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Abstract

Eye-tracking including its uses, research and progression has seen much
growth over the years, especially in the medical field. With this naturally
comes many challenges, such as proper application in numerous fields as
well as the directions to take the technology towards and what is best to
focus on with such a versatile field.

In our case, we discuss the randomness of eye-patterns, the distinguishing
of the different eye-movement types and how best to categorize these
movements correctly. This research is especially important since, the
correct classification of these distinct eye movements is vital for fields such
as medicine and psychology, specifically in the field of medical diagnosis.

The main methods for distinguishing these eye features is through the
use of algorithms, designed to find patterns in movement properties,
eventually classifying the features. The research for this thesis as well as
its writing was done entirely between January and May 2022. In this time,
different approaches were used, first by analysing the eye-tracker data with
its corresponding algorithm, and then moving onto robust, established
methods within the field such as velocity and dispersion threshold-based
algorithms.

Through testing, it was determined that the basic I-VT velocity based
algorithm turned out to be the best result, despite being the most simplistic
algorithm implemented.
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Chapter 1

Introduction

Eye-tracking is the recording and studying of eye movement based on
specific visual stimuli, either in the form of static or moving objects of
interest. It is an important part of ophthalmology, studying the human eye
in regards to how it acts and moves. While the study of visual perception,
attention, cognition and related eye movements originated in the 1960s,
advances in technology and methodology during the 21st century have
propelled the eye-tracking industry forwards, opening up a wide range of
application areas and uses [1]. There are many ways of studying our eyes,
but what will be focused on in this thesis is the monitoring of movement
and resultant behaviour based on visual stimuli.

Many different domains, especially in research studying behavior, such as
areas in psychology or human development, utilize eye-tracking. Some
of these areas include image scanning, driving and reading [2]. Arguably
the biggest application domain is within biomedical research and clinical
diagnostics. Eye movements can be used to diagnose Alzheimer’s, HIV-
1, schizophrenia and attention deficit [3, 4]. Other, typical applications of
eye movement research are notable as well, such as its use in education.
Such examples include a 2014 computer education project regarding its
use "as an instrument for computer science education research "[5], as well
as a 2005 study about how students attend to photographs within science
related PowerPoint presentations [6]. Another growing domain regarding
eye-tracking is in the realm of visual marketing regarding commercial
interests. Such studies include a 2006 research project focused on consumer
behavior regarding how point of purchase is influenced memory and
attention-based visual factors [7]. Additionally, a 2008 paper tackles eye-
movement and visual attention to discuss emerging issues within visual
marketing [8].

All of these eye-tracking studies and experiments, at least more recently,
are done with sophisticated technology. This involves actual eye-tracking
hardware where eye-movements are recorded digitally at varying frequen-
cies, and corresponding software to view the results. A prominent example
are Tobii’s eye-trackers, demonstrating different models of eye-trackers as
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well as sophisticated GUIs (Graphical User Interface) to view results with
[9]. One of the main goals of eye-tracking is to distinguish the different
features/events during eye movements. The two main categories of eye
movements are fixations, points of interest where the eye focuses on in an
image, and saccades, the eye movements between fixation where the eye
is only travelling and not focused on anything specific. These are not ne-
cessarily features, but are rather classifications based on features. Other
features also include smooth pursuits, a different kind of fixation where the
object of interest is in motion. blinks, where the eyes are not being recor-
ded, thus resulting in data loss. noise, the unfiltered data that is a result
of high frequency and a hindrance to accuracy and post-saccadic oscillations,
defined originally as "glissades"[10] are eye-movements prior at the end of
a saccade period where the eye wobbles during deceleration onto a fixation
point. The main problem being faced in this research is to determine how
one can distinguish between these events, mainly fixations and saccades.
This is done through the use of mathematical algorithms that approach the
data in different ways and conditions to aid in the separation of these fea-
tures. Due to the numerous approaches and algorithms that can be utilized,
the question that will be investigated is "Which algorithms are best suited
for the classification of eye-tracking features and movements?". Some al-
gorithms use the velocity of eye-trajectory (I-VT), while others might use
dispersion (I-DT) based on clusters of gaze-points. More advanced ap-
proaches include the use of Hidden Markov Models (I-HMM), Minimum
Spanning Trees (I-MST), duration-based area of interest (I-AOI) algorithms
[2], algorithms based off Lyapunov experiments [3] as well as algorithms
utilizing machine-learning [11]. These different algorithms will be evalu-
ated based on implementation difficulty, complexity, usability/versatility
and classification effectiveness with a dataset created specifically for this
research.

The purpose of this study is to find out what algorithms and data-
analysis approach is best for the eye-tracker data that will be collected.
The clear observation that will be made later is that certain algorithms
will work better than others for this specific data, while in other eye-
tracking experiments different algorithms will be more suited for that
task. As stated, this study is mainly for the purpose of researching the
many different mathematical algorithms and approaches, evaluating their
technical performance, implementation difficulty, and if possible, how
applicable they are for specific tasks, thus discovering why some work
better than others. A hypothesis can be made that the more advanced
algorithms, while more complex and difficult to implement, and perhaps
not as flexible or usable as more general approaches, will end up producing
not only superior, but more classification results with more features.

As mentioned previously, there is good reason to be conducting such
experiments when it comes to filtering features in eye-tracking. Technical
advancements combined with a comprehensive understanding of the
technical data from eye trackers will greatly improve the diagnosis within
medical research and human psychology. Implementation of effective
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feature separation algorithms will further research by providing more
effective telemetry, resulting in more readable data. Several different
assumptions can be made; Many of the algorithms, especially those of
less complexity, may end up only being proficient at detecting one kind of
feature (e.g. saccade or fixation distinction). The more complex algorithms
will be able to detect the auxiliary features (e.g. blinks or post-saccadic
oscillations). Noise will inevitably present a problem with feature filtering,
therefore a measure of noise reduction is necessary. Another cause for
data loss are blinks, which will also negatively affect the results. There
exist methods for filling in the blanks, but these will never be completely
accurate. Lastly, some algorithms may simply not work well with the
kind of eye-tracking data that will be utilized. Therefore, seemingly
more complex algorithms that may produce better results are perhaps too
specialized to be of use with this data.

The main importance of this problem is the distinguishing between
fixations and saccades. We focus on these two features as the other
mentioned features (e.g. blinks and noise) are expected background
features that result in skewed or lost data. Smooth pursuits (moving
fixations points) are generally studied in separate experiments from static
fixations, however some studies have tackled the issues of detecting
smooth pursuits within fixations and saccades [12].

This thesis will be divided up into 4 chapters. In the first chapter, the
state of the art, including notable previous work and more modern novel
approaches, as well as other fundamental concepts such as the human
eye, statistical models and eye-tracking data will all be discussed. In the
second chapter, the data analysis from the original experiment, as well as
the algorithmic implementations will be discussed. In the third chapter,
the results will be shown, evaluated, and dicussed. In the fourth and
final chapter, a conclusion will be made, with evaluation against original
problem, and future work will be suggested.
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Chapter 2

Background and State of the
Art

2.1 The Eye

The human eye is a complex organ in the human body, consisting of
several layers of components (e.g. pupil, cornea, iris etc..) and muscles
to operate. The basic idea of our eyes is identifying objects and identify
visually distinct entities within one’s own vision. We rely on light reflecting
off objects and thus travelling into our eyesight. The visual signals
entering our eyes are then sent to the brain for processing, reaction and
interpretation [13]. We see light with two types of visual receptors in the
retina, rods and cones. Rods are used for lower light areas and create
black and white images from objects while cones are for brighter areas
and produce colour from objects. There are many more rods than cones in
our eyes as there are approximately 20 rods for every cone [14]. Soussan
Djamasbi describes the fovea, a small point in the middle of the retina
that produce a much sharper image than the rest of our eyesight. Most
of the cones in our eyes are located in the fovea which is why we must
look directly at objects that are to be focused on. As it only covers about 2
degrees of our field of vision, we must constantly adjust to focus on several
different objects in the field of view, hence the high frequency of saccades
and fixations during regular eye operation [13].

In figure 2.1 included on page 6, one can see the basic structure of the
human eye. This includes components such as the lens, retina, iris and
fovea from the previous definitions, stating where they are located within
the eye.

Studying the eye to any degree is important, as eye-movements are some
of the most frequent movements regarding the human body. This is simply
due to the fact that visual information is everywhere and our eyes are
attracted to objects, switching constantly from fixation to fixation [15].
Due to the importance of the eye, explaining the movements, behaviors

5



Figure 2.1: An illustration of the human eye [13].

and patterns of our eyes cannot simply be undertaken by mathematics or
medicine alone. Mathematics allows the analysis of the eye from a technical
level, identifying said patterns and movements, but it cannot explain why
these movements occur, which is where the medical studies of the eye
excel. Certain discoveries, such as post-saccadic oscillations, caused by
over or undershooting fixations, were first observed mathematically by
Nyström & Holmqvist via their filtration algorithm [10]. Eye behavior
such as wobbling effects like this are most likely easier to explain from
a medical perspective, as the eye is a compressible object and imperfect
movements are apparent. Interpretation of the technical data aids in the
medical applications of eye studies and tracking. As stated, eye-tracking
has many application areas including Human-Computer Interaction (HCI),
medical diagnostics, psychological studies and computer vision [16].

2.2 Statistical Learning Models of Time Series

Data modelling for eye-tracker data tends to follow many standardized
ways for the processing and analysis of results. Many sources start with
raw data from eye-tracking experiments, collected through the use of
stochastic process, gathering the positional gaze data, and other movement
data. Afterwards, pre-processing will be conducted (e.g. exclusion of
unnecessary data, such as columns in a data set, removing redundancy or
splitting up data sets to improve management). This process may include
some additional tasks such as removing noise, filling in lost data points
(e.g. from blinks) or visualizing the data. Then filtering algorithms, along
with any machine learning algorithms, are applied to the cleaned data as
models to be evaluated. This is usually carried out through the use of
statistical measurements, such as accuracy or precision results, especially
since eye-tracking filtering is usually a classification task. Additionally, the
model results are displayed on a table and can also be visualized as a means
of getting a grasp for the results of any specific classification test.

There are many different ways to model data and present it. Some methods
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are text-based methods, using tables and values to display results. Since the
eye-tracking problem in this thesis is related to separating features, it is a
classification task, therefore the textual results will be related to this specific
type of problem. Tables are likely to include accuracy, precision, recall or
f1-score along with the raw classified data values from the total amount of
data points in the set for each algorithm used. Another type of table used
often is a matrix. This is either used to directly compare models or columns
with one another, or used in confusion matrices. The confusion matrix is
highly relevant as it displays the raw classification results, showing the
amount of results that are true/false positives and true/false negatives.
It is relevant to any classification problem, as any classification results
(e.g. precision or recall) and the formulas for calculating the results come
directly from the confusion matrix results.

Besides text based tables, there also exist a few ways of visually modelling
results using graphs or maps. One of the most common types of
visualizations are two dimensional time series graphs, due to the nature of
eye-tracking and recording eye movements over a certain period of time.
Typically, a time measurement (e.g. milliseconds, frequency (Hz) of the
eye-tacker) or duration runs along the x-axis, while some kind of positional
or movement data (e.g. X/Y positions, X/Y changes, velocity) runs across
the y-axis. Another typical visualization are two dimensional scatter
plots, that usually reflect the actual data that was recorded. Generally,
the gaze positions along the X-axis and Y-axis are the two visualized
values, showing the actual position of the eyes across the visual space of
the experiment. These kinds of visualizations are usually enhanced with
colour, segmenting fixations and saccades, or even turned into heat maps,
showing the intensity of which parts of the visual space were being gazed
at. There also exist other unusual visualizations, such as histograms for
seeing how certain data points occur inside of a full series.

There are many examples of the models, tables and graphs described in
this section for the purposes of analysis and results in section 2.4.

2.3 Eye-tracker Data

The first step in the data processing is the retrieval and collection of eye-
tracker data as is the most vital component of this study and is necessary to
conduct any algorithmic tests for the purposes of usage and evaluation.
From a broad perspective, there exists two distinct approaches to data
collection, offline retrieval and online retrieval. Offline data collection
refers to eye-tracking experiments that were done on-site with physical
equipment inside a physical environment. This data is to be collected
from a physical eye-tracking device (e.g. a Tobii eye-tracker) and analysed
post-experiment. Online retrieval refers to experiments done from a
remote location, where the tests are done with software as opposed to
hardware. These tests are also done in real-time. The data transmission
happens during the test, where algorithms and filters are being applied
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Figure 2.2: Raw gaze data with the background image used in the
experiment [14].

simultaneously. The clear downsides however, is the higher rate of data
loss due to poor latency/packet loss, higher overall latency and lower
frequencies of the data capture due to software limitations.

