
Comparison and Benchmarking of
Reservoir Computing using Cellular

Automata and Random Boolean Networks
as Substrates

Ruben Jahren

Thesis submitted for the degree of
Master in Applied Computer and Information Technology (ACIT)

- Phase II
30 credits

Department of Computer Science
Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2022

Comparison and Benchmarking of
Reservoir Computing using Cellular

Automata and Random Boolean Networks
as Substrates

Ruben Jahren

© 2022 Ruben Jahren

Comparison and Benchmarking of Reservoir Computing using Cellular Automata and Random

Boolean Networks as Substrates

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/

Abstract

Reservoir Computing is an emerging concept in artificial intelligence derived from Recurrent

Neural Networks, which utilizes an untrained reservoir substrate to memorize and separate

input in such a way that it may be linearly separated in a readout layer. Since its origins with

RNN, it has shown great flexibility in what can be facilitated as a substrate.

In this thesis, Reservoir Computing models with Cellular Automata and Random Boolean

Networks as substrates were implemented. The Lifelike and Elementary CA rulespaces were

explored on the X-bit Memory Benchmark with both substrates.

Efforts were made to discover how the innate differences in connectivity between CA and

RBN would affect the performance of the reservoirs, and whether further exploration of RBN

RC in conjunction with ReCA could bridge the gap between CA and biological neural networks

as a substrate.

The RBN reservoirs used in this thesis showed tendencies to perform worse than CA for

much of the explored rulespace, for the specific configurations tested on the X-bit Memory

Benchmark. However, several rules exhibited interesting behaviour, an prompted further

exploration and mapping of a shared rulespace between CA and RBN.

The results suggest that further exploration the parameterspaces and rulespaces of RBN RC

in tandem with ReCA could facilitate the use of CA as an interface to biological substrates like

BNN.

i

ii

Acknowledgments

I would like to thank my main supervisor, Tom Glover. A witty and compassionate genius, and

a master of Elementary CA. If not for his unwavering will to criticise my models and encourage

me, this whole thesis would likely have been a mere shadow of its potential.

My co-supervisor, Professor Stefano Nichele. A true inspirational force in the field of

biologically inspired AI, and quite possibly the reason I even wrote this thesis.

My unofficial tertiary supervisor, Francesco Martinuzzi. A humble pioneer in reservoir

computing using the Lifelike CA rulespace, and a contributor to the Julia programming

language.

A sincere thanks to Sidney Pontes-Filho for adding support for the Lifelike rulespace in his

library EvoDynamic just so I could use it in my thesis. Also for granting me remote access to

servers I could run experiments on at the OsloMet AI Lab, while he was on vacation in Brazil.

I would also like to extend my gratitude to Kristine Heiney, Håkon Weydahl and Jørgen

Jensen Farner for being great intellectual sparring partners throughout my time as a master’s

student.

A big thanks to my family and friends for not bothering me while I was doing my thesis

these past five months. I don’t know if it was intentional, but it means a lot.

I’m kidding. Thanks for checking in. :)

Last, but not least, thanks to Sarah Ødegaard, my fiancée and best friend, for keeping us both

sane during these trying times. ♡

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Ethical Considerations . 4

1.2 Thesis Outline . 4

2 Background 5

2.1 Reservoir Computing . 5

2.1.1 Reservoir Computing with Physical Substrates 6

2.2 Cellular Automata . 6

2.2.1 Lifelike Cellular Automata . 7

2.2.2 Elementary Ceullular Automata . 8

2.3 Random Boolean Networks . 10

2.4 Classifications and the Edge of Chaos . 11

2.4.1 Wolfram’s CA categories . 11

2.4.2 ECA with Memory (ECAM) . 12

2.4.3 Additive Cellular Automaton (ACA) . 12

2.4.4 Alternitve Four-way Classifcation of Two-dimensional Semi-Totalistic

Cellular Automata . 13

2.4.5 Edge of Chaos . 13

2.4.6 Rulespaces . 14

3 State-of-the-Art 17

3.1 Reservoir Computing with CA (ReCA) . 17

3.2 Reservoir Computing with Boolean Networks (RBN RC) 20

4 Methods 23

4.1 Experimental Setup . 23

4.1.1 Model Architecture . 23

4.2 X-bit Memory Benchmark . 28

v

5 Results 33

5.1 Reservoir Computing in the Lifelike Rulespace . 33

5.2 Reservoir Computing in the ECA Rulespace . 37

5.3 Continued Lifelike Experiments . 46

5.4 Yilmaz tests . 49

6 Discussion 51

6.1 The Results . 51

6.2 The Process and Limitations . 53

7 Conclusion 57

7.1 Summary . 57

7.2 Future Work . 57

8 Appendix 63

vi

List of Figures

2.1 History plots with flattened two-dimensional CA Lifelike rules. The other four

Lifelike rules examined in this thesis is examined in figures 5.1a, 5.2a, 5.2b and 5.3a 10

4.1 Reservoir Computing Architecture . 24

4.2 Input Mapping Scheme for the Lifelike rulespace 25

4.3 Input Mapping Scheme for the ECA rulespace . 25

4.6 History plots of ECA Rule 204 with Nb = 1 and Dp = 200 clearly depict the input

flow of an X-bit Memory Benchmark. 30

5.1 Game of Life reservoir with Nb = 1 and Dp = 10. Flattened Lifelike reservoir

representation like in figure 2.1 . 34

5.2 Comparison of reservoir dynamics with three similar rules for Nb = 1 and

Dp = 40. InputVector = [0, 1, 0, 0] and the mapping is inconsistent between the

reservoirs. Flattened Lifelike reservoir representation like in figure 2.1 36

5.3 B368/S12578 reservoir with Nb = 1 and Dp = 10. Flattened Lifelike reservoir

representation like in figure 2.1 . 37

5.4 The reservoirs dynamics can quickly dissipate in Lifelike RBN reservoirs. 38

5.5 Comparison of results for Nb = 5 with different RBN connectivity. 39

5.6 Comparison between ECA Rule 204 in RBN with locked and free centre indices.

See figure 4.6 for a reference to the behaviour with ECA connectivity. 41

5.7 History plots of rule 60 with Nb = 1 and Dp = 200 with different connectivity. . . 43

5.8 Comparison of results for Nb = 2, 3, 4, 5 with free RBN connectivity. 44

5.9 Comparison of results for Nb = 2, 3, 4, 5 with locked RBN connectivity. 45

5.10 Comparison of Continued Lifelike results for Nb = 5. 46

5.11 Comparison of results for Nb = 2, 3, 4, 5 with CA connectivity. 47

5.12 Comparison of results for Nb = 2, 3, 4, 5 with RBN connectivity. 48

5.13 Comparison of CA and RBN Lifelike reservoirs with R = 28. 48

vii

viii

List of Tables

2.1 The group of equivalent rules. The primary column is the minimum equivalence

rule that represents its group of equivalent rules if any. (Glover, Lind, Yazidi,

Osipov & Nichele, 2022) . 9

2.2 Additive Cellular Automata and corresponding boolean form. In this notation

c−1, c0 and c1 is the left, central and right neighbour, respectively (Glover et al.,

2022). 13

4.1 Benchmark timetable for inputs the size of 5 bits. 29

5.1 Results of the selected rules and reservoir configurations from (Martinuzzi, 2022). 34

5.2 Results from the replicated reservoir architecture of (Martinuzzi, 2022) with the

addition of Dynamic Life (B356/S23) (Peña & Sayama, 2021). Cross-referenced

with the RBN reservoir architecture. (R, I) where R is the reservoir width and I

is both the length of the reservoir feature vector and the number of iterations

between inputs. 35

5.3 Results from the replicated reservoir architecture of (Glover, Lind, Yazidi, Osipov

& Nichele, 2021). Cross-referenced with the RBN reservoir architecture. (R, I)

where R is the redundancy parameter and I is the number of generations.

*Tests performed without the development step. 40

6.1 Rules that exclude one and only one cell in their state transition tables. Filtered

by listing the left, right and center exclusive rules found in this calculation Glover

(n.d.), and extracting the rules that are exclusive to each list. 52

6.2 XOR Truth Table . 52

8.1 Class 1 Elementary CA with Memory classifications 63

8.2 Class 2 Elementary CA with Memory classifications 63

8.3 Class 3 Elementary CA with Memory classifications 63

8.4 Class 4 Elementary CA with Memory classifications 64

8.5 Results (Martinuzzi, 2022) Lifelike CA on the 5-bit Memory Benchmark. The

results are reported as percentage of perfect runs out of 100 runs. 64

ix

x

Chapter 1

Introduction

Reservoir computing (RC) is a growing field within artificial intelligence where a non-linear

problem is projected into an untrained substrate, propagating the input stream into a higher

dimensional space where it’s linearly separable by a linear algorithm in the readout layer.

While RC architecture bears resemblance to the various Artificial Neural Network (ANN)

architectures of Deep Learning (DL), the training process demands very few resources in

comparison. The key point of RC is that the weights1 inside the reservoir medium are not

trained, only the linear readout layer, which can be made up of simpler Machine Learning (ML)

techniques like linear regression, or more complex architecture like a Support-Vector Machine

(SVM).

The earliest approaches to RC entailed the employment of Recurrent Neural Networks (RNN)

as a substrate, but with randomly initialized weights. The pioneers of RC sought to exploit the

innate computational capabilities of RNN without the need to go through the resource-intensive

training of the internal weights. The traditional layered structure of ANN is removed, and what

is left is a reservoir of dynamic properties.

Even though RC achieved success in maintaining high accuracy in appropriate tasks while

reducing the resource costs of training, RNN still has fundamental drawbacks which must

be considered. The weights between the artificial neurons in the network are represented by

floating point numbers, which makes the computation cost of inference relatively high.

A consequence of this is that implementing such a reservoir in hardware becomes highly

complicated. A common goal of RC researchers as of late has been to further reduce

computational complexity and energy consumption by exploring and exploiting other viable

substrates.

For a physical or conceptual system to be considered a viable substrate in RC, it must possess

the echo-state property, as coined by (Jaeger, 2001). Previous state and input must dissipate

gradually in the medium without getting amplified, in other words, the system must exhibit a

fading memory of sorts.

The other integral requirement is the separation property, the ability to propagate the input

1the "strength" of the connections between the artificial neurons or other similar elements

1

throughout the reservoir.

Two dynamical systems that have been shown to possess such properties and have been

used in modelling of complex systems (Sayama, 2015) are:

• Cellular Automata (CA)

• Random Boolean Networks (RBN)

(1) Having been studied closely since the dawn of computer science, CA is embedded in

many a computer scientist’s heart. CA is a complex system of cells, typically organized in a

lattice2 structure. Each cell has a discrete position based on its coordinates in the plane, from

where it interacts locally with other cells.

(2) RBN exhibit many of the same computational capabilities as CA. The update schemes of

classical RBN may be exactly the same as those of CA, however, their systematic structure and

interaction between elements are fundamentally different to each other.

If one is familiar with common data structures, CA might be explained as a two-dimensional

list, or an array of arrays. RBN are more easily compared to a linked list - a graph of sorts, where

the absolute positions of elements do not matter as much, as the interactions are based on edges3

instead.

As rapid advancements are made in DL, so too do the computational resource requirements

and energy consumption associated with both training and inference increase. Taking steps

towards more biologically inspired artificial intelligence could result in a major positive impact

on the environmental influence of the technological advancements in the field.

Training being a well known cost in the field of DL, and AI in general, where a GPU might

be running at capacity to train a model on a specific dataset continuously for days at a time.

Running inference in real-time with continuous streams of data is not trivial either, however,

and requires state-of-the-art, powerful components like GPUs in many cases.

The Sustainable Development Goals (SDG) of the United Nations (UN) are the product of

the sovereign nations of the world coming together to envision a better world for all for the

future. A set of 17 measurable goals that cover every essential issue in the globalized world and

cultures we live in, which lays the foundation for a more sustainable approach to everything

from our basic human needs to prosperity.

It is a bit of a paradox, as AI can arguably aid in the progression of many SDG, including

those within Energy (Chui, Lytras and Visvizi (2018); Khan, Paul, Momtahan and Aloqaily

(2018); Muhammad, Lloret and Baik (2019), but it’s simultaneously consuming a lot of energy.

The environmental implications of conserving energy can be connected to the Sustainable

Development Goals (Desa & Nations, 2016), particularly (Goal 7, Ensure access to affordable, reliable,

sustainable and modern energy for all, n.d.), (Goal 9, Build resilient infrastructure, promote inclusive

22-dimensional regular grid
3directional or bi-directional connections between two elements, or from one element to itself

2

and sustainable industrialization and foster innovation, n.d.) and (Goal 11, Take urgent action to combat

climate change and its impacts, n.d.).

The massive growth of the Internet of Things (IoT) is in parallel causing computing devices

to become ever-smaller and ubiquitous.

However, with Deep neural networks becoming deeper and more computationally

demanding, it’s becoming less viable to deploy DL models to devices without state-of-the-

art GPUs for real-time processing.

