relevant to pursue.  

During the work on this thesis, several gaps within the field were discovered. One of these 

gaps includes the lack of structural comparisons between existing toolboxes for fNIRS 

processing and analysis. By providing a thorough comparison between their functionalities 

and transparency, researchers and students would have a stronger foundation for conducting 

fNIRS research.  

The low number of studies related to functional connectivity during motor control studies 

indicates that there is potential for further investigation in the field. Hopefully, the developed 

pipeline will both work as a helpful tool in such processing and also work as a framework 

that could inspire future studies. By constantly following the developments within the field, 

further development of this pipeline could be conducted. Natural future actions would be to 

compare the results generated in this pipeline to results from other FC tools, such as FC-NIRS 

by Xu et al. (2015). This could provide additional reliability to the outcomes of the pipeline.  

The steps included within this pipeline are based on recommendations found in the 

literature. However, a thorough review of the differences caused by the implementation of 

different pre-processing and processing techniques would have a positive impact on the 

further development of the pipeline. By assessing the impact of interesting techniques such 

as DASAR, COFRE, MCLM, and SCAU as mentioned in Pinto-Orellana (2022), improvements in 

the analysis might occur. Implementation of promising machine learning techniques for 

better processing and feature extraction of cortical activation is another natural direction to 

pursue in the future of fNIRS motor control studies.  

With the current focus of the research project within Oslo Metropolitan University regarding 

the exploration of a hybrid solution for fNIRS and EEG (Appendix C), functions for EEG 

processing should be implemented within the pipeline. Such processing functions are 

available in the NIRS Brain AnalyzIR toolbox and could give additional information regarding 

the spatiotemporal functional activity in the brain. Additional information might also be 

acquired by facilitating for processing of the short separation channel data and the IMU data 
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from the NIRS Wing system. Moreover, by separating the experimental data into both 

temporal and spectral segments, analysis of the cortical activity might reveal important 

information about the complex human brain. 

Functional Near-Infrared Technology is a neuroimaging technique showing great potential in 

the field of neuroimaging and further developments in its processing techniques can help us 

understand the orchestration of the human brain.   
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Appendix A: Code for Live Script 

Pipeline for fNIRS connectivity analysis 

Live script as a supplementary approach for GUI. 

Created by Sindre Lilleseth 2022.  

Initialization: Load data 

clear all; 

clc; 

close all; 

 

%%Choose folder for repository 

lib_folder = uigetdir([], 'Choose the folder containing the repository'); % 

Choose the folder containing the library for this pipeline. 

addpath(genpath(lib_folder)); % Sets the library folder as a path. 

 

%%Load necessary data. 

load("BrainRegions_table.mat"); % Table with the different brain regions and 

related data. Based on the table from OsloMet Phd candidate Haroon Khan. 

load("orderOfChan_mat.mat"); % The order of the channels based on brain 

regions and optode placement. 

load("labelCells_comp.mat"); % The organised order of the regions for the 

Circular Plot. 

 

%%Choose folder 

test_folder = uigetdir([], 'Choose folder containing the test data'); 

subjsplit = split(test_folder, '\'); % Split folder path into cells. Based on 

the hierarchy of this experiment data. 

 

%%Load nirs with nirs toolbox function 

addpath(genpath(test_folder)); % Adds the test folder to the path. 

nirsfile = strcat(subjsplit(length(subjsplit)),'.nirs'); % Find the name of 

the nirs file. 

raw_nirs = nirs.io.loadDotNirs(nirsfile); % Loads the nirs file. 

 

%%Create pdf name 

pdf_name = cell2str(strcat(subjsplit(length(subjsplit)-1),'-

',subjsplit(length(subjsplit)),'.pdf')); 

 

%%Choose folder for storing the report 

[filename_report, filepath_report] = uiputfile(pdf_name,'Choose folder for 

storing the report'); 

 

%%Create folder for storing the report and figures. 

folder_name = cell2str(strcat(subjsplit(length(subjsplit)-1),'-

',subjsplit(length(subjsplit)))); 

new_folder = strcat(filepath_report,folder_name); 
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mkdir(new_folder); 

 

 

%%Defining some variables: 

satlength = 2; % The saturation length of the bad channel rejection 

algorithm. 

QCoDthresh = 0.1; % The Quartile Coeffisient of Dispersion threshold used in 

the bad channel rejection function. 

             

Step 1: Rename stimuli data. 

job1 = nirs.modules.RenameStims; % Define the first job: Rename stimuli. 

job1.listOfChanges = {'stim_channel1' 'Start/stop'}; % Rename the stimuli. 

raw_nirs_ReStim = job1.run(raw_nirs); % Perform job1 on the raw data. 

 

figure(1); % Define a figure. 

raw_nirs_ReStim.draw % Plot the figure. 

xlabel('Seconds'), ylabel('Amplitude'); 

title('Raw data w/stimuli'); 

 

ax1 = gca; % Get the properties of the axes.  

exportgraphics(ax1, [filepath_report filename_report], 'Resolution', 500); % 

Export the plot to the report. 

exportgraphics(ax1, fullfile(new_folder, strcat(folder_name,'-', 

'Raw_stimuli','.png')),"Resolution",500); 

 

%StatusEditField.Value = 'Data is renamed'; % Updating the status field. 

close(figure(1)); 

Step 2: Trim data 

 

job2 = nirs.modules.TrimBaseline; % Defining the second job: Trimming of the 

data. 

job2.preBaseline = -5; % Removing the first 5 seconds of the data. 

raw_nirs_Trimmed = job2.run(raw_nirs_ReStim); % Performing job2 on the ReStim 

data. 

 

job2.postBaseline = -10; % Removing the last 10 seconds of the data.  

raw_nirs_Trimmed = job2.run(raw_nirs_Trimmed); % Performing the updated job2 

on the data. 

 

figure(2); % Defining a new figure. 

raw_nirs_Trimmed.draw; % Plotting the trimmed data. 

xlabel('Seconds'), ylabel('Amplitude'); 

title('Trimmed raw data'); 

 

ax2 = gca; % Get the properties of the axes. 
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exportgraphics(ax2, [filepath_report filename_report], 'Resolution', 500, 

'append', true); % Export the plot to the report. 

exportgraphics(ax2, fullfile(new_folder, strcat(folder_name,'-

','Raw_trimmed','.png')),"Resolution",500); 

close(figure(2)); 

Step 3: Label short separation channels 

job3 = nirs.modules.LabelShortSeperation(job2); % Defining the third job: 

Label the short separation channels. 

job3.max_distance = 15; % Setting the max source detector distance to 15 mm.  

raw_nirs_Labeled = job2.run(raw_nirs_Trimmed); % Perform job 3 on the trimmed 

data. 