Many different vital components for processing are collected in the raw
data files from the collection phase. First are the timestamps, frequency
based (ticks) and time based (seconds) as well at total duration statistics.
Second are the positional statistics, such as gaze positions along both axis
of the 2D space, additionally including the dimensions of the display (e.g.
1920x1080). Additionally, the gaze trajectories and directional changes
for each individual eye (as well as combined) are recorded. Third is the
hardware and software information, mainly for the purposes of context or
comparison. These may include the name of the sensor being used as well
as its accompanying software, date of the experiment, what filters (e.g. a
fixation algorithm) are being used, and participant ID.

The second major task for the data processing is the actual classification of
the features to be obtained. There are again, two prominent approaches
manual and automatic feature classification.

The first of what can be simply identified as human classification. This
is usually done by experienced human coders, who can either be trained
or untrained to read eye tracking data. One issue with this approach are
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the proficiency levels of those who will be classifying the data, and human
improvement mostly comes from experience. Another major issue is the
unreliability of humans in-general. This is due to the fact that humans
may interpret data in different ways. One coder may think certain patterns
are saccades, while another may classify the data differently simply due
to a different approach in observation or interpretation, which is more of a
physiological issue rather than a technical one. One can always observe the
general behaviors of classification of eye-tracking data with experienced,
trained coders against those who are inexperienced or untrained.

The second, more straightforward approach is automatic classification,
done by machines and software. Pre-written algorithms and software
attempt to automatically classify data that is fed to them. This is based
on some kind of conditions related to the raw data from the eye trackers,
whether it be positional, time-based data or even data calculated after the
experiments such as velocity. This is the general approach that will be
evaluated in this study, and the different methods and algorithms will be
explored and demonstrated in greater detail later on.

In figure 2.2 included on page 8, one can see an eye tracking experiment
that was previously carried out. This contains the background image that
the participant was observing for analysis, as well as the raw gaze plot
in the foreground, marked with a red line. Looking at this particular
experiment, it is clear where the fixations and saccades are on the gaze
plot, where the travel times (straight lines) are saccades and blobs of small
red lines are fixation points.

2.4 Previous Works in Eye-Tracker Data Modelling

Here, we will discuss the existing applications and works of the algorithms
described earlier, either functioning in tandem with each other or develop-
ments built off of the core fundamentals of those algorithms. In addition,
some studies also focus on the auxiliary eye-tracking data, either by focus-
ing on the alternative classifications (e.g. blinks or noise), combining said
classifications that would otherwise be in separate data streams, or by cre-
ating new features that branch from the existing ones.

Interestingly, some studies go against the idea of using algorithms and
automated systems to distinguish features and filter results. Some believe
that manual detection via human observation is still a prime option.

In 2018, Hooge conducted a study to evaluate if "human classification
by experienced untrained observers" was the best approach for detecting
fixations in eye gaze data. Their research showed classification differences
in fixation duration and number, therefore concluding that it is not the best
approach [17]. While not completely decisive, perhaps a hybrid approach
combining machine algorithms and human detection (human-in-the-loop)
may end up being the most effective solution, but perhaps not the fastest
approach. The algorithms’ goals is to make the separation process more
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accurate, faster and efficient, therefore a focus on accuracy with the goal of
eliminating human input could be emphasized.

Many different studies use variants of the I-VT and I-DT based algorithms
as they are considered easier to implement as well as fundamentally ro-
bust and can be built upon. Salvucci and Goldberg did a comprehensive
evaluation of these algorithms, going into detail on how the algorithms
work on a fundamental level, as well as outlining them in a technical
level via a pseudo code process. They also evaluate the algorithms based
on their accuracy, speed, robustness, implementation difficulty and para-
meter count [2]. In addition, they implemented dispersion (I-DT) and
area of interest (I-AOI) algorithms into their own interactive environment
for eye-tracking protocols known as EyeTracer [18]. Andersson et.al also
does a review of algorithms. He describes 6 additional algorithms, CDT
(Covariance Dispersion Threshold), EM(Engbert & Mergenthaler velocity
threshold), IKF(Identification by Kalman Filter), NH(Nyström & Holm-
qvist algorithm), BIT(Binocular-Individual Threshold) and LNS(Larsson,
Nyström & Stridh). From their results, it appears that apart from NH
and LNS, the existing algorithms are only made for detecting fixations and
saccades and do not detect post-saccadic oscillations, smooth pursuits or
blinks. These systems must be implemented either manually or with separ-
ate algorithms. Manual human operation however, can detect these events,
but will likely not be as accurate as a machine approach. No real conclusion
is made, as the algorithms vary in results [19].

Introduced earlier, there exist two distinct methods of capturing eye-
tracker data. One can either capture data offline or online. Offline data
capture refers to experiments where the subjects are physically in the
same place as the experiment, using eye-tracking hardware to conduct
tests. Online data capturing (i.e in real-time) is when the participants
complete the experiments remotely over the internet. A few studies have
addressed the issues with online versus offline detection, as well as filters
for both approaches. In 2019, Schweitzer and Rolfs present a "velocity-
based algorithm for online saccade detection", combating the issues of late
detections and false alarms. Their adaptive algorithm was able to achieve
high detection accuracy with a false alarm rate of under 1%, combined with
latency as low as 3 ms [20]. Additionally, Olsson also tackled the issues of
real-time and offline filters in 2007, comparing filtering techniques for eye-
movement (e.g. controlling a mouse cursor) / gaze-data in real-time and
post-processing (offline) scenarios [14].

As a technical showcase, Anneli Olsen combines a filter and software
approach, introducing a a more advanced I-VT filter that fills in-gaps where
data is lost (e.g. blinks), selects a distinct eye, applies noise reduction and
calculates the velocity for the eventual I-VT classification. In addition, a
novel GUI approach is utilized via Tobii studio along with various Tobii
eye-tracker models with varying frequencies [9].

There also exist other studies to introduce relatively impressive technical
algorithms or inclusions to the filtration process. In 2013, Tavakoli et.al in-
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corporated saliency estimation into a saccadic eye-movement simulation
model. They apply a stochastic filtering framework for said saccade gen-
eration. The model then dynamically produces saliency maps based pre-
dicted fixations from the generated saccades, which performs favourably
to other saliency models [1]. Krejtz et.al demonstrates eve movement char-
acteristics and their variability. He introduces a novel technique by quan-
tifying the transitions between areas of interest using gaze switching pat-
terns, modeled as markov chains. Additionally, he quantified the complex-
ity of the switching patterns (Shannon’s entropy coefficient of the Markov
Model) to determine the attention distribution over several AOIs [21]. In
2009, Pieter Blignaut conducted a threshold test by evaluating the sensit-
ivity of the I-DT algorithm (an enchanced algorithm from to Salvucci and
Goldberg)[2] where the difference of scan path between the points of re-
gard (POR) are used to determine optimum threshold values [22]. Korda
et.al presented a rather advanced technique of automatic eye movement
identification in 2017, using a technique known as the Largest Lyapunov
Experiment (LLE) and the logarithm of divergence. This technique can be
used for the automatic identification of saccades and blinks. The relatively
high performance of their model compared with 2 other filtering methods
(I-VT and the Petterson et.al blink-identification method from 2013) is be-
nefited by the fact that LLE is used to identify and predict various diseases,
therefore bringing more meaningful use to the field of diagnostics within
eye-tracking [3].

Mentioned previously, some studies have attempted to filter saccades
rather than focusing on fixations. Larsson et.al presents a novel approach,
comparing manual methods with a velocity based algorithm, with regard
to acceleration, when detecting saccades and postsaccadic oscillations in
smooth pursuit experiments [4]. As stated earlier, some studies combine
smooth pursuits and static fixations. Komogortsev amd Karpov in 2012, at-
tempted to classify and score smooth pursuits within "the presence of fixa-
tions and saccades", which they call "Ternary eye movement classification".
They utilized an algorithm combining velocity and dispersion methods res-
ulted in effective classification results [12]. A well known 2010 research pa-
per by Nyström and Holmqvist were perhaps among the first to identify
these oscillations, defined as glissades in their research. These movements
are a period where the eye wobbles prior to fixating on a visual object. A
new velocity-based approach was able to identify these movements as they
occur about half of the time during saccades, showcasing these features as
non-trivial [10].

When it comes specifically to data modelling and the whole data analysis
process, many papers showcase different ways of processing, analysing,
implementing and displaying the results of their tests.

As mentioned previously, tables are a good way of displaying relevant
data, statistics and results in a compact, readable way. Many papers use a
combinations of tables and matrices. A straightforward example of a easy-
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to-understand table is the "summary of identification methods" presented
in Salvucci and Goldberg’s 2000 summary of existing fixation identification
algorithms. It clearly demonstrates the ability of each algorithm through
the set criteria of accuracy, speed, robustness, ease of implementation and
the amount of parameters required, through the use of check marks for
positive results, and crosses for negative results [2]. Hooge et.al, studying
human classification in fixation detection in 2017, has an interesting use
of tables to convey important information. Table 1 shows details of "the
12 experts who classified fixations" detailing their names, age, years of
expertise, the subject group they were classifying from, the algorithms they
utilized, and what eye-tracker was used. Such information is obviously
crucial when the paper is focused around experienced observers in the
field of fixation classification [17]. Confusion matrices are seen less often,
but still provide vital data for result interpretation. In 2016, Andersson
et.al makes good use of them in his evaluation of "eye movement event-
detection algorithms". He displays confusion matrices for different kinds
of evaluation such as for static images, moving dots, and videos. These
contain all of the evaluated algorithms (IDT, IVT, IHMM, IMST and
others), comparing them with ratio (the rate of which the specific algorithm
disagreed with human evaluation), and the maximum/maximum error
for fixations, saccades, smooth pursuits, blinks and more. Such thorough
information makes evaluating the algorithms more intuitive and less
confusing [19].

The other, more engaging way of showing analysis and results is through
different types of graphs and maps. They usually come in the form of
scatter plots or time-series graphs. Maps generally include heat maps or
raw eye-gaze positions on a relevant background. A typical visualization
of data is comparing eye-gaze positioning for x and y data, or positioning
relative to time. Schweitzer and Rolfs’ 2019 paper on an adaptive
algorithm demonstrates different saccade detection techniques, showing
X-axis and Y-axis gaze positions with different approaches such as the
spatial-boundary technique, absolute-velocity threshold, as well as their
own proposed algorithm for saccade detection [20]. Anneli Olsen in his
2012 study on "the Tobii I-VT fixation filter" demonstrates a comparison
between x-axis gaze data and velocity, directly comparing the parallels
between eye movements along an axis, with the velocity at which it was
measured. Later on, he also compares x-axis and y-axis gaze points,
using distinct shapes for fixations and saccades [9]. In 2000, Dario D.
Salvucci also visualized a sample of gaze data using velocity-based and
fixation highlighting, "numbered fixations with target associations" and
colour-based fixations for predicted and predicted fixations [18]. In 2012,
Komogortsev and Karpov demonstrate intuitive time-series graphs in their
paper regarding the automatic classification of smooth persuits, while
fixations and saccades are present in in any one eye-tracking experiment.
The graphs intuitively shows I-VDT (a velocity-based smooth pursuit filter)
classification results, dintinctly marking out saccades, fixations, smooth
pursuits and noise for eye movement on the x-axis along a time-series

12



Figure 2.3: X/Y gaze coordinates over a period of time, labelled [10].

graph. These graphs are used to compare the I-VDT algorithm to manual
classification [12]. Nyström and Holmqvist also use time-series graphs in
their 2012 paper. In a simple example, they compare x-axis and y-axis eye-
movements and velocity on a single time series graph for the purposes
of demonstrating how "glissades" (post-saccadic oscillations) work. They
point out in the time-series where each of these events occur by observing
the velocity value over a fixed time [10].

In figure 2.3 included on page 13, one can see the graph containing x-
axis and y-axis eye gaze values, as well as the overall velocity of the
eye movements over the course of a defined amount of time. This is
of a time-series graph used by Nyström and Holmqvist described above,
where the details of eye-movements and their corresponding velocity are
shown in the legend above. Additionally, they included indicative text to
mark fixations (low velocity ranges), saccades (higher velocity ranges) and
glissades (small eye movements made at the start of most fixations).

The last notable ways is visualizing results are through histograms and
heat maps. In 2021, Lencastre et.al presented a database for eye-
movement recordings including some relevant visualizations of the raw
data. Histograms are used to show how the fixations and saccades are
occur in the given series, comparing the occurrences of fixations and
saccades in a single series by separating them into individual histograms.
Heat maps are also used, displaying eye-gaze trajectories for the purposes
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Figure 2.4: Generated heat maps from predicted gaze data [1].

of assessing "visual communication using a letter board" [23]. Tavakoli et.al
in their 2012 study on a saliency-based approach for fixation predictions
and saccade generation use a variety of eye-gaze trajectory maps and
heat maps. They showcase a saliency map with generated fixations, first
showing the raw image to be observed in the experiment, then showing
the predicted fixations and saccades with the gaze trajectories generated
and lastly showing the resulting saliency map using the predicted fixations
from the earlier generated gaze data. They also demonstrate this
"generated saccade sequence" on several more real images, comparing their
model with 4 different human saccade sequences [1].