Integrating AI with smaller devices is therefore becoming more difficult, and currently

requires inference to take place in the cloud, which can be unreliable. Edge computing and

5G are other converging technologies on the horizon that could alleviate some of the problems

(Deng et al., 2020; Hassan, Yau & Wu, 2019; Zhou et al., 2019).

CA-based reservoirs can offer a significant reduction in computational demands Yilmaz

(2014), and can even be physically implemented using XOR logic gates and shift-registers

(Morán, Frasser & Rosselló, 2018).

Biological intelligence is more tolerant to the randomness in nature and more robust to

perturbed information. It is better able to handle previously unseen data and situations than

engineered forms of intelligence like deep neural networks4.

And so, the primary motivation to explore the viability of RC built on CA and RBN

is precisely the approximation of natural biological computation, and the lower energy

consumption associated with it.

Thus, the essence of the thesis lies in exploring the small differences in connectivity between

CA and RBN. RBN is after all an abstraction of CA, meaning CA can be seen as a type of RBN

where the spatial properties and connectivity are uniform. The intent of the work herein is to

design RBN reservoir substrates with CA as the starting point, with as few steps between them

as possible. It is my hypothesis that merely changing from local to random connectivity will

affect how input is propagated through the reservoir. By keeping the different substrates as

similar as possible, one can uncover the impact of different connection strategies.

The research questions then become:

1. How do innate differences in connectivity between CA and RBN with similar rules affect

RC accuracy?

2. Does the effect of varying connectivity increase between one-dimensional and two-

dimensional CA compared to RBN with similar rules?

Finding answers to these questions could potentially contribute to bridging a gap between

CA and biological neural networks as substrates in reservoir computing.

4It is regarded a common truth in the field of AI, that weak or narrow AI is vulnerable to even the smallest

perturbations.

3

1.1 Ethical Considerations

The field of artificial intelligence has evolved quickly over the last two decades, and is becoming

rather powerful, more so than most people might think. At least in the area of specific tasks -

advancements in the approximation of general intelligence are far slower.

AI also amplifies many ethical issues regarding how information about individuals is

collected and used in society as a whole. AI developers aren’t always aware of innate biases

in the data that they use to train their models, and thus unwittingly pass on these biases to

predictions that the models will make. This is particularly dangerous when that data concerns

anything that is used to identify people and, for instance, their behaviour.

While this is not likely to be directly applicable to the benchmarking tasks in this thesis,

it’s important to highlight issues that we’re collectively facing. When working with bit-based

memory benchmarks, these considerations are of little consequence. However, as soon as one

starts to look at human-made data, like the MNIST digit character dataset, things get more

complicated. The model is in effect only trained to discern between different Arabic numerals,

and does not give any indication of efficiency with, say, Chinese Mandarin numerals.

AI is not perfect. It is directly shaped and constrained by our own perception, and the means

that are at our disposal. As academic researchers in a potent field, we owe it to the general public

to write in such a way that we convey both the beneficial and harmful potency of advancements

in AI technology.

Although the environmental impacts of this research may be positive, it is highly unlikely

that it would be a realistic factor in the nearest future. Most of the research done in the field of

reservoir computing is primarily concerned with the long-term vision of AI and computation in

general.

This thesis was done in association with the DeepCA project56 at OsloMet, and was proposed

by PhD Candidate Tom Glover.

The research goal of DeepCA is to establish the theoretical and experimental foundation for

a hybrid Deep Learning paradigm with CA and biological neural networks.

1.2 Thesis Outline

Firstly, the field of research is established in the Background, the problem area is narrowed

down by looking at the contributions of recent studies in State-of-the-Art, the steps taken to

answer the research questions will be detailed in Methods, the experiments and the results are

shown in Results, the results, process and limitations are discussed in Discussion, and finally a

conclusive summary and musings about possible future work in Conclusion.

5https://www.oslomet.no/en/research/research-projects/deep-ca
6https://www.nichele.eu/DeepCA.html

4

https://www.oslomet.no/en/research/research-projects/deep-ca
https://www.nichele.eu/DeepCA.html

Chapter 2

Background

This chapter explains the fundamental theoretical concepts that are relevant to thesis topics.

Firstly, Reservoir Computing (RC) is described in brief, before the knowledge on the two

substrates Cellular Automata (CA) and Random Boolean Networks (RBN) is established.

Afterwards, RC is explained more thoroughly in the context of using CA and RBN as reservoir

substrates, and ways to physically implement these. Lastly, different types of linear readout

methods are described.

2.1 Reservoir Computing

Reservoir Computing (RC) emerged from the two independent trajectories of Echo-State

Networks (Jaeger, 2001) and Liquid State Machines (Maass, Natschläger & Markram, 2002). The

former was an alternative RNN approach for control tasks. The latter focused on biological

modeling of cortical microcircuits with spiking integrate-and-fire neurons. RC is a relatively

new paradigm in RNN training, outperforming the classical, fully trained RNNs.

It involved projecting input through an untrained, dynamical substrate and separating the

results in a linear output layer. The input needed to be mapped to the reservoir layer, the

reservoir layer then projected the input to a higher dimension, and the output layer read the

state of the reservoir and extracted the features. The readout layer in RC architectures comprises

a linear regression, or classification model. It is responsible for the classification of input by

linearly separating the feature vectors created by the reservoir.

The continued works in RC attempted to use the innate dynamical capabilities of RNN as

a medium for computation, by randomly initializing the weights in the network and leaving

them untrained. Exploiting the intrinsic dynamics of RNN as an excitable system, and thereby

only having to spend resources training the output layer.

RNN are a type of cyclical derivative of feed-forward neural networks, that takes into

account the past states of the network when determining the next output. RNNs are turing

complete (Siegelmann & Sontag, 1995). The memory capabilities of RNN have made them apt

at, and widely popular for, temporal problems like natural language processing and speech

5

recognition (Jaeger, 2001).

There are at present day several drawbacks of deep learning architectures that persist in

RNN-based RC, especially floating point calculations, which could be alleviated by using CA or

RBN as substrates instead.

For a reservoir to perform well at computational tasks, it must be able to both forget past

perturbations and keep two input streams that have begun converging separated (Bertschinger

& Natschläger, 2004). These properties are the fading memory and separation property mentioned

in chapter 1.

2.1.1 Reservoir Computing with Physical Substrates

A great prospect of RC is the versatility of reservoirs. In theory, any medium that possesses

fading memory and separation property, could be successfully applied as a substrate. (Fernando &

Sojakka, 2003) is often cited in this regard, as it demonstrates that water, a natural dynamical

system, could be used as a substrate in RC to allow sound waves to be linearly separable in a

voice recognition task.

The floating point weights in RNN substrates entail that hardware implementations of RC

would be quite inefficient with, e.g., Field-Programmable Gate Arrays (FPGA). This drawback

turns into and advantage of CA and RBN as discrete, binary systems that can be described with

logical gates.

One could argue that CA has an edge1 over RBN in this application because of its regular,

local connectivity. CA is also supported natively in FPGA by being fully parallel, while RBN

could be asynchronous.

Research of RBN in the context of physical substrates are still very much worthwhile, because

it could be a closer approximation to biological neural networks.

Some rules in the two substrates can be very expressive and difficult to implement, but a

rulespace such as Elementary Cellular Automata can easily be expressed with boolean logic.

ReCA can be synthetically implemented in FPGA through emulation software and trained

(Liang, Hashimoto & Awano, 2021; Morán et al., 2018), before being implemented physically in

FPGA hardware (Morán et al., 2018).

2.2 Cellular Automata

Automata (singular: automaton) are theoretical machines that alter their internal states based

on external inputs and knowledge of their own previous states (Sayama, 2015). Cellular

Automata (CA) consist of a set of automata arranged in a regular grid, which states are

updated synchronously (Sayama, 2015). This grid can be a one-dimensional vector as in the

ECA rulespace, or a two-dimensional lattice as in the Lifelike rulespace. CA is a discrete

1Pun intended.

6

computational model of complex systems, one of the first to describe self-reproduction and

evolution in living systems (Neumann, 1966; Sayama, 2015).

The interaction between cells is local and self-organized - devoid of any form of centralized

control. A cell can be in one of a predefined number of states, where two states is most common,

like in RBN.

The state is updated in discrete time steps based on local interactions in a structured way.

This update scheme is referred to as a rule and is defined in conjuncture with the size of the

local neighbourhood and the number of possible cell states.

The number of possible rules and transition tables increase exponentially with the number

of states and neighbours. Given the number of possible states S, the number of possible

neighbourhood states will be SN , where N is the number of neighbours each cell has. Each

of these possible neighbourhood states can be mapped to any of the S states, resulting in SSN

unique rules in the given rulespace (Babson & Teuscher, 2019).

For Elementary CA, the rulespace is of size 223
= 256, and the Lifelike rulespace is of size

228
= 2256 = 1.1158 × 1077 = immense.

Because the interactions are predefined by the rule, and the cells interact in the same local

neighbourhoods each time, a CA is deterministic. That means if you apply the same initial

conditions to a CA, it will evolve in the exact same way every time.

CA are capable of displaying emergent behaviour with certain rules.

Like RNN, certain rules of CA, like ECA rule 110, are considered Turing Complete (Cook et

al., 2004).

2.2.1 Lifelike Cellular Automata

The Lifelike rulespace comprises a subset of binary, totalistic rules with a Moore neighbourhood,

spanning the eight cells surrounding the centre cell. The rules sum the states of the neighbours,

and state transition is determined by these factors:

• The cell’s own binary state (dead or alive)

• A set of state sums that allow a dead cell to be born

• A set of state sums that allow a living cell to survive

(Sayama, 2015)

The rules are expressed simply as rulestrings on the form B3/S23, where the B-component

expresses the set of state sums that allow a dead cell to be born, and the S-component in turn

expresses the set of state sums that allow a living cell to survive. Should the sum of states in the

neighbourhood fall outside these defined sets, living cells will die and dead cells remain dead.

The most famous among the Lifelike rules is Conway’s Game of Life (Conway et al., 1970),

having reached a wide audience of mathematicians and computer scientists since its inception

in the 1970s. The mini-universe of Game of Life has been extensively studied throughout the

years, and many of the discoveries are now detailed in (Johnston & Greene, 2022). Game of Life

7

has been considered to belong to Wolfram’s Class IV, displaying complex behaviour (Packard &

Wolfram, 1985).

There is likely untapped potential in the Lifelike rulespace (Bak, Tang & Wiesenfeld, 1987;

Life-like cellular automata, n.d.), and researchers have begun applying advances in heuristics to

search and classify the Lifelike rulespace for other CA rules with equally complex behaviour as

Game of Life (Eppstein, 2010).

Some of the rules explored by (Eppstein, 2010) include:

• B25/S4 (Class III)

• B27/S0 (Class III)

• B35/S236 (Class III)

• B37/S23 (Possible Class IV)

• B36/S245 (Class II or IV)

• B368/S12578 (Possible Class IV)

• Morley (B368/S245) (Class II or IV)

Many of these rules support Lifelike constructs like spaceships, replicators, gliders, etc.

The behavioural classifications seemed to vary between them when initial conditions were

randomized.

B36/S245 could be characterized by its narrow, yet persisting living and dead regions with

fine-grained variations and smaller emerging patterns of dead islands which appeared and

disappeared in two to three input cycles.

Figure 2.1 depicts the history of different Lifelike rules when perturbed by the X-bit Memory

Benchmark.

The CA size is 10× 10 = 100, but it’s flatted for every timestep in the figure so that every x in

the top of the y− axis represents the two-dimensional CA in the first timestep. Every subsequent

step downwards in the y − axis represents the next state. This representation directly correlates

with the reservoir feature vectors, and makes Lifelike rules more easily comparable to ECA than

by, e.g., looking at several two-dimensional plots for each rule to determine how they evolved,

and is consistent with Lifelike history figures in the rest of the thesis.

2.2.2 Elementary Ceullular Automata

Elementary Cellular Automata (ECA) is a rulespace defined by having two possible states S = 2

and N = 3 number of neighbours, thus comprising SSN
= 256 unique rules. The order of the

neighbours is a factor in the state transition tables, and the centre index neighbour is always

a self-connection. Many of the 256 rules have equivalent rules inside the rulespace, either by

having complimentary or mirrored versions of the other’s state transition tables.