Step 4: Correct baseline 

StatusEditField.Value = 'Correcting baseline...'; % Updating the status 

field. 

job4 = nirs.modules.BaselineCorrection(job3); % Defining the fourth job: 

Correction of the baseline. 

Baseline_corrected = job4.run(raw_nirs_Labeled); % Perform job4 on the 

labeled data. 

 

figure(4); 

Baseline_corrected.draw; % Plotting of the baseline corrected data. 

xlabel('Seconds'), ylabel('Amplitude'); 

title('Baseline corrected raw data'); 

 

ax4 = gca; % Get the properties of the axes. 

exportgraphics(ax4, [filepath_report filename_report], 'Resolution', 500, 

'append', true); % Exporting the plot to the report. 

exportgraphics(ax4, fullfile(new_folder, strcat(folder_name,'-

','Raw_baselineCorr','.png')),"Resolution",500); % Exporting the plot as a 

single file. 

close(figure(4)); 

Step 5: Remove bad channels 

% Finding the bad channels in the data.  

[temp_data, channelmask] = 

removeBadChannels_modified(Baseline_corrected.data, Baseline_corrected.Fs, 

satlength, QCoDthresh); 

 

bad_chans_str_temparr = strings(1,length(channelmask)); %Defining a temporary 

string array. 

bad_chans_count = 1; 

 

for i=1: length(channelmask) 

    % Removing bad channels from the data. 
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    if channelmask(1,i) == 0 

        Baseline_corrected.data(:,i) = 0; 

        bad_chans_str_temparr(1,bad_chans_count) = i; bad_chans_count = 

bad_chans_count + 1; % Store the bad channel number for reporting. 

    end 

end 

 

if bad_chans_count == 1 

    bad_chans_str = 'No bad channels detected'; 

 

else 

    % Create string of the bad channels detected. 

    bad_chans_str_arr = strings(1,bad_chans_count-1); 

    for k=1: bad_chans_count-1 

        bad_chans_str_arr(1,k) = bad_chans_str_temparr(1,k); 

    end 

    bad_chans_str = strjoin(bad_chans_str_arr,', '); 

end  

Step 6: Removing short channels 

noshortchans = Baseline_corrected; % Creates a copy of the baseline corrected 

data. 

rangeOfLoop = length(Baseline_corrected.probe.link.ShortSeperation); % 

Creates an integer for the removal loop. 

 

for i=1: rangeOfLoop 

    % For-loop for removing the short separation optodes from 

    % the data 

    if Baseline_corrected.probe.link.ShortSeperation(rangeOfLoop-i+1) == 1 

        noshortchans.data(:,rangeOfLoop-i+1) = 0; 

    end 

end 

 

figure(6); 

noshortchans.draw; % Plotting of the data without short channels. 

xlabel('Seconds'), ylabel('Amplitude'); 

title('Removed short and bad channels'); 

 

ax6 = gca; % Get the properties of the axes. 

exportgraphics(ax6, [filepath_report filename_report], 'Resolution', 500, 

'append', true); % Exporting the plot to the report.          

exportgraphics(ax6, fullfile(new_folder, strcat(folder_name,'-

','Channels_removed','.png')),"Resolution",500); % exporting the plot as 

single file. 

close(figure(6)); 

Step 7: Intensity to Optical Density 
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job7 = nirs.modules.OpticalDensity(job4); % Defining job 7. Includes job4 to 

log the process.  

OD = job7.run(noshortchans); % Perform job7 on the data. 

 

for i=1:length(channelmask) 

    % Necessary step to ensure the correct format of the data 

    % after this pre-processing step as the short channels are set to NaN.  

    if channelmask(1,i) == 0 

        OD.data(:,i) = 0; 

    end 

end 

 

figure(7); 

OD.draw; % Plots the OD data. 

xlabel('Seconds'), ylabel('OD'); 

title('Optical Density'); 

 

ax7 = gca; 

exportgraphics(ax7, [filepath_report filename_report], 'Resolution', 500, 

'append', true); % Exporting the plot to report.   

exportgraphics(ax7, fullfile(new_folder, strcat(folder_name,'-

','OD','.png')),"Resolution",500); % Exporting the plot as single file. 

close(figure(7)); 

Step 8: Optical density to hbo and hbr concentrations 

job8 = nirs.modules.BeerLambertLaw(); % By default: PPF = 0.1. Used by 

Santosa et al. 2018. 

hb = job8.run(OD); % Performing the mBLL on the OD data. 

 

for i=1:length(channelmask) 

    %To prevent cells from being 'NaN'. 

    if isnan(hb.data(1,i)) 

        hb.data(:,i) = 0; 

    end 

end 

 

% Plot the figure 

figure(8); 

hb.draw; 

xlabel('Seconds'), ylabel('Conc'); 

title('Concentrations'); 

 

% Export plot. 

ax8 = gca; 

exportgraphics(ax8, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

exportgraphics(ax8, fullfile(new_folder, strcat(folder_name,'-

','Conc','.png')),"Resolution",500); 
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close(figure(8)); 

Step 9: Bandpass filtering 

hb_filter_job = eeg.modules.BandPassFilter(); % Applying a bandpass filter to 

the process. 

 

hb_filter_job.do_downsample = false; %Do not downsample data 

hb_filter_job.lowpass = 0.5; % Setting the cutoff frequency for the lowpass 

filter = 0.5 Hz. Based on Yucel et al. 2021. 

hb_filter_job.highpass = 0.01; % Setting the cutoff frequency for the 

highpass filter = 0.01 Hz. Based on Yucel et al. 2021. 

 

hb_filtered = hb_filter_job.run(hb); % Execute the filter job on the 

concentration data.  

 

% Plot figure 

figure(9); 

hb_filtered.draw; 

xlabel('Seconds'), ylabel('Conc'); 

title('Concentrations - filtered'); 

 

% Export data. 

ax9 = gca; 

exportgraphics(ax9, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

exportgraphics(ax9, fullfile(new_folder, strcat(folder_name,'-

','Conc_filtered','.png')),"Resolution",500); 

close(figure(9)); 

Step 10: Reorganize the data based on the brain regions. 

reOrg_data = 

zeros(numel(hb_filtered.data(:,1)),numel(hb_filtered.data(1,:))); % Defining a 

new matrix with the dimensions of the filtered data. 