In figure 2.4 included on page 14, one can see the process for which the
saliency heat maps were generated. First, there is the reference image
(similarly seen in figure 2.2) that their prediction system will utilize.
Second, fixations predictions are generated on the image based on expected
points of interest. Lastly, the saliency mapping from the generated fixation
points creates an interesting heat maps, where the predicted points of
fixation will be, and to an extent, which fixation points are most relevant in
the specified image.

2.5 Ethics & Methodology

Last year, Samip Bhurtel et al. published a paper regarding the promotion
of "empathy towards non-verbal people", via the usage of eye-tracking.
With their use of eye-tracking, they collected raw data from their experi-
ments which will also be used in this thesis [24]. This data included in both
the conference proceedings paper, as well as the full thesis, is approved
for use by the NSD (Norsk senter for forskningsdata) as it complies with
Norwegian research and ethics standards. Therefore, this thesis complies
with Norwegian ethics and research board, as the data being used for the
experiments has been approved prior to the writing of this thesis.

This being stated, the mentioned data from last year will be used for all
implementation in this thesis, however, if the new proposed data for an
upcoming eye-tracking test is to be approved for use, the aforementioned
data from above is no longer valid. This will most likely be the case since
the density of the current data is too low as there are too few data points for
accurate testing. As it stands, the methodology involves using the current
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data for the purposes of data analysis, algorithmic implementation, testing
and interpreting results with tables and graphs.

2.6 Algorithms and Approaches to Distinguish Between
Fixations and Saccades

In this chapter, the algorithms mentioned earlier, some of which were used
by previous authors will be introduced properly. The fundamentals will
be discussed, how they generally work and what parameters are involved.
Additionally, the implementation of them will be discussed and a process
will be demonstrated later.

There are several methods in which one can classify features of eye-
movement. Many of the significant ones already mentioned will be
discussed in this chapter, along with any potential novel approaches that
combine approaches or add unusual variables. In this chapter, the different
general approaches will be introduced, along with any corresponding or
acknowledged algorithms using said approaches. A through analysis will
be conduced on these approaches and algorithms and a general verdict will
be made prior to implementing them at a later stage.

2.6.1 Velocity-Based Algorithms

One of the most fundamental, intuitive and common approaches for
fixation detection is filtering the data using a velocity-based algorithm.
Velocity based algorithms are as they sound, taking advantage of eye-
tracking velocity to classify the different features over the course of a
session. This is mainly done by characterising high velocity movement as
saccades and relatively low velocity movement as fixations. This method
ideally assumes that the time between each eye-gaze point is constant,
therefore velocity is determined exclusively by the distance between
points. The main challenges with this method is that the sampling rate of
real experiments may not necessarily be constant and thus give inaccurate
velocity calculations. This approach can be deemed most simple as it does
not rely on any data (e.g. relative duration) other than relative gaze-points
for classification[2]. As this is a well known approach, many different
algorithms exist, basing themselves on the general technical methods that
will be discussed next.

Identification via Velocity Threshold

The first velocity-based algorithm is Identification via Velocity Threshold
or I-VT. The core concepts that apply to velocity-based algorithms on
the whole apply entirely to I-VT as it is the most basic and fundamental
velocity-based algorithm currently existing. This makes the I-VT algorithm
easy to understand. Due to its simplicity, it is generally used as a basis for
more advanced algorithms such as the Hidden Markov Model algorithm

15



that will be introduced later. Other Algorithms such as Nyström and
Holmqvist’s model also builds upon I-VT as a basis for glissade detection.

The I-VT algorithm revolves around separating and classifying fixations
and saccade samples using a fixed velocity threshold. If the calculated
velocity between two points is below the threshold, it will be classified as a
fixation, while sequences above the threshold will be classified as saccades
[19]. Due to its simplicity, it results in a "straightforward and robust"
algorithmic approach. The velocity threshold in I-VT generally remains
static, thus adaptive thresholds remain unnecessary due to "strong physical
and physiological underpinnings" in velocity profiles [2].

As inferred from the algorithmic properties defined above, I-VT is the
simplest identification algorithm to both understand as well as implement.
The velocity measurements for point-to-point eye-tracking are generally
defined using degrees per second (°/s), also known as angle-velocity. For
example, a low velocity of (50°/s) would be a part of a fixation, while a high
velocity of (350°/s) would be apart of a saccade.

The steps required to implement the algorithm are relatively simple and
straightforward. First, one must calculate the velocities (angle-based or
otherwise) between each point for the whole procedure, on a point-to-point
basis. The velocity is calculated based on the current point in the increment
(p) from the previous point (p-1) in the increment. Using a vector-based
approach, this would mean calculating the vector based on the combined x-
axis and y-axis movements. Second, using a predefined velocity threshold,
the algorithm will determine if the series of points are a part of a fixation
or a saccade (below threshold for fixations, above threshold for saccades).
Once a series of fixations between consecutive points are made, they will
be clumped into a fixations group, and all points considered as saccades
between said fixations will be excluded. These fixation groups are then
translated "to a representation <x,y,t,d> as the centroid" (center of mass) by
the algorithm. The points x and y indicate the centroid of a fixation group
(e.g. 122px,517px), t indicates the time of the first point in the fixation
group (e.g. 1275ms or frame 1275), and d indicates the total duration of
the fixations in the group (i.e (timestamp of the final classified fixation -
timestamp of the first classified fixation)(2125 - 1275 = 850 milliseconds,
the tota duration of this fixation group) [2].

Due to the algorithm’s simplicity, it only requires one parameter to be spe-
cified, the velocity threshold. This threshold is usually computed using an-
gular velocity, but this is only possible if the distance between the subject’s
eyes and screen are known. Without this, certain aspects of the data collec-
tion need to be approximated in order for the threshold to be inferred. This
collection generally involves exploratory data analysis and assumptions,
such as the sampling frequency being constant, thus abandoning angular
velocity in favour of a vector-based velocity calculation formula [2]. This is
what will be used during the implementation of this algorithm for the time
being.
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A clear benefit of this algorithm is in it’s simplicity, and it is likely to
function to a reasonable extent in many different eye-tracking tests. Despite
this, the results may also be inconclusive and may require additional
algorithms to reinforce the results.

Identification via Hidden Markov Model

The second velocity-based algorithm is Identification via Hidden Markov
model or I-HMM. As mentioned above, this algorithm builds on the basic
properties of I-VT, albeit with some additional functions. A unique aspect
of the Hidden Markov Model algorithm is that it relies on a probabilistic
approach when it comes to distinguishing between features and saccades.
Rather than using velocities thresholds from the data at any given point to
explicitly classify a fixation or saccade, it iteratively uses points at an earlier
state combined with previous event classifications to predict if forthcoming
points shall be classified as high-speed saccades or low-speed fixations.
The probabilistic aspect of the Hidden Markov Model is that it initially
builds from the basic velocity-based approach, but is reinforced by two
additional algorithms. The first algorithm goes over existing classifications
of fixations and saccades and re-classifies them by maximizing a likelihood
function. This is done taking into consideration not only the velocity of
each individual point but also its neighbours, such as the current state the
classifications are in, as well as the probability of certain points belonging
to one event, which can help with identifying transition periods between
events. The second additional algorithm then simply updates the existing
points with the probability parameters determined by the first algorithm,
with the intention of creating a more accurate result building upon the
initial I-VT approach [19].

Based on the probabilistic nature of this approach, it is used in certain
human-computer interaction applications such as handwriting or speech
recognition. The potentially more accurate results of the I-HMM approach
are due to its non-fixed nature, allowing the velocity threshold to be more
flexible depending on the nature of the experiment or situational eye-
movement [2].

As explained above, the I-HMM algorithm is actually three algorithms and
can be classified as a velocity-based algorithm since the baseline for the
Hidden Markov Model is I-VT. Therefore, some of the technical details of
this algorithm can be found in the I-VT technical description (??) on page
??. The probabilistic parameters from above can be described as a two-
state algorithm, where each state refers either to fixations or to saccades.
With this, there will exist two probability states, one for the observed
probability that one point is either a fixation or a saccade, and the other that
determines the probability of a transition from one state to another. Since
probability ranges from 0 to 1 (where 0 is the absence of any likelihood and
1 is certainty), the likelihood of a point being a fixation will fall between
these two values, with the remaining probability summation falling into
the saccadic category (e.g. if a point has a fixation probability of 0.75 or 75%,
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the remaining probability of the point being a saccade will be 0.25 or 25%).
The I-HMM algorithm will predict what points will be fixations or saccades
using dynamic programming. If the velocity of points is increasing and
the probability skew is shifting from one state to another, the algorithm
can predict that a transition period is in effect. For this observation, the
algorithm uses two parameters ("mean and variance of the distribution")
for the purposes of observing the state [2]. Additionally, the algorithm can
be tweaked to include angle as a parameter as well.

The whole algorithm in a basic sense works as follows. First the point-to-
point velocities are calculated in a set. A decoding process then determines
the maximum likelihood of each given point (based on the previous
velocity calculation) and thus identifies certain points as either fixations
or saccades (despite the values not being binary) [2]. This decoding
reclassification process is usually done using the Viterbi sampler. The
sampler is based on the algorithm of the same name, designed for solving
"the problem of estimating the state sequence of a discrete-time finite-state
Markov process observed in memory-less noise", which in this specific
case is based on the probabilistic parameters [25]. The re-estimation
process is then undertaken to re-evaluate the parameters and set them
in place. This is normally done using the Baum-Welch re-estimation
algorithm. As this is a recurring process for re-evaluating the parameters,
the original algorithm is a "technique which occurs in employing the
maximum likelihood method in statistical estimation for probabilistic
functions of Markov chains" [26], and will additionally minimize errors
in the classification. For effective results, several re-estimations will occur
for any given data [27]. The fixation groups are collected, with saccade
groups omitted (similar to I-VT). Finally, each fixation group is mapped to
the centroids of their respective groupings, and then returned as results [2].

While complex, re-estimation can be used for the I-HMM parameters. This
technique utilizes training data to learn the specific parameters and can be
used for any future eye-tracking tests occurring on the same setup with the
same protocols [2].

While more complex than the basic I-VT algorithm, the potential of more
accurate results is a consideration for this algorithm.

Besides the more well-known velocity based algorithms discussed above,
there exist more contextual, focused algorithms that can still work
effectively for eye-tracking data outside their original experiments.

Binocular-Individual Threshold

A more complex algorithm involving velocity based methods is the
B-IT or Binocular-Individual Threshold. This algorithm specialises in
differentiating small saccades from noise, which can be seen as a form
of tackling the significant problem of data loss. It does this by looking at
the movements of both the left and right eye’s simultaneously, constantly
monitoring if they are doing the same behavior at the same time. For
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example, with other algorithms, if the left-eye gaze data is noisy in a
certain time-span of the experiment while the right-eye data is mostly
clean, the algorithm will interpret the data incorrectly, and can cause miss-
classification and loss of accuracy. B-IT on the other hand, will look at the
data differently, and determine that the noisy eye is roughly at the same
place as the other eye. This accountancy for noise, while checking each
eye’s data, can help determine if the peaks in velocity are real, or just due
to noisy data. This being said, this is a more advanced algorithm that also
uses an adaptive threshold for classification [19].

Van der Lans et al. in 2010 claims that the algorithm improved upon
existing velocity-based algorithms in three ways. The first feature
has already been explained, the usage of binocular viewing (both eyes
accounted for in classification), using covariations between the two eye’s
movement information to identify and classify between fixations and
saccades. The second feature is that it starts by estimating the velocity-
threshold, rather than using a fixed threshold. It was already mentioned
previously that the algorithm using such an adaptive threshold, but it
seemingly works automatically. There is no need to define a threshold
prior, and the algorithm adjusting from it as it automatically finds
the starting threshold. This estimation allows the adaptive threshold
to account for different eye-movement directions as well as varying
participants and their respective tasks in an experiment. Lastly, "it
accommodates the inherent stochasticity in eye movements", essentially
the randomness/noise or data as described prior for the proposes of not
incorrectly classifying certain data points that cross over the velocity-
threshold [28].

Nyström & Holmqvist / Larsson, Nyström & Stridh

Another algorithm is the Nyström & Holmqvist algorithm, which was
introduced earlier in 2.6.1 and 2.4. It is notable for it’s ability to identify
post-saccadic oscillations (PSOs, called "glissades" in the paper [10]) while
simultaneously identifying fixations from saccades like the basic I-VT
algorithm. It is however not a fixed velocity threshold, adapting itself
based on how noisy the data provided is [19]. This algorithm should
provide more accurate results, as it will not erroneously identify PSOs as
saccades, rather as the beginning of fixations.

