
Detection of fake domain names
in e-mails

Anders Gorboe

Thesis submitted for the degree of
Master in Applied Computer and Information

Technology - ACIT
(Cloud-based Services and Operations)

30 credits

Department of Computer Science
Faculty of Technology, Art and Design

Oslo Metropolitan University — OsloMet

Spring 2022

Detection of fake domain names
in e-mails

Anders Gorboe

© 2022 Anders Gorboe

Detection of fake domain names in e-mails

http://www.oslomet.no/

Printed: Oslo Metropolitan University — OsloMet

http://www.oslomet.no/

Abstract

Phishing is social engineering attack that inflicts damages of several billion
dollars each year. Phishing has increased yearly in frequency and in
complexity bringing new and more clever schemes for hackers to deceive
their victims. This thesis aims to assist and help fight this continuously
growing concern. A common way of phishing is to impersonate other
people or companies. This can be done by creating fake domain names
that look identical but are not the same as a legitimate entity. In response
to this a prototype application has been developed to see how effective we
can stop these kinds of attacks, and spot fake domains before they can do
any harm. This prototype application will compare new domains against
previous already ensured domains to see if the new domain is trying to
disguise itself as one of these. To test the application DnsTwist has been
used to find malicious domain names.

i

ii

Acknowledgments

I would like to thank both of my supervisors Anis Yazidi and Hårek
Haugerud for guiding me through this past semester. Their feedback and
ideas for the developed product and the thesis itself has been invaluable.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Problem Statement . 3

2 Background and Related Work 5
2.1 Phishing . 5

2.1.1 The phishing lifecycle 6
2.1.2 Ways to disguise URL’s and domain names 7
2.1.3 Homograph attacks 9
2.1.4 Malware attacks . 9
2.1.5 Source Spoofing . 10

2.2 Related works . 11
2.3 Phishing Trends . 13

3 Approach 15
3.1 Levenshtein distance . 15
3.2 Common alterations . 18
3.3 The process . 19
3.4 Technologies used . 21

4 Results 23
4.1 The program . 23
4.2 Testing . 27

4.2.1 DnsTwist . 27
4.3 More complicated problems 30

5 Discussion 33
5.1 Provides value . 33
5.2 Future works/Limitations . 38

5.2.1 False-positives . 38
5.2.2 Warnings and alerts 38
5.2.3 First is trusted . 38
5.2.4 Mutations . 40
5.2.5 Further development 42

5.3 Performance . 42

v

6 Conclusion 45

7 Appendix 51
7.1 LevenstheinDistance.js . 51
7.2 Domain Regex . 52
7.3 Source code . 52

vi

Chapter 1

Introduction

Phishing is an old but steadily growing concern when it comes to staying
safe online. Old in the way that it has been around since the beginning of
the internet, and maybe even longer, but associated with a different name.
Most likely we have all been subjected to some sort of attempted phish-
ing or hustle during our life. I had my first encounter at the age of six
where I was tricked into giving away all my coins in my favorite video
game. Luckily loosing imaginary money is not the worst repercussion, and
on the bright side it thought me a vital life lesson. Cybersecurity attacks
have grown over the years both in quantity and quality, with technology
evolving ever so rapidly, making it impossible to predict how and what fu-
ture exploits might look like. Fighting cybercrime is an eternal battle that
swings back and forth between the forces of good and evil, the bad guys
will use a new exploit and the good guys will try to respond quickly to fix
it. Luckily we have come a long way since the dawn of internet and many
protocols and infrastructures have been implemented to make it more dif-
ficult for hackers to access things they shouldn’t. The improved base secur-
ity means the cybercriminals had to find others ways of attacking, mainly
through social engineering schemes also known as phishing. Phishing is
when someone tries to steal sensitive information, access or assets, by prey-
ing on our biggest cybersecurity flaw throughout the times; people.
The evolution of technology has led to some people being very skilled,
while many are falling behind and found lacking in internet knowledge.
Don’t let that fool you, even if you are quite an experienced internet user
you can still fall for their trickery. With careful planning, reconnaissance
and a flawless delivery message, they could fool just about anyone, and
depending on the target it could cause massive amounts of damage.

Companies and governments are spending more and more money on im-
proving their cybersecurity, ranging from tools and protocols to educat-
ing their employees, but the attacks keep coming, they keep being success-
ful, and they keep causing damage. The latest report from Anti-Phishing
Working Group (APWG) is showing record high cybersecurity attacks, as
of February 2022 the amount of phishing attacks has tripled since 2020 with
between 204 000 - 282 000 reported phishing attacks per month [11][12].

1

This increase in attacks means more money is lost to phishers. A report
from FBI shows reported losses exceeding 4.1 billion US dollars in the
United States alone [10]. While reports from McAfee estimates a world-
wide cost of 600 billion USD in 2018 and reaching 1 trillion USD in 2020
where 945 billion USD is lost from cybersecurity incidents and 145 billion
USD used to improve cybersecurity infrastructures [23][37] as seen Figure
1.1.

Figure 1.1: This figure shows the cost of cybercrime from 2013 to 2020. This
figure is copied from McAfee’s most recent cybersecurity report [37]

Recently there has also been an increase of more sophisticated and organ-
ized attacks targeting high value targets. We are not just seeing the usual
spam messages and emails from pretending Nigerian princes, but rather
quite believable stories backed by fabricated evidence and sleight of hand.
They have many weapons in their arsenal one of these involves fake email
addresses where some part of the original domain name has been slightly
altered to mimic a domain that is known to the receiver. An important
part of what they do when attacking a company is reconnaissance, they
figure out the possible ways of infiltrating a company by looking at their
relations. From this, they can create a message that could be believable for
this company, and send it with a email address that might look like it is
familiar to the company, but with slight alterations. Microsoft and Google
warns their users about mismatching email domains as well as other tricks
phishers use, to raise awareness [37][24][11]. But is raising awareness truly
enough, we cannot continue to be afraid of opening our email or our text
messages. It is imperative we acknowledge that cybercriminals are experts
at what they do, and to understand we need help if we are to hold them of.

2

1.1 Problem Statement

Phishing is an enormous problem, one that is impossible to completely
fix on your own. Traversing the internet, exploring and simply using
what most of us rely on a daily basis has become a risky endeavour. This
thesis aims to provide an introduction to phishing and its spread as well as
addressing one aspect of phishing in more detail. We are looking into more
targeted attacks via email where company domains are being used with
small alterations to create lookalike domains to trick users. We believe it
is possible to limit the amount of successful phishing attacks from domain
alterations, by storing what domains you usually communicate with and
comparing these with the domain of the new emails coming in to your
inbox. This will mean a tailored defence that also grows as you expand
your network. For this a prototype will be created, and tests to see how
effective we could spot phishy domains while trying to limit the amount of
false-positives. In order to test this program we intend to use DnsTwist as
a provider of fake domain names.

3

4

Chapter 2

Background and Related Work

In this chapter we will take a deeper dive into what phishing is, how it
works, how people can trick us and some of the many tools they use to do
so. We will examine the current state of phishing and how it has come to
spread at such a rapid rate. Lastly we will look into other research done on
the topic as well as other tools and methods that are closely related to this
paper and phishing.

2.1 Phishing

Phishing is when someone is trying to disguise or impersonate someone
else in order to extract sensitive information from a person or a company.
Phishing attacks can happen over the phone, email, forums, messaging
apps, or pretty much any channel of communication, including real life in-
person [27]. There are many names and categories for phishing attacks, a
blog post from SecurityScorecard mentions spear phishing, whaling, email
phishing, pharming, pop-up phishing, clone phishing, vishing, smishing,
angler phishing and many more [29].
Email phishing as the name suggests is when the attacker use e-mail as the
communication channel to send malicious content either in the form of an
infected attachment, or an URL taking you to a bad webpage. Email is often
used for sending out spam messages that reach many targets in hopes that
even just a few take the bait. Typical messages can be: "Congratulations
you just won 10 000$ click here to claim", or "Your package has been
delayed, click here to track it". Email is a very popular communication
channel for phishers to use, as you can reach many people in a short
amount of time. In addition to this, email allows the use of HTML and
JavaScript, which opens a world of different ways to trick someone else.
Spearphising is when a phisher targets one specific person and create a
scenario/scam just to trick that one person. These attacks can often be quite
sophisticated and believable, and depending on the target these attacks can
cost people and companies a lot. A spear phishing attack can be delivered
in many ways from using email, SMS, calling or in-person. When the spear
phishing attack is directed at someone important, like a CEO of a company,
then it is called whaling.