8

Rule Equivalent Rule Equivalent Rule Equivalent

0 255 35 49,59,115 108 201

1 127 36 219 110 124,137,193

2 16,191,247 37 91 122 161

3 17,63,119 38 52,155,211 126 129

4 223 40 96,235,249 128 254

5 95 41 97,107,121 130 144,190,246

6 20,159,215 42 112,171,241 132 222

7 21,31,87 43 113 134 148,158,214

8 64,239,253 44 100,203,217 136 192,238,252

9 65,111,125 45 75,89,101 138 174,208,244

10 80,175,245 46 116,139,209 140 196,206,220

11 47,81,117 50 179 142 212

12 68,207,221 51 146 182

13 69,79,93 54 147 150

14 84,143,213 56 98,185,227 152 188,194,230

15 85 57 99 154 166,180,210

18 183 58 114,163,177 156 198

19 55 60 102,153,195 160 250

22 151 62 118,131,145 162 176,186,242

23 72 237 164 218

24 66,189,231 73 109 168 224,234,248

25 61,67,103 74 88,173,229 170 240

26 82,167,181 76 205 172 202,216,228

27 39,53,83 77 178

28 70,157,199 78 92,141,197 184 226

29 71 90 165 200 236

30 86,135,149 94 133 204

32 251 104 233 232

33 123 105

34 48,187,243 106 120,169,225

Table 2.1: The group of equivalent rules. The primary column is the minimum equivalence rule

that represents its group of equivalent rules if any. (Glover et al., 2022)

9

Figure 2.1: History plots with flattened two-dimensional CA Lifelike rules. The other four

Lifelike rules examined in this thesis is examined in figures 5.1a, 5.2a, 5.2b and 5.3a

(a) B25/S4 (b) B27/S0 (c) B36/S245

(d) B37/S23 (e) B368/S245

2.3 Random Boolean Networks

Random Boolean Networks (RBN) were first conceptualized by (Kauffman, 1969) as a method

to model a gene regulatory network.

RBN can be considered an abstraction of CA with two possible states, and as such one might

consider CA a subtype of RBN with regular and local connectivity.

Defined in graph theory, RBN is a directed graph with N vertices and E = ⟨K⟩ × N directed

edges (Snyder, Goudarzi & Teuscher, 2013).

The connections between cells, or nodes, are not uniformly structured, but randomly

initialised. Unlike CA with its regular grid, nodes in a network don’t necessarily need a

determined spatial position.

The connections of a network can be either homogeneous or heterogeneous, where the nodes

have a static number of edges or an average number of edges, respectively.

The number of edges in a network, and the neighbourhood size is described by the in-degree

10

or K. ⟨K⟩ = 2 means that the nodes in the network will have two neighbours on average, some

more - some fewer, while K = 2 means that every node is forced to have two neighbours.

RBN are typically totalistic, which means that the order of the neighbours do not matter,

unlike in ECA. The state transition tables are formally defined as boolean operators on the

boolean/binary states of the nodes.

Several types of RBN were introduced in (Gershenson, 2004):

1. Classical Random Boolean Networks

2. Asynchronous Random Boolean Networks

3. Deterministic Asynchronous Random Boolean Networks

4. Generalized Asynchronous Random Boolean Networks

5. Deterministic Generalized Asynchronous Random Boolean Networks

6. Mixed-Context Random Boolean Networks

(1) can be considered deterministic on like CA, because they are synchronous. (2) elements

in systems of biological intelligence, like neurons in neural networks and genes in DNA, do

not update their states in discrete timesteps. A node is picked at random and updated, instead

of updating the nodes synchronously. Non-deterministic. Destroys the cycle-attractors of

CRBNs, as it’s highly unlikely that a sequence of states will be repeated with a non-deterministic

updating. (3) introduces to parameters to ARBNs, the period and the translation of the node

updates. If more than one node is to be updated in the same time-step, it is done in an arbitrary

order. (4) a group of nodes is randomly selected and updated synchronously. Semi-synchronous,

but non-deterministic. (5) if more than one node is to be updated in the same time-step, all of

those nodes are updated synchronously. (6) the period and the translation of the node updates

are seen as the context of the network.

2.4 Classifications and the Edge of Chaos

Both CA and RBN have well-established behavioural classifications associated with them, often

referred to as classes and phases in literature pertaining to CA and RBN, respectively.

In both paradigms, there is a consensus that optimal conditions for computation of

information is found somewhere on the edge between ordered and chaotic states.

These lower and an upper limits of complex behaviour (Wolfram, 1984) are found to be

relatively close together, posing a bit of an observational challenge in locating the phase transition

of a given CA or RBN system. (Langton, 1990)

2.4.1 Wolfram’s CA categories

Since its inception, several attempts have been made to characterize and classify the behaviour

of CA. Best known among those is the Wolfram Classification. (Wolfram, 1984)

11

• Class I - All cells go towards the same state

• Class II - The system settles into stable or oscillating patterns

• Class III - The chaotic state of the initial pattern is perpetuated for eternity

• Class IV - The rest of the possibilities, complex behaviour that lies somewhere between

classes II and III.

This classification has been thoroughly used and tested in past decades, and received

criticism for not being entirely applicable to widely explored rulespaces, such as ECA and

Lifelike CA. However, it still serves as a baseline for most researchers who endeavour into the

field of CA, and many newer sub-classifications use it as a frame of reference.

2.4.2 ECA with Memory (ECAM)

ECA rules have been found to have varying alignments with their original Wolfram

Classifications when paired with a memory function (Martinez, Adamatzky & Alonso-Sanz,

2013).

The ECA rules where found to group into 3 classes:

• Strong: Most memory functions change the rule to another different class quickly

• Moderate: Memory functions can transform to a different class and conserve the same

class as well

• Weak: Memory functions are unable to transform into another class

These 3 definitions are in line with the interpretations made by (Glover et al., 2022), and not the

original publication (Martinez et al., 2013).

The classification tables can be found in the appendix.

2.4.3 Additive Cellular Automaton (ACA)

An additive cellular automaton is a cellular automaton whose rule is compatible with an addition

of states (Additive Cellular Automaton, n.d.).

12

ECA Rule Boolean

0 0

60 c−1 ⊕ c0

90 c−1 ⊕ c1

102 c0 ⊕ c1

150 c−1 ⊕ c0 ⊕ c1

170 c1

204 c0

240 c−1

Table 2.2: Additive Cellular Automata and corresponding boolean form. In this notation c−1, c0

and c1 is the left, central and right neighbour, respectively (Glover et al., 2022).

2.4.4 Alternitve Four-way Classifcation of Two-dimensional Semi-Totalistic Cellular
Automata

A new classification method was proposed for Lifelike rules in (Eppstein, 2010).

1. do there exist patterns that eventually escape any finite bounding box placed around

them?

2. do there exist patterns that die out completely?

• If both are true: cellular automaton rule is likely to support spaceships, small patterns that

move and that form the building blocks of many of the more complex patterns that are

known for Life

• If one or both are not true: there may still be phenomena of interest supported by the

given cellular automaton rule, but we will have to look harder for them

2.4.5 Edge of Chaos

The critical point between orderly and chaotic states in complex systems has been dubbed "the

Edge of Chaos". Usually referred to in combination with the Wolfram Classification, where

Class II represents order, Class III represents chaos and Class IV is somewhere in between - on

the edge (Wolfram, 1984).

The λ parameter was introduced by (Langton, 1990) as a method to parameterize the

rulespaces of CA. It orders the set of possible state transition tables based on how many states a

transition function go towards an arbitrary quiescent state Sq.

Lower values of λ represent systems which dynamics quickly die out, and higher values

are associated with chaotic and random dynamics. The emergent behaviour in either end of

the spectrum is considered simple and easily predictable. However, there exists a space in

13

between, where the phase transitions from ordered to chaotic, vice versa, in which complex2 and

unpredictable emergent behaviour can be seen (Langton, 1990).

One can observe that the ordered behaviour displays better memorizing capabilities, fading

memory, while the chaotic behaviour is more inclined to propagating the input information, the

separation property - both essential components of computation.

Therefore, it is not impossible for systems leaning more to either side to be capable of

computation, however, ordered systems would need more time, while chaotic systems need

more redundancy to counteract instability (Gershenson, 2004).

Simply put, a perfect balance of order and chaos is more economical and therefore

advantageous in an evolutionary sense.

Criticality in heterogenous RBN has been found with in-degrees of ⟨K⟩ = 2 (Snyder,

Goudarzi & Teuscher, 2012; Snyder et al., 2013), while it is reportedly found closer to K = 3 in

homogeneous RBN (Burkow, 2015, 2016). However, computation is considered possible in RBN

with higher in-degrees. However, it is possible that RBN with a higher in-degree are capable of

computation.

Criticality in CA doesn’t appear to be as limited in terms of connectivity, as computation

is seemingly possible in both the ECA and Lifelike rulespaces, where the in-degree would be

K = 3 and K = 8, respectively. A reason for this may be the regular, local connectivity, and there

is a chance this thesis might prove that the computational properties of RBN are indeed more

sensitive to the in-degree.

2.4.6 Rulespaces

Elementary CA (ECA) has the benefit of an exhaustible rule-space of 256 unique transition

tables.

RBN has also been found to have an optimal balance of separability and fading memory at

critical connectivity, an in-degree of ⟨K⟩ = 2 in heterogeneous RBN and K = 3 in homogeneous

RBN, which is similar connectivity to ECA (Burkow, 2015; Snyder et al., 2013).

Game of Life (GoL) and the rest of the Lifelike rulespace would offer more interesting spatial

and temporal comparison to a nature-like network model. Conway’s GoL (Conway et al.,

1970; Johnston & Greene, 2022) is one of the most tried and tested rules for CA, and displays

computational properties.

(Babson & Teuscher, 2019) found that more expressive CA rules required a smaller reservoir

to achieve comparable accuracy to ECA rules, but it is unclear whether rules in the Lifelike

rulespace fall into the category of more expressive.

Sampling from the Lifelike rulespace has the potential of reaching beyond the criticality in

ECA, with its many rules that might have similar computational potential as GoL, or better.

2Behaviour reminiscent of Wolfram’s Class IV description.

14

A major problem is exactly the sheer size of the space to search, though, meaning the selection

of rules would have to be done on an empirical basis in this thesis.

15

16

Chapter 3

State-of-the-Art

Given the time-constraints of a short thesis, it was deemed implausible to do an exhaustive

parameter search for the substrates of interest, while also doing comparative experiments with

the models. Instead, a qualitative selection process was chosen to determine which directions

were viable, based on relevant literature of experiments with ReCA in both the Lifelike and ECA

rulespace, and RBN RC.

There were several important constraints to consider when narrowing down the type of

reservoir substrates to implement thesis. This chapter seeks to clarify the grounds for the

decisions made in developing the method, while bringing to light the most relevant recent

works on the topics of ReCA and RBN RC.

3.1 Reservoir Computing with CA (ReCA)

The first to do RC with CA as substrates in the reservoirs, was (Yilmaz, 2014). Their methods

were a bit difficult to interpret. The reservoir architecture utilizing Game of Life was seemingly

comprised of several 2-dimensional sub-reservoirs R. For the 5-bit Memory Benchmark, each

sub-reservoir was perturbed with the input vector. Based on the wording of the paper, it seemed

that 100% of the reservoir was perturbed, and that the total size of the grid was equal to (Input

Size) X R. However, taking into account the very specific figures in the paper, it seemed that the

sub-reservoirs R were the size of the input squared, and thus around 25% of each sub-reservoir

was perturbed. In any case, the size of the CA was not exactly specified and rather left up to

interpretation.

Discrepancies between the figures and tables representing ECA data did not help, either.

5-bit experiments with distractor period 200 and ECA Rule 90 were clearly shown in the tables to

achieve zero errors with any combination of (R, I) which resulted in size 512 or larger. However,

the same rule was shown to require a minimum size of roughly 750 to achieve zero errors with

a distractor period of 160. It is likely that that figure is pointing to 768, splitting the difference

between 512 (16 x 32, or 32 x 16) and 1024 (32 x 32).

17

Recent works in ReCA have futher explored the ECA rulespace and beyond, and

experimented with variations in the reservoir architecture.

(Nichele & Molund, 2017) implented ReCA with an expansion into a two-layer (deep)

reservoir in the ECA rulespace, tested on the 5-bit Memory Benchmark. Deep reservoirs entailed

that the output of the first reservoir was used as input in the second.

Outputs from the first layer was compared with the multi-layer outputs. Results from the

layered system exhibited improvements to the single reservoir system, particularly rule 165 at

(I = 4, R = 4), where I is the number of iterations and R is the number of separate CA in a

single reservoir.

(Nichele & Gundersen, 2017) implemented ReCA with Non-Uniform Binary Cellular

Automata in the ECA rulespace, tested on the 5-bit benchmark. Reservoirs with different

CA rules were used in parallel, showing that some rules work well in combination with each

other. Good combinations of rules seemed often have a relation like being complementary rules.

(Babson & Teuscher, 2019) implemented ReCA in C++ and tested it on the 5-bit Memory

Benchmark. Expanded on research on Elementary CA to investigate rule-spaces from more

complex CA. Used a genetic/evolutionary algorithm to find "edge of chaos" rules capable of

computation in those complex CA.

(McDonald, 2017) implemented ReCA and Extreme Learning machines with pairs of ECA

rules, seemingly using one rule for memory and the other for separation. It was a bit unclear

how the memory rules affected the benchmarks, or if this part of the method was perhaps not

tested.