An iterative approach to the above velocity threshold algorithm is the
Larsson, Nyström & Stridh algorithm. This 2013 algorithm is essentially
a further development of the 2010 Nyström & Holmqvist algorithm, but
the algorithm is now able to detect saccades separately. What truly makes
this algorithm a significant advancement over previous work is that it has
to ability to detect said PSOs and saccades within the presence of smooth
pursuits. This is particularly challenging since smooth pursuits are not
usually classified as fixations or saccades as they present a problem for
fixed velocity thresholds [19]. From these additional factors alone, the
expected outcome of this algorithm should be even better and provide even
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better results.

2.6.2 Dispersion/Displacement-Based Algorithms

Another common approach that is also intuitive, but perhaps slightly
more complex in its implementation are dispersion or displacement-based
algorithms. These algorithms take advantage of the dispersion of fixation
points, which is the distance the points are spread across from each other.
This algorithm assumes the fixation points occur close to one another.
Naturally, an approach like this is duration sensitive, as fixations are based
on how long the points remain in the dispersion area [2]. The challenge
here is to determine what spread is ideal as one is more likely to capture
false fixations if the spread threshold is too high. In addition, a specified
duration threshold must be determined for differentiating saccades and
fixations within, or just outside a specified area. Many different algorithms
exist using said methodology, and will be discussed below.

Identification via Dispersion Threshold

The first dispersion-based algorithm is identification via dispersion
threshold or I-DT. Like with the I-VT algorithm, it is also a very popular
approach to eye-tracking feature separation, being a relatively simplistic
algorithm for which more advanced techniques would later build from.
Instead of the features being separated by the rate of change of position,
they are now explicitly being separated solely by their positions relative
to each other, including the behavior in only where they move, instead of
how they move. Like with the I-VT algorithm, this places an emphasis on
fixation identification, disregarding saccadic periods.

The basic idea of the algorithm is that it classifies points based on their
two-dimensional values. It has two fixed thresholds. First is a "minimum
fixation duration threshold", meaning that the points must remain for a
set amount of time to be classified as fixation points. The second is the
"maximum fixation dispersion threshold", meaning that the points must be
in a defined area to be classified as fixation points. Any points fulfilling
both of these threshold are then considered parts of a fixation [19].

Like with the I-VT, this algorithm is not too complicated relative to the more
advanced velocity and dispersion algorithms discussed in this section.
As stated, this algorithm takes both the spatial (proximity of the points)
and time related (accumulated duration of the points) aspects of the data
into account [27]. When fixations are found, they will contain a centroid
with the corresponding diameter from the maximum fixation dispersion
threshold [2].

The valued aspect of the algorithm can be defined as a temporal window,
where certain eye-movement actions must take place within a certain
time frame for a general classification, in this case, against set proximity
threshold. The time span within this window can be considered as a
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stopwatch, and when combined with a spatial value, determines whether
or not the points inside this entire threshold can be considered fixation
points. If said points to not meet this threshold, the temporal window is
then moved and restarted at the next point the resides in it’s respective
spatial proximity, and the process is then repeated. The previous point
space is then classified as a saccade. The maximum dispersion threshold
is calculated using the formula D = [max(X) − min(X)] + [max(Y) −
min(Y)] with X representing the horizontal relative positions and Y
representing the vertical positions of the points. In our case, this will refer
to the pixel-positions on the screen, but normally this would again be done
with a visual angle (like with the originally proposed I-VT algorithm). This
is combined with the minimum fixation duration threshold that will vary
depending on the experiment or eye-tracking equipment used (e.g. 100ms,
mainly since fixation durations are typically at least this long [2]) [27].

The algorithm in a procedural sense works as follows. First, a spatial win-
dow will be "opened" as long as there are enough points for classification.
Once enough points have been covered to satisfy the minimum duration
threshold, the conditional statement for the minimum spatial threshold will
then be conducted. If the dispersion of points fits within the minimum
threshold, said points will be added to the temporal window (classified as
fixation points) until the points are no longer within the threshold. A fix-
ation point is then noted as the centroid of the fixation for that duration.
The windows points are then removed from the recorded points for that
fixation period. Any points falling outside the conditional statement are
disregarded until a given point falls inside a new threshold once again.
The fixations are then returned at after the end of the recorded points [2].

It is easy to see why this algorithm is considered robust as it uses clear
boundaries for classification. While a solid stepping stone, it can certainly
be improved upon with some extra parameters or algorithms to improve
not just the accuracy, but precision of the results.

Covariance via Fixation Dispersion Threshold (F-DT/C-DT)

The second dispersion-based algorithm is covariance via fixation disper-
sion threshold or C-DT. This is an approach derived Veneri et.al’s earlier
works on the basic fixation dispersion threshold or F-DT. The original F-
DT algorithm is based on the I-DT methods of clustering due to its robust
nature. The key difference is that a two-sample F-test is used for the pur-
pose of "equal variances to evaluate variance around the centroid". In a
sense, it aims to adjust the centroids of the original I-DT to be more accur-
ate. A critical objective of the algorithm to making sure the x and y bound-
aries are not significantly different from one another. The F-test used is the
same as a "null hypothesis", aimed at verifying "that two populations have
the same variance". H0 (null hypothesis) is to be tested against H1 for the
heterogeneous variances [29].

The C-DT algorithm developed from the F-DT algorithm incorporates
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covariance calculations into the x and y gaze data. These extra calculations
helps with the violation-sensitive nature of F-tests when it comes to
"normality assumption of the data", thus variance, co-variance and
duration thresholds were incorporated into the algorithm to account for
potential outliers and inaccuracies [19].

The procedure for this algorithm is certainly more complex than the
original I-DT algorithm as it incorporates F-tests for the purpose of an
even more robust algorithm that produces better results. The first task
undertaken is to identify the centroid of a fixation. It starts using the same
proximity calculations like the I-DT, but proceeds to calculate the F-test on
the given X and Y gaze-points at that specific timestamp. It will then do this
for all the further given points as long as it is within the fixation proximity.
Once the fixation area is finished, the centroid is then determined through
the F-tests conducted earlier for variance purposes. The fixation is then
extended, accounting for the centroid point. The "ratio of variances" for
the X and Y is then calculated within the fixations. A process is then
conducted to reduce the ratio of variances by extending the lower fixation
limit. The same will happen for gaze points at "timestamp + 1", where the
upper fixation limit is extended instead again for the purposes of reducing
the ratio of variances. Once all the fixation points are gone through, the
centroids are then applied to said features at their respective timestamps
and the new fixations are then returned [29].

The algorithm appears very complex, perhaps too complex to be imple-
mented successfully consistently. Perhaps it may only work with a very
large amount of data to get accurate variance scores for the F-tests to work
as intended. While the potential for the algorithm is high, it might not work
as well as one can expect.

Identification via Minimum Spanning Tree

The third dispersion-based algorithm is identification via minimum span-
ning tree or I-MST. As can be inferred from the name of the algorithm, it
makes use of trees that obtain the eye-tracking data, where each branch
of a tree is a unique data sample. It utilizes "samples from two different
clusters" and it does this by capturing data that only has as much branching
as the threshold requires. These clusters are then captured by two separate
nodes from higher up in the whole tree instead of unnecessarily branching
out to a very low-level node. The idea here is to classify saccades primar-
ily, so they can first be excluded from any fixation detection. It does this
by "enforcing certain thresholds on the samples at the edges of a cluster"
[19]. The main idea is to minimize the lengths of the line segments in the
tree, hence minimum spanning tree [2]. These lengths can be defined as the
euclidean distance "among all spanning trees in a given set of nodes". The
I-MST algorithm builds the MST necessary for classification, which does
so, based on the dispersion/point-to-point distance thresholds [27].

The trees described earlier are constructed using Prim’s algorithm. It works
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by initializing a tree with just 1 vertex and no arcs. For each interval
(looping through the sample) "it adds to the tree an arc of minimum weight
connecting a vertex in the tree with a vertex outside of the tree". This
is done until the spanning tree is created [30]. Using this method, there
should exist one MST for every sample (set of points). This method better
defines "subsequent characterizations of defined fixations" compared to the
previous fixation filtering methods [2].

The actual I-MST algorithm requires evaluating the already generated
MSTs for identifying fixations. As a first step, the maximum depths of the
interconnected branches are discovered. Branches that are considered to
be too low (close to the edges) in the MST are considered inadequate for
separating fixations. The separation of edge lengths are considered and
compared with the use of the mean µ and standard deviation σ of said
lengths. Using this, a framework in generated. It controls "where fixations
may occur" in any given MST within an experiment. It also determines
"how local adaptivity affects fixations decisions" [2]. The power of MSTs
allows for additional fixation characterization parameters, such as critical
paths, which are areas in an MST that have "minimal branching structure"
[2].

The algorithm works as follows. First, an MST is constructed from the
experiment eye-gaze data using Prim’s algorithm. Next, the maximum
depth of the branches are found for every point (node) in the MST. Third,
the saccades are then classified as edges that exceed the depth threshold.
Fourth, mean µ and standard deviation σ parameter values of the edges
are defined. Edge lengths over a set threshold ratio are also classified as
saccades. The fixations are then defined as "clusters of points not separated
by saccades". Said fixations are then returned [27].

Said algorithm seems fairly complex, and thus difficult to understand. It
however promises good results using complex methods for classification.
It may also prove difficult to implement and the process might take time
due to its complexity as a system. If the results prove outstanding,
implementing this algorithm may have value.

2.6.3 Area-Based Algorithms

A less common, but still widely known approach are area-based al-
gorithms. These algorithms are a little different as they attempt to identify
points of interest by using "relevant visual targets" rather than basing the
classification from gaze-point to gaze-point. Fixations at any specified areas
of interest are provided by "lower-level identification and high-level as-
signment". Fixations can be used as input for area-based algorithms as
well as represent relatively "higher levels of attentional focus" on any port
of a viewing space, and can thus be classified as "macro-fixations" [2].
This being said, it is clear this approach is more advanced that velocity
or dispersion-based approaches. While there exists many proprietary al-
gorithms in different studies, only one well-known algorithm exists on a
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general scale.

Identification via Area of Interest

The main area-based algorithm is identification via area of interest or I-
AOI. The area of interest algorithm works significantly differently from
the other algorithms and approaches discussed prior. While the previous
methods are able to identify fixations at any point inside the eye viewing
space, this method relies on identifying fixations that occur at specific
target areas inside the visual space. Thereby, it assumes where fixations
should occur inside the field. These specified regions are defined rectangles
(based on the two-dimensional X and Y coordinate space) and "represent
units of information" within the visual space. These defined rectangles
are designed to identify fixations close to relevant, informative targets.
In order to distinguish passing saccadic points from prolonged fixation
gazes inside the coordinate space, the algorithm also utilizes a duration
threshold, similar to the dispersion-based algorithms starting on page 20
[2].

The algorithm finds the precise target areas using associated data points,
thus labelling these points as fixations, and classifying everything outside
these areas as saccades, regardless if certain gaze-data outside of these areas
has fixative behavior. If the points in a certain target area do not meet the
minimum duration threshold, the whole fixation group is discarded. The
remaining fixation groups are then turned into fixation tuples. More details
of the algorithm will be explained in the next paragraph [2].

The algorithm works as follows. First, every point within the vicinity of a
target area is labelled as a fixation point, and every point outside of a target
area labelled as a saccade. Afterwards, consecutive fixation points are
collapsed into typical fixation groups, classifying any stray or sparse points
inside a target as saccade points and therefore removing them. Once these
fixation groups are generated, they are checked if they meet the minimum
duration threshold. Those groups that do not meet this condition are then
removed. Now that the fixation groups are mostly finalized, the centroid
points within the target areas are created for each of the fixation groups.
These groups are then returned as fixations [2].

It is difficult to tell from the outside if such an algorithm will work well.
More contextualized experiments and perhaps conducting predictive eye-
movement tests can make this approach more interesting. But for general
eye-tacking experiments with less visual information, it can be expected to
lose accuracy.

2.6.4 Combined Algorithms

The approaches below contain algorithms considered to be less common
than what is usually used to filter eye-tracking data. Nonetheless, they can
prove novel and perhaps perform better in certain areas, with the potential
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trade-off being that they are perhaps harder to understand and therefore
implement due to their more advanced nature.

Identification via Kalman Filter

The first combined algorithm is identification via Kalman filter or I-KF.
This algorithm combines the elements from both the velocity-based and
positional-based algorithms discussed in-detail earlier. This algorithm is a
recursive (repeating) filter aimed at improving precision and minimizing
error via combining current and predicted measurement from previous
input values via gaze-data [19]. Since the algorithm uses both velocity
and position for classification, it is thus a two-state system with the two
respective properties. Combined with acceleration, as well as "applied
to the recorded eye position signal", the predicted eye-gaze velocities are
generated with the algorithm (I-KF) [27].