5

2.1.1 The phishing lifecycle

A key aspect of preventing phishing is understanding its lifecycle, which
can be quite difficult as there are many different technologies, methods and
directions a phisher can take to fool a target. Let us bring it back to the
basics; any cyber attack follows the steps in the ’cyber kill chain’ [8].

Figure 2.1: Figure of the cyber kill chain. The cyber kill chain contain 7
steps Reconnaissance, weaponization, delivery, exploitation, installation,
command and control, and actions on objectives. Based on the illustration
from lockheadmartin.com [8].

First of all some sort of reconnaissance must be done for the hackers to
have your contact information. In many cases sending email is part of
the delivery section where you give a malicious URL or attachment, but
sending email can also be a way to do reconnaissance on your target.
Talking to people can help you find information that is not accessible
online. When they have gathered enough information they are ready to
strike, but first must create a weapon to do so. Creating a malicious
program or a webpage designed to steal your information are some ways of
doing it, but creating a good scheme to trick someone could also serve as a
weapon. The next step is delivery, get you to use this program or webpage,
this can be sent using any form of communication but let us focus on email.
Many email scams in particular use services that are known to you, like
amazon or PayPal in conjunction with a message intended to stress you and
make you act instantly and press this URL [34]. Stressing you is important
for the scam as they want to shut down your defence mechanisms, your
ability to think critically and be suspicious. In Figure 2.2 you can see by
searching the service in your browser instead of pressing the link directly in
the email you can protect yourself from many attacks. This is how you can
work around the problem, it does however not solve the issue of phishing.
If you press the URL in the mail you will be directed to a page that might
look exactly like amazon or PayPal prompting a login. Upon login your
password and username is sent to the phisher and a confirmation is sent
back to you saying everything is in order.

6

Figure 2.2: This is a diagram displaying a phishing lifecycle. It starts
with an email sent to the victim containing a malicious url. If the victim
ignores/deletes the email the scam i ended, but if the victim presses the url
he/she is taken to a malicous webpage. On attempted login a confirmation
is sent to the victim, and the username and password is sent back to the
phisher.

This last part is important as they want access to your account without
you realizing, giving them time to further exploit and figure out how they
can get more from this. They will try other services with the password
they obtained, if they gained access to your social account they might go
through your pictures and find something they can hold against you. They
might also try to use your account as the means to infect your friends and
gain even more information passwords and accounts.

2.1.2 Ways to disguise URL’s and domain names

An important aspect of phishing is the use of URLs and the many ways
phishers can trick people into pressing URLs that take them to malicious
webpages. The ways to disguise URLs can be divided into 4 main categor-
ies mangle, mislead, camouflage and obfuscate [4].
Mangle is a technique where the phishers take a completely legitimate
site that most people would know about, like www.amazon.com and
tweak some of the characters like changing the o with a 0 so we get
www.amaz0n.com instead. This second URL is looking fairly similar to
the first URL, but it will take you to a different webpage. In addition to this
an even more deceptive approach would be to use non-ASCII characters
also known as homograph attacks. [17][4]
Mislead is when phishers take a legitimate webpage, like www.oslomet.no
and put the domain name oslomet in either the subdomain or in a path.
For instance the URL www.oslomet.uio.no you can clearly see the oslomet
part, but it’s in the subdomain section of the link, while uio is the domain.
Camouflage is quite similar to the mangle category, but instead of chan-

7

ging letters you are adding characters that looks natural in that spot. For
example with the www.oslomet.no URL could be camouflaged by doing
www.oslo-met.no, if you don’t know oslomet is not supposed to have a hy-
phen in the middle it will seem quite legitimate.
Obfuscate uses evasive techniques to hide the destination of a link, this is
often done with the help of redirected or shortened links [4]. This is quite
simple to do and there are several applications that can shorten your URL
with the click of a button, one example is bitly.com.

In addition to this when working with email, as they allow HTML and
JavaScript, there is a separation between what you see and the code be-
hind. Using an HTML tag like:
"www.goodwebsite.com" it will
display www.goodwebsite.com in your mail, but it will take you to the
page www.badwebsite.com. In Figure 2.3 you can see an example of this
attack using youtube and google. In this case using the gmail mail client
we are recieving no warning about the real destination of the url.

Figure 2.3: This image displays the use of a simple HTML <a> tag in email
to display the URL www.youtube.com. But on closer inspection when
hovering the link the real destination will pop up in the bottom left section
of your screen (I moved it up so it would fit in the picture frame). In this
case the URL will take you to www.google.com

8

2.1.3 Homograph attacks

Belonging to the mangle category as mentioned above we have the more
deceptive homograph attacks that can make two strings identical to the
human eye. With the use of non-ASCII characters, they can take characters
that look like ones from the standard pool and swap them out. This will
result in creating words, URLs or domain names that look exactly the
same for the human eye. Even if they might look the same for the human
eye these attacks can easily be prevented with a program looking for the
character codes as these are different. See Figure 2.4.

Figure 2.4: This image is showing two visually equal URLs, but the
one on the right is using a g that is different from the standard AS-
CII table. This image is taken from https://websec.github.io/unicode-
security-guide/visual-spoofing/ [35]

2.1.4 Malware attacks

Malware attacks are also important to mention when it comes to phishing.
This is when the attacker send malware in the form of an attachment or gets
you to download it from a malicious webpage. There are many different
types of malware some of these are key loggers, virus, worms, trojans,
spyware, adware, ransomware or rootkits [3].
Virus is a piece of code that cannot "live" on its own, it needs a host also
known as another program to be executed. The virus is executed whenever
the host program is executed and will try to spread itself to other hosts,
much like a biological virus. When enough hosts has been infected a trigger
could be activated making the virus do hostile actions such as deleting,
stealing or altering files, corrupting files or trying to force the computer
to malfunction. Worms are similar to viruses but can live on their own
and be remotely controlled. Trojans aswell are similar to both viruses and
worms but the name references the "Trojan horse" that was used by the
greeks to trick their way into the city of Troy. So a trojan is a piece of
independent malicious software that you trust and need, and could be
something as simple as a cool customizeable clock attachment for your
desktop computer. Spyware as the name implies is all about spying on

9

your target, this could be extracting files and images, or more sensitive
information like usernames and passwords. Keyloggers is a rather simple
but highly effective form of spyware, it keep tracks of what keys you press
and send them to the attacker. This means anything you type including
usernames and passwords will be sent back to the attacker to do with
as he/her wishes. Adware is not necessarily malicious, but will create
a bunch of unwanted adverts when you are using the computer. The
creator of the adware gains revenue from the ads that are displayed for
you. Ransomware is when the attacker has either found some information
they believe to be sensitive to you, or they have gained enough control
to take over the system and lock you out. This resulting in a ransom to
ensure your sensitive pictures does not get posted online, or for you to
regain access to your own computer. Finally rootkits is there to hide the
presence of malicious content on your computer.

2.1.5 Source Spoofing

Email stands for electronic mail and the core principle is the same as
sending a regular mail with a piece of paper in an envelope. When working
with email you have an address ’yourname@somedomain.tld’ similar to
real life where you have an address that might be ’Somestreet 31B’ and this
is how we know where to send the email/mail. You can write something
on a piece of paper claiming to be someone, pack it up and walk over to
someones mailbox and deliver it, and you could do the same with email.
This is known as spoofing, or source spoofing and it allows you to send
an email 100% identical to someone else’s email address. The easy way
to accomplish this is using the ’sendemail’ package for kali linux. When
people realized that anyone could sign an email with any name, several
frameworks were created to put an end to it, SPF, DKIM and DMARC
[20][1][21][15]. It depends on what email provider you use, most people
use either gmail, yahoo or hotmail, which supports all three protocols, but
there are providers that only support SPF and DKIM and there are some
that doesn’t support any of the protocols [15].