 

for i=1: numel(hb_filtered.data(1,:)) 

    % Reorganizing the data. 

    reOrg_data(:,i) = hb_filtered.data(:,orderOfChan_mat(i)); 

end 

Step 11: Delete the short seperation channels 

%%Deletes the short channels from the reorganized data 

for i=18:49 % i=18: 49 is based on the removal of the channels starting from 

the last column.  

    reOrg_data(:,rangeOfLoop-i) = [];  

    %Reorganized data has the alphabetic order of the brain region table. 

    %F.ex: Column 1 = Channel 39 (hbo channel of the "Area between 
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    %brodmann 42L and 02L  Ant. & posterior transverse temporal and  

    %Primary Somatosensory Cortex"). 

    %This needs to be changed when  

end 

Step 12: GLM 

jobs_GLM = nirs.modules.Resample(); 

%app.jobs_GLM = nirs.modules.RenameStims(app.jobs_GLM); % Experience unknown 

error 

%in this step 

%app.jobs_GLM.listOfChanges = {'stim_channel1' 'Start/stop' 'stim_channel1' 

%'Start/stop'}; % Rename the stimuli. % Experience unknown error in this 

%step. 

jobs_GLM = nirs.modules.OpticalDensity(jobs_GLM); 

jobs_GLM = nirs.modules.BeerLambertLaw(jobs_GLM); 

 

hb_GLM=jobs_GLM.run(raw_nirs); 

 

jobs_GLM_hb=nirs.modules.GLM(); %Starts a new group of jobs. 

jobs_GLM_hb=nirs.modules.ExportData(jobs_GLM_hb); 

jobs_GLM_hb.Output="GLM_analysis"; 

data_GLM=jobs_GLM_hb.run(hb_GLM); 

 

data_GLM.draw('tstat', [-10 10], 'p<0.05');  

 

ax12a = gca(1); 

ax12b = gca(2); 

 

%app.StatusEditField.Value = 'GLM completed'; % Updating the status field. 

 

exportgraphics(ax12a, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

exportgraphics(ax12a, fullfile(new_folder, strcat(folder_name,'-

','GLM_1','.png')),"Resolution",500); 

exportgraphics(ax12b, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

exportgraphics(ax12b, fullfile(new_folder, strcat(folder_name,'-

','GLM_2','.png')),"Resolution",500); 

 

close all; 

Step 13: Functional Connectivity 

[R_vals_ar, P_vals_ar, dfe_ar] = nirs.sFC.ar_corr(reOrg_data);             

 

threshold = [0.5:0.05:1]; % The thresholds for the connectivity matrix. 

Increases by 5% each plot. 
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conn_mat = R_vals_ar; %Copy the R-values (correlation values) matrix. Change 

R-values matrix depending on utilized FC function. 

 

figure(13); 

imagesc(conn_mat); title('Connectivity matrix'); xlabel('Channels'); 

ylabel('Channels'); 

ax13a = gca; colorbar; %app.ax13a.Name = "Connectivity matrix";  

exportgraphics(ax13a, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

exportgraphics(ax13a, fullfile(new_folder, strcat(folder_name,'-

','Connectivity_matrix','.png')),"Resolution",500); 

close(figure(13)); pause(1); 

 

%%Creating connectivity matrices with thresholded values. 

for t=1:length(threshold) 

    thresholded_connmat = zeros(length(conn_mat),length(conn_mat)); %%Create 

an empty matrix. 

     

    for i=1:length(conn_mat) 

        for j=1:length(conn_mat) 

            if conn_mat(i,j) > threshold(t) 

                thresholded_connmat(i,j) = conn_mat(i,j); 

            end 

        end 

    end 

 

 

    % Plots and exports the thresholded matrix. 

    mat_title_2 = sprintf('Thresholded matrix. Threshold = %d', 

threshold(t)); 

    figure(14); 

    imagesc(thresholded_connmat); title(mat_title_2); xlabel('Channels'); 

ylabel('Channels'); 

    ax13b = gca; colorbar; %app.ax13b.Name = "Connectivity matrix 

(thresholded)";  

    exportgraphics(ax13b, [filepath_report filename_report], 'Resolution', 

500, 'append', true); 

    exportgraphics(ax13b, fullfile(new_folder, strcat(folder_name,'-

','Thresholded_ConnMat_',num2str(t),'.png')),"Resolution",500); 

    close(figure(14)); pause(1); 

 

 

    % Plots and exports the circular graph. 

    figure(15); 

    CircGraphName = sprintf('Circular graph. Threshold = %d',threshold(t)); 

    circularGraph(thresholded_connmat,'Label',labelCells(2,:)); %Input: The 

adjacency matrix. 

    ax13c = gcf; 

    ax13c.Name = CircGraphName; 
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    ax13c.Position = [200 200 1000 1000]; %Changes the size of the plot to 

ensure space between labels.  

    exportgraphics(ax13c, [filepath_report filename_report], 'Resolution', 

500, 'append', true); 

    exportgraphics(ax13c, fullfile(new_folder, strcat(folder_name,'-

','Thresholded_CircGraph_',num2str(threshold(t)),'.png')),"Resolution",500); 

    close(figure(15)); pause(1); 

end  

 

pause(3); 

Step 14: Save all workspace variables in report folder and relevant information. 

save(strcat(new_folder,'\', folder_name,'.mat'));  % Save the workspace 

variable to the subject folder. 

 

% The bad channels detected. 

str_bad_chans = strcat(['Bad channels: ', bad_chans_str]);  

 

% Add bad channel information to the report. 

figure(18); 

annotation('textbox', [.2 .3 .7 .7], 'String', str_bad_chans,'FontSize', 8); 

ax18 = gcf; 

exportgraphics(ax18, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

close(figure(18)); 

 

% The acronyms for the Brodmann areas. 

str_BA = sprintf(['Description of acronyms for the Brodmann Areas: \n' ... 

    'o: Oxygenated channel\n' ... 

    'r: Deoxygenated channel\n\n' ... 