The algorithm using this filter (I-KF) does not classify the eye-data into
events like all of the other have so far, rather it is done using a X2-
test. The algorithm classifies fixations of this test value is below a certain
threshold while simultaneously fulfilling a minimum duration threshold.
Conversely, if points are found to be above this threshold, they will be
classified as saccades, regardless of the duration threshold set. Like with
prior algorithms, the generated fixations are grouped via near-proximity
clustering methods [19]. The χ2-test is also known as the Chi-square test
and is written as:

χ2 =
p

∑
i=1

ˆ(θ−i − ˙(θi)
2

δ2 (2.1)

Where ˆθ−i is the predicted eye velocity and θ̇i is the actual observed velocity
from the eye-tracker itself, δ indicates the standard deviation of the each
velocity, p indicates the size of the "temporal sampling window" and
finally X2 is the calculated threshold for which gaze-points will are either
determined to be fixations or saccades [27].

Once again, the algorithm appears to be complex and may not be
implemented in this thesis. However, due to its combined nature via the
two-state system, combined with a predictive generated results makes this
a very powerful algorithm. It combines the robustness of the previous
methods, along with a focus towards improving the precision of eye-gaze
classification while reducing error.
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Chapter 3

Data description and
methodology

3.1 Data collection

The data used in this thesis was collected from a previous experiment
conducted by Samip Bhurtel and co-workers. This experiment partially
involved the use of an eye-tracker to collect raw data of the users’
eye movements as apart of communication training "towards non-verbal
people". The data collected from the physical experiments is relevant to
this thesis, as the data contains fixations and saccades to the nature of
the experiment (users observing letters and numbers for communicative
purposes) [24].

As apart of the ethical application in the thesis, the data was collected in
Norway. A requirement for publishing a study involving human research
is that it must comply with the NSD (Norsk senter for forskningsdata). The
participants’ information as well as their involvement with the research is
considered sensitive data, and therefore must be considered confidential.

Figure with illustration of saccades and fixations, separately (or different
color). Using the separation algorithm from the eye-tracking software
that collects and separates data, we can plot a basic scatter of the relative
fixations and saccades.

The data in this section was taken from a fraction (10%) of a single
participant in the experiment. Of the 4655 data points captured, 3670 were
classified as fixations, 569 were classified as saccades, and the remaining
416 were unclassified, and were thus not used.

In the figure 3.1, rough estimations for the fixations and saccades are
highlighted, saccades paths are shown as blue line and fixations as red
blobs. While the data is not perfectly accurate from the eye-tracker, it gives
a solid idea of the visual differences between the two features. Fixations are
clearly marked out, while some points have seemingly been erroneously
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Figure 3.1: Fixations and saccades compared, with approximated saccade
paths.

defined as saccades, despite clearly belonging fixation areas along the
visual space. This is of course only speculation through visual observation.

3.2 Quantitative characterization of fixations and sac-
cades

Using the algorithm from the software to distinguish between fixations and
saccade, plot for each group separately:

1. Angle (θ) as a function of duration (t). The angle is the degree
separation between 3 points, where the middle point acts as the pivot
for the angle to be calculated. Using internal (dot) product, we can
calculate the inner angle (θ) for each saccade point, as well as each
fixation point, using the following formula:

θ = cos -1 (x · y)
|x||y| (3.1)

Where θ is the calculated angle and x and y are the lengths of the two
adjacent vectors forming angle θ. The angles between each vector
for the whole data set will be calculated for the purpose of forming
comparison between the average angles of fixations and saccades.

The results for the angle calculations with respect to duration are
shown in figures 3.2 and 3.3 for fixations and saccades respectively.
The results for both features seem to reflect opposite visualizations,
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Figure 3.2: Graph for the angles of fixations with respect to duration.

which possibly indicates relatively accurate results since both fea-
tures are classified for opposing reasons. While the fixation graph
shows a mostly horizontal path for the scatter, the saccade graphs
show a mostly vertical path for it’s scatter.

While several fixations and saccades both last for very short periods
of time (under 0.25 seconds), many fixations seem to last for
considerably longer periods of time, up to 3.5 seconds, while the
vast majority of saccades last under half a second (0.5 seconds). In
addition, the duration of the features appears inversely proportional
to the variation (spread) of the average directional change in the
features. The angle for each feature represents an average directional
change per point within that specific feature (for example, if 5 points
were classified as one saccade, the average of the 4 directional
changes will be the angle result in the above graph). The lower
the duration length of a feature is, the higher chance it will deviate
from π/2 (90 degrees), which indicates less circular eye-motion.
Saccades deviate from this value as eye-movements during saccadic
periods either remain travelling in a relatively straight line (closer to
0 radians) or "turn around" towards an overshot fixation area (closer
to π radians or 180 degrees).

2. Velocity (v) as a function of corresponding duration (t) of the fixation
or saccade. Velocity is essentially the speed of an object in a certain
direction, thus making it a vector. The most basic calculation of
velocity is computing the average velocity, where the difference of
distance over the difference of time results in a velocity value.
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Figure 3.3: Graph for the angles of saccades with respect to duration.

v̄ =
∆x
∆t

(3.2)

Where ∆x is the distance between two points and ∆t is the time
elapsed between two points. Alternatively, the equation can be stated
like this:

v̄ =
x1 − x0

t1 − t0
(3.3)

Where x1 and x0 are the start and end points in the vector, t1 and
t0 are the start and end of the elapsed time, and v is the calculated
velocity. In this case, the displacement (x1 − x0) between two points
is calculated using Pythagorean theorem, as the points are along a
two-dimensional space.

Since the eye-tracker calculates the eye movements in a point-to-point
nature, it is acceptable to assume one trajectory for each calculation,
therefore not having to be concerned over the direction of the vector,
strictly for this calculation. Like with the angular calculations above,
the velocities for both saccades and fixations will be separated for the
purposes of comparison.

The results for the velocity calculations are shown in figures 3.4
and 3.5. As noted above, the fixation feature duration tends to be
considerably longer than for saccadic features. This corresponds with
the resulting velocity figures, where again, velocity and duration
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Figure 3.4: Graph for the velocities of fixations with respect to duration.

results are mostly inversely proportional (higher feature duration
correspond with lower average velocity). This includes the mostly
opposing results of fixations and saccades, where higher average
velocities (>5000 pixels per second) for saccades appear much more
common.

The main observation, is while fixation durations last longer than sac-
cade durations, the average speed of the fixations remains relatively
low compared to saccades. This is most likely due to the fact that
fixation movement occurs in a confined area resulting in smaller and
therefore slower eye movements. Saccades are the opposite, as they
are movement-heavy transitional states between fixations, and there-
fore last a shorter period of time, travelling across a relatively long
distance at a much higher average speed.

3. Acceleration (a) as a function of time (t). Acceleration is most simply
defined as the rate of change of velocity, meaning that the acceleration
of an object (e.g. human eyes) is just the derivative of velocity with
respect to time, therefore f ′(v) = a.

This can be written as:

a =
dv
dt

∼ ∆v
∆t

=
v1 − v0

t1 − t0
(3.4)

Where a is the acceleration between two vectors, ∆v is the velocity
difference between the start (end of the first vector) and end of the
second vector (v1 − v0), and ∆t is the difference in time between
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Figure 3.5: Graph for the velocities of saccades with respect to duration.

the two points in the vector (t1 − t0). The saccade and fixation
acceleration results will be separated as with the angle values and
velocity calculations above.

The acceleration results for both fixation groups and saccades groups
are demonstrated in figures 3.6 and 3.7 respectively. Like with
the previous two comparisons with respect to duration (feature
duration), the fixation and saccade feature results contrast each
other (and are once again, inversely proportional), where fixation
accelerations seem to vary much less than saccadic accelerations.
Naturally, the acceleration spread between acceleration (>0 pixels
per second) and deceleration (<0 pixels per second) remains mostly
uniform in both cases since the eye will naturally speed up, and slow
back down when moving either regardless of feature classification.

Fixation values seem to not vary much relative to saccades. While
fixation accelerations never go beyond or below 0.25x106 (<250000
pixels per second), saccadic accelerations occasionally go beyond
0.50x106 (>500000 pixels per second). This lack of fixation acceler-
ation is due to the relatively constant speed (but not velocity, due
to change in direction) of eye-movements within a fixation. As a
consequence of the small area fixations generally occur in, there is
little opportunity for rapid eye-movements, thus the speed differ-
ences between detected points in a given fixation are going to be
minor, and therefore only equally small acceleration values.

Saccadic acceleration values tend to vary greatly due to the trans-
itional period from a fixation to saccade (the main accelera-
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Figure 3.6: Graph for the acceleration of fixations with respect to duration.

tion/deceleration period) are still classified as fixations, outliers in
the saccadic data are most likely anomalies in the recording. It can be
assumed that due to the high acceleration values of fixations, the ve-
locities and distance travelled relative to time will be high, and there-
fore these periods will simply not last as long as fixation periods.

4. Scatter plot of θ × v, θ × a, a × v.

The results for the comparisons between the angles and their
respective average velocities are shown in figure 3.8. What can be
observed instantly, is that the saccades are more scattered compared
to the fixations with regard to both the average angle changes and
the average velocities from point-to-point. What is also clear is that
average velocity does not seem to affect average angle much. This
is clearly seen by the mostly circular shape in ?? where high/low
angle changes co-exist with high/low average velocities within any
given saccadic feature. In both cases however, velocity values on the
outer ends of the scatter plots seem to have average angle changes
between 1 and 2 radians, which coincides with the angle/duration
comparisons in figures 3.2 and 3.3 from earlier.

The results for the comparisons between the angles and their
respective average acceleration values are shown in figure 3.9. Once
again, it can be observed that the saccadic results are more spread
compared to the relatively concentrated area of the fixation scatter.
As seen earlier from 3.6 and 3.7, the acceleration results for saccades
were much more spread out due the nature of those specific eye
movements. As with above, it appears that the average angle does
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Figure 3.7: Graph for the acceleration of saccades with respect to duration.

not affect the acceleration or deceleration of the eye. This may be
because the eyes during saccadic periods will inevitably accelerate
and decelerate as a part of the transition process from/to a fixation,
regardless of which direction the eyes may turn during this period.
The same can be said for fixations, where the angle in which the point-
to-point eye movement happen are independent of the relatively little
acceleration the eyes inevitably experience during a fixation period.

The results for the comparisons between the velocities and their
respective average acceleration values are shown in figure 3.10. What
one may expect is that low average velocities may coincide with
low acceleration values, but once more, the values appear to not
directly affect each other in either case. In the case of saccades, high
acceleration saccadic periods (>1000000 pixels per second) can occur
when at average velocity periods as low as 5000 or as high than
10000 pixels per second. Like with the previous saccadic results, the
points lie in a mostly circular spread. In the case of fixations, the
results are once again concentrated, with consequently lower average
velocity and substantially lower average acceleration results. The
results between the two scatters are not proportional. While saccadic
velocity results appear two or three times higher than fixations,
saccadic acceleration results appear several times high or lower in
comparison.

5. Histogram of the features’ angles. Now that the angle θ of each point
between the vectors has been plotted against the function of time (t),
the angles themselves can be plotted as a histogram on their own. The
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Figure 3.8: Scatter plots comparing angles and velocities of the fixation
features, and comparing angles and velocities of the saccade features.
Qualitatively, we do not see any significant correlations.

Figure 3.9: Scatter plot comparing angles and accelerations of the fixations
features.

histogram values for both fixation angles and saccade angles will be
plotted on a single graph. A hypothesis can be made that the values
for both will be distinguishable even on a single graph.

The resulting histograms for the angle changes from point to point,
as well as average angles from the features are illustrated in figure
3.11 and 3.12 respectively. In the case of figure 3.11, the fixations
and saccades have been combined for better visual observation.
Normally, just the fixation and saccade groups would be exclusively
presented here, however in this case the individual vectors’ angle
changes will be included and focused on. Using grouped results
requires the implementation of the average angle for each vector
in a given grouping. This results in relatively inaccurate resulting
angle groups that do not correlate at all with the individual values
presented here. This can especially be seen when comparing the
individual saccades and saccade features.