10

2.2 Related works

Phishing is not a new problem, it has been around as long as the internet
itself has been around. As phishing became a problem we found ways of
trying to deal with it from educating people to use the internet to develop-
ing tools that could help stop these attacks. Some of these tools are Faheem
Slack bot [4], SpoofGuard browser plugin along with several other browser
plugins to prevent spoofing [7][36], Thunderbird email client [33], the edu-
cational applications NoPhish and Anti-Phising phil [6][31] and hundred
different types of spam filters including those already implemented in out-
look and gmail today.
Recent years a lot of research papers with machine learning approaches has
been published to help fight phishing. These are focused toward textual
analysis to detect phishing by comparing to common features of phishing
emails [2][9][14][19]. There are also more ML papers aimed at fighting lat-
eral spearphishing attacks, which are attacks from compromised emails.
[13][16][32]. The only negative side with these types of approaches is that
you need large amounts of data for it to work efficiently. See Figure 2.5.
In the paper ’That Ain’t You: Blocking Spearphishing Through Behavioral
Modelling’ they analyse the writing habits of each person you are send-
ing mails to [32]. This means someone you email several times a day will
have a better model than those you send less emails to. In addition to this
behavior is something that the phishers can mimic by looking at the previ-
ous conversations, which could bypass the defence. There is also a cloud

Figure 2.5: Figure from the paper ’That Ain’t You: Blocking Spearphishing
Through Behavioral Modelling’ showing the false-positive rates and the
false-negatives [32].

solution to fight lateral spear phishing, that looks promising [18]. Another
great way to protect against lateral spear phishing is using two-factor au-
thentication which both Google and Microsoft provide for their services.
This works the same way as a vaccine, the more people that use two-factor
authentication, the less likely of infection and account takeovers and lat-
eral spearphishing. If everyone could ensure their account is safe, lateral
spearphishing would cease to exist.
Thunderbird is a free opensource project and currently offers ways of scan-
ning attachments in emails and checks for URL redirection tricks. It does
lack protection against URL spoofing and it does not check against com-

11

mon domains or have any ways of inserting trusted domains. But this
project is currently under development and there might be more features
towards security later in the run.
Faheem slack bot is a very interesting tool that offers a thorough explan-
ation of a URL when posted in a slack text-channel. It separates the URL
into parts and provide information to the user that can help determine if
the link is legit or not [4]. In addition to giving out general information
about a bad protocol or a suspect TLD it also contain anti-spoof filters that
checks up against the most used webpages. This ability to analyse URLs is
something that should be implemented in any channel of communication.

When it comes to anti-spam filters they are amazing at blocking out the
majority of messages that flood into our email addresses every day, but
they are not so great at dealing with more targeted attacks. Google and
Microsoft browsers are constantly blacklisting webpages that are connec-
ted with phishing attacks in order to protect their users. Numbers show
that google have blacklisted about 90% of all active phishing webpages,
while microsoft lies around 67% [30]. It is hard to tell how many victims
are exposed before a webpage is blacklisted, and the concept of blacklist-
ing might stop current on-going scams, but it does not stop the fresh new
scams.

12

2.3 Phishing Trends

Briefly mentioned in the introduction of this paper, we saw according to the
APWG that cybersecurity attacks has tripled since 2020 [12][11]. Phishing
is popular and the numbers keep increasing at a rapid rate each year, why
is this the case?
The first reason is that it must be lucrative to do these attacks, and looking
at the numbers lost on a global scale that seems to be the case. Reports from
McAfee claims cybercriminals can make anything from several hundred
thousands to even millions of dollars each year [23]. This is more than 10
times the average salary in Norway.
The second reason is the low risk of doing cybercrime. Cybercriminals
are operating from all over the globe making it hard for local law
enforcement’s to do much about people getting scammed. Most countries
have dedicated cybersecurity departments now, but even they struggle to
enforce punishment due to the many ways a scammer can hide themselves.
Things like VPN and crypto currencies like bitcoin helps scammer stay of
the grid and untouchable from authorities [23].
The third reason is that it is easy to do and get started with, the tools
you need can be purchased on the black market aswell as files containing
millions of personal user data such as phone numbers and emails.
The fourth reason is that cybercriminals are organizing and working
together in teams to create more powerful attacks. Reports from McAfee
shows more and more cybercrime centers are created, these are regular
office buildings where people go to work, only that their work is stealing
using technology [23][37]. This means they have dedicated companies
that collect user information, dedicated companies that create malicious
software, and dedicated companies that perform phishing attacks, they
have created their own supply chain. One of the many important parts
of phishing is how they gather your contact information. We live in a
digital world and a lot of contact information is publicly available either
on google, pages like 1881.no, social services like facebook or on your
work webpage. But in most cases they are not collected by a person, but
webcrawlers created to gather email addresses, phone numbers and other
information that might be useful. Data about you is collected and sold in
bundles to several groups working with phishing scams. In the end, once
your data has been collected by a malicious group you will always be at
risk for as long as you use that email address or that phone number. A
very interesting project is "Project Honeypot" that tracks and traps these e-
mail harvesters [26][25][22]. In the paper "Understanding How Spammers
Steal Your E-Mail Address" they say: "The best way to stop spam is to
keep spammers from getting your e-mail". This statement is impossible to
disagree with, because if the scammer has no way of contacting you they
cannot trick you or send you malicious content. But is it possible to prevent
scammers entirely from harvesting your contact information; i think not.

13

14

Chapter 3

Approach

In this chapter we will look into how we find and deal with mangled
domain name attacks. We will go through the algorithms we use to
find these fake domains, and try to display the entire process and inner
workings of this system.

3.1 Levenshtein distance

One way of comparing two words similarities is with the Levensthein
distance algorithm. The algorithm calculate the distance between two
strings using a mix of the 3 operations, ’replace’, ’delete’ or ’insert’. Each of
these operations adds one to the distance between the words in question.
An example of the insert operation could be to find the distance between
the words ’some’ and ’someone’, which would be 3 as you add ’o’, ’n’ and
’e’ to the word. Similarly you could go the other way with the delete
operation and remove characters. An example of the replace operation
could be ’kitten’ to ’mitten’ that would give a distance of one, as you simply
change the ’k’ to ’m’. To use the algorithm you place two words into a
matrix like Table 3.1, in this example we use the words ’Manipulate’ and
’Mediate’. To start solving this matrix we need to investigate the four cells
in the top left corner marked red, and continue as you would read a book;
left to right, top to bottom. The four cells marked red is our first sub-
problem, and the result is used to solve the next sub-problem and so on.
We look at the three numbered cells 1 0 1 bordering the ’x’ and taking the
lowest of the three cells and adding your operation, if there is one. In this
case M = M meaning we only care about the cell in the -1|-1 position from
the x and take that for our x, meaning the first x = 0. Similarly for the next
step we would solve for the x to the right and we have the cells 1 2 and
our newly discovered 0. The 0 cell is the lowest but in this case we are
doing a replace operation between A and E making x = 1. See Table 3.2.
We continue this pattern and solve every x left to right until we filled out
the entire table like in Table 3.3. Here we also see marked in the very last
cell 5, which is the final distance between the two words ’Manipulate’ and
’Mediate’. To see this implementation in code you can see Appendix 7.1.

15

M A N I P U L A T E

0 1 2 3 4 5 6 7 8 9 10

M 1 x x x x x x x x x x

E 2 x x x x x x x x x x

D 3 x x x x x x x x x x

I 4 x x x x x x x x x x

A 5 x x x x x x x x x x

T 6 x x x x x x x x x x

E 7 x x x x x x x x x x

Table 3.1: This shows an unsolved table with the words ’Manipulate’ and
’Mediate’.

M A N I P U L A T E

0 1 2 3 4 5 6 7 8 9 10

M 1 0 x x x x x x x x x

E 2 x x x x x x x x x x

D 3 x x x x x x x x x x

I 4 x x x x x x x x x x

A 5 x x x x x x x x x x

T 6 x x x x x x x x x x

E 7 x x x x x x x x x x

Table 3.2: This shows an unsolved table where we solve the second sub-
problem of the matrix.