    '42L/02L:    Area between brodmann 42L and 02L Ant. & posterior 

transverse temporal and Primary Somatosensory Cortex (Secondary auditory 

cortex)\n' ... 

    '41R/01R:   Area between 41R and 01R Ant. & posterior transverse temporal 

and primary somatosensory cortex\n' ... 

    'MTG:   Middle Temporal Gyrus\n' ... 

    'MTSG:  Middle Temporal Gyrus and Superior Temporal Gyrus\n' ... 

    'PTB:   Pars Triangularis Brocas Area\n' ... 

    'PMS:   Pre-motor and Supplementary Motor Cortex\n' ... 

    'PFC:   Prefrontal Cortex\n' ... 

    'PMC:   Primary Motor cortex\n' ... 

    'RSA:   Retrosubicular Area\n' ... 

    'SCA:   Subcentral Area\n' ... 

    'STG:   Superior Temporal Gyrus\n' ... 

    'SGWA:  Supramarginal Gyrus of Wernickes Area\n' ... 

    '\n']);  

 

% Add abbrevations to the report. 
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figure(16); 

annotation('textbox', [.2 .3 .7 .7], 'String', str_BA,'FontSize', 8); 

ax16 = gcf; 

exportgraphics(ax16, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

close(figure(16)); 

 

% The summary of the processing. 

str_sum = sprintf(['The variables and functions used in this pipeline: \n'... 

    'Partial Path Length Factor: 0.1 (default in nirs toolbox).\n'... 

    'Quartile Coeffisient of Dispersion: %s.\n'... %add QCoD as first 

variable. 

    'Saturation length (bad channel rejection): %ds.\n'... 

    '\n' ... 

    'Filter: 4th order butterworth bandpass filter.\n' ... 

    'Lowpass cutoff: %dHz\n' ... 

    'Highpass cutoff: %dHz\n' ... 

    '\n' ... 

    'FC function: Positive correlation prewhitened with an autoregressive 

(AR) model.\n' ... 

    'FC measure: Pearsons R.\n' ... 

    '\n' ... 

    'General Linear Model: Autoregressive model based algorithm for 

correcting motion and serially correlated errors in fNIRS by Barker et al. 

(2013)'],num2str(QCoDthresh), satlength, hb_filter_job.lowpass, 

hb_filter_job.highpass);  

 

% Add summary to the report. 

figure(17); 

annotation('textbox', [.2 .3 .7 .7], 'String', str_sum, 'FontSize', 8); 

ax17 = gcf; 

exportgraphics(ax17, [filepath_report filename_report], 'Resolution', 500, 

'append', true); 

close(figure(17)); 

 

close all; 
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Appendix B: Code for GUI in MATLAB App designer 

classdef fNIRS_Connectivity_GUI_exported < matlab.apps.AppBase 
 
    % Properties that correspond to app components 
    properties (Access = public) 
        fNIRSConnectivityGUIOsloMetUIFigure  matlab.ui.Figure 
        PipelineforfNIRSconnectivityanalysisv1Label  matlab.ui.control.Label 
        Image                 matlab.ui.control.Image 
        StatusEditField       matlab.ui.control.EditField 
        StatusEditFieldLabel  matlab.ui.control.Label 
        RunpipelineButton     matlab.ui.control.Button 
    end 
 
     
    properties (Access = private) 
        %%Defining all variables and objects. 
 
         %%Loading data: 
         lib_folder; % Folder containing all necessary functions. 
         test_folder; % Folder containing the subject data. 
         subjsplit; % Cells containing the folder path in splitted format.  
         raw_nirs; % The raw nirs data. 
         nirsfile; % Name of the nirs loaded nirs file. 
         pdf_name; % Name of the created pdf report for the current subject. 
         filename_report; % File name of the report.  
         filepath_report; % Path of the report. 
         folder_name; % The name of the new folder. 
         new_folder; % The path of the new folder. 
 
 
         %%Step 1: Rename stimuli 
         job1; % Definition of the job: RenameStims. 
         raw_nirs_ReStim; % The data with new stimuli name. 
         ax1; % The axes information of the rename stims plot. 
 
         %%Step 2: Trimming data 
         job2; % Definition of the job: TrimBaseline. 
         raw_nirs_Trimmed; % The trimmed data. 
         ax2; % The axes information of the TrimBaseline plot. 
 
         %%Step 3: Label short separation channels 
         job3; % Definition of the job: LabelShortSeparation. 
         raw_nirs_Labeled; % The labeled data.  
          
         %%Step 4: Correct baseline 
         job4; % Definition of the job: BaselineCorrection. 
         Baseline_corrected; % The baseline corrected data. 
         ax4; %The axes information of the Baseline plot. 
       
         %%Step 5: Remove bad channels 
         QCoDthresh = 0.1; % Defining the threshold value of the Quartile Coefissient of Dispersion. 
         satlength = 2; % Defining the saturation length. 2 s by default. 
         temp_data; % Temporary storage of unneccesary data.  
         channelmask; % The matrix labeling bad channels. 
         bad_chans_str; % String for bad channels 
 
         %%Step 6: Remove short channels 
         noshortchans; % The data without the short channels 
         rangeOfLoop; % Variable for data removal. 
         ax6; % The axes information of the data without short and bad channels. 
 
         %%Step 7: Intensity to Optical Density 
         job7; % Defintion of the job: OpticalDensity 
         OD; % The optical density data. 
         ax7; % The axes information of the OD data.  
 
         %%Step 8: Optical denisity to Concentrations 
         job8; % Definition of the job: BeerLambertLaw. 
         hb; % The concentration data. 
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         ax8; % The axes informtation of the concentration data.  
 
         %%Step 9: Bandpass filtering 
         hb_filter_job; % Definition of the filtering job. 
         hb_filtered; % The filtered data. 
         ax9; % The axes information of the filtered plot.  
 
         %%Step 10: Reorganizing the data 
         reOrg_data; % The reorganized data. 
 