When comparing the individual fixation angles to the saccade angles,
a clear contrast can be seen. As expected from the fixations, the
majority of the results are closer to π, which indicates the eyes
"circling" the fixation point, occasionally re-correcting or simply
fluctuating in-place. Meanwhile with saccades, the biggest group of
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Figure 3.10: Scatter plots comparing accelerations and velocities of the
fixation features, as well as the saccade features.

points are closer to 0, indicating a small degree of angle change. This
is because saccades are mostly straight-line travel from one visual
space to another. There are inevitably direction changes (e.g. sudden
direction changes to a different fixation than originally intended or a
"scanning", ziz-zag like behavioral pattern en-route to a fixation area).
The other notable observation are the large amount of points closer
to π. This is most likely due to both overshoots (resulting "u-turns"
from overshooting fixation areas) as well as saccadic periods, where
the eyes leave a fixation area for a brief moment, and return back.
The nature of both can be seen clearly by the fact that the average
angle change for fixation and saccades are 1.77 radians (more than
90 degrees) 1.49 rad (less than 90 degrees) respectively, indicating
movements in fixations closer to the origin points, and further away
during saccades.

6. Histogram of the duration of the features. Additionally, it would also
be interesting to see how long the duration is for fixation and saccadic
periods, as a way to compare the density of the points and perhaps
infer the occurrence of each feature and how many are to occur over
a determined amount of total time. Like before, the histograms will
be separated for better comparison clarity.

The resulting histograms for the feature duration of both the fixations
and saccades are seen in figures 3.13. The clear observation here are
the more varying results for fixation periods. While short fixations
still exists, there are many cases where fixations last longer than
saccades. This is the expected result as fixations are when the
eye-focuses on an object, taking into account the human subject
processing the visual information. Saccades are just subconscious
eye-movements going from one place to another. These movement
usually coincide with high velocities, and therefore these periods
only last short times. In this case, the average saccade period is
just 0.144 seconds, while the average fixation period is several times
higher at 0.633 seconds.

It is worth noting that fixations periods can sometimes be short. This
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Figure 3.11: Histogram of the angles, comparing the fixation and saccade
points.

Figure 3.12: Histograms of the angles of the fixation and saccade features.

could either be mis-classification, where fixation groups are briefly
split by unusually short saccadic periods. Sometimes fixations may
simply not need to last long, and the user may have accidentally
observed a wrong visual element, correcting to where they originally
intended to look.

7. Histogram of the features’ velocities. Like with the angles plot
above, making another plot specifically for velocity should also prove
useful. Like with the angular plot, the velocities for both saccades and
fixations should vary significantly from each other, granting a clear
picture of the nature of both features. This will also be plotted on a
single graph due to the hypothesised disparity in the values.

The resulting histograms for both the feature and single vector
velocities of the fixations and saccades are seen in figures 3.14 and
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Figure 3.13: Histograms of the angles of the fixation and saccade feature
durations.

3.15 respectively.

When comparing the four graphs, it can be seen that the saccadic
gaze-velocities are significantly higher than in fixations. The average
fixation point velocity is around 1986 pixels per second, while the
average saccade point velocity is around 5365 pixels per second, more
than 2.5 times faster. This is to be expected as saccades are just
travel zones between fixation gazes. This can be seen more clearly
in 3.14, as the velocities in the saccade graph have a higher spread
towards right, indicating higher velocities, meanwhile a large portion
of the fixation velocity values remain lower and more concentrated
on the graph. It is important to note that some saccade have low
resulting velocities. This could be down so simply error in the
data, or that some fixations are erroneously classified as saccades
as they may have either just entered, or exited a fixation. The
same phenomenon can be seen for fixations with higher-than-average
resultant velocities. The main takeaway is the visual observation that
the majority of the fixation point are concentrated closer to zero, while
the largest concentration of saccade values hover around 5000 pixels
per second.

The calculated feature velocity shows similar results. Just from visual
observation, the similarities for groups and points can be seen, where
the saccade group is shifted more towards the right, indicating higher
velocities. The numerical results are similar too, with fixation and
saccade features averaging 1923.74693694 and 4615.64392586 pixels
per second respectively. Both results are lower than their point
velocities, it is unknown why.

8. Histogram of the features’ acceleration values. While a little more
obtuse than the angles and velocity for results plotting, acceleration
can still prove useful to visualize. This should provide additional
detail on the differences between saccades and fixations. The plotting
of the graph will follow the same nature from above.

The resulting histograms for both the feature and single vector
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Figure 3.14: Histogram for the velocities for each of the determined fixation
and saccade points.

accelerations of the fixations and saccades are seen in figures 3.16
and 3.17 respectively. The single vector results are interesting. For
the fixations, only one spike in values can be observed, meanwhile
for saccades, two spikes are observed. This is most likely because
acceleration and deceleration periods are apart of whole saccadic
periods. For the majority of the time, only a relatively small amount
of acceleration occurs as the eye adjust around an area at a mostly
constant, low speed. The two spikes being asymmetrical in the
saccade graph could just be down to error, as one would expect
mostly similar amount of acceleration compared to deceleration since
the eye speeds up from fixation speeds, and goes back down to those
speeds after a saccade. From a numerical point of view, the average
fixation acceleration is as-expected, with a low number of -752.571
pixels per second. The saccadic results are vastly different, with a
high average result of 134862.304 pixels per second. This high value
may simply be down to error. What is also interesting is that the result
contrasts the graph. The larger spike occurs in the eye-deceleration as
opposed to acceleration, yet the resulting average does not echo the
same observation.

The feature results have been partially excluded since the resulting
overage accelerations were distorted by outlier results and thus
provide meaningless information. These results also do not showcase
the major differences in the two types of eye-movements as averaging
both accelerations should result in close to zero. Therefore, there is
little in the way of comparison, other than noting the variance in the
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Figure 3.15: Histograms for the velocities for each of the determined
fixation and saccade groups.

Figure 3.16: Histogram of the accelerations for both the fixation and
saccade features.

saccadic results are higher than in fixations.

3.3 Methodology & Implementation

A few of the prominent algorithms for eye-tracking classification.

1. Identification via Velocity Threshold (I-VT)

2. Identification via Hidden Markov Model (I-HMM)

3. Identification via Dispersion Threshold (I-DT)

The algorithms selected for implementation are listed above. These
algorithms will be used for the purposes of classifying fixations and
saccades while omitting data that is considered not apart of either. These
point classifications will then be grouped into fixation and saccadic
features. Consideration of results, as well as implementation difficulty
were taken into account. All implementation is done in Python 3 using
JuPyTer Notebook. The notebooks for both the data analysis done above
3 as well as the implementation described here can be found the main
GitHub page [31]. For the purposes of readability, the code will not be
shown in this section, but rather described in an easy-to-understand way.
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Figure 3.17: Histogram of the accelerations for both the fixation and
saccade points.

3.3.1 Identification via Velocity Threshold (I-VT)

Implementing the I-VT algorithm requires just one end parameter, velocity,
specifically the velocities of the vectors that connect two eye-gaze points
in secession. For this, there are two additional parameters that must
be retrieved, the euclidean vector distance (or the displacement of two
succeeding points) and the time taken to get from one point to the other.

Calculating the euclidean vector distance (displacement) is done using
traditional Pythagoras (

√
a2 + b2 = c) where a and b are x-lengths and

y-lengths respectively. These are calculated simply by subtracting the
first point’s coordinates from the second point’s coordinates. Once these
values are retrieved, the c value from the Pythagorean theorem can then
be calculated. Any calculations with missing x or y coordinate data are
discarded, as the result will not be a number.

Calculating the time difference is much simpler. This is done by looking at
the timestamp for both points and finding the difference (subtracting the
first from the second) between them. Like above, any points with missing
time data are discarded. Additionally, any points where the time difference
is zero are also discarded. This is because these values will produce errors
later on (diving by zero gives NaN (not a number) values).

Every valid velocity vector will then be assigned the resultant velocity
magnitude and all classified vectors will be done so based on the "end"
point of that vector (thus the first point in the whole series is excluded).
The velocity threshold is user defined. For example, if the decided velocity
threshold is 500 pixels/second, any vectors exceeding that velocity are
classified as "saccades", while any vectors that are less than, or equal to
the threshold, are classified as "fixations". For all classifications, their
respective displacement, time difference, angular difference (described
in 3) and timestamp and X/Y coordinate values are added to new lists
alongside the fixation/saccade classification list for further analysis.
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3.3.2 Identification via Angle-Velocity Threshold (I-AVT)

As an alternative to I-VT, the I-AVT was conceptualized. This was a
novel idea created during the thesis with the main goal of improving
the simplistic velocity threshold algorithm. As the name suggests, this is
an algorithm that iterates on top of the original existing I-VT algorithm.
This algorithm simply incorporates a portion of the angle calculation from
equation 3.d in section 3.2 and applies the cosine to the resultant angle.
This calculation is applied to each corresponding vector’s velocity (Vector
velocity V2, where V1 and V2 are the first and second vectors’ velocities
respectively required to calculate the angle change):

Ve f f = V2 ∗ cos θ (3.5)

Where Ve f f is the new I-AVT result and cos(θ) is the cosine of the resultant
angle of the two velocities of their respective vectors. The idea behind this
algorithm is that the angle should have an effect on the original velocity
and reflect a more relatively accurate velocity based on the previous
velocity in a series of points. Additionally, angles that are closer to zero
or π will have a lesser impacted result on the velocity, which should help
better classify saccades, as they should be closer to those values since
their angle changes should be lower. This includes fixations as they have
more varied, unpredictable angle changes, thus "penalizing" high velocity,
extreme (closer to π

2 ) angles within probable fixation groups. This should
also help filter singular or outliers points for both features.

3.3.3 Identification via Dispersion Threshold (I-DT)

Implementing the I-DT algorithm was a more precise and complex process,
involving more conditions and parameters for proper classification. Be-
sides the usual parameters from before like X/Y coordinate position, there
also exist temporary parameters that act as a "pending" status for the val-
ues to be classified either as fixations or saccades. For this implementa-
tion, there are temporary lists for possible X/Y fixation coordinates as well
as their respective timestamps. Additionally, these X/Y coordinates are
added to temporary centroid lists for further centroid calculation (if said
points are eventually classified as fixations). The main final parameters are
the X/Y calculated centroid coordinates, the classified fixation/duration
points, and the duration of each fixation.

Before going through all the points in the data, a start point is defined as the
very first point in the series. This start point indicates the beginning of the
first possible fixation period. Along with this, the X/Y coordinates for this
start point are defined. The timestamp for this point is considered the start
of the duration period, and the duration difference for the next possible
fixation takes this first point as the start. The end points are defined exactly
the same like the start points, the key difference being that the end point is
the current data for which the pointer inside the loop is located. In other
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words, while a fixation is being "determined", the end point is the current
point in the loop through the whole amount of data.

With these two pieces of information established, the differences can be
established for classification purposes. The duration (time difference) of a
fixation is simply defined as (end point time − start point time), where the
start point time is the timestamp for the first point in that fixation periods,
and the end point time is the current point’s timestamp within the same
fixation period. This gives the information for how long the current fixation
is running for, and is compared directly to the duration threshold. This
duration threshold is user-defined, and must be fulfilled for a series of
possible fixation points to be grouped as a fixation. For fixation dispersion
conditions, the X and Y coordinate boundaries must be established,
this is simply done as (|end point x − start point x|) and (|end point y −
start point y|). Where the start point is the defined coordinate point for
the start of that specific fixation period, and the end point is the current
point’s coordinates for that same fixation period. These differences must
each not exceed the defined boundaries from the start point for them to be
classified as fixations.

The first conditional checks if the current Y and X coordinates are within the
set proximity (for example, 200 pixels) of the start point. If it is met, it then
checks if the duration threshold is met. If this threshold is met. The X/Y
coordinates, timestamp are put into fixation lists, and the set is classified
as a fixation. Additionally, they are also put into the temporary centroid
lists for calculation at the end of that fixation group. The fixation duration
is then defined at this point (which can increase with further valid fixation
points in the same set). If it is not met, the "would be" fixation points,
and timestamps are put into temporary fixation lists. Like with the points
above, they are also put into temporary centroid lists.

If this first condition is not met, it will check if fixation being evaluated
meets the defined fixation duration (0.2 seconds for example). If it does so,
all of the points and timestamps in the temporary lists are then put into
fixation lists and are properly classified as fixations. The centroids are then
calculated using the average positions of the X/Y point coordinates for that
fixations. These are then added to a list alongside a separate list that adds
the duration of that respective fixation. All of the temporary points are then
reset, and the start point is now defined as the current point immediately
after the fixation has ended. This current point is classified as a saccade to
split the previous and fourth coming fixations.

However, if the duration is not met after the fixation group, the coordinates
and timestamps inside the temporary lists are put into the saccade lists and
are all properly classified as saccades. The current point is again defined
as a saccade like with the previous conditional statement. Like with above,
the temporary parameters are all cleared, the possible centroid values are
discarded and the start point is defined as the current point in the loop, for
a possible new fixation period.
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3.4 Data Table

Figure 3.18: A table with a sample of the classification results of the
implemented algorithms.