The paper proposed several novel benchmarks in the field of ReCA:

• Sine and Square Wave Classification

• Non-linear Channel Equalization

• Santa Fe Laser Data

• Iris Classification

The parameter space of ReCA with ECA on the X-bit Benchmark in recent works (Glover et al.,

2021, 2022). A ReCA model was implemented using the EvoDynamic library (Pontes-Filho et al.,

2020) and tested on the X-bit Memory Benchmark, where the impact of varying the number of

bits (Nb), the redundancy R, the length of subreservoirs1 Ld, reservoir height (I) and distractor

period (Dp) was evaluated.

(Glover et al., 2021) systematically examined parameters of ReCA with Elementary CA,

namely redundancy, number of bits, size of the vector the input is mapped to, the CA

permutation iteration and the CA rules. The parameters reservoir height I and distractor period

Dp were static for the experiments. Showed that the parameter spaces in the explored regions

1Described as the size of the vector the input is mapped to.

18

were dynamic, impacting different rules in different ways, and require careful consideration

when using CA as a reservoir.

The work was continued in (Glover et al., 2022), where more of the paramerter space was

explored: I, which controlled the size of the reservoir feature2 and Dp, the distractor period of

the benchmark. They observed an increase in difficulty with increasing Dp much like (Yilmaz,

2014), who claimed that this increase was logarithmic. Not as impactful as increasing the number

of bits Nb (the other benchmark-specific parameter), but (Glover et al., 2022) hypothesised that

varying Dp might make either the input or cue signal easier or harder to separate in the reservoir.

A Support Vector Machine was used in the readout layer of (Glover et al., 2021).

From Scikit-Learn’s documentation:

The primal problem can be equivalently formulated as

min
w,b

1
2

wTw + C ∑
i=1

max(0, 1 − yi(wTϕ(xi) + b)), (3.1)

where we make use of the hinge loss (1.4. Support Vector Machines, n.d.).

ReCA has been synthetically and physically implemented with Field-Programmable Gate

Arrays (FPGA) in recent studies (Liang et al., 2021; Morán et al., 2018).

ReCA with max-pooling, where the readout layer used a softmax regression, aka.

Multinomial logistic regression or maximum entropy classifier was implemented in (Morán et

al., 2018). Generalisation of logistic regression for use with multiple classes/categories. Trained

and tested on MNIST. Synthetic hardware implementation using emulated circuitry for training.

Used those saved weights on a physical hardware implementation using FPGA. Elementary CA

rule 90 was iterated over rows and columns independently and combined using XOR, with a 3D

boolean tensor output.

(Liang et al., 2021) implemented ReCA where the readout layer was an ensemble of Bloom

filters, tested on the MNIST benchmark. Synthetic hardware implementation. Achieved 43 times

reduction in inference memory cost compared with earlier work with Bloom filters. Elementary

CA rules were applied to rows and columns independently and combined with XOR.

Few recent works in ReCA have explored the Lifelike rulespace. However, (Martinuzzi, 2022)

has explored Lifelike rules that were highlighted in the works of (Eppstein, 2010; Peña & Sayama,

2021) in CA reservoirs on the 5-bit Memory Benchmark, first endeavoured as a part of Google

Summer of Code 2020 (Martinuzzi, 2020).

The input mapping method was inspired by (Yilmaz, 2014) random distribution of binary

data directly into the reservoir. Differing from ReCA models, the R parameter defines the full

width of the reservoir, instead of the redundancy of separate connected subreservoirs. The full

reservoir size is simply R2, so for R = 28 there are 784 cells in the reservoir. The input vector

2Described as the reservoir height, which makes sense in ECA, but isn’t easily transferable to Lifelike or other CA

with more than one dimension.

19

was randomly mapped and projected into a pre-defined percentage of the entire reservoir, by a

projection ratio of 60% Pr = 0.6.

At R = 24, 26, 28, 30 and I = 6, 8, 10, 12, this resulted in reservoir feature vectors of size

30 × 30 × 12 = 10, 800 for the biggest reservoirs, and 24 × 24 × 6 = 3456 for the smallest.

Significantly bigger than the ECA reservoirs previously described in this section. For instance,

(Glover et al., 2021) had for R = 4, Ld = 40 and I = 2 reservoir feature vectors of size

4 × 40 × 2 = 320.

Ridge Regression was used in the readout layer of (Martinuzzi, 2022). Ridge regression

is very similar to the ordinary least squares of linear regression, but penalizes the size of the

coefficients.

Linear Regression problem:

ŷ(w, x) = w0 + w1x1 + ... + wpxp (3.2)

Linear Regression:

min
w

||Xw − y||22 (3.3)

Ridge Regression:

min
w

||Xw − y||22 + α||w||22 (3.4)

The complexity parameter α ≥ 0 determines the strength of this penalty.

The reservoirs achieved good results on the 5-bit Memory Benchmark with many of the

reservoir configurations, for most the rules that were tested.

3.2 Reservoir Computing with Boolean Networks (RBN RC)

As this thesis endeavoured to contribute to closing the gap between CA and BNN in hopes of

eventually being able to to use the former as a kind of interface to the latter in RC, the research

and methods have a profound basis in CA, and not so much RBN.

This is reflected in the amount related work that was reviewed on the topic of RBN RC. This

conscious, partial neglect was deemed fair with regard to the intended purpose of producing

RBN that would resemble CA as closely as possible, and almost a necessity with respect to the

time-constraints of a short thesis.

(Snyder et al., 2012) investigated the optimal connectivity of heterogeneous RBN as reservoirs,

and observed a trade-off between fading memory and the separation property for different average

in-degrees ⟨K⟩ in RBN.

Continued work in (Snyder et al., 2013) observed that the computational properties in

heterogeneous RBN were often strongest at critical connectivity ⟨K⟩ = 2. However, they warned

that the manner in which the reservoir was perturbed should be taken into account when

analyzing this correlation as well. They claimed that chaotic RBN may perform well if the length

of perturbation is short, but will struggle to differentiate between different inputs when the

perturbation lengths increase.

20

(Burkow, 2016) explored the performance of different RBN reservoir sizes for the

Temporal Parity and Temporal Density benchmarks, with the intention of facilitating future

implementations of different physical reservoirs. They found that optimal perturbation was

found to be at around 50% of the reservoir for homogeneous RBN with in-degree K = 3. In their

thesis pre-project, it was claimed that K = 3 would provide the most optimal conditions for

computation (Burkow, 2015), differing from that of heterogeneous RBN at ⟨K⟩ = 2.

The results of these papers and the master’s thesis have provided grounds that RBN is an

apt substrate for RC.

21

22

Chapter 4

Methods

In this chapter the methods used in pursuit of the research problem are detailed in order of

significance. This experimental software setup is briefly explained before going into the model

design details. Firstly, the architecture of the implemented RC system with support for both CA

and RBN as substrates will be described, including methods used to create RBN with as few

abstractions away from CA as possible. Secondly, the design and procedure of the experiments

that were conducted are outlined before moving on to the experiment details and results in the

next chapter.

For reference, the research questions are repeated here:

1. How do innate differences in connectivity between CA and RBN with similar rules affect

RC accuracy?

2. Does the effect of varying connectivity increase between one-dimensional and two-

dimensional CA compared to RBN with similar rules?

4.1 Experimental Setup

The software used in these experiments was developed in the Python programming language.

EvoDynamic, a library created specifically for complex systems modelling with TensorFlow

support was used to set up the reservoirs (Pontes-Filho et al., 2020). The readout layer

was powered by Scikit-Learn’s out-of-the-box linear classification models, specifically Ridge

Regression and Support Vector Machine.

4.1.1 Model Architecture

Herein follows a recount of how the three major parts of this reservoir computing system was

implemented. These three are as follows:

1. Input layer

23

Figure 4.1: Reservoir Computing Architecture

2. Reservoir

3. Output layer

Input Layer

The purpose of the input layer is to encode the input data and map it to the elements of the

reservoir itself. The encoding method should reflect the type of data and the mapping strategy

will vary depending on the shape and dynamics of the reservoir, relative to the task at hand.

Two main methods of input mapping had been suggested in earlier literature (Yilmaz, 2014).

The first option was to apply weighted summation to input data in order to get binary inputs

for every element in the reservoir. The second option was valid for binary data, and entailed a

random mapping of an input vector representation of that data.

Since the benchmarks of this thesis revolved around binary data, the second option was

adapted for the Lifelike reservoirs in this work. Depending on the reservoir model used, the

input vector was either randomly mapped once per sub-reservoir (Glover et al., 2021), or to a

certain number of elements in the full reservoir, defined by a projection ratio Pr (Martinuzzi, 2022).

As a rule, ECA reservoirs used the former, and Lifelike reservoirs the latter.

Reservoir

The reservoir is where the input is separated and propagated into a higher dimensional space,

in order to make separation through linear algorithms possible. The reservoir models in this

work were implemented with CA and a variation of RBN designed to be as similar to CA as

possible. Results from (Glover et al., 2021) suggested that the aptness of different rules could

vary greatly with even the smallest changes to reservoir size and sub-division. However, the

parameter space is largely left unexplored in this work, with the intention of focusing in on the

behavioral differences between CA and RBN in the same rulespace.

24

Figure 4.2: Input Mapping Scheme for the Lifelike rulespace

Figure 4.3: Input Mapping Scheme for the ECA rulespace

25

(a) Network graph depicting connectivity in

Lifelike rules.

(b) Network graph depicting connectivity in

ECA.

The Lifelike reservoirs were inspired by (Martinuzzi, 2022) and (Yilmaz, 2014), and primarily

featured in experiments replicating those of the former. As in (Martinuzzi, 2022), the reservoir

was not divided into sub-reservoirs, and R instead represented the width of the full reservoir.

The shape of the reservoir was R2, thus the total number of elements were R × R. A few

variations of reservoir shape were implemented, specifically in attempts to interpret (Yilmaz,

2014) architecture, but were not featured in substantial experiments.

The ECA reservoirs were derived from (Glover et al., 2021) and featured the parameter LD,

which defined the length of the vector the input was mapped to. Essentially the length of each

sub-reservoir, which was repeated R times. Therefore the total number of elements in the ECA

reservoirs were defined by R × LD.

The connectivity in the two CA rulespaces that are explored in this work is local and

homogeneous, as long as the grid is set up with periodic boundaries1, which EvoDynamic

does by default for CA. The Lifelike rules use the Moore neighbourhood structure and the ECA

rules use a neighbourhood scheme consisting of the centre cell and their immediate left and

right neighbours.

Both structures thus take into account every cell around the centre cell in a radius of one,

however, the Lifelike rulespace relates to the self-state (centre cell) differently than ECA, usually

by summing the states of the neighbours and checking the self-state after the fact. Where ECA

instead factors in self-state in the state transition table as if it is connected to itself. Lifelike

rules are totalistic in this sense, where the order of the neighbours doesn’t matter, only the sum

of the states. As a result, reservoirs with Lifelike rules had an in-degree of eight even though

the neighbourhood size was technically 3 × 3 = 9, and ECA rules had an in-degree of three,

counting the centre index cell.

The Lifelike rulespace was translated to RBN by generating a set of random connections

while keeping the in-degree constant in the network. Because the Lifelike rules were totalistic,

1Connections wrap around at the edges.

26

(a) Network graph depicting RBN with a locked

centre index.

(b) Network graph depicting RBN with a free

centre index.

the order of the neighbours didn’t matter, and the randomly generated edges could remain

unweighted. However, when translating from the ECA rulespace, the state transition table

required knowledge of the order of the neighbours, i.e., which nodes were to be regarded as the

left, centre and right indices. This was done through weighting the edges in an n-ary fashion

based on the number of possible states (n = 2 states in these rulespaces), as this was how the

ECA state transition tables were implemented in (Pontes-Filho et al., 2020).

The ECA reservoirs were tested with two different variations in connectivity. The first is

with a locked centre index, to more closely resemble ECA, and the other is with a free centre

index, which is more RBN-like.

Output Layer

The reservoir feature vector consisted of the full list of reservoir states for a given input. This

state vector was produced by concatenating the list of states for every reservoir timestep (not to

be confused with the benchmark timestep) into a single longer list. The length of the reservoir

state vector was in all cases defined by the parameter I, which also corresponds with how many

reservoir iterations occur between inputs. The state of the reservoir persisted between inputs,

until a new permutation begun.

The ECA models employed a development step introduced by (Glover et al., 2021), which

added a reservoir timestep between the input and the recorded state vector. This was done

primarily to prevent the output layer from directly accessing the input states, but it also allowed

the reservoir dynamics to develop while keeping the features smaller in size. In the lifelike

models, the list of states were flattened from two dimensions to one, and they did not employ the

development step between inputs and recorded states in the experiments that were conducted.

The models implemented in this work comprised two different classifiers from the scikit-learn

library.

1. Ridge Regression Classifier - a linear regression model where the loss function is the linear

27

least squares function and regularization is given by the l2-norm2.

2. Support Vector Classifier with a linear kernel3.

Though implemented in such a way that the two were interchangeable by passing a single

parameter, Ridge regression was primarily used for Lifelike reservoirs and SVM was used for

ECA reservoirs, for no other reason than an attempt to replicate previous methods.