         %%Step 12: GLM 
         jobs_GLM; % Defining the GLM jobs. 
         hb_GLM; % The concentration data before the GLM. 
         jobs_GLM_hb; % Defining the second part of jobs. 
         data_GLM; % The data from the GLM processing. 
         ax12a; % The axes information of the GLM hbo 
         ax12b; % The axes information of the GLM hbr 
 
         %%Step 13: Functional Connectivity 
         R_vals_ar; % R-values from the AR model. 
         P_vals_ar; % P-values from the AR model. 
         dfe_ar; % The degrees of freedom from the AR model. 
         threshold; % The threshold value given by the user. 
         conn_mat; % The connectivity matrix 
         thresholded_connmat; % The thresholded connectivity matrix. 
         bin_mat; % The binarized matrix  
         ax13a;  
         ax13b; 
         ax13c;     
    end 
    
    % Callbacks that handle component events 
    methods (Access = private) 
 
        % Button pushed function: RunpipelineButton 
        function RunpipelineButtonPushed(app, event) 
            %% Initialization: Load data 
            %%Choose folder for repository 
            app.lib_folder = uigetdir([], 'Choose the folder containing the repository'); % Choose the folder containing the library for this 
pipeline. 
            addpath(genpath(app.lib_folder)); % Sets the library folder as a path. 
             
            %%Load necessary data. 
            load("BrainRegions_table.mat"); % Table with the different brain regions and related data. Based on the table from H. Khan. 
            load("orderOfChan_mat.mat"); % The order of the channels based on brain regions and optode placement. 
            load("labelCells_comp.mat"); % The organised order of the regions for the Circular Plot. 
             
            %%Choose folder 
            app.test_folder = uigetdir([], 'Choose folder containing the test data'); 
            app.subjsplit = split(app.test_folder, '\'); % Split folder path into cells. Based on the hierarchy of this experiment data. 
             
            %%Load nirs with nirs toolbox function 
            addpath(genpath(app.test_folder)); % Adds the test folder to the path. 
            app.nirsfile = strcat(app.subjsplit(length(app.subjsplit)),'.nirs'); % Find the name of the nirs file. 
            app.raw_nirs = nirs.io.loadDotNirs(app.nirsfile); % Loads the nirs file. 
             
            %%Create pdf name 
            app.pdf_name = cell2str(strcat(app.subjsplit(length(app.subjsplit)-1),'-',app.subjsplit(length(app.subjsplit)),'.pdf')); 
             
            %%Choose folder for storing the report 
            [app.filename_report, app.filepath_report] = uiputfile(app.pdf_name,'Choose folder for storing the report'); 
             
            %%Create folder for storing the report and figures. 
            app.folder_name = cell2str(strcat(app.subjsplit(length(app.subjsplit)-1),'-',app.subjsplit(length(app.subjsplit)))); 
            app.new_folder = strcat(app.filepath_report,app.folder_name); 
            mkdir(app.new_folder); 
 
            app.StatusEditField.Value = 'Data is loaded'; % Updating the status field. 
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            %% Step 1: Rename stimuli data. 
            app.job1 = nirs.modules.RenameStims; % Define the first job: Rename stimuli. 
            app.job1.listOfChanges = {'stim_channel1' 'Start/stop'}; % Rename the stimuli. 
            app.raw_nirs_ReStim = app.job1.run(app.raw_nirs); % Perform job1 on the raw data. 
             
            figure(1); % Define a figure. 
            app.raw_nirs_ReStim.draw % Plot the figure. 
            xlabel('seconds'), ylabel('amplitude'); 
            title('Raw data w/stimuli'); 
             
            app.ax1 = gca; % Get the properties of the axes.  
            exportgraphics(app.ax1, [app.filepath_report app.filename_report], 'Resolution', 500); % Export the plot to the report. 
            exportgraphics(app.ax1, fullfile(app.new_folder, strcat(app.folder_name,'-', 'Raw_stimuli','.png')),"Resolution",500); % Export the 
plot to the folder. 
 
            app.StatusEditField.Value = 'Data is renamed'; % Updating the status field. 
            close(figure(1)); 
 
 
 
            %% Step 2: Trim data 
            app.job2 = nirs.modules.TrimBaseline; % Defining the second job: Trimming of the data. 
            app.job2.preBaseline = -5; % Removing the first 5 seconds of the data. 
            app.raw_nirs_Trimmed = app.job2.run(app.raw_nirs_ReStim); % Performing job2 on the ReStim data. 
             
            app.job2.postBaseline = -10; % Removing the last 10 seconds of the data.  
            app.raw_nirs_Trimmed = app.job2.run(app.raw_nirs_Trimmed); % Performing the updated job2 on the data. 
             
            figure(2); % Defining a new figure. 
            app.raw_nirs_Trimmed.draw; % Plotting the trimmed data. 
            xlabel('seconds'), ylabel('amplitude'); 
            title('Trimmed raw data'); 
             
            app.ax2 = gca; % Get the properties of the axes. 
            exportgraphics(app.ax2, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Export the plot to the 
report. 
            exportgraphics(app.ax2, fullfile(app.new_folder, strcat(app.folder_name,'-','Raw_trimmed','.png')),"Resolution",500); 
 
            app.StatusEditField.Value = 'Data is trimmed'; % Updating the status field. 
            close(figure(2)); 
 
            %% Step 3: Label short separation channels 
            app.job3 = nirs.modules.LabelShortSeperation(app.job2); % Defining the third job: Label the short separation channels. 
            app.job3.max_distance = 15; % Setting the max source detector distance to 15 mm.  
            app.raw_nirs_Labeled = app.job2.run(app.raw_nirs_Trimmed); % Perform job 3 on the trimmed data. 
 
            app.StatusEditField.Value = 'Stimuli is labeled'; % Updating the status field. 
 
            %% Step 4: Correct baseline 
            app.StatusEditField.Value = 'Correcting baseline...'; % Updating the status field. 
            app.job4 = nirs.modules.BaselineCorrection(app.job3); % Defining the fourth job: Correction of the baseline. 
            app.Baseline_corrected = app.job4.run(app.raw_nirs_Labeled); % Perform job4 on the labeled data. 
             
            figure(4); 
            app.Baseline_corrected.draw; % Plotting of the baseline corrected data. 
            xlabel('seconds'), ylabel('amplitude'); 
            title('Baseline corrected raw data'); 
             
            app.ax4 = gca; % Get the properties of the axes. 
            exportgraphics(app.ax4, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Exporting the plot to the 
report. 
            exportgraphics(app.ax4, fullfile(app.new_folder, strcat(app.folder_name,'-','Raw_baselineCorr','.png')),"Resolution",500); 
 
            app.StatusEditField.Value = 'Baseline is corrected'; % Updating the status field. 
            close(figure(4)); 
             
            %% Step 5: Remove bad channels 
            app.StatusEditField.Value = 'Removing bad channels...'; % Updating the status field. 
             