16

M A N I P U L A T E

0 1 2 3 4 5 6 7 8 9 10

M 1 0 1 2 3 4 5 6 7 8 9

E 2 1 1 2 3 4 5 6 7 8 8

D 3 2 2 2 3 4 5 6 7 8 9

I 4 3 3 3 2 3 4 5 6 7 8

A 5 4 3 4 3 3 4 5 5 6 7

T 6 5 4 4 4 4 4 5 6 5 6

E 7 6 5 5 5 5 5 5 6 6 5

Table 3.3: This shows the final solved table with the words ’Manipulate’
and ’Mediate’. The length marked in the last column as 5.

17

3.2 Common alterations

Levensthein distance is a quite useful algorithm as when the distance is
low, we know the two words we are comparing are closely related, and we
know when the distance is high that they are far apart and we don’t need to
worry. However that is not necessarily the case, as two words might be far
apart in the algorithms eyes requiring many operations, but could still look
quite similar for the human eye. Common alterations such as changing m
with r-n, big i with small L, adding misspellings to the word or even us-
ing numbers or non-ASCII characters that make the two words still look
the same, while the algorithm thinks these are far apart. To counteract this
we can try to identify these swaps and finding the effective distance. The
effective distance is intended to be a measurement on how equal humans
find the two words, where 0 is completely equal. An example of this could
be the word ’Hemmingway’ compared with the word ’Hernrningway’ r-n-
r-n instead of the two M’s. Levensthein would give us a distance of 4 as
the r-n would replace the m by one insertion and replacement operations,
and we would have to do this for both M’s. However the effective distance
would be 0, as the two words look identical.

To do this we check for target characters like M, N, RN, I, J, L in the trusted
domain and check for potential swaps in the new domain at that index. As
we see in Table 3.4 the first thing we would investigate is the first M and we
see if the index 2 of the new domain is an N, if that is not the case we check
if index 2 is an R AND index 3 is an N, which in this case is true. Now we
have a problem for the next M as it will be compared to index 3 N, while
we want it to be compared to the R-N of index 4 and 5. To successfully do
this we use an adjuster whenever we find a case of M to R-N that would
make sure we are comparing the correct characters. The adjuster will add
one after the first case of m to r-n and compare the next m to the r instead
of n index 3. After this it would add another to the adjuster making it 2,
and this ensures we are continuing to compare I with I, N with N and so
on.

0 1 2 3 4 5 6 7 8 9 10 11

H E M M I N G W A Y

H E R N R N I N G W A Y

Table 3.4: A table displaying the two words hemmingway and hernrning-
way and how the algorithm identifies the M and compares it to the R-N
sequence of the new entry.

18

3.3 The process

There is an input field that can be used to simulate the process of sending
an email to the system. This email will have to be in the standard format of
’sender@domain.tld’ for the system to process it. When we receive a new
email the domain will be extracted from the email address, the domain is
the part after the @ and before the top-level-domain (tld). To extract the
domain we use a regex that looks for a part before the @ sign, and a tld
but only extracting the domain name that is in between. This regex can
be found in the Appendix 7.2. It will then be used to check if this domain
exists in our trusted domain list, if it is there nothing more will happen.
In the case that it is not in our trusted list we will investigate and see if
this could be an attempt at fraud. First we use the levenshtein algorithm
between this new domain and all of the domains in our trusted list. The
trusted list are previous domains that have gone through this process suc-
cessfully. We then check all the commonly exploitable characters for each
existing domain against characters in this new domain and calculate the ef-
fective distance by subtracting the result we got from levenshtein distance
for each match of potentially exploited character in the new domain. There
is also a check against homograph characters, this being characters that are
not ASCII-characters. If a non-ASCII character is found there will also be a
warning for the user. See Figure 3.1. When it comes to the warnings given
to the user if the levenshtein distance is two or less a warning will be given
about this. If the effective distance is one or zero a warning will be given, as
well as informing the user where an alteration might have happened and
what characters are in question. Meaning if we see an M turning into RN
this will be highlighted clearly for the user. Lastly a more general warning
is given if there are non-ascii characters in the domain, aswell as showing
what characters it applies to. This is quite important as there could be le-
gitimate non-ascii characters like ’æøå’ but also deceiving characters like
unicode character ’g’ (u+0261) that might look like the normal ’g’, but is in
fact not the same character.

The domains that successfully go through the system are added to the trus-
ted list as mentioned earlier. Currently this is not actually a safe list, con-
sider it more as a soft-whitelist. Domains added have indeed passed many
tests, but these tests are based on the current selection of domains that are
trusted. Meaning if lets say the domain ’microsoft’ is not in the trusted list,
a harmful domain ’micr0soft’ where the ’o’ is swapped with a ’0’ will be
considered trusted and added to the trusted list. One attempt to counter-
act this flaw was to have an initial list of many trusted domains, but you
cannot possibly add them all. This means if a fake domain reaches your
inbox before the real one, the system provides a false sense of safety. With
this weakness in mind the system still provides great value in the fact that
it can protect against already trusted domains. These are domains that you
as a person/company already have trust in, and if a mimic of a trusted do-
main were to say: "we have a great deal now for this and this item. This is
the new account number", you are more likely to be tricked than if a new

19

company however also a scam, were to say the same.

Figure 3.1: This figure shows the flow of the system and what happens
when a user enters an email address to be investigated. First it will
be checked against existing trusted addresses, if it is not already there
levensthein distance will be performed between this new address and
every existing address. Then we will find the effective distance between
the new address and every exisiting address. Lastly check for non-ASCII
characters in the new address.

20

3.4 Technologies used

For this prototype application the programming language Vue.js is used,
the IntelliJ IDEA is used to write the code and the GitHub desktop
application is used for version control of the code. Vue is a javascript
framework, and is used to create single page applications (SPA). Usually
Vue is used to create the frontend of an application, but in this case
it is serves as both the frontend and the backend. Vue is a Model-
View-ViewModel (MVVM) framework, which means there is a separation
between the markup (HTML), code (JS) and style (CSS). See Figure 3.2. The
application also uses the two plugins vuex and vuetify. Vuex is used for
handling the data in the application. Whenever data is altered, vuex will
automatically update any components relying on that data, automatically
"re-rendering" the page. Vuetify is a library with beautiful components
like buttons, text-fields and icons to help you quickly create your frontend
UI. This is the main reason for picking this technology to develop the
application, things can be created quickly and it looks nice, and considering
this is just a prototype it is a great fit. It is also something that i was
previously familiar with, which in the end allows more time working on
the product rather than learning a new tool.

Figure 3.2: This image shows the seperation of code, markup and style in a
vue file and how they can be connected.

21

Most technologies would be adequate to develop a prototype like this one,
python, java, c++, c# are just some, it really comes down to preference.
But to create a deployable ready to use piece of software there are more
things to consider. One thing that was considered was making this a plugin
for either gmail or outlook, seeing as they have APIs necessary to do so
aswell as these are the two clients most people are using. Integrating with
existing technologies can in many ways be easier than making something
comepletly from scratch.

22

Chapter 4

Results

In this chapter we will go through how the final system looks and works,
and work through a series of scenarios and test for how this system could
fend of potential attacks.

4.1 The program

This prototype solution has an input field that can be used to enter email
addresses. When entering an address and pressing the send mail button
the address will pop up in the inbox section of the program, simulating
you receiving an email from that mail address. In figure 4.1 you can see
input field.

Figure 4.1: This image displays how you could enter an email address and
send a pretend email to the system.

After going through a series of tests (discussed in Chapter 3) the mail will
be showed in the inbox section with a green thumb signifying everything
seems to be in order, a yellow warning advising caution or a red alert sign
claiming this is almost certainly an attempted fraud. See figure 4.2 for the
inbox and the different warnings that can be displayed.

23

Figure 4.2: This image displays how the initial warnings might look like in
a inbox with several mails. You can also see here two attempts at trying to
impersonate with the domain Microsoft.

The email domains that got the green thumb is then added to the domain
registry, so that it can be used to prevent scams using this brand name in
the future. Domains that are not marked as trusted will not be added to
the domain list but it was indented to create a feature to manually add
domains to the trusted list when it failed and got a warning. This feature
was thought of because there is always a chance of receiving false-positives.
From the start you can quickly identify which mails that are safe to open,
and which you should approach with more caution. You can also click
on the emails in the inbox to view what the warning/alert messages are.
This is important as you get to show the user why this message triggered
a warning pinpointing the exact location, or it could help the user see that
this is actually a false-positive. A warning could look like Figure 4.3 where
it states what domain it is resembling and how closely it resembles by
including effective distance.