The figure 3.18 is a sample of the classification results (from points 6 to 25)
from the eye-tracker classifier as well as the implemented algorithms. It
includes x-axis and y-axis data as well as the corresponding timestamps for
those points. One of the results determined from this table is the hamming
distance, which is a value that describes the discrepancy (difference)
between two series of values (or lists). In this instance, the hamming
distance will be computed for all the implemented algorithms, comparing
their classification to the original eye-tracker’s classification algorithm
to determine how different the results are from each other and to also
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determine how well that particular algorithm performed. Additionally,
this will be done through the use of typical classification performance
parameters such as precision and recall. These more detailed results of
the algorithms are presented and discussed in the next chapter.

3.5 Data processing & Feature Grouping

The data processing and grouping of the features is done using an
algorithm that takes the resulting fixation and saccade list and groups them
based on consecutive results. The condition for a new group is that there
must exist at least two consecutive classifications from the same feature.
Once a new feature is pointed to, a group is created from the previous
points. These conditions do not apply for outlier classifications, thus they
are always non-grouped and exist individually. The groups (as well as
individual points) are put into a new 2-dimensional list, where individual
points and groups exist in the first dimension, and the contents of the
groups exists in the second dimension. This grouping is relevant to the
next feature that is discussed below.

3.6 The K-Ratio

What makes this approach to these algorithms novel, is the inclusion of
our K-Ratio algorithm. The main idea behind this ratio, is that it helps with
categorizing which of these algorithms works best. It does this by finding
out the best value (the lower the K value, the better) for each applied
algorithm to help each algorithm achieve a hypothetical best possible
result. Therefore, this should be a reliable addition to the table further in
the results that compares the implemented algorithms.

First, we separate our sample into two groups A and B (e.g. fixations and
saccades). If the probability to transition from one group to another is
independent of the current group, then the expected transition rate from
A to B (and vice versa) is:

pindependentA→B = na × (1 − na), (3.6)

Here, na is defined as Na/N, where Na is the number of occurrences in
group A and N the total number of occurrences.

If our groups are separate, we should observe that the k-ratio is defined as

k − ratio =
pempiricalA→B

pindependentA→B
(3.7)

Where the k-ratio should be lower than one.

pempiricalA→B is just the actual observed transitions between the defined
groups in the classification (e.g. how many times the classification
transitions from A to B and vice versa.)
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While this criteria can prove useful in our case as saccadic and fixational
movements tend to be sequential across time, it does not guarantee
completeness. For example, if a consecutive set of saccadic displacements
is grouped with fixational movements, the ratio k should not be altered.
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Chapter 4

Results

4.1 The K-Ratio

The K-Ratio was applied to two of the three algorithms implemented in
this thesis, the I-VT and the I-AVT. Thousands of increments were carried
out to display the K-Ratio curves, as well as for observing the best possible
results. The implementation was done using the amount of saccades over
the whole data set for probability P. In the case of I-VT, the 4 instances of
outlier classifications were included in the pempirical formula as their own
groups as excluding them will not have a significant effect on the results (8
of approximately 9000 transitions). The K-ratio was not implemented for
the I-DT algorithm due to the parameters, which is discussed in section 4.6.

Figure 4.1: Plots of the K-Ratio results for the I-VT and I-AVT algorithms.

Above in 4.1 are the K-Ratio results for the I-VT and I-AVT algorithms
across thousands of tested thresholds. Along the X-Axis are the velocity
and angle-velocity thresholds respectively for classifying fixations and
saccades within their own algorithms using the sole parameter. Along the
Y-Axis is the K-Ratio, where the lower the ratio is, the better the result
based on the expected probability. What can be observed, are the curves
that both graphs produce, where an ideal point is clear on both of them
and the results become gradually worse the further away from the ideal
point the thresholds are.

47



For the I-VT tests, the best K-Ratio value achieved was a 1.193 at a velocity
threshold of 4368 pixels per second. Further, the best result for the I-AVT
was a 1.330 at 3462 relative pixels per second. As can be observed, neither
result is below 1, which is not ideal. This will be investigated further down
in section 4.6.

4.2 The I-VT Algorithm

Figure 4.2: Plot showing the fixation and saccade gaze-points separately on
the visual space, using the I-VT algorithm

The results of the fixation and saccade gaze-points for the I-VT can be seen
in figure 4.2. This results shows the visual space of the X and Y range in the
test. It is worth noting that the results here are only taken from a sample
of the data set for better visual clarity. The fixation points are marked as
red spots while the saccades are shown as blue paths. Using a low velocity
threshold of 2000 pixels/sec, the fixations and saccades are relatively clear.
There are obvious fixations point in places, as well as logical saccade paths
connecting said fixations.

The results for the fixation and saccade velocity comparisons for the I-VT
can be seen in figure 4.3. Here the velocity threshold split is clear. The
red area marks the velocities of fixation points, while the blue area marks
the velocities of the saccade point. As stated previously, the split occurs
at 2000 pixels second, which is just above the average fixation velocity
(1986.05125866 pixels per second) from the original eye-tracker algorithm.

The results for the displacement comparisons between the fixations and
saccades can be seen in figure 4.4. The most immediate aspect to note
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Figure 4.3: Histogram of the velocities comparisons for both the fixation
and saccade points, for the I-VT.

is the very similar trajectory of the point occurrences compared to the
velocity histogram. The peak is at a similar point, as well as the uneven
curve towards the right (with a hump occurring at around 50 pixels). This
is inline with the threshold results as well, with the split occurring at
roughly 20 pixels. Interestingly, there is almost no overlap between the
two classifications in the graph.

The results of the scatter plots, comparing the fixations and saccade points
with displacement and velocity can be seen in figure 4.5. This graph
compares the displacement with the velocity for both classifications. The
additional lines with higher slopes represent gaps in the timestamps.
Additionally, the velocity threshold can be seen here, where minimal
overlap is shown with displacement, as one can see by the sparsity of the
points beyond the lines in the zoomed figure of 4.5. The takeaway is that
the results are simply limited by the quality of the data, as a significant
portion of the are isolated points with no data on continuity due to missing
parameters (e.g. x/y-axis or timestamp data). This data discrepancy makes
it more difficult to justify their classifications.

The histogram comparing the angle changes for the fixation and saccade
points can be seen in figure 4.6. Comparing the results of fixations and
saccades, there is a clear divide in the angle changes between the two
features. The fixation angles remain rather uniform with slight biases
towards forward movement (0 radians) and "U-turns" ( 3.14 radians). On
the other hand, saccades have clear trajectories, with extremes at 0 radians
and 3.14 radians. This is reinforced by visually inspecting 4.2 as most
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Figure 4.4: Histogram of the displacement comparisons for both the
fixation and saccade points, for the I-VT.

saccadic behavior either show forward trajectory (with natural occasional
deviations) or extreme movements in the opposite direction. For this result,
the I-VT seems quite effective, showcasing a clear difference between
fixation and saccade eye-gaze behavior.

4.3 The I-AVT Algorithm

The results the gaze-plots containing the fixation and saccade movements
for the I-AVT are found in figure 4.7. Using the same reduced data-set, one
can inspect the classification of fixation and saccades with the red fixation
points and blue saccade paths. What is clear is that the classification is
skewed... When comparing to the standard I-VT from 4.2 the results are
different as there are more saccade paths as opposed to fixation points.

The histogram comparing the algorithm threshold results for both the
fixations and saccades are found in figure 4.8. This graphs shows the
histogram for the specific I-AVT calculations described in 3.3.2. Naturally,
new values will now fall between both positive and negative due to the
cosine injection. What can be seen is a relatively large amount of values
that fall closer to zero. Otherwise, through visual inspection, a mostly
even distribution result can be observed, with a split between positive
and negative values. It can be inferred that most values that are closer
to zero (less than 3500 (greater than -3500) relative pixels per second) can
be classified as fixations, as shown here. The split between the red and
blue sections indicates this classification. As can be seen in the angle figure
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Figure 4.5: Scatter plots comparing both the fixation and saccade points
in relation to displacement and velocity simultaneously (unmagnified left,
magnified right), for the I-VT.

(4.10) further below, a far greater amount of fixations compared to saccades
will be affected by the cosine "penalty". From this, a far greater amount
of fixations will be classified compared to saccades, which is considered
normal due to the nature of each eye movement feature.

The histogram containing the velocity comparisons for both the fixation
and saccade values are contained in figure 4.9. This graph shows the
strict velocity data for the classified fixations and saccades. It is the exact
same velocity data that is present in the I-VT results in 4.3, however it is
distributed differently due to the updated algorithm. With that in mind,
it is interesting to compare the two results. The most obvious difference
is that there is an overlap in data, meaning certain velocities generally
classified as saccades may appear apart of the fixation grouping and vice-
versa. Despite this, there is a clear velocity group for both features, and
no fixations are as fast as the average saccade, and the same applies for
saccades when compared to average fixation velocities. A takeaway is
that the I-AVT algorithm stays true to the velocity threshold aspect of the
algorithm, while simply iterating on top of it.

The results for the new angle parameter in the velocity threshold are
seen in figure 4.10. As this is the new parameter that transforms the
standard I-VT into the I-AVT, it was important to see how the new resulting
classification would look like when directly impacting the results of the
distribution. When comparing these to the I-VT classification in 4.6, one
can observe a more distinct classification, where the saccade values have
shifted more towards the boundaries of the angle range, while almost
no points remain in the middle. Interestingly through visual inspection,
fixation classification has remained mostly the same, seemingly unaffected
by the shifted saccade classification. Thus, the fixation result is similar,
where the angle changes are relatively evenly distributed across the range.
What this does prove is that adding angle change as a parameter has had a
significant impact on the classification results. Based on the inference that
saccades should exhibit directional change behavior that is either minimal
or extreme, drives the fact that this classification is more accurate than the
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Figure 4.6: Histogram of the angle change comparisons for both the fixation
and saccade points, for the I-VT

results from I-VT.

4.4 The I-DT Algorithm

Like with the previous algorithm, figure 4.11 contains the eye-gaze data for
the I-DT specifically. This figure shows how this specific I-DT configuration
classifies fixations and saccades from the visual space. Like with, I-VT, this
result is only the partial data set. It is clear that while some fixations are
classified properly, some are also erroneously classified as saccades (dense
"blobs" of short blue paths). This can probably be attributed to the low
proximity threshold as opposed to a low duration threshold.

Figure 4.12 contains the resulting centroids for the I-DT algorithm,
corresponding to the set thresholds. While the velocity-based I-VT also
contains centroid calculations for the fixation groups, it was not relevant
as the I-VT results proved more visually effective using the singular points
only, thus grouping and centroid calculation were ignored. This shows the
fixation centroids for every classified fixation grouping. This result also
included the reduced data set to correspond with the results in 4.11. These
centroids were calculated using the average X and Y-axis positions for all
the points in that respective fixation. As can be visualised, the fixation
centroids and the classified fixation points correspond with each other,
where the rough centers of the classified fixations can be seen clearly.

The histogram containing the duration comparisons between fixations and
saccade features are found in figure 4.13. Since the algorithm uses duration
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Figure 4.7: Comparing the I-AVT fixation points to the saccade paths for
the I-AVT algorithm.

as a core attribute for classifying fixations and saccades, the resulting graph
will contain relevant results. Since a duration threshold is explicitly set
for the algorithm, there will be a clear separation between fixation and
saccade results, similar to velocity graph for I-VT in 4.4. One can see
from these results that the duration threshold is clearly set at 0.125 seconds,
therefore any groups (or individual points) falling under that threshold are
classified as blue and vice versa. The spike on the left side indicates the
several individual points that were classified as saccades, and therefore all
share the same duration time that in in-line with the eye-tracker capture
frequency.

The resulting histograms showing the travelled distances for the fixation
and saccade features respectively are found in figure 4.14. The left figure
side shows the saccades overlap in the foreground, while the right figure
shows fixations overlap in the foreground. When combined, a similar
pattern forms to what was seen in 4.13 when comparing duration. The
difference here is that some overlap occurs, but each grouping still remains
quite separated and distinct. It may come as a surprise that fixations
generally cover more distance compared to saccades, but this is most
likely because fixations tend to have many more points in a grouping, and
therefore naturally cover more total distance. Most saccade classifications
are either small groups that potentially cover large distances, or single
point classifications that are either classed wrongly and therefore travel
fast as the fixation point. For this result, the proximity threshold was set
at 70 pixels, perhaps increasing this threshold will skew the results and
may potentially eliminate saccadic outliers.
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Figure 4.8: Histogram of the I-AVT angle-velocity comparisons for both the
fixation and saccade points.

Figure 4.15 contains the resulting histogram, showing the angle changes
for both the fixations and saccades. As the angle change classification
results for the previous velocity-based algorithms were shown, it would
be interesting to compare the results with a dispersion-based algorithm
instead. From visual inspection, it can be seen that fixations and saccades
exhibit a similar pattern of increased frequencies on each end of the angle
spectrum, as well as a similar "U-shaped" graph. This could simply be due
to the parameters used and procedures of the I-DT algorithm, and thus
such a result can be considered as less important. It can be assumed that
the results are simply inaccurate as they differ significantly from previous
results, this could be due to mis-classification, and saccades are erroneously
classified as fixations. One can conclude that if this mis-classification
was not present, the results would closer mimic those from the other
algorithms.