            % Finding the bad channels in the data.  
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            [app.temp_data, app.channelmask] = removeBadChannels_modified(app.Baseline_corrected.data, app.Baseline_corrected.Fs, 
app.satlength, app.QCoDthresh); 
 
            bad_chans_str_temparr = strings(1,length(app.channelmask)); 
            bad_chans_count = 1; 
             
            for i=1: length(app.channelmask) 
                % Removing bad channels from the data. 
                if app.channelmask(1,i) == 0 
                    app.Baseline_corrected.data(:,i) = 0; 
                    bad_chans_str_temparr(1,bad_chans_count) = i; bad_chans_count = bad_chans_count + 1; % Store the bad channel number for 
reporting. 
                end 
            end 
             
            if bad_chans_count == 1 
                app.bad_chans_str = 'No bad channels detected'; 
 
            else 
                bad_chans_str_arr = strings(1,bad_chans_count-1); 
                for k=1: bad_chans_count-1 
                    bad_chans_str_arr(1,k) = bad_chans_str_temparr(1,k); 
                end 
                app.bad_chans_str = strjoin(bad_chans_str_arr,', '); 
            end  
             
            app.StatusEditField.Value = 'Bad channels are removed'; % Updating the status field. 
 
            %% Step 6: Removing short channels  
            app.StatusEditField.Value = 'Removing short channels...'; % Updating the status field. 
             
            app.noshortchans = app.Baseline_corrected; % Creates a copy of the baseline corrected data. 
            app.rangeOfLoop = length(app.Baseline_corrected.probe.link.ShortSeperation); % Creates an integer for the removal loop. 
 
            for i=1: app.rangeOfLoop 
                % For loop for removing the short separation optodes from 
                % the data 
                if app.Baseline_corrected.probe.link.ShortSeperation(app.rangeOfLoop-i+1) == 1 
                    app.noshortchans.data(:,app.rangeOfLoop-i+1) = 0; 
                end 
            end 
 
            figure(6); 
            app.noshortchans.draw; % Plotting of the data without short channels. 
            xlabel('seconds'), ylabel('amplitude'); 
            title('Removed short and bad channels'); 
 
            app.ax6 = gca; % Get the properties of the axes. 
            exportgraphics(app.ax6, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Exporting the plot to the 
report.          
            exportgraphics(app.ax6, fullfile(app.new_folder, strcat(app.folder_name,'-','Channels_removed','.png')),"Resolution",500); 
 
            close(figure(6)); 
            app.StatusEditField.Value = 'Short channels are removed'; % Updating the status field. 
 
            %% Step 7: Intensity to Optical Density 
            app.StatusEditField.Value = 'Converting int2OD...'; % Updating the status field. 
            app.job7 = nirs.modules.OpticalDensity(app.job4); % Defining job 7. Includes job4 to log the process.  
            app.OD = app.job7.run(app.noshortchans); % Perform job7 on the data. 
             
            for i=1:length(app.channelmask) 
                % Necessary step to ensure the correct format of the data 
                % after this pre-processing step. 
                if app.channelmask(1,i) == 0 
                    app.OD.data(:,i) = 0; 
                end 
            end 
             
            figure(7); 
            app.OD.draw; % Plots the OD data. 
            xlabel('seconds'), ylabel('amplitude'); 
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            title('Optical Density'); 
             
            app.ax7 = gca; 
            exportgraphics(app.ax7, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); % Exporting the plot.  
            exportgraphics(app.ax7, fullfile(app.new_folder, strcat(app.folder_name,'-','OD','.png')),"Resolution",500); 
 
            close(figure(7)); 
            app.StatusEditField.Value = 'Converted intensity to OD'; % Updating the status field. 
 
            %% Step 8: Optical density to hbo and hbr concentrations 
            app.StatusEditField.Value = 'Converting OD to conc...'; % Updating the status field. 
            app.job8 = nirs.modules.BeerLambertLaw(); % By default: PPF = 0.1. Used by Santosa et al. 2018. 
            app.hb = app.job8.run(app.OD); % Performing the mBLL on the OD data. 
             
            for i=1:length(app.channelmask) 
                %To prevent cells from being 'NaN'. 
                if isnan(app.hb.data(1,i)) 
                    app.hb.data(:,i) = 0; 
                end 
            end 
             
            figure(8); 
            app.hb.draw; 
            xlabel('seconds'), ylabel('amplitude'); 
            title('Concentrations'); 
             
            app.ax8 = gca; 
            exportgraphics(app.ax8, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            exportgraphics(app.ax8, fullfile(app.new_folder, strcat(app.folder_name,'-','Conc','.png')),"Resolution",500); 
 
            close(figure(8)); 
            app.StatusEditField.Value = 'Converted OD to concentrations'; % Updating the status field. 
 
            %% Step 9: Bandpass filtering 
            app.StatusEditField.Value = 'Filter data...'; % Updating the status field. 
            app.hb_filter_job = eeg.modules.BandPassFilter(); % Applying a bandpass filter to the process. 
 
            app.hb_filter_job.do_downsample = false; %Do not downsample data 
            app.hb_filter_job.lowpass = 0.5; % Setting the cutoff frequency for the lowpass filter = 0.5 Hz. 
            app.hb_filter_job.highpass = 0.01; % Setting the cutoff frequency for the highpass filter = 0.01 Hz. Based on Yucel et al. 2021. 
             
            app.hb_filtered = app.hb_filter_job.run(app.hb); % Execute the filter job on the concentration data.  
             
            figure(9); 
            app.hb_filtered.draw; 
            xlabel('seconds'), ylabel('amplitude'); 
            title('Concentrations - filtered'); 
             
            app.ax9 = gca; 
            exportgraphics(app.ax9, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            exportgraphics(app.ax9, fullfile(app.new_folder, strcat(app.folder_name,'-','Conc_filtered','.png')),"Resolution",500); 
 
            close(figure(9)); 
            app.StatusEditField.Value = 'Data is filtered'; % Updating the status field. 
 
            %% Step 10: Reorganize the data based on the brain regions. 
            app.reOrg_data = zeros(numel(app.hb_filtered.data(:,1)),numel(app.hb_filtered.data(1,:))); % Defining a new matrix with the 
dimensions of the filtered data. 
 
            for i=1: numel(app.hb_filtered.data(1,:)) 
                % Reorganizing the data. 
                app.reOrg_data(:,i) = app.hb_filtered.data(:,orderOfChan_mat(i)); 
            end 
 
            app.StatusEditField.Value = 'Data is reorganized'; % Updating the status field. 
 