Figure 4.3: This image displays a basic warning message from a new email
to the system. This warning was triggered from the domain name of the
email address being to similar but not the same of an address already in
the system.

24

You could also receive an alert which is not common to happen by accident,
as the domain you received an email from has to be visually equal to
a domain you know and consider safe. In most cases this will be an
attempted fraud, where one or more exploitable characters have been
swapped out. See Figure 4.4

Figure 4.4: This displays the alert you receive when the program suspects
attempted fraud. In this case it highlights the domains ’hemmingway’ and
’henningway’ and that the m’s are swapped with n’s is highlighted with
bold text. It also provides more informations that you can either expand or
compress by pressing the arrow button.

Finally the last component on the main page is the domain registry
component. This is not something important for the program itself, but
was helpful during testing. This component displays all the trusted
domains currently in the system, which provides a valuable overview
when executing tests towards the system. You can see Figure 4.5 for the
full view of the main page.

25

Figure 4.5: This displays the main page of the program. It has a section for
adding mails to the system, and inbox to display the current mails, and a
domain registry to display the currently trusted domains in the system.

26

4.2 Testing

For the testing of this system it is divided into two sections, one where
DnsTwist is used to find potential scam domains and another part where
we try to break the current system with more sophisticated and planned
attacks. The second section is more about displaying what types of attacks
are blocked, what weaknesses the system currently has, and possibly how
we can exploit this and trick the system.

4.2.1 DnsTwist

DnsTwist is used for identifying suspicious webpages that resembles the
one you are trying to search for. The quick way to test the program is to use
the webpage https://dnstwist.it, you can enter a webpage and press scan
to find others similar to it. See Figure 4.6. This will find domain names that
are similar to the original domain, which can then be put into our system
to test how well it detects these differences. It might not be the intended
use for DnsTwist, but it provides value to have a third party create the tests
as you might find more flaws, compared to you doing all the permutations
yourself. The reason for using DnsTwist over a keyword typo generator is
that DnsTwist finds real fraud webpages, real existing attempts at fooling
people. While a typo generator will just generate permutations based on
some selections like skipping letters, adding letters, swapping letters etc.
There is no thought behind what characters to swap, how many and how
the word looks compared to the original word.

Figure 4.6: This image displays DnsTwist and how you can search a
webpage to find other webpages with similar names. These domains are
then extracted and put in to test this system to see if it can detect them.

27

The tests with dnstwist were done by first identifying a legitimate domain
we wished to test against. Entering that domain to our own program
and to dnstwist to receive many fake versions of that domain. Then
entering these domains manually to our program to see how it would
be handled. It is important to keep in mind dndtwist would provide
thousands of permuations for each domain that was tested, and not all of
these were tested. DnsTwist categorizes the scam domains for us, some
of these categories can be addition, bitsquatting, dictionary, homoglyph,
insertion, omission, repetition and so on. To make the testing cover as
much grounds as possible I made sure to use some fake domains from
each permutation category. This excluding categories like tld-swapping
and subdomains as this is not something this project covers yet, but should
definitely be a thought for the future. In the first scenario we tested the
domain hemmingway as our trusted domain and marked with a green
thumbs-up in Figure 4.7. The system here flags all the domains provided
by dnstwist with a warning, and even marks one with red, claiming that
to quite likely be a targeted attack. The yellow might be attacks, or might
not be, they are similar to the domain hemmingway, in this case causion
and reading the domain names over is advised. There could be a case
where a person is dealing with the legitimate company hemmingway, and
also a legitimate company called heimingway, however such resemblance
is highly unlikely. However a warning will help prompt the user reading
the domain name to act more carefully and make a more educated decision
on whether or not to trust the email.

Figure 4.7: Image of testing the domain Hemmingway versus mutations
created by DnsTwist.

Using DnsTwist a range of different domains and mutations were tested,
some of which can be seen in Figure 4.8, the legitimate domains microsoft,
facebook and volkswagen were tested. These mutations include several
different styles of attack like inserting characters, removing characters,
using homoglyphic characters, replacing and swapping. The system seems
to catch most of the mutations received from DnsTwist with at least
a warning despite all the different styles of attacks that were applied.

28

There was one entry that fooled the test but it might not fool the person
’facebookcom’. It is a good attempt towards webpages as they usually have
paths following after to help disguise the real tld.

Figure 4.8: This image contains the result of the tests done with the help
of DnsTwist towards the system. The domains ’microsoft’, ’facebook’ and
’volkswagen’ were tested.

29

4.3 More complicated problems

This section is more about displaying what is caught and displaying how
to not get caught by the program. DnsTwist was great to test the program
and see how it would respond to the different mutations, however a
common thing about all the fake domains from DnsTwist; they had too
few changes. Many of the words looked fairly equal to the original
domain, but got caught because levensthein only found one or two distance
difference between the words. To break the system we need to create a
higher distance between the words, while somehow keeping them visually
equal. As mentioned earlier in this paper the character ’m’ is a great
tool for increasing length when swapped with the ’r-n’ sequence. But
this is something that is monitored as you can see in Figure 4.9 where
’hemmingway’ is compared to ’hernrningway’. The distance is four, but
the program identifies both of the ’m’ to ’r-n’ swaps and finds the effective
distance to be zero.

Figure 4.9: This shows an image of the alert when comparing ’hemming-
way’ to ’hernrningway’. The system has found both ’m’ to ’rn’ swaps, and
stops this attack even with 4 as the distance.

To avoid any alerts and warnings we need our distance to be equal or
less than 2, while the effective distance is equal or less than 1. Currently
our distance is 4, and our effective distance is 0, but there is another
trick we could use to increase the effective distance; adding misspellings.
Misspellings can be a great tool, and especially misspelling that are located
closer to the end of the words as the human mind often makes assumptions
and not read the word character by character [28][5]. By swapping two
characters positions we would accomplish this no longer being detected
by the program, while still looking fairly similar: ’hernrninwgay’ or
’rnicorsoft’ are two examples of this. Another thing that could also bypass
the program is by adding characters before a swap between ’m’ to ’r-n’,
as this would disrupt the algorithm looking for these common character
alterations. If we were to take the word ’wallmart’ and add an extra l
while using the ’r-n’ swap for the m, we would get ’walllrnart’, which looks
fairly similar to the original. Table 4.1 displays that the ’m’ in the original
wallmart will then be compared with the ’l’ of the fake wallmart.

30

W A L L M A R T

W A L L L R N A R T

Table 4.1: A table showing ’wallmart’ and ’walllmart’ to display how
the algorithm checking for ’m’ to ’rn’ swaps can be tricked by adding a
character somewhere before.

By adding this ’l’, the characters after are shifted one spot, meaning we now
compare ’m’ to ’l’ and wont find that the ’m’ has in fact been swapped with
’r-n’. However not every company name has an m that can be exploited,
and without the m it can be difficult to bypass the system. Here once
again the best results were by triggering our inner dyslexia by shuffling
the characters around. This also means that the same characters are being
used, resulting in exact same length as the original domain. Figure 4.10
shows a successful attempt that tricks the system while maintaining rather
camouflaged. It must be said that swapping characters around to fool
your victim only works when the domain is rather long. On shorter
domains there was no way of tricking the system and maintaining a good
camouflage, at least not any that I could find.

Figure 4.10: Showing a rather successful attempt at fraud with the domain
’sonyericsson’ and the fake ’sonyrecisson’. Here two character swaps has
been made to make the distance 4, while maintaining a good appearance.

31

32

Chapter 5

Discussion

Sophisticated cybersecurity attacks today often include thorough recon-
naissance and planning from the attackers, which leads to more tailored
attacks towards high value targets. One trick attackers might use is to dis-
guise their domain name and impersonating someone else. This prototype
tries to work against these types of attacks and in this chapter we will dis-
cuss the final product, the results what the system does well, its weaknesses
and what needs to be considered in the future.