4.2 X-bit Memory Benchmark

The experimental work in this thesis revolved around replicating known Lifelike and ECA

reservoir architectures which had previously been tested on the X-bit benchmark. After

validating the setup with CA, comparative runs were executed with RBN connectivity in

order to compare the results between the two.

The task is simple by design, but is able to test long-short-term memory in the reservoir.

The task is considered very difficult for standard feed-forward neural networks (Hochreiter &

Schmidhuber, 1997), and thus serves to evaluate the fading memory and separation property of the

reservoir in conjunction with the chosen linear model. It can be divided into four parts:

1. Input Pattern

2. Distractor Period

3. Cue Signal

4. Output Pattern

(1) The first steps define a pattern of bits according to the number of bits defined. If the bit

in the first channel is set to one, the bit in the other channel must be zero, vice versa. The

benchmark table shows input steps defined by a length of 5 bits, more specifically the number

25 in binary form. The two other input channels repeat zeros. The output of the reservoir is

expected to be neutral during these first steps, i.e., the third channel should return one and the

others zero.

(2) During this neutral state, a single value input is repeated to the reservoir for a number of

timesteps defined as the distractor period. The purpose is to distract the reservoir’s memorizing

properties, thus the longer it is, the harder the task becomes. The output of the reservoir is

expected to remain neutral for this period as well, identical to the input stream.

2https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
3https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

28

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

Timestep
Input Output

u1 u2 u3 u4 y1 y2 y3

Input Pattern

1 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1

3 0 1 0 0 0 0 1

4 0 1 0 0 0 0 1

5 1 0 0 0 0 0 1

Distractor Period

6 0 0 1 0 0 0 1

7 0 0 1 0 0 0 1
...

...
...

T − 7 0 0 1 0 0 0 1

T − 6 0 0 1 0 0 0 1

Cue Signal T − 5 0 0 0 1 0 0 1

Output Pattern

T − 4 0 0 1 0 1 0 0

T − 3 0 0 1 0 1 0 0

T − 2 0 0 1 0 0 1 0

T − 1 0 0 1 0 0 1 0

T 0 0 1 0 1 0 0

Table 4.1: Benchmark timetable for inputs the size of 5 bits.

(3) On the final step of the distractor period, a cue signal is input to the reservoir, i.e., the

fourth input channel is set to one, while the others input zero. The output is still expected to be

neutral at this step as it marks the end of the distractor period.

(4) After the cue signal, the input is once again neutral, but the output channels should return

the pattern defined in the first five steps.

Having defined the objectives of the task, one can see that it is analogous to a one-hot encoded

classification task. The linear readout layer takes the reservoir state vectors and attempts to

classify the feature into one of the three classes in the benchmark output channels.

Depending on the number of bits to solve, there are a set number of input permutations

available. For five bits, the most popular choice, that number is 25 = 32. For the benchmark

to succeed, i.e., get a perfect score, it must correctly classify the state of the reservoir for every

benchmark step and for every possible permutation. For Nb = 5 and Dp = 200, there are

2 × 5 + 200 = 210 timesteps per permutation, and 210 × 32 = 6720 steps to correctly classify in

one full run of the 5-bit benchmark.

When considering that most of the benchmark is dominated by the neutral state in the output

29

Figure 4.6: History plots of ECA Rule 204 with Nb = 1 and Dp = 200 clearly depict the input

flow of an X-bit Memory Benchmark.

30

channels, it is evident that the crux of the challenge is retrieving the input pattern in the final

X steps. Take for instance the 6720 total steps to correctly classify all permutations for Nb = 5

and Dp = 200. Of those, 6720 − (5 × 32) = 6560 steps might be considered trivial for most

reservoirs.

If a reservoir manages to correctly classify the neutral state in the first five steps and the

distractor period for all permutations, but fails to correctly retrieve any steps of the input pattern

in the final five, the final score will be deceiving. 6560
6720 ≈ 0.9762 is a seemingly high score with

1.0 being perfect.

(Glover et al., 2021) argued that this perfect run scoring system gave very little information

about the reservoirs that only came close to solving the tasks. This work adapts the Weighted

Average scoring system proposed by them, in order to compare accuracy between CA and RBN

beyond the perfect runs. The weight in question is defined by the score fraction mentioned

above, generalized in the following equation:

W =
Dp + (Nb)

Dp + (2 ∗ Nb)
(4.1)

Given that the fraction of correctly classified states is S̄c the W̄ can then be found using Equation

4.2.

W̄ =
S̄c − W
1 − W

(4.2)

One might observe that if S̄c is equal to W, the weighted average score is zero, while a perfect

score is still 1.0.

31

32

Chapter 5

Results

This chapter describes the experiments that were executed, their configurations, and the follow-

ing quantitative results, while shedding light on what qualitative observations could be made

with respect to the research questions.

For all experiments recorded in this work, the distractor period Dp was set to 200. Every

configuration of the benchmark was run 100 times to get a reliable percentage score. The

weighted average takes the mean score from all 100 runs with that configuration as its S̄c value.

5.1 Reservoir Computing in the Lifelike Rulespace

The pilot experiment with Lifelike reservoirs was executed with a reservoir architecture modelled

after (Martinuzzi, 2022). The first objective was to validate the behaviour of a selection of rules

tested by them with Lifelike CA, and run the same experiment with an equivalent RBN reservoir.

The input mapping strategy used was inspired by the concept of mapping binary data to

random cells in the reservoir in (Yilmaz, 2014), however, the amount of cells that were mapped

to was determined by an input projection ratio Pr = 0.6. This entailed 60% of all the cells in the

reservoir would have their states overwritten by the input vector every Ith reservoir timestep.

It was observed in preliminary visual tests that the dynamics in Lifelike reservoirs which

received more sparse input, quickly dissipated, and often died out completely before the next

input arrived. Thus warranting the dense input for this particular architecture.

Due to the way EvoDynamic was integrated in the experiment code at the time, new random

edges were generated for the RBN reservoirs between every permutation of the inputs. This

may have affected the accuracy of the RBN reservoirs, and was rectified for the ECA reservoir

and continued Lifelike reservoir experiments.

The rules were selected with validation in mind, with hopes of seeing clearly whether the

models were the same, or at least similar enough, since their implementation was in the Julia

programming language. The number of rules were a bit on the low side compared to later

experiments, with respect to the computing power that was available at the time.

33

Model CA

(R, I) (24, 8) (28, 8) (30, 6)

B3/S23 0 100% 63%

B35/S236 1% 100% 94%

B368/S12578 2% 100% 92%

Table 5.1: Results of the selected rules and reservoir configurations from (Martinuzzi, 2022).

Figure 5.1: Game of Life reservoir with Nb = 1 and Dp = 10. Flattened Lifelike reservoir

representation like in figure 2.1

(a) CA (b) RBN

One thing to note in this experiment, is that scikit-learn’s Ridge Classifier was used with

α = 1.0, whereas (Martinuzzi, 2022) had used a Ridge Regression model implemented in Julia

with α = 0.001, resulting in my model having a much stronger regularization parameter. This

reduction in variance could explain the improvements in accuracy in my replication of their

experiments. This work was based on an early access version of the paper, where not every

single detail was explained, and the primary goal was to compare the following results to my

RBN reservoirs.

In the CA validation test, which results can be seen in table 5.2, Game of Life (B3/S23)

achieved 2% perfect runs with R = 24 and I = 8, marginally better than (Martinuzzi, 2022) with

0, seen in table 5.1.

B35/S236 and B368/S12578 both achieved much higher scores with 72% and 60%,

respectively, which raised some concerns about discrepancies between the two reservoir

34

Model CA RBN CA RBN CA RBN

(R, I) (24, 8) (28, 8) (30, 6)

B3/S23 2% 0 100% 0 91% 0

B35/S236 72% 0 100% 0 100% 0

B368/S12578 60% 48% 100% 100% 100% 100%

B356/S23 67% 0 100% 0 100% 0

Table 5.2: Results from the replicated reservoir architecture of (Martinuzzi, 2022) with the

addition of Dynamic Life (B356/S23) (Peña & Sayama, 2021). Cross-referenced with the RBN

reservoir architecture. (R, I) where R is the reservoir width and I is both the length of the reservoir

feature vector and the number of iterations between inputs.

architectures. However, it became evident that the general behaviour of the rules were consistent

when looking at the results for R = 28.

All three rules performed better with R = 30 and I = 6 than in (Martinuzzi, 2022) as well,

with Game of Life achieving a score of 92%, up from 63%, the highest visible increase among the

three rules.

Dynamic Life (B356/S23), put forward as a candidate of computational prowess in (Peña

& Sayama, 2021), was tested, and achieved very similar scores to B35/S236. The two are quite

close in the Lifelike rulespace, both allowing births on 3 or 5, and survival on 2 or 3, with the 6

switching from survival to birth in Dynamic Life.

Figure 5.2 depicts the evolution of the two rules side-by-side. The dynamics of both rules

fully enveloped in around the same time, and exhibited similar chaotic patterns, with Dynamic

Life looking a little bit denser overall. The ramp-up time of reservoir activity took a lot longer

for the RBN connectivity in figures 5.2c and 5.2d.

There were certain narrow regions in Dynamic Life that stayed dead for the duration of the

experiment. B35/S236 showed similar tendencies, but had more variation in those narrow

regions. The patterns looked similar overall. However, when compared to the behaviour with

CA connectivity, the patterns in RBN seemed more edgy and rounded off like many CA patterns.

Likely due to not enveloping locally, but rather popping up more sporadically.

Results for RBN reservoirs were poor across the board, with the exception of B368/S12578,

which achieved results similar to its CA connectivity. With random initial conditions,

observations indicated an intersection between Class II and Class III behaviour of this rule

(Eppstein, 2010), which made it an apt candidate. It would seem like those traits carry over in

part to the RBN connectivity (see figure 5.3).

The poor accuracy of the Lifelike RBN reservoirs compared to CA may be correlated with

the way patterns envelop with random connectivity, making it difficult to either detect the cue

signal, or separate between different inputs. From visual observations, it was also evident that

RBN reservoirs were generally more sensitive to the ratio of input projection Pr. Too few input

35

Figure 5.2: Comparison of reservoir dynamics with three similar rules for Nb = 1 and Dp = 40.

InputVector = [0, 1, 0, 0] and the mapping is inconsistent between the reservoirs. Flattened

Lifelike reservoir representation like in figure 2.1

(a) Dynamic Life (B356/S23) (b) B35S236

(c) Dynamic Life RBN (d) B35S236 RBN

36

Figure 5.3: B368/S12578 reservoir with Nb = 1 and Dp = 10. Flattened Lifelike reservoir

representation like in figure 2.1

(a) CA (b) RBN

mappings resulted in completely dissipated reservoir dynamics, or no build-up at all (like in

figure 5.4), more often with RBN connectivity than CA.

5.2 Reservoir Computing in the ECA Rulespace

The second experimental phase involved running the Minimum Equivalence subset of the

ECA rulespace with RBN reservoirs, and comparing the results to (Glover et al., 2021). The

architecture for ECA reservoirs in these experiments were therefore based on theirs.

Notable differences from the Lifelike reservoirs were as follows:

• subreservoirs and the Ld parameter

• the input mapping strategy

• size of the reservoir and the reservoir feature

(Martinuzzi, 2022) moved away from subreservoirs in their work, but it was a part of

(Yilmaz, 2014) ECA (and presumably Game of Life) reservoirs, and defined by the parameter Ld

in many recent works with ReCA (Babson & Teuscher, 2019; Glover et al., 2021, 2022; Nichele &

Gundersen, 2017; Nichele & Molund, 2017).

The total reservoir size in these experiments was defined by R × Ld, which formed a long

vector. For all experiments in the ECA rulespace, the reservoirs are defined by R = 4 and

Ld = 40 resulting in 160 total length of the reservoir vector.

37

Figure 5.4: The reservoirs dynamics can quickly dissipate in Lifelike RBN reservoirs.

This was more in line with the traditional method of defining redundancy in the reservoir,

by mapping the input vector once to each subreservoir. With an input vector of size four, the

total number of input projections was 16, where four random cells in each subreservoir were

projected on-to.

The resulting input projection ratio was 10%, significantly lower than 60% (Pr = 0.6) in the

Lifelike reservoir experiments.

Instead of directly overwriting the current states of the reservoir with the input, and input

projection method where the input was XOR-ed with the current cell state was used.

Both the size of the reservoir feature vector and the length of the benchmark in timesteps

were much shorter with I = 2.

See the Methods chapter for a more detailed explanation of model differences.

In the validation tests, the results were initially slightly different to (Glover et al., 2021), seen

in table 5.3, marked with an asterisk at the bottom. This was due to the development step

between the input and the recorded state vector missing in the model. The results matched

exactly those in the original paper once the development step was implemented. It might be

interesting to note that rule 54 performed better without the development step, perhaps due

to the SVM accessing the input directly in the first of the two state vectors that make up the

reservoir feature. Then again, the very same phenomenon made rule 90 perform worse.

38

Figure 5.5: Comparison of results for Nb = 5 with different RBN connectivity.