The results for figure 4.16 contain the scatter plot, comparing fixations and
saccades to the distance travelled, with their respective durations. Since
both the figures from 4.13 and 4.14 show some close relation, comparing
the two key parameters involved in I-DT seems relevant. Like with the
previous scatter from I-VT, this data also suffers from lack of quality. This
data also shows other interesting information, where the slope of a point
from the zero-axis (x and y values are both 0) is actually the velocity for
that given point. In this sense, it shows that many of the classified points
have varying, overlapping velocities and therefore have trivial influence
on this I-DT classification. This plot is relevant strictly for I-DT due to the
grouped nature of the classified features, like with 4.12.
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Figure 4.9: Histogram of the I-AVT velocity comparisons for both the
fixation and saccade points.

Again, a clear split can be seen in the fixations and saccades where the
majority of saccades are low duration and low distance, while fixations
are higher duration, higher distance. Through close inspection, a couple
outliers exist (saccades above the duration threshold, fixations below
the duration threshold). Saccades above the duration threshold is fairly
normal, as they simply did not fulfill the proximity requirement, but the
series of points still lasted as long as a typical fixation would. Fixations
below the duration threshold are likely anomalies when accumulating the
duration of a fixation group.

4.5 Collective Algorithm Results

For all the evaluation, the eye-tracker algorithm will be considered as the
ground truth for the data and discussion in these next sections.

The confusion matrices for each of the implemented algorithms are seen in
figure 4.17. These confusion matrices contain the resulting numbers that
are used to define the accuracy, precision, recall and F1-score calculations
seen later in figure 4.18.

Accuracy is defined as the TruePositives+TrueNegatives
Total .

Precision is defined as the TruePositives
TruePositives+FalsePositives .

Recall is defined as the TruePositives
TruePositives+FalseNegatives .

Finally, F1-Score is defined as the ( 1
2 (

1
Recall +

1
Precision ))

−1
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Figure 4.10: Histogram of the I-AVT angle change classifications for both
the fixation and saccade points.

At first glance, the obvious common occurrence are the similar patterns in
the confusion matrices for the algorithms. The most dense element in each
are true positive fixations, while the weakest element are false negative
outliers, being classified as saccades. One must take into account the initial
uneven distribution of the points as well. Since there are more fixations
than saccades, and more saccades than outliers, fixations distributions will
naturally appear more dense compared to saccades. Regardless, analysing
the fixations from the eye-tracker, all of the algorithms performed relatively
well, with classification scores of 87.08%, 86.38%, and 87.27% for the I-VT,
I-AVT, and I-DT algorithms respectively. Additionally, ’correct’ saccade
classification comparatively much worse, with classifications scores of
56.00%, 47.34%, and 54.27% for the I-VT, I-AVT, and I-DT algorithms
respectively. Outlier results were inevitably very poor (approximately 0%)
in comparison to the implemented algorithms’ classification, with the I-VT
only correctly classifying one instance of an outlier result. This is due to the
implementations eliminating outlier classifications almost entirely.

The results table for the different evaluated parameters for all the imple-
mented algorithms are seen in 4.18. From first glance, the results for each
algorithm are quite different from each other in certain categories. Looking
at the hamming distance, the I-DT performed the best with a distance of
13319 (or 66.8% of points classified correctly), while the I-AVT performed
poorest with a distance of 14192 (or 64.67% of correctly classified points).
This is reflected directly in the accuracy scores of the three, where the order
of performance is the I-DT, then the I-VT and finally the I-AVT. The re-
duced accuracy scores from those presented above are certainly due to the
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Figure 4.11: Comparing the fixation points to the saccade paths for the I-DT
algorithm.

non-classification of outliers. Due to uneven distribution, the non-accuracy
of outliers does not inflict a great penalty of these results. The same can be
said for the above saccade classification scores, but to a lesser extent.

Next, the precision results are significantly poorer across the board, with
the I-VT having the highest precision at 48%, while the I-AVT and I-DT
have significantly poorer results at 39% and 40% respectively. This most
likely due to the poor false positive rates of saccade classification for all of
the algorithms, even though the actual number of false positive fixations
are higher, the relative balance of the classification means that it has less of
an impact.

Thirdly, recall performance is also rather poor across the algorithms with
both the I-VT and I-DT scoring 47%, while the I-AVT scored a 45%. It
can be assumed that the false negative results across all of the algorithms
concerning outlier classification impacted each result equally (as they all
scored the same for outlier recall). Therefore, the remaining classifications
only affected the results marginally, but all were inevitably going to
produce a poor overall recall result.

Finally, similar to the recall results, the F1-scores proved unimpressive
across the algorithms. No algorithm proved to be significantly better than
the rest in this comparison. Regardless, the I-DT scored the highest at 44%,
with the I-VT and I-AVT scoring lower, at 43% and 42% respectively.
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Figure 4.12: Map of the fixation centroids (for each classified fixation
feature) for the I-DT algorithm.

4.6 Algorithms Evaluation & Discussion

The reason for choosing the eye-tracker algorithm as the ground truth
is because we technically do not know better. As far as this thesis
is concerned, the eye-tracker results are the ’correct’ results, and the
algorithm performance evaluation is based on how accurate the results
are to the baseline. Of course, other eye-trackers could be used for
this, but then they would also be the basis of evaluation. The biggest
problem of course is with the amount of points classified as outliers in this
instance. This makes evaluation much more difficult since the algorithms
implemented were set up to exclude such results. The only exception
to this rule is with the velocity threshold, where negative velocities were
considered outliers as negative velocity is not possible.

A first possible measure of how good an algorithm might be, is by
comparing the gaze patterns from 3.1 to 4.2, 4.7, and 4.11. This is considered
a good common point of reference since all of these results share identical
gaze patters, where the difference is in the actual classification of the points.
Simply by looking at these graphs, the I-VT algorithm seems to have the
most similar classification, while the I-DT seems to have the most dissimilar
classifications as there is a clear lack of identified fixations, mainly towards
the top right of the visual space. This of course is just an evaluation of a
sample of the whole gaze trajectory. While it gives some idea for which
algorithm is best, it is not conclusive.

As seen earlier in the matrices, the patterns exhibited are similar. This
consistency is both a positive and negative result. The positive is that it
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Figure 4.13: Histogram of the durations for both the fixation and saccade
features.

Figure 4.14: Histograms of the total travelled distances for both the fixation
and saccade features.

shows that all of the algorithms have consistent patterns, and there are no
serious anomalies in terms of classifying ’incorrectly’. The drawback is that
if any one of these results are relatively poor, the other algorithms will also
end up poor. If one ended up having dramatically different results, there is
a chance that those results may have ended up being closer to the truth.

Some correlation observation attempts were made on some of the para-
meters, specifically to see how much these crucial parameters affected each
other. These observations were done in figures 4.5 and 4.16. It was determ-
ined that these observations were not relevant for the specific algorithm
evaluation, but may still be worth observing in a deeper investigation. It
was determined more important to look at the classification in these plots,
seeing where the classifications are among the scatters, and what can be
learned from them. As noted in the respective results sections, it was worth
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Figure 4.15: Histogram of the I-DT angle change classifications for both the
fixation and saccade points.

noting how these diagrams show a lack of quality data, being that many
points are scattered, not due to naturally occurring outliers, but rather be-
cause data is missing in between the points plotted. These correlation ob-
servations do not exist for the I-AVT plot as it was determined to not be
a priority. However, considering how the angle parameter affected the
results compared to a standard I-VT, a further investigation into this re-
lationship is worth looking into. The last point of note for correlation is the
confusion matrix results from fig 4.18.

A possible hypothesis to be made is that the best performing algorithm
should score the best results in each respective category, but this is not the
case here. There is no correlation between these results (for example, if
one algorithm has a much higher precision score than the others, it will
not necessarily score the best from an accuracy perspective.) .Therefore, a
singular algorithm cannot be determined as the best one relative to the eye-
tracker. What can be observed instead, is that certain algorithms perform
better than others in certain areas. Ever further than that, a best possible
algorithm would be to combine aspects of each algorithm, by determine
where their strengths are, and integrating them into one comprehensive
algorithm. A problem with this scenario, is that this ideal algorithm may
perform worse to a typical algorithm with some other eye-tracker data
or equipment. This is specifically why certain algorithms discussed in
the background chapter (N&H for example) work best in their controlled
environments, but not necessarily from a general perspective. So perhaps
an adaptive algorithm is the best choice.
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Figure 4.16: Scatter plot comparing both the fixation and saccade points in
relation to total distance travelled and total duration simultaneously.

There were some expectations to be had with the K-Ratio in the hopes that
it would improve the existing results, but unfortunately, it did not affect
them much. When it came to implementing it, doing so for the I-VT and I-
AVT were easy as they both only have one parameter, therefore the K-Ratio
is only working on one dimension. For the I-DT however, implementing it
was possible, but it seems having two parameters that may act against each
other for ideal results causes problems when finding the K-Ratio. It was
clear that the lowest K-Ratio values applied to the I-DT resulted in extreme
results where the ratio between fixations and saccades was too high (e.g.
20 saccades to 1 fixation).

Regardless, the K-Ratio results were ultimately not implemented in for the
results above. This is simply due to how similar the predicted threshold
from visual observation were from the K-Ratio (E.G the lowest K-Ratio for
I-VT was 4368 pixels per second, similar to the estimated 4200 pixels per
second). For context, the visually observed thresholds applied originally
were based on getting as close to the eye-tracker’s fixation to saccade ratio
(approximately 4:1) as possible. The results from the confusion matrix,
as well as the classification report, and hamming distance, were not any
better than the results prior to implementing the K-Ratio values. One can
infer that the K-Ratio is better suited for algorithms where a clear "ideal"
threshold is unclear, like in the I-DT, despite the results not proving useful.
The I-DT thresholds are based on groups of fixations and saccades, while
the thresholds for the other two are based on individual points, this may
be why the K-Ratio was not working ideally.
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Figure 4.17: Confusion matrices for the I-VT, I-AVT, and I-DT algorithms
respectively.

Figure 4.18: A table comparing the matrix results of the algorithms.
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Chapter 5

Conclusions & Future Work

To summarise the work done in the thesis, several different algorithmic
approaches were used with the goal of determining which of them are
the best for classifying fixations and saccades, based on the original eye-
tracker. Implementation difficulty proved to not be relevant in terms of
how the algorithms performed, as something very simple like the I-VT did
not perform any worse compared to the more complex I-AVT and I-DT
algorithms. This of course can change when moving to far more advanced
algorithms like I-HMM or I-MST, where the implementation is very robust
and complex. Naturally, one expects these algorithms to produce relatively
great results over what has already been implemented. On the whole, the I-
VT algorithm turned out to be the best algorithm. Just from comparing the
accuracy and recall results, it may seem inconclusive, but its significantly
higher precision score makes it the best choice in this case. Perhaps
on a different experiment, the results will be more convincing, but not
in this case. Since only two features were distinguished from the eye-
tracking results, this may have affected how the tests are concluded. There
is a chance that much of the data are blinks or noise, thus classifying
them as something discrete is incorrect interpretation, hence why the eye-
tracker algorithm classified them as outliers. Therefore, this automatically
makes the algorithms implemented with the discrete fixation and saccade
classifications lose relative performance over the baseline.

Perhaps better technology will make future eye-tracking classification
better, and evaluating existing, proven algorithms will prove more useful
when compared with an equally strong classifier within the eye-tracking
devices themselves. A better eye-tracker, paired with a potentially
improved algorithm, to be used in the future will hopefully classify eye-
gaze points more accurately and with more discretion, to avoid having as
many outliers points as there were in this instance. This will obviously
help with external algorithmic evaluation, similar to what is being done
here. In this case however, combining the methods is perhaps the best
way to approach the problem. Perhaps if these tests were done on more
than one data set simultaneously, more concrete results may have emerged
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from these findings. Another suggestion for the future is a robust way
to determine the results of algorithms. In this thesis, several different
visualizations and results were projected to determine the performance
of the algorithms. Perhaps a standard approach for classification results
are not ideal for eye-tracking classification specifically, and better methods
need to be developed. This can also be extended to the proposed ideal
solution for finding the best possible algorithm, via the K-Ratio. The
results with its usage can be considered disappointing as they did not yield
any serious improvements in the results. With this in mind, perhaps a
better implementation of the K-Ratio is necessary. This can be done using
more complicated and varying data sets, the use of other algorithms not
implemented in the thesis, or simply by tweaking the K-Ratio algorithm
itself.
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