            %% Step 11: Delete the short seperation channels 
            %%Deletes the short channels from the reorganized data 
            for i=18:49 % i=18: 49 is based on the removal of the channels starting from the last column.  
                app.reOrg_data(:,app.rangeOfLoop-i) = [];  
                %Reorganized data has the alphabetic order of the brain region table. 
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                %F.ex: Column 1 = Channel 39 (hbo channel of the "Area between 
                %brodmann 42L and 02L  Ant. & posterior transverse temporal and  
                %Primary Somatosensory Cortex") 
            end 
 
            %% Step 12: GLM 
            app.StatusEditField.Value = 'Running GLM...'; % Updating the status field. 
 
            app.jobs_GLM = nirs.modules.Resample(); 
            %app.jobs_GLM = nirs.modules.RenameStims(app.jobs_GLM); 
            %app.jobs_GLM.listOfChanges = {'stim_channel1' 'Start/stop' 'stim_channel1' 'Start/stop'}; % Rename the stimuli. 
            app.jobs_GLM = nirs.modules.OpticalDensity(app.jobs_GLM); 
            app.jobs_GLM = nirs.modules.BeerLambertLaw(app.jobs_GLM); 
             
            app.hb_GLM=app.jobs_GLM.run(app.raw_nirs); 
             
            app.jobs_GLM_hb=nirs.modules.GLM(); %Starts a new group of jobs. 
            app.jobs_GLM_hb=nirs.modules.ExportData(app.jobs_GLM_hb); 
            app.jobs_GLM_hb.Output="GLM_analysis"; 
            app.data_GLM=app.jobs_GLM_hb.run(app.hb_GLM); 
             
            app.data_GLM.draw('tstat', [-10 10], 'p<0.05'); 
 
            app.ax12a = gca(1); 
            app.ax12b = gca(2); 
 
            app.StatusEditField.Value = 'GLM completed'; % Updating the status field. 
             
            exportgraphics(app.ax12a, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            exportgraphics(app.ax12a, fullfile(app.new_folder, strcat(app.folder_name,'-','GLM_1','.png')),"Resolution",500); 
            exportgraphics(app.ax12b, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            exportgraphics(app.ax12b, fullfile(app.new_folder, strcat(app.folder_name,'-','GLM_2','.png')),"Resolution",500); 
 
            close all; 
 
            %% Step 13: Functional Connectivity 
            app.StatusEditField.Value = 'Calculating FC...'; % Updating the status field. 
 
            [app.R_vals_ar, app.P_vals_ar, app.dfe_ar] = nirs.sFC.ar_corr(app.reOrg_data); 
             
%             prompt = {'Enter threshold for Functional Connectivity'}; 
%             dlgtitle = 'Threshold'; 
%             dims = [1]; 
%             definput = {'0.6'}; 
%             app.threshold = str2double(inputdlg(prompt,dlgtitle,dims,definput));             
             
            app.threshold = [0.5:0.05:1]; % The thresholds for the connectivity matrix. Increases by 5% each plot. 
 
            app.conn_mat = app.R_vals_ar; %Copy the R-values (correlation values) matrix. Change R-values matrix depending on utilized FC 
function. 
            
            figure(13); 
            imagesc(app.conn_mat); title('Connectivity matrix'); 
            app.ax13a = gca; %app.ax13a.Name = "Connectivity matrix";  
            exportgraphics(app.ax13a, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            exportgraphics(app.ax13a, fullfile(app.new_folder, strcat(app.folder_name,'-','Connectivity_matrix','.png')),"Resolution",500); 
            close(figure(13)); pause(1); 
 
            %%Creating connectivity matrices with thresholded values. 
            for t=1:length(app.threshold) 
                app.thresholded_connmat = zeros(length(app.conn_mat),length(app.conn_mat)); %%Create an empty matrix. 
                 
                for i=1:length(app.conn_mat) 
                    for j=1:length(app.conn_mat) 
                        if app.conn_mat(i,j) > app.threshold(t) 
                            app.thresholded_connmat(i,j) = app.conn_mat(i,j); 
                        end 
                    end 
                end 
     
                mat_title_2 = sprintf('Thresholded matrix. Threshold = %d', app.threshold(t)); 
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                figure(14); 
                imagesc(app.thresholded_connmat); title(mat_title_2); 
                app.ax13b = gca; %app.ax13b.Name = "Connectivity matrix (thresholded)";  
                exportgraphics(app.ax13b, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
                exportgraphics(app.ax13b, fullfile(app.new_folder, strcat(app.folder_name,'-
','Thresholded_ConnMat_',num2str(t),'.png')),"Resolution",500); 
                close(figure(14)); pause(1); 
     
     
                 
                figure(15); 
                CircGraphName = sprintf('Circular graph. Threshold = %d',app.threshold(t)); 
                circularGraph(app.thresholded_connmat,'Label',labelCells(2,:)); %Input: The adjacency matrix. 
                app.ax13c = gcf; 
                app.ax13c.Name = CircGraphName; 
                app.ax13c.Position = [200 200 1000 1000]; %Changes the size of the plot to ensure space between labels.  
                exportgraphics(app.ax13c, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
                exportgraphics(app.ax13c, fullfile(app.new_folder, strcat(app.folder_name,'-
','Thresholded_CircGraph_',num2str(app.threshold(t)),'.png')),"Resolution",500); 
                 
                close(figure(15)); pause(1); 
            end  
 
            pause(1); 
            app.StatusEditField.Value = 'Report is completed'; % Updating the status field. 
 