5.1 Provides value

Phishing is an increasing problem and everything is pointing towards more
of it in the future [12][11][23][37]. Most of the attacks are sent with e-mail,
but increasing attacks are happening over SMS and other messenger ap-
plications like Facebook’s messenger. Most of the attacks are not tailored to
attack just you, but rather a large amount of people at the hopes that just a
handful fall into their trap. From an early age we are taught to thread care-
fully on the internet, not to trust that something is free and to never press
URLs from people you don’t know. So why are these seemingly poorly
made spam attacks increasing? Technology is enabling this process to hap-
pen basically automatically, the phishers create a new scam and distribute
it through a new email to many victims at the same time. Another inter-
esting thing is to look at the demographics, especially age, fraud reports
from the FBI 2020 show that the most victims of internet scam are elderly,
despite a much larger percent of internet users being younger [10]. Could
these poorly made scams still be around because of the elderly generations
lacking internet education. Over the past years google gmail and microsoft
outlook has been able to reduce successful attacks with spam filters. What
happens when these types of attacks stop paying the bills for the phish-
ers? They will evolve, and have done so already as there is more money to
be made when infiltrating deeper and targeting higher value targets. One
weakness that has proven in the past to be quite successful is simply send-
ing your scam from hijacked accounts to the friend list of that person. This
is effective because you think the URL you press is safe, because you re-
ceived it from a friend. If you use any social media accounts like Facebook

33

or Instagram you might have been subjected to these types of attacks your-
self in the past. This type of attack requires you to first hijack someones
account, which is not always easy, but something that is easy is pretending
to be someone else.

Pretending to be someone else brings us to our topic, and is something
that has been made a whole lot easier with the evolution of technology.
Pretending to be someone else in real life is difficult, you would have to
change the way you look, your voice and probably many more indicators
not mentioned here. Pretending to be someone else online is rather easy
because you do not need to show yourself, you can hide behind your com-
puter and make wild claims of who you are. When it comes to claiming to
be someone using e-mail we have luckily come some way since the early
days. Thanks to protocols like SPF, DKIM and DMARC you can no longer
do the equivalent of writing a letter claiming to be president Obama and
deliver it [20][1][21][15]. These protocols ensures that someone else cannot
just use your exact e-mail address for their own e-mail. But something that
still remains a problem is creating e-mail addresses that have close resemb-
lance to the original. To counteract this many email clients today have now
included a feature that tells you if you have not received email from that
person before, or if they are outside your domain. See Figure 5.1. This
is truly a great addition that can stop many impersonation attacks over e-
mail. But is this kind of warning enough and does it cover all types of
impersonation attacks?

Figure 5.1: Image showing a warning in the outlook client when receiving
a message from a new person, who is also outside of the domain you use.

To answer the question above, no this is not enough. There are more ways
of impersonating someone than just their name in their email, they could
also change the domain. Most private emails will use one of the standard
domains like gmail, hotmail, outlook etc. But this is not set in stone, it can
be anything and companies might like the domain to be the name of their
company. When it comes to the domains many especially companies de-
pend on other companies to run their businesses, and will therefor also be
in contact with other domains that are different from their own. The warn-
ing saying this is the first time you have been in contact with this person
can quickly be overlooked when considering the following scenario. Your

34

company often deals with susy@papersupplier.com, but suddenly you get
an email from mark@papersuplier.com (missing one p), you will see the
warning saying this is the first time you get a mail from mark, but you will
also think this is just another employee at the company papersupplier. The
scammer mark has now earned your trust, and with this trust is in a good
position to spread a virus, try to extract value or phish for information and
further exploits.

These are the types of attacks that this program is effective at handling.
Small alternations in the domain making it look similar to the original do-
main. You wont get a message that this is just a new contact, but rather this
is a person trying to disguise themselves as a domain you know and trust.
Not only that, you will also get warning and highlighting that will pinpoint
you to exactly where the differences are, allowing the user to take a more
educated decision if this is an attempted fraud or not. Showing where the
problem lies is important as it is not always the case that the domain is
faulty even if the program reacts to it.

It is important to note that most attacks are not based around a disguised
domain name, but rather use one of the well known @gmail or @outlook
domain names. It is also important to emphasise this thesis is not meant
to fix the problem of phishing, but rather addressing one aspect of it and
making things more difficult for phishers in the future. There are countless
technologies in play, and currently being brainstormed that together help
fight phishing. This can be firewalls, browser blacklisting, spam filters as
well as newer approaches like machine learning, cloud platforms, protocols
like SPF, DKIM and DMARC, using bots for URL breakdown and much
more. Using machine learning for content based detection is looking more
and more promising, however i don’t believe this alone will ever be good
enough. These approaches are content based they will look for keywords
in the text, filtering, blacklisting, profiling, bad language, labeling etc. In
addition to this machine learning approaches require large amount of data
do work properly. What happens when the phisher doesn’t type anything
to raise the alarms but rather use the trust of a disguised domain name to
forward the conversation to a voice chat, or a instant messenger application
like telegram where they could speak in private. Instant messenger applic-
ations like telegram requires you to know the other party through adding
them in order to speak, which is also why they don’t have a spam filter or
any form of anti phishing software.

From the results we witnessed the program being effective at handling
fake domains provided by DnsTwist. Using DnsTwist is interesting as it
provide real fraudulent webpages, which offers a somewhat more realistic
testing environment. The domains from DnsTwist were mostly domains
containing one or two alterations from the original domain. An import-
ant thing about these types of attacks is that it has to trick the defending
program as well as the person using it in order to be successful. To trick
the program enough misspellings or alterations need to be made, this will

35

however make it more likely the human can spot that something is wrong.
Doing the tests were extremely difficult because you had to balance what
could fool you, what could fool the program and what could fool both at
the same time. Seeing what could fool the program was the easy part, but
trying to judge in honesty what could fool me was impossible. There are
so many factors that applies into a fake domain attack, the most import-
ant being you don’t know you are being attacked. Whenever i would read
the fake domains myself i would see they were fake, because i was look-
ing for it, i already knew they were fake. This was especially hard in the
second part of the testing where we played the attacker. During this stage it
was all about trying to trick both myself and the system in order to display
its weaknesses. The approach was to stick with using the known meth-
ods to disguise domains, like swapping similar characters and alternating
positions between two non-prominent characters as this would give the
best result in order to trick me. It is hard to say if assessing whether these
domains were disguised enough or not was done adequately. There is a
chance i evaluated the fake domains to harshly, and there is a chance that i
was to lenient.

This is a program that defends against fake domain names, but maybe the
most unique part about this program is that it learns. It is designed to pro-
tect you against people impersonating domains that you have conversation
with. This means as you are using the program and building your network
it includes your new relations and makes sure their names/domains cannot
be used against you in the future. If you speak with @papercompany with
email, that is something the phishers might figure out, but can no longer
use against you. This solution compared to our current ways of blacklisting
and whitelisting is a much better approach. The problems with blacklist-
ing are obvious, you can blacklist the email of a phisher, but nothing stops
him from making another. Blacklisting is something that happens after
an attack, which means if the attack was successful you wouldn’t know.
Whitelisting can only work if you know exactly who should have access
to you at all times. If a company relies on getting a constant flow of new
messages, their email address cannot be locked to the invited people only.
The program will not give any defence against domains you might know
but have not had previous conversation with.

One could say these types of attacks can be prevented with proper user
training through anti-phishing training courses [6][36]. Companies spend
large amount of money on training their employees to identify scams
[37][23]. Receiving proper training is important to identify phishing and
staying safe online, but training alone is not enough. People cannot stay
on-game with razor sharp focus at all times, in the end people make mis-
takes. Reading mail number 40 for the day it might be hard to spot that
one character difference in the email domain name. We humans are also
at a great disadvantage when processing these kinds of scams due to how
our brain works. When reading a word or a sentence our brain will try to
predict what the outcome is before we read it [28][5]. This means if you

36

do not fully concentrate on reading something character by character your
brain is likely to fix whatever mistake in the domain name without letting
you know it happened. Which is why we need help, having something to
tell you about this difference and show you where to look makes it easy to
not fall for the trap. There are people that believe training people is the way
to go, and there are people that think we need to detect phishing without
counting on people. Obviously being able to detect phishing automatically
and without human assistance would be the best course of action, but we
are not there yet. We need to count on both, technology to give pointers
and a anti-phishing trained human to process this information and decide.