(a) Perfect Score metric (b) Weighted Average metric

39

Rule 170 204 30 90 54 110

CA 99 0 0 100 0 0

RBN Free 7 4 0 0 0 0

RBN Locked 18 0 0 0 0 8

CA* 99 0 0 83 5 0

Table 5.3: Results from the replicated reservoir architecture of (Glover et al., 2021). Cross-

referenced with the RBN reservoir architecture. (R, I) where R is the redundancy parameter and

I is the number of generations.

*Tests performed without the development step.

After validating the performance of the model with CA connectivity, the Minimum

Equivalence subset of the ECA rulespace, with the exception of the rules that were left out by

(Glover et al., 2021), was tested on the benchmark with Nb = 2, 3, 4, 5.

For the 5-bit benchmark, among the rules selected for validation, 170 and 204 were somewhat

successful with the free RBN connectivity. In fact, those were the only successful rules among

the 76 ECA rules that were run on the 5-bit benchmark with that connectivity. The behaviour of

the two rules is analyzed further down in this section. Rule 170 achieved higher accuracy in the

locked RBN connectivity, where rule 110 also had better results than the CA.

Rules that had any number of perfect runs on the 5-bit benchmark with RBN connectivity

include 34, 15, 25, 62, 154, 170, 38, 156, 28, 6, 134, 204, 60, 106 and 110, in the order that they

appear in figure 5.5a.

The only rule that utterly and completely failed on the 5-bit benchmark was rule 72. Every

other rule managed to get at least some percentages with the weighted average scoring method.

Moderately performing rules with the free RBN connectivity, with a weighted average score of

40% or more, include 24, 152, 56, 184, 42, 44, 172, 164, 74, 29, 27, 51, 76, 204 and 36, where none

of them achieved 50% or better (see figure 5.5b). Rules performed better with the locked RBN

connectivity across the board, with a few exceptions. Rules achieving a 70% weighted average

or higher include 62, 13, 77, 33, 156, 28, 6, 134 and 60.

Rule 204 was explained to possess a certain guessing stochastic property in (Glover et al.,

2021), by clearly indicating the cue signal. It was never able to produce a perfect run for any Nb

between 2 and 5, and the weighted average was always a perfect 50% out of 100 runs.

It was expected that the locked RBN connectivity could reproduce this behaviour exactly

due to the centre index remaining fixed. The centre index is the only factor in the rule’s state

transition table, perhaps best explained by Additive CA in table 2.2. (This very fact was used in

validating the method of creating RBN in the ECA rulespace.)

Figures 5.9a and 5.9b show for every Nb that the number of perfect runs was zero and the

40

Figure 5.6: Comparison between ECA Rule 204 in RBN with locked and free centre indices. See

figure 4.6 for a reference to the behaviour with ECA connectivity.

(a) Locked RBN connectivity. (b) Free RBN connectivity.

41

weighted average was 50%, confirming that the rule’s behaviour with locked RBN connectivity

was consistent with that of CA. However, looking at figures 5.8a and 5.8b, one may observe that

the rule behaved very differently with a free RBN connectivity. For Nb = 5, it achieved some

perfect runs with a lower weighted average, meaning it lost its stochastic property.

Both the number of perfect runs and weighted average score increased when Nb decreased.

In fact, its behaviour was consistent with that of rule 170. As seen in table 2.2, the state transition

table of rule 170, much like that of rule 204, is only affected by one of the connected cells. When

the centre index was freed, and no longer forced to be a self-connection, the two rules in effect

became equivalent.

However, it is interesting to note that by moving away from the local connectivity of the CA,

the sideways projecting behaviour of rule 170 was lost, and it went from being a top performer

on the benchmark (Glover et al., 2021) to medium at best.

Rule 60 got 100% perfect runs with Nb = 5 in (Glover et al., 2021). As seen in figure 5.5a, the

performance of the rule jumped down closer to 50% perfect runs with a locked RBN connectivity.

Furthermore, the performance of the rule dipped down to 0 perfect runs for the free RBN

connectivity. Figure 5.5b shows that the weighted average score of rule 60 was above 80% and

below 20% for free and locked RBN, respectively. Figure 5.9a shows that the rule’s performance

varied greatly with Nb with locked RBN connectivity, as it achieved a higher percentage of

perfect runs with Nb = 4 than both Nb = 3 and Nb = 5. Simultaneously, one can observe

in figure 5.8a that the rule performed very well for all Nb except Nb = 5 with the free RBN

connectivity. See figure 5.7 for a comparison of the different reservoir behaviours with rule 60.

The bar plots in figure 5.8 and 5.9 show that many rules that didn’t have any success with

Nb = 5, immediately managed a lot better with Nb = 4. A small portion of the rules that didn’t

do better with Nb = 4 found traction by reducing Nb further.

(Yilmaz, 2014) obeserved that there was a polynomial increase in the minimum required

reservoir size with respect to Nb. (Glover et al., 2021) also pointed out that rules could be highly

sensitive to a number of parameters, especially the likes of Ld.

This indicates that there exists larger reservoirs with combinations of R and Ld that could

make up a perfect set conditions for many of the ECA rules, even with RBN connectivity.

However, there were a number of rules that didn’t even do well with Nb = 2, falling below

50% perfect runs. With the free RBN connectivity, these include 7, 2, 130, 24, 152, 34, 162, 10, 138,

15, 56, 184, 42, 170, 140, 4, 44, 172, 5, 132, 164, 1, 74, 29, 3, 27, 19, 51, 76, 204, 12, and 36.

With the locked RBN connectivity, they were 7, 2, 130, 108, 24, 152, 34, 162, 10, 138, 15, 11, 56,

184, 42, 170, 72, 13, 77, 78, 140, 4, 44, 172, 5, 132, 164, 1, 33, 74, 142, 43, 29, 14, 3, 27, 19, 50, 51, 76,

204, 12, 36, and 106.

The 12 Minimum Equivalence rules that were left out in (Glover et al., 2021) were also tested on

the 5-bit benchmark with this experiment configuration, and achieved abysmal results for both

CA and RBN. None of the rules 0, 8, 23, 32, 40, 104, 128, 136, 160, 168, 200 or 232 managed to

42

Figure 5.7: History plots of rule 60 with Nb = 1 and Dp = 200 with different connectivity.

(a) CA (b) RBN Locked (c) RBN Free

43

Figure 5.8: Comparison of results for Nb = 2, 3, 4, 5 with free RBN connectivity.

(a) Perfect Score metric (b) Weighted Average metric

44

Figure 5.9: Comparison of results for Nb = 2, 3, 4, 5 with locked RBN connectivity.

(a) Perfect Score metric (b) Weighted Average metric

45

Figure 5.10: Comparison of Continued Lifelike results for Nb = 5.

(a) Perfect Score metric

(b) Weighted Average metric

get a weighted average score of 1% with neither CA nor RBN connectivity, hence they were not

pursued further.

5.3 Continued Lifelike Experiments

Following the exploration of the ECA rulespace, a more comprehensive experiment

configuration with Lifelike reservoirs was designed to more closely resemble the ECA reservoirs

in size and computation. It was intended to have approximately as many total elements as the

ECA reservoirs with reservoir the shape being R2 and R = 14, resulting in 196 to ECA’s 160.

R = 12 would have been a bit short at 144, and R = 13 would have resulted in an odd number

of elements at 169.

The rules featured in (Martinuzzi, 2022) were further explored with a fixed reservoir

configuration. I = 2 and the development step was retained from the ECA experiments,

and he XOR input projection method was incorporated. The projection ratio was increased to

90% to counteract quickly dissipating dynamics (Pr = 0.9). Subreservoirs were not included and

input projections were randomly mapped to the whole reservoir. Support Vector Machine with

a linear kernel was used in place of the Ridge Classifier. The reservoir connectivity (the edges)

was retained between each input permutation of one run, contrary to the Lifelike experiments

in which new edges were generated between each permutation.

The results for Nb = 5, seen in figure 5.10, showed promise with three rules managing some

perfect runs. Rules B368/S245 and B36/S245 notably achieved more perfect runs with the RBN

46

Figure 5.11: Comparison of results for Nb = 2, 3, 4, 5 with CA connectivity.

(a) Perfect Score metric

(b) Weighted Average metric

connectivity than with CA. 5% and 4%, respectively for RBN. 0 and 2% with CA. However, the

weighted average was even between the two, slightly favouring CA.

B368/S12578 repeated its success from section 5.1, achieving over 15% perfect runs with

RBN connectivity and over 35% with CA. From figure 5.10b, one can discern that the rules was

close to solving solving the 5-bit benchmark every run with CA connectivity, closing in on 100%

weighted average. The score was around 70% with RBN connectivity.

The figure also shows that five other rules (that haven’t been mentioned) got close to 50%

weighted average score. One could not safely rule out that these reservoirs were somehow

wildly guessing the bit patterns after recognizing the cue signal, but overall the results seemed

promising enough to warrant further experiments with Nb = 4, 3, 2.

Figures 5.11 and 5.12 show that all rules for both connectivities achieved perfect or near-

perfect results across the board for Nb = 4, 3, 2.

Ironically, only B368/S12578 displayed a performance weaker than average on the perfect run

metric with CA connectivity, Nb = 4 and Nb = 3, perhaps demonstrating a more generalisable

behaviour.

On the back of these results, an experiment with a bigger reservoir was executed for Nb = 5,

comparable to that of the experiments in section 5.1, with R = 28. All other parameters were the

same as above.

The results - nothing short of perfect, shown in figure 5.13, were surprisingly good,

47

Figure 5.12: Comparison of results for Nb = 2, 3, 4, 5 with RBN connectivity.

(a) Perfect Score metric

(b) Weighted Average metric

Figure 5.13: Comparison of CA and RBN Lifelike reservoirs with R = 28.

(a) Perfect Score metric

(b) Weighted Average metric

48

considering most of the rules had struggled in bigger reservoirs and with bigger reservoir

feature vectors in (Martinuzzi, 2022).

Major reservoir factors could include the increased input projection ratio Pr = 0.9 and the

presence of the development step. Using SVM with a linear kernel instead of Ridge Regression

in the output layer could also have improved the accuracy directly.

I = 2 could also be a sweet spot for both the reservoir feature and the number of iterations

between inputs. Results of experiments with the I parameter in (Glover et al., 2022) indicated

clear dynamical behaviour in certain rules when varying the parameter, and that certain rules

might have a preference of sorts towards even or odd numbered I.

Perhaps a bit of a stretch in this particular case, but it appears that I = 2 might be preferred

over I = 8 regardless.

5.4 Yilmaz tests

Assumptions were made regarding the architecture required to replicate some of the experiments

in (Yilmaz, 2014). The reservoir architecture in this thesis was modified to be able to create a

reservoir of a size that was proportionate to the input vector. From the wording in the paper

alone it seemed like creating a reservoir with gridsize InputVector × R would suffice, however,

when taking into account the figures describing the architecture InputVector2 × R appeared

more likely, where each sub-reservoir would be the size of size InputVector2.

It first seemed like 100% of the reservoir was perturbed and it was unclear whether the

author used any other method than strictly overwriting. The method of XOR-ing the input with

the state of the reservoir was implemented at the time in order to comply with the experimental

setup in (Glover et al., 2021) regardless, and was tested with this input mapping strategy. Taking

the figures describing the input projection and reservoir architecture into account on this issue

as well, it was possible that a mere 25% of the reservoir was perturbed, given an InputVector

randomly projected into R number of squared sub-reservoirs. However, brief testing showed

that such low perturbation caused reservoir dynamics to quickly die out when using the Game

of Life rule.

The exact combination of parameters remained unclear after careful consideration and

implementation, but a few experiments were conducted to verify results from certain (R, I)

combinations and compare with a RBN reservoir using the same rules. The results of those

experiments were nowhere near what was expected, and I concluded that the method was not

reproducible in a realistic timeframe.

49

50

Chapter 6

Discussion

This chapter attempts to tie together the work that’s been done, from establishing the problem

area and researching the state-of-the-art, to implementing the method and generating the results.

6.1 The Results

The results of the X-bit Memory Benchmark can hopefully help us answer the research questions:

1. How do innate differences in connectivity between CA and RBN with similar rules affect

RC accuracy?

2. Does the effect of varying connectivity increase between one-dimensional and two-

dimensional CA compared to RBN with similar rules?

Overall, the results speak largely in favour of CA over RBN when measuring the accuracy of

the reservoirs on the X-bit Memory Benchmark. Beneath follows a discussion on some of the

reasons why this might be.

The Minimum Equivalence subset of ECA was likely not an optimal choice of rules to use

for RBN, but it’s what was available to compare with. The original intent was to search the

entire ECA rulespace, because it was understood that with a different connectivity, new and

interesting behaviour could occur in any of the rules. However, bugs persisted in the ECA

reservoir model long enough that it was no longer viable with respect to the time-constraints to

run the full experiment for CA as well as the two RBN variations.