 
            %% Step 14: Save all workspace variables in report folder. 
            save(strcat(app.new_folder,'\', app.folder_name,'.mat')); 
             
            % The bad channels detected. 
            str_bad_chans = strcat(['Bad channels: ', app.bad_chans_str]);  
             
            % Add bad channel information to the report. 
            figure(18); 
            annotation('textbox', [.2 .3 .7 .7], 'String', str_bad_chans,'FontSize', 8); 
            ax18 = gcf; 
            exportgraphics(ax18, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            close(figure(18)); 
             
            % The acronyms for the Brodmann areas. 
            str_BA = sprintf(['Description of acronyms for the Brodmann Areas: \n' ... 
                'o: Oxygenated channel\n' ... 
                'r: Deoxygenated channel\n\n' ... 
                '42L/02L:    Area between brodmann 42L and 02L Ant. & posterior transverse temporal and Primary Somatosensory Cortex 
(Secondary auditory cortex)\n' ... 
                '41R/01R:   Area between 41R and 01R Ant. & posterior transverse temporal and primary somatosensory cortex\n' ... 
                'MTG:   Middle Temporal Gyrus\n' ... 
                'MTSG:  Middle Temporal Gyrus and Superior Temporal Gyrus\n' ... 
                'PTB:   Pars Triangularis Brocas Area\n' ... 
                'PMS:   Pre-motor and Supplementary Motor Cortex\n' ... 
                'PFC:   Prefrontal Cortex\n' ... 
                'PMC:   Primary Motor cortex\n' ... 
                'RSA:   Retrosubicular Area\n' ... 
                'SCA:   Subcentral Area\n' ... 
                'STG:   Superior Temporal Gyrus\n' ... 
                'SGWA:  Supramarginal Gyrus of Wernickes Area\n' ... 
                '\n']);  
             
            % Add summary to the report. 
            figure(16); 
            annotation('textbox', [.2 .3 .7 .7], 'String', str_BA,'FontSize', 8); 
            ax16 = gcf; 
            exportgraphics(ax16, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
            close(figure(16)); 
 
 
            % The summary of the processing. 
            str_sum = sprintf(['The variables and functions used in this pipeline: \n'... 
                'Partial Path Length Factor: 0.1 (default in nirs toolbox).\n'... 
                'Quartile Coeffisient of Dispersion: %s.\n'...  
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                'Saturation length (bad channel rejection): %ds.\n'... 
                '\n' ... 
                'Filtertype: 4th order butterworth bandpass filter.\n' ... 
                'Lowpass cutoff: %d Hz\n' ... 
                'Highpass cutoff: %d Hz\n' ... 
                '\n' ... 
                'FC function: Correlation prewhitened with an autoregressive (AR) model.\n' ... 
                'FC measure: Pearsons R.\n'],num2str(app.QCoDthresh), app.satlength, app.hb_filter_job.lowpass, app.hb_filter_job.highpass);  
 
 
            % Add summary to the report. 
            figure(17); 
            annotation('textbox', [.2 .3 .7 .7], 'String', str_sum, 'FontSize', 8); 
            ax17 = gcf; 
            exportgraphics(ax17, [app.filepath_report app.filename_report], 'Resolution', 500, 'append', true); 
 
            app.StatusEditField.Value = 'Variables are stored in report folder'; % Updating the status field. 
            close(figure(17)); 
 
            app.StatusEditField.Value = 'Pipeline completed. Ready for another run.'; % Updating the status field. 
 
        end 
    end 
 
    % Component initialization 
    methods (Access = private) 
 
        % Create UIFigure and components 
        function createComponents(app) 
 
            % Create fNIRSConnectivityGUIOsloMetUIFigure and hide until all components are created 
            app.fNIRSConnectivityGUIOsloMetUIFigure = uifigure('Visible', 'off'); 
            app.fNIRSConnectivityGUIOsloMetUIFigure.Position = [100 100 640 480]; 
            app.fNIRSConnectivityGUIOsloMetUIFigure.Name = 'fNIRS Connectivity GUI - OsloMet'; 
 
            % Create RunpipelineButton 
            app.RunpipelineButton = uibutton(app.fNIRSConnectivityGUIOsloMetUIFigure, 'push'); 
            app.RunpipelineButton.ButtonPushedFcn = createCallbackFcn(app, @RunpipelineButtonPushed, true); 
            app.RunpipelineButton.Position = [62 330 100 22]; 
            app.RunpipelineButton.Text = 'Run pipeline'; 
 
            % Create StatusEditFieldLabel 
            app.StatusEditFieldLabel = uilabel(app.fNIRSConnectivityGUIOsloMetUIFigure); 
            app.StatusEditFieldLabel.HorizontalAlignment = 'right'; 
            app.StatusEditFieldLabel.Position = [236 330 43 22]; 
            app.StatusEditFieldLabel.Text = 'Status:'; 
 
            % Create StatusEditField 
            app.StatusEditField = uieditfield(app.fNIRSConnectivityGUIOsloMetUIFigure, 'text'); 
            app.StatusEditField.Position = [294 330 252 22]; 
 
            % Create Image 
            app.Image = uiimage(app.fNIRSConnectivityGUIOsloMetUIFigure); 
            app.Image.Position = [2 381 100 100]; 
            app.Image.ImageSource = 'OsloMet logo for nett.png'; 
 
            % Create PipelineforfNIRSconnectivityanalysisv1Label 
            app.PipelineforfNIRSconnectivityanalysisv1Label = uilabel(app.fNIRSConnectivityGUIOsloMetUIFigure); 
            app.PipelineforfNIRSconnectivityanalysisv1Label.FontSize = 18; 
            app.PipelineforfNIRSconnectivityanalysisv1Label.FontWeight = 'bold'; 
            app.PipelineforfNIRSconnectivityanalysisv1Label.Position = [129 419 390 23]; 
            app.PipelineforfNIRSconnectivityanalysisv1Label.Text = 'Pipeline for fNIRS connectivity analysis - v.1'; 
 
            % Show the figure after all components are created 
            app.fNIRSConnectivityGUIOsloMetUIFigure.Visible = 'on'; 
        end 
    end 
 
    % App creation and deletion 
    methods (Access = public) 
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        % Construct app 
        function app = fNIRS_Connectivity_GUI_exported 
 
            % Create UIFigure and components 
            createComponents(app) 
 
            % Register the app with App Designer 
            registerApp(app, app.fNIRSConnectivityGUIOsloMetUIFigure) 
 
            if nargout == 0 
                clear app 
            end 
        end 
 
        % Code that executes before app deletion 
        function delete(app) 
 
            % Delete UIFigure when app is deleted 
            delete(app.fNIRSConnectivityGUIOsloMetUIFigure) 
        end 
    end 
end 
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Additional Appendices: Included in zip folder 

Appendix C: The REK application nr: 322236 

 

Appendix D: Repository for connectivity pipeline 

 

Appendix E: Example of report 