37

5.2 Future works/Limitations

5.2.1 False-positives

One of the bigger flaws with the current system is the amount of false-
positives we are getting. This applies mainly whenever the character
lengths drops below five. This makes sense as the same rules apply for any
domain that enters the system, and domains with less characters means
more likely to be similar to some other domain. Lets consider the domains
’IBM’ and ’FBI’, they have only three characters each and we can clearly
distinguish them from one another. However if you were to enter this
into the system it would be flagged as being to similar, simply because
they share the middle ’B’. There needs to be different rules applied as the
character length of the domain drops, maybe in the case of three characters
we allow one alteration, but trigger if the effective distance is zero. More
problematic is the middle ranged domains like ’Cisco’ versus ’Costco’
which in the current system will be a false-positive. Where exactly to
draw the line can be difficult as by making the rules less strict you might
reduce false-positives but might open the system up for failing to see real
threats. One might think getting some false warnings every now and then
is justified by catching more real threats. However giving frequent false
warnings can also be quite dangerous and will have the same effect as the
boy who cried wolf.

5.2.2 Warnings and alerts

The warnings for this system is split into two, warning (yellow) and alerts
(red). The main reason for splitting it up into warning and alerts was to
differentiate between what could potentially be a scam, and what is most
certainly a scam. It was also considered using a percentage to rate the new
domain more accurately, but this was not implemented. The way warnings
and alerts work at the moment can be explained as adequate. When there is
an alert it is in most cases for a good reason, whenever there is a warning in
most cases this is also true with the occasional false-positive. But there are
cases where the warnings should probably be treated as an alert instead of
just a warning. Currently the system will only create an alert if the effective
distance is equal to zero. This means if the domain ’microsft’ that is missing
an ’o’ is only gonna get a warning, while in truth it is so equal that it
deserves an alert. Whenever there is only a distance of one between these
words of higher character number they should be given alerts instead of
warnings. The higher character number also means it should be less likely
that two legitimate domains will trigger one an other.

5.2.3 First is trusted

A massive weakness right now is that the policy is really "first domain in
is trusted". The system is designed to defend against phishing attempts
that use company names that you recognize and trust against you. They

38

do this by creating a new domain that looks very similar to the original
real domain. But if you receive an email from a fake domain ’@anazom’
before you receive one from the real ’@amazon’, the fake one will be ad-
ded to the trusted list of domains, and it would flag @amazon as the fake
simply because of the order you received the emails. This is obviously not
ideal because if a trusted domain is not yet added to the system, there is
no defence against it, the system will flag the domain as ’cleared’ and will
give a false sense of safety towards the user.

There are some ways to get around this, one could be to add a standard
trusted list of the top 500 or so company domains as these would prob-
ably be the most targeted. That might help against more standard generic
attacks that are sent out to many people, but it would not help anything
against an attack carefully planned and targeted towards a single company
or person that uses a domain not in this list. In addition to this the phish-
ers would quickly figure out what these 500 domains are and simply not
use them in future attacks, as they know they will be stopped. Adding
every single good domain would be the best, however this is not viable
for several reasons. Not only is it impossible to identify every single good
domain, but new ones are created every day, also the system would not be
able to handle checks against this many domains. Adding everything is
also not important as each person/company only have some domains that
they communicate with frequently.

Maybe we could create a component for adding these trusted domains to
the client. Similar to a whitelist containing the same flaws, it is time con-
suming, is it something the user would take the time to do? It is also some-
thing continuous that has to be done, as new companies are made and start
cooperating with you. There is no way to make a list, and remain safe for
eternity. This would solve the problem above if the user takes the time to
add the most important domains before using the program. But even this
would still leave you vulnerable as the phishers could take advantage of
what type of company you are, and figure out what you need. Lets con-
sider a law firm, they are in need of a ridiculous amount of paper to run
their operations and are sure to have deals with some sort of paper com-
pany ’bestpaper’ for example. If the phishers know this and know that
the current paper provider is ’bestpaper’ they could impersonate another
paper company claiming they can provide paper for them cheaper. This
would then not be discovered as this new fake paper company is not ad-
ded to the list of trusted domains.

It is clear that we cannot add a bunch of domains to the list and hope to
be safe. There needs to be a way to help the user identify if new domains
to the system are safe as you receive them. Whenever a new domain comes
in to the system, a clear warning of this is given to the user, prompting
some sort of step by step approach for the user to make sure this is a safe
domain. For such an idea there are many things that could be added, just
to generally help guide whether to trust this or not. Clearly separating

39

the characters, warn for homoglyphic characters, generating a link for a
google search prompting the user to do just a tiny amount of research on
this new entry. Yes, this could become very tedious, especially in the begin-
ning when no domains are trusted and you have to do this process for every
email you receive. But as you use it, and as the list of trusted domains grow
the less times you have to do this process. The reward for doing this is that
you know the emails you receive are from a trusted source, at one point
in time you have verified them yourself and any malicious attempts made
towards those domains will be recognized. Checking out a new domain or
using google to identify if a URL is safe to press is not something new. It
is a good way of testing validity, if your google search gives a low result or
points you in the direction of something else that is similar you shouldn’t
trust it. Like all manual work, it takes time and things that takes time are
often neglected, but maybe by making this research process easier by gen-
erating the links for the google search and guiding the user in what to look
for would be enough to make it worth the effort. One of the biggest flaws
with security is that not enough information is provided to the user. If we
consider a URL, that could be broken down into many different parts that
are all important to understand to remain safe from a malicious URL. There
are however only a fraction of people that knows these parts by heart, and
can navigate the good features and the bad. This can be something simple
as knowing that the http protocol is not an encrypted protocol and you
should not send any data on a webpage without the https protocol. In-
forming the user about small things like this can help them avoid getting
tricked.

5.2.4 Mutations

After working with this project for a long time i found a rather cool idea
that could solve some of the more complicated problems slipping through
the system. Words that have a distance more or equal to 2 and effective
distance more or equal to 1, but still visually look the same as the original.
An example of this mentioned earlier in the paper is the domain ’wallmart’
versus ’walllrnart’, having an extra ’l’ and the ’rn’ swap for the m. With
the current system this would slip past and not be flagged, but what if we
made a mutation of the new domain ’walllrnart’ by changing the ’rn’ to
’m’, and then running this mutation against the original trusted domain.
We would then get ’wallmart’ vs ’walllmart’ and find that the distance is
only one, and a warning would be given. This takes the idea of common
character alterations and flips it around, instead of checking every trusted
domains vulnerable characters we make mutations of the new domain in
question and check every mutation against the trusted list. Running leven-
sthein distance on every mutation would give us mutation distance to the
trusted domains, so even if the original distance in the case of the ’wall-
mart’ example is 3; a mutations of this only has a distance of 1. This idea
has not been tested in any way and could lead to new unforeseen prob-
lems such as becoming more resource demanding as you are no longer just
checking your trusted list, but your trusted list times the amount of muta-

40

tion the new domain has. There could also be a problem that this increases
the amount of false-positives, as you are checking so many more combina-
tions.

W A L L M A R T

W A L L L R N A R T

W A L L L M A R T

Table 5.1: This shows how we can mutate the fake domain walllrnart as
we identified ’r-n’ which can be expressed as ’m’. By doing this change we
now have a mutation walllmart which only has 1 in difference between the
real wallmart.

In addition to this we also have the ’sonyericsson’ insident where the fake
’sonyrecisson’ eluded the program without any common character alter-
ations, but simply with character position swaps. Figure 4.10. Creating
mutations for character swaps is not as easy, and would lead to far to many
mutations and false-positives. One approach that could be promising is
taking these mutations of common character alterations discussed in the
paragraph above and counting the characters versus the domains in the
trusted list. In the case of the ’sonyericsson’ example above you would
count occurrences of all the characters in both domains.

S O N Y E R I C S S O N

S O N Y E R I C

3 2 2 1 1 1 1 1

Table 5.2: Showing a character summary of the domain ’sonyericsson’.

S O N Y R E C I S S O N

S O N Y E R I C

3 2 2 1 1 1 1 1

Table 5.3: Showing a character summary of the fake domain ’sonyrecisson’.

As you can see in tables 5.2 and 5.3 they have the exact same amount of
characters. Considering the length of these two words it is highly unlikely
two domains have exactly the same amount of equal characters by acci-
dent. This type of check could be added to the program and would provide
more defence against these types of character swap attacks. Similar to the
other method of detecting maybe allow 1-2 character difference as it would
still be fairly similar, depending on the length of the domain in question of
course.