The Wolfram Classification of the rules did in general not seem to extend to the RBN

connectivity. Especially noticeable in the ECA rulespace and for the free RBN, which was

somewhat expected. However, it seems like there could be an overweight of chaotic (III) and

homogeneous (I) behaviour. Clearly distinguishable cyclical patterns (II) and complex (IV)

behaviour were seldom observed in history plots.

51

The in-degree of RBN in the ECA rulespace was K = 3 for all rules where all three indices

were a factor in the state transition table. However, there exists a set of ECA rules that disregard

one and only one of the three indices, thereby effectively giving the RBN an in-degree of K = 2,

essentially becoming elementary versions of elementary rules, Elementary2 if you will. As seen

in table 2.2, rules 60, 90 and 102 are among those rules.

This also means that many of the rules in the ME subset that was tested realistically have

in-degrees of 1. Ironically, rules 170 and 204 are among those rules, and were the only ones to

achieve success among ECA rules on the 5-bit Memory Benchmark.

Elementary2 Rules

Left Exclusive 17, 34, 68, 102, 119, 136, 153, 187, 221, 238

Right Exclusive 3, 12, 48, 60, 63, 192, 195, 207, 243, 252

Middle Exclusive 5, 10, 80, 90, 95, 160, 165, 175, 245, 250

Table 6.1: Rules that exclude one and only one cell in their state transition tables. Filtered

by listing the left, right and center exclusive rules found in this calculation Glover (n.d.), and

extracting the rules that are exclusive to each list.

The full list of Elementary2 rules can be seen in 6.1

The XOR input projection method was not scrutinized before being applied to the experiments

in this thesis. It didn’t matter that much when replicating an existing model, but it may have

had unknown effects on the final Lifelike experiments.

Consider table 6.2, and that as per the code used in (Glover et al., 2021), the current state in

cells that are chosen to projected on are given as argument A and the input bit from the input

vector is given as argument B.

The next state in the cell is set set to zero if the input and the current state are the same. If

the input differs from the current state in either way, the state is set to one.

The edges being updated between every permutation in the first Lifelike experiments

essentially made the RBN reservoir lose its deterministic character inside each experiment.

Even though the connections were random, as long as they persisted, the behaviour would be

deterministic in the synchronous RBN implemented in this work.

A B Result

0 ⊕ 0 0

0 ⊕ 1 1

1 ⊕ 0 1

1 ⊕ 1 0

Table 6.2: XOR Truth Table

52

It would be unfair to use these results to say that reservoirs with RBN connectivity perform

worse than CA, even though that’s seemingly true for the X-bit Memory Benchmark. The

accuracy scores in the experiments weren’t intended as a competition between CA and RBN, but

rather as a tool to discern something about the difference in behaviour and aptness. It would be

safe to say that the behaviour changes between the connectivities, and more so between CA and

free RBN than between CA and locked RBN. Perhaps with changed behaviour comes different

applications - and needs.

(Burkow, 2015) claimed that the optimal perturbation of homogeneous RBN with in-degree

K = 3 was around 50%.

However, for the Lifelike RBN where K = 8, even 60% perturbation seemed to be on the low

side for the 5-bit Memory Benchmark, while a perturbation of 90% may have contributed to the

good results in the final experiments.

In the ECA experiments, the perturbation was static at one mapping of the input vector to

each subreservoir, resulting in a perturbation of 16/160 = 10%.

Seeing as (Snyder et al., 2012) warned that the level perturbation should be taken into account

when finding the optimal values of ⟨K⟩ in heterogeneous RBN, perturbation might also be a

factor in affecting the behaviour of rules, much like ECA with Memory, making them more

prone to either order or chaos.

In the case of the ECA rulespace, it could also be that non-totalistic rules create an

environment in RBN in which one cannot rely on discoveries from totalistic RBN.

The final Lifelike experiments achieved good results across the board. Better than many of the

configurations in (Martinuzzi, 2022). A full table of their results is included in the appendix.

This success may be caused by the lower value of I or the higher projection ratio, or perhaps

a combination of the two. I has presented a bit of a paradox in the Lifelike rulespace. Higher

values increase the size of the reservoir features, and may provide better grounds for separating

different input patterns. Simultaneously, higher values of I mean more iterations between

inputs, potentially allowing reservoir dynamics dissipate, especially if the perturbation is low.

This could in turn make fading memory into no memory at all.

A potential way to curb these effects is to let reservoir substrates mature before perturbing

them, i.e., let the CA or RBN run for a set amount of time with random initial conditions before

starting the benchmark timestep zero.

6.2 The Process and Limitations

There were perhaps few papers on RBN researched in this thesis. Hence, it is important to

emphasize that this work is done with the basis of CA approximating RBN with as few steps

away from CA as possible. Graph theory and boolean state transition tables, along with broader

recent works in RBN RC, weren’t deemed important enough to this end.

53

The I parameter in (Glover et al., 2021) experimental setup was misunderstood at first. They

used the input step as a CA development step making I = 2 give 3 CA steps per input, whereas

my original implementation had 2 CA steps per input. I also determined the length of the state

vector for each input of course, which was correctly implemented. One bug persisted for the

re-booted RBN run, where the input delay in the EvoDynamic experiment was out of sync with

the number of CA iterations between inputs. Fixing this further delayed the experiments by

approximately nine hours.

(Glover et al., 2021) ran the X-bit benchmark with Nb = 3, 4, 5, 6, whereas this work ran it

with Nb = 2, 3, 4, 5. After starting with Nb = 5, and seeing the unconvincing performance of

RBN for the reservoir configuration, I decided not to attempt a higher number of bits, but rather

see if any interesting discoveries could be made searching down to Nb = 2.

EvoDynamic features a method of generating RBN adjacency matrix for use with ECA

state transition tables. This method couldn’t be used with the Lifelike activation functions

in EvoDynamic, and the edge generation method in this work had to be created.

At first this was done by generating a regular grid adjacency matrix for a Lifelike/Game

of Life CA of the same size, and shuffling the indices of the resulting sparse matrix. It was

discovered that the method to create RBN connections by shuffling this way often produced

duplicate edges, which were ignored when inspecting the connections as graphs in NetworkX.

Thus a method of generating the edges from scratch was created.

When moving on to the ECA rulespace, the RBN method inside EvoDynamic could probably

have been employed. However, based on the in-degree detection function in NetworkX, it

seemed to generate a heterogeneous network1 with an average in-degree of 3.

It was later discovered that this perceived heterogeneous connectivity might have been

due to the weighted edges employed by EvoDynamic when using the ECA transition table.

Nevertheless, in order to compare to ECA as closely as possible, I chose instead to use the

edge generation method that was created for the Lifelike rulespace to create a homogeneous

network2.

It was unfortunately not properly adapted to the way ECA is implemented in EvoDynamic,

and caused a number of bugs and frustration for several weeks. The maintainer of the library

eventually clarified some of the necessary properties of the adjacency matrix and the problems

were resolved just over a week before the submission deadline. The solution was evident in

(Pontes-Filho et al., 2020) and, with a bit of explaining, seemed clear as day.

Essentially the RBN that had been created previously in the ECA rulespace (Lifelike was

correctly implemented) treated every connection and as its left neighbour, and the direction

of the edges was reversed (correctly directed for Lifelike). Minor confusing inconsistencies

between the implementation of the two rulespaces in EvoDynamic, a few misunderstandings

and too few assertion tests when switching from one rulespace to the other, caused a seemingly

1The connectivity varies between nodes.
2The connectivity is of the same degree between nodes.

54

endless stream of invalid data.

Another choice to make in designing the RBN connectivity for the ECA rulespace was

whether to force self-connections in the node’s centre index akin to the CA, or let it be formed

by an edge between any other node in the reservoir. The fundamental intention was to have the

RBN model resemble CA closely as possible, as a small step towards biological neural networks.

At first, the free RBN connectivity was chosen, because of misunderstanding how ECA was

implemented in EvoDynamic. Therefore, after understanding the different approaches to the

Lifelike and ECA rulespaces in EvoDynamic, the locked centre index approach was chosen as

the baseline - for being more closely aligned with the CA. However, due to a recent increase in

computational power, the same experiments were executed for RBN with a free centre index in

order to compare across the different variations.

Covid-19 should by all accounts be mentioned as a limiting factor in the thesis work, especially

since the author contracted the disease in the middle of the process and work was delayed on

all fronts for around a month.

55

56

Chapter 7

Conclusion

7.1 Summary

In this thesis, Reservoir Computing models with Cellular Automata and Random Boolean

Networks as substrates were implemented. The Lifelike and Elementary CA rulespaces were

explored on the X-bit Memory Benchmark with both substrates.

Efforts were made to discover how the innate differences in connectivity between CA and

RBN would affect the performance of the reservoirs, and whether further exploration of RBN

RC in conjunction with ReCA could bridge the gap between CA and biological neural networks

as a substrate.

The RBN reservoirs used in this thesis showed tendencies to perform worse than CA for much

of the explored rulespace, and the specific reservoir configurations tested on the X-bit Memory

Benchmark. Though it’s worth noting that we’ve only scratched the surface of rulespaces that

can be compared between the models, and barely even searched the parameterspace of either

the models or the benchmark.

However, some rules showed interesting new behaviour, and some achieved results on

par with CA. The results suggest that further exploration the parameterspaces and rulespaces

of RBN RC in tandem with ReCA could facilitate the use of CA as an interface to biological

substrates like BNN.

7.2 Future Work

Herein follows some closing thoughts on which paths that ought to be tread further down the

line.

The rest of the ECA rulespace should be explored in a similar fashion to what has been done

in this thesis.

Efforts should be made to group the ECA rulespace with RBN connectivity by Wolfram

Classifications and the Lambda parameter. One might see a very different distribution of classes

for the rulespace with either connectivity. Based on observations made in this thesis, one could

57

theorize that the Edge of Chaos is more narrow than in the equivalent rulespace with CA.

Attempts should be made to discern what rules make up the Minimum Equivalence set in

the ECA rulespace with RBN connectivity.

It would be interesting to explore Non-Uniform CA and RBN - where rules vary between

reservoirs, or perhaps even cells. By combining different rules in the ECA rulespace, this would

in effect result in heterogeneous connectivity with average in-degrees between one and three if

the rules varied between cells.

Explore totalistic CA rules with neighbourhoods of N = 2, 3, where the order neighbours

doesn’t matter, which are more RBN-like.

Since an in-degree between two and three is considered to be within the realm of criticality

for heterogeneous RBN, it could prove valuable to compare with a non-discrete average number

of connections between 2 and 3 in CA as well. These musings raise a particular curiosity about e,

the euler number, or the natural number.

Explore "deep", layered reservoirs. If the ultimate goal is to use CA as an interface to

biological neural networks as reservoirs, starting with a layered reservoir with CA -> RBN might

be a good idea.

In this regard, one might also explore asynchronous RBN as one step further away from CA

towards a biological substrate, and compare the differences between a synchronous CA and an

asynchronous RBN.

Synchronous state update is an important characteristic of CA, however nodes of networks

in instances of biological intelligence, like neural networks and DNA, update their states

asynchronously (Gershenson, 2004).

Neurons develop connections over time, trained by a plethora of different tasks in the real

world. An idea could be that substrates are aged or developed in several areas of use, and paired

with different, similar, or even the same, readout layers.

58

References

1.4. support vector machines. (n.d.). scikit-learn developers. Retrieved from https://scikit

-learn.org/stable/modules/svm.html#svm-kernels

Additive cellular automaton. (n.d.). mathworld.wolfram.com. Retrieved from https://

mathworld.wolfram.com/AdditiveCellularAutomaton.html (Accessed: 2022-05-10)

Babson, N. & Teuscher, C. (2019). Reservoir computing with complex cellular automata. Complex

Systems, 28(3). Retrieved from https://doi.org/10.25088/ComplexSystems.28.4.433

doi: doi:10.25088/ComplexSystems.28.4.433

Bak, P., Tang, C. & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f

noise. Physical review letters, 59(4), 381.

Bertschinger, N. & Natschläger, T. (2004). Real-time computation at the edge of chaos in recurrent

neural networks. Neural computation, 16(7), 1413–1436.

Burkow, A. V. (2015). Evolving functionally equivalent reservoirs for rbn reservoir computing systems.

Department of Computer and Information Science, Norwegian University of Science

and Technology, Trondheim, Norway. Retrieved from https://burkow.no/uploads/

forprosjekt-report.pdf

Burkow, A. V. (2016). Exploring physical reservoir computing using random boolean networks.

(Master’s thesis, NTNU, Trondheim, Norway). Retrieved from http://hdl.handle.net/

11250/2417596

Chui, K. T., Lytras, M. D. & Visvizi, A. (2018). Energy sustainability in smart cities: Artificial

intelligence, smart monitoring, and optimization of energy consumption. Energies, 11(11),

2869. doi: doi:10.1016/j.giq.2018.05.002

Conway, J. et al. (1970). The game of life. Scientific American, 223(4), 4.

Cook, M. et al. (2004). Universality in elementary cellular automata. Complex systems, 15(1),

1–40.

Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S. & Zomaya, A. Y. (2020). Edge intelligence: The

confluence of edge computing and artificial intelligence. IEEE Internet of Things Journal,

7(8), 7457–7469.

Desa & Nations, U. (2016). Transforming our world, the 2030 agenda for sustainable

development.

Eppstein, D. (2010). Growth and decay in life-like cellular automata. In Game of life cellular

automata (pp. 71–97). Springer.

59

https://scikit-learn.org/stable/modules/svm.html#svm-kernels
https://scikit-learn.org/stable/modules/svm.html#svm-kernels
https://mathworld.wolfram.com/AdditiveCellularAutomaton.html
https://mathworld.wolfram.com/AdditiveCellularAutomaton.html
https://doi.org/10.25088/ComplexSystems.28.4.433
https://doi.org/10.25088/ComplexSystems.28.4.433
https://burkow.no/uploads/forprosjekt-report.pdf
https://burkow.no/uploads/forprosjekt-report.pdf
http://hdl.handle.net/11250/2417596
http://hdl.handle.net/11250/2417596
https://doi.org/10.1016/j.giq.2018.05.002

Fernando, C. & Sojakka, S. (2003). Pattern recognition in a bucket. In W. Banzhaf, J. Ziegler,

T. Christaller, P. Dittrich & J. T. Kim (Eds.), Advances in artificial life (pp. 588–597). Berlin,

Heidelberg: Springer Berlin Heidelberg.

Gershenson, C. (2004). Introduction to random boolean networks.

Glover, T. E. (n.d.). Elementary elementary ca proof. GitHub. Retrieved from https://

github.com/ethol/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/

blob/master/ReCA%20parameter%20space/even_more_elementary_elementary_CA.py

Glover, T. E., Lind, P., Yazidi, A., Osipov, E. & Nichele, S. (2021, 07). The Dynamical Landscape

of Reservoir Computing with Elementary Cellular Automata (Vol. ALIFE 2021: The 2021

Conference on Artificial Life). Retrieved from https://doi.org/10.1162/isal_a_00440

(102) doi: doi:10.1162/isal_a_00440

Glover, T. E., Lind, P., Yazidi, A., Osipov, E. & Nichele, S. (2022). Patterns within patterns: A deeper

look at the dynamical landscape of reservoir computing with cellular automata. Department of

Computer Science, OsloMet. (Early access to a pre-print version of the paper.)

Goal 11, take urgent action to combat climate change and its impacts. (n.d.). United Nations. Retrieved

from https://sdgs.un.org/goals/goal11

Goal 7, ensure access to affordable, reliable, sustainable and modern energy for all. (n.d.). United

Nations. Retrieved from https://sdgs.un.org/goals/goal7

Goal 9, build resilient infrastructure, promote inclusive and sustainable industrialization and foster

innovation. (n.d.). United Nations. Retrieved from https://sdgs.un.org/goals/goal9

Hassan, N., Yau, K.-L. A. & Wu, C. (2019). Edge computing in 5g: A review. IEEE Access, 7,

127276–127289.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735–1780.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks-

with an erratum note. Bonn, Germany: German National Research Center for Information

Technology GMD Technical Report, 148(34), 13.

Johnston, N. & Greene, D. (2022). Conway’s game of life: Mathematics and con-

struction. Self-published. Retrieved from https://conwaylife.com/book doi:

doi:10.5281/zenodo.6097284

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets.

Journal of theoretical biology, 22(3), 437–467.

Khan, S., Paul, D., Momtahan, P. & Aloqaily, M. (2018). Artificial intelligence framework

for smart city microgrids: State of the art, challenges, and opportunities. In 2018

third international conference on fog and mobile edge computing (fmec) (p. 283-288). doi:

doi:10.1109/FMEC.2018.8364080

Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and

emergent computation. Physica D: Nonlinear Phenomena, 42(1), 12-37. Retrieved

from https://www.sciencedirect.com/science/article/pii/016727899090064V doi:

doi:https://doi.org/10.1016/0167-2789(90)90064-V

60

https://github.com/ethol/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/even_more_elementary_elementary_CA.py
https://github.com/ethol/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/even_more_elementary_elementary_CA.py
https://github.com/ethol/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/even_more_elementary_elementary_CA.py
https://doi.org/10.1162/isal_a_00440
https://doi.org/10.1162/isal_a_00440
https://sdgs.un.org/goals/goal11
https://sdgs.un.org/goals/goal7
https://sdgs.un.org/goals/goal9
https://conwaylife.com/book
https://doi.org/10.5281/zenodo.6097284
https://doi.org/10.1109/FMEC.2018.8364080
https://www.sciencedirect.com/science/article/pii/016727899090064V
https://doi.org/https://doi.org/10.1016/0167-2789(90)90064-V

Liang, D., Hashimoto, M. & Awano, H. (2021). Bloomca: A memory efficient reservoir

computing hardware implementation using cellular automata and ensemble bloom

filter. In 2021 design, automation test in europe conference exhibition (date) (p. 587-590). doi:

doi:10.23919/DATE51398.2021.9474047

Life-like cellular automata. (n.d.). conwaylife.com. Retrieved from https://conwaylife.com/

wiki/Cellular_automaton#Life-like_cellular_automata

Maass, W., Natschläger, T. & Markram, H. (2002). Real-time computing without stable states:

A new framework for neural computation based on perturbations. Neural computation,

14(11), 2531–2560.

Martinez, G. J., Adamatzky, A. & Alonso-Sanz, R. (2013). Designing complex dynamics in cellular

automata with memory. International Journal of Bifurcation and Chaos, 23(10), 1330035.

Martinuzzi, F. (2020). Gsoc week 8: Reservoir computing with cellular automata part 2. Retrieved

from https://martinuzzifrancesco.github.io/posts/08_gsoc_week/

Martinuzzi, F. (2022). Life-like cellular automata as a substrate for computation. Remote Sensing

Centre for Earth System Research, and Center for Scalable Data Analytics and Artificial

Intelligence, Leipzig University. (Early access to a pre-print version of the paper.)

McDonald, N. (2017). Reservoir computing and extreme learning machines using pairs of

cellular automata rules. In 2017 international joint conference on neural networks (ijcnn)

(p. 2429-2436). doi: doi:10.1109/IJCNN.2017.7966151

Morán, A., Frasser, C. F. & Rosselló, J. L. (2018). Reservoir computing hardware with cellular

automata.

Muhammad, K., Lloret, J. & Baik, S. W. (2019). Intelligent and energy-efficient data prioritization

in green smart cities: Current challenges and future directions. IEEE Communications

Magazine, 57(2), 60-65. doi: doi:10.1109/MCOM.2018.1800371

Neumann, J. v. (1966). Theory of self-reproducing automata. Edited by Arthur W. Burks.

Nichele, S. & Gundersen, M. S. (2017). Reservoir computing using non-uniform binary cellular

automata. arXiv preprint arXiv:1702.03812.

Nichele, S. & Molund, A. (2017). Deep learning with cellular automaton-based reservoir

computing. Complex Systems, 26(2). Retrieved from https://doi.org/10.25088/

ComplexSystems.26.4.319 doi: doi:10.25088/ComplexSystems.26.4.319

Packard, N. H. & Wolfram, S. (1985). Two-dimensional cellular automata. Journal of Statistical

physics, 38(5), 901–946.

Peña, E. & Sayama, H. (2021). Life worth mentioning: Complexity in life-like cellular automata.

Artificial Life, 27(2), 105–112.

Pontes-Filho, S., Lind, P., Yazidi, A., Zhang, J., Hammer, H., Mello, G. B., . . . Nichele, S. (2020).

A neuro-inspired general framework for the evolution of stochastic dynamical systems:

Cellular automata, random boolean networks and echo state networks towards criticality.

Cognitive Neurodynamics, 1–18.

Sayama, H. (2015). Introduction to the modeling and analysis of complex systems. Open SUNY

Textbooks.

61

https://doi.org/10.23919/DATE51398.2021.9474047
https://conwaylife.com/wiki/Cellular_automaton#Life-like_cellular_automata
https://conwaylife.com/wiki/Cellular_automaton#Life-like_cellular_automata
https://martinuzzifrancesco.github.io/posts/08_gsoc_week/
https://doi.org/10.1109/IJCNN.2017.7966151
https://doi.org/10.1109/MCOM.2018.1800371
https://doi.org/10.25088/ComplexSystems.26.4.319
https://doi.org/10.25088/ComplexSystems.26.4.319
https://doi.org/10.25088/ComplexSystems.26.4.319

Siegelmann, H. T. & Sontag, E. D. (1995). On the computational power of neural nets. Journal of

computer and system sciences, 50(1), 132–150.

Snyder, D., Goudarzi, A. & Teuscher, C. (2012). Finding optimal random boolean networks for

reservoir computing. In Alife 2012: The thirteenth international conference on the synthesis and

simulation of living systems (pp. 259–266).

Snyder, D., Goudarzi, A. & Teuscher, C. (2013, Apr). Computational capabilities of random auto-

mata networks for reservoir computing. Physical Review E, 87(4). Retrieved from http://

dx.doi.org/10.1103/PhysRevE.87.042808 doi: doi:10.1103/physreve.87.042808

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D: Nonlinear

Phenomena, 10(1-2), 1–35.

Yilmaz, Ö. (2014). Reservoir computing using cellular automata. CoRR, abs/1410.0162. Retrieved

from http://arxiv.org/abs/1410.0162

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K. & Zhang, J. (2019). Edge intelligence: Paving the

last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8),

1738–1762.

62

http://dx.doi.org/10.1103/PhysRevE.87.042808
http://dx.doi.org/10.1103/PhysRevE.87.042808
https://doi.org/10.1103/physreve.87.042808
http://arxiv.org/abs/1410.0162

Chapter 8

Appendix

Class I Rules

Strong 128

Moderate 8, 32, 40, 136, 160, 168

Weak 0

Table 8.1: Class 1 Elementary CA with Memory classifications

Class II Rules

Strong
2, 7, 9, 10, 11, 15, 24, 25, 26, 34, 35, 42, 46, 56, 57, 58, 62, 94, 108,

130, 138, 152, 154, 162, 170, 178, 184

Moderate
1, 3, 4, 5, 6, 13, 14, 27, 28, 29, 33, 37, 38, 43, 44, 72, 73, 74, 77, 78,

104, 132, 134, 140, 142, 156, 164, 172

Weak 12, 19, 23, 36, 50, 51, 76, 200, 204, 232

Table 8.2: Class 2 Elementary CA with Memory classifications

Class III Rules

Strong 18, 22, 30, 45, 122, 126, 146

Moderate

Weak 60, 90 ,105, 150

Table 8.3: Class 3 Elementary CA with Memory classifications

63

Class IV Rules

Strong 41, 54, 106, 110

Moderate

Weak

Table 8.4: Class 4 Elementary CA with Memory classifications

Table 8.5: Results (Martinuzzi, 2022) Lifelike CA on the 5-bit Memory Benchmark. The results

are reported as percentage of perfect runs out of 100 runs.

(24,6) (24,8) (24,10) (24,12) (26,6) (26,8) (26,10) (26,12) (28,6) (28,8) (28,10) (28,12) (30,6) (30,8) (30,10) (30,12)

B25/S4 0 0 100 100 0 97 100 100 0 100 100 100 82 100 100 100

B27/S 0 0 100 100 0 96 100 100 0 100 100 100 83 100 100 100

B35/S236 0 1 100 100 0 100 100 100 4 100 100 100 94 100 100 100

B37/S23 0 0 89 99 0 65 100 100 2 100 100 100 72 100 100 100

B368/S245 0 2 0 1 0 2 3 2 2 19 15 6 17 51 31 6

B36/S245 0 0 1 2 0 2 10 3 2 25 22 5 20 61 41 13

B368/S12578 0 2 100 100 0 97 100 100 3 100 100 100 92 100 100 100

B3/S23 0 0 85 99 0 51 100 100 3 100 100 100 63 100 100 100

64

	Abstract
	Acknowledgments
	Introduction
	Ethical Considerations
	Thesis Outline

	Background
	Reservoir Computing
	Reservoir Computing with Physical Substrates

	Cellular Automata
	Lifelike Cellular Automata
	Elementary Ceullular Automata

	Random Boolean Networks
	Classifications and the Edge of Chaos
	Wolfram's CA categories
	ECA with Memory (ECAM)
	Additive Cellular Automaton (ACA)
	Alternitve Four-way Classifcation of Two-dimensional Semi-Totalistic Cellular Automata
	Edge of Chaos
	Rulespaces

	State-of-the-Art
	Reservoir Computing with CA (ReCA)
	Reservoir Computing with Boolean Networks (RBN RC)

	Methods
	Experimental Setup
	Model Architecture

	X-bit Memory Benchmark

	Results
	Reservoir Computing in the Lifelike Rulespace
	Reservoir Computing in the ECA Rulespace
	Continued Lifelike Experiments
	Yilmaz tests

	Discussion
	The Results
	The Process and Limitations

	Conclusion
	Summary
	Future Work

	Appendix