41

5.2.5 Further development

There has been some interesting ideas discussed in this chapter like creating
mutations of incoming domains and test mutations for similarities to the
trusted list, and counting the exact amount of each characters and using
that to compare. There are probably more ideas out there that has not yet
been thought of. The next step however is not to perfect the program right
away, it is to reach the user base with what we got. This is because what
we got right now already provides value as it is. What is created here is
only a prototype, meant to be an easy way to test ideas and see them in
practice quickly. To reach the users it is ambitious to believe they will come
to you, to reach the most users you will have to meet them. Currently the
most used clients for email are google gmail and microsoft outlook splitting
nearly all of email users among themselves. Giants such as google and
microsoft has luckily made things quite easy for developers in the form
of creating APIs for everything, including their mail clients. So the next
natural step would be to make some sort of plugin, that achieves what
this prototype does. Mentioned earlier in the report it was considered
making this a gmail plugin from the beginning. This was put a side as
more flexibility and independence were prioritized in order for the idea to
develop more freely. Starting this as a prototype project allowed for quick
changes on the go, changes that would’ve been much more tedious to do
if in addtion relying on a third party software such as google. The ideas of
this project were far from complete at the beginning of the project period,
many changes has been done during this time, and doing the prototype
first has in many ways enabled a better end result.

5.3 Performance

A stress test was performed on the system to see how well it would handle
an increasing number of domains within the system. There are quite a few
calculations happening so it is interesting to look at what sort delays we
might expect in the future in a very busy system. When a new domain is
added it will be compared to all the domains in the trusted list, then it will
find levensthein distance against every single one, and finally it will check
all the exploitable characters in every domain against the new one. A total
of 100 unique domains were added and the time it took to successfully add
the new domain was taken. Even at 100 domains the time remained under
1 millisecond from start to finish. This looks promising as the idea with
the stress test was to check if the system could handle 100 entries, and it
proved it could do way better than that. The increase in time per entry is
linear meaning the time will steadily increase as more entries are added.

Some interesting notes from this stress test is that the domain ’ASML’ got a
warning for looking to similar to ’TSMC’. The domain ’Costco’ got a warn-
ing of being to similar to ’Cisco’ and the domain ’SAP’ got a warning for
being to equal to ’BHP’. This means we received three false-positives in 100

42

domains to the system which is more than it should be. It worth noting
that all of these false-positives contain few characters, for instance ’SAP’
and ’BHP’ a human could clearly see right away does not look like each
other, but the computer only find a distance of two between them.

43

44

Chapter 6

Conclusion

Phishing has been around since the dawn of internet and will stick around
in the time to come. In this thesis we explored ways of defending against
phishing emails by detecting fake domain names. To achieve this, a pro-
totype application was developed to test and visualize how such an idea
could work in practice. This program works by checking new entries to
the system against a trusted list of domains, and looking for similarities.
This trusted list would then grow as domains successfully passed the re-
quirements. The program is effective at spotting small alterations but can
be extended with several improvements in regards to detecting more ad-
vanced alteration techniques and limiting false-positives. Some of these
shortcomings were discussed and should be possible to solve with fur-
ther development. The program provides value as it is efficient at deal-
ing with impersonation attacks that uses a fake domain to establish trust.
What makes these attacks especially dangerous, is that we initially think
we can trust them because we think it is from someone we know. We treat
messages differently, a URL from a stranger we don’t know is easy to dis-
regard but for one from a friend we might press before even looking at the
URL. These attacks doesn’t necessarily look to extract value right away in
the form of a malicious URL or attachment, but extracting information and
building trust in order to do something down the line, using content based
approaches is not effective against these types of attacks as they look for
malicious content text, URL or attachments. Many experiments were done
towards the program to test its efficiency on spotting fake domain names.
Most of these experiments were done with the help of DnsTwist to provide
us with fake domain names. DnsTwist provided an unique way of testing
the program, as it does not simply generate domains for the test, it provides
real fraudulent domain names that has been used to trick people in the
past. These domains use a mixture of common alteration techniques like
swapping character positions, adding misspellings, removing characters
and many other tricks. These seemingly legitimate domains were however
no match against this prototype program and were discovered and marked
with either a warning or alert.

This solution provides us with information to make the right decisions. We

45

should not be expected to be able to spot misspellings and tricks designed
to fool us. To be able to spot a misspelling, you need to be actively search-
ing for it and reading who we received an email from is not something we
do with a loupe. As stated in the introduction this thesis was not intended
to solve phishing, but addressing one aspect and making it just a tiny bit
more difficult for the phishers. Making it more difficult is the end goal, as
making something completely safe on the internet is impossible.

46

Bibliography

[1] "Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy,Ed." Domain-
Keys Identified Mail (DKIM) Signatures. 2011. URL: https://www.rfc-
editor.org/info/rfc6376.

[2] Shivam Aggarwal, Vishal Kumar and S. D. Sudarsan. ‘Identifica-
tion and Detection of Phishing Emails Using Natural Language Pro-
cessing Techniques’. In: Proceedings of the 7th International Conference
on Security of Information and Networks. SIN ’14. Glasgow, Scotland,
UK: Association for Computing Machinery, 2014, pp. 217–222. ISBN:
9781450330336. DOI: 10.1145/2659651.2659691. URL: https://doi.org/
10.1145/2659651.2659691.

[3] Zainab Alkhalil et al. ‘Phishing Attacks: A Recent Comprehensive
Study and a New Anatomy’. In: Frontiers in Computer Science 3 (2021),
p. 6.

[4] Kholoud Althobaiti, Kami Vaniea and Serena Zheng. ‘Faheem:
Explaining URLs to people using a Slack bot’. In: Apr. 2018.

[5] Moshe Bar. ‘The proactive brain: memory for predictions’. In:
Philosophical Transactions of the Royal Society B: Biological Sciences
364.1521 (2009), pp. 1235–1243.

[6] Gamze Canova et al. ‘NoPhish app evaluation: lab and retention
study’. In: NDSS workshop on usable security. 2015.

[7] Neil Chou et al. ‘Client-Side Defense Against Web-Based Identity
Theft’. In: Jan. 2004.

[8] ‘Cyber Kill chain’. In: URL: https : / /www . lockheedmartin . com/ en -
us/capabilities/cyber/cyber-kill-chain.html.

[9] Sevtap Duman et al. ‘EmailProfiler: Spearphishing Filtering with
Header and Stylometric Features of Emails’. In: 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC).
Vol. 1. 2016, pp. 408–416. DOI: 10.1109/COMPSAC.2016.105.

[10] FBI. ‘Elder Fraud Report’. In: (). URL: https://www.ic3.gov/Media/
PDF/AnnualReport/2020_IC3ElderFraudReport.pdf.

[11] Anti-Phishing Working Group. In: (). URL: https ://docs .apwg.org/
reports / apwg _ trends _ report _ q4 _ 2021 . pdf ? _ga = 2 . 18223225 .
191419467 . 1646825763 - 783082516 . 1644834354 & _gl = 1 * 16ohr5r *
_ga * NzgzMDgyNTE2LjE2NDQ4MzQzNTQ . * _ ga _ 55RF0RHXSR *
MTY0NjgyNTc2My4yLjEuMTY0NjgyNTc3NS4w.

47

https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc6376
https://doi.org/10.1145/2659651.2659691
https://doi.org/10.1145/2659651.2659691
https://doi.org/10.1145/2659651.2659691
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://doi.org/10.1109/COMPSAC.2016.105
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3ElderFraudReport.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3ElderFraudReport.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf?_ga=2.18223225.191419467.1646825763-783082516.1644834354&_gl=1*16ohr5r*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0NjgyNTc2My4yLjEuMTY0NjgyNTc3NS4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf?_ga=2.18223225.191419467.1646825763-783082516.1644834354&_gl=1*16ohr5r*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0NjgyNTc2My4yLjEuMTY0NjgyNTc3NS4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf?_ga=2.18223225.191419467.1646825763-783082516.1644834354&_gl=1*16ohr5r*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0NjgyNTc2My4yLjEuMTY0NjgyNTc3NS4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf?_ga=2.18223225.191419467.1646825763-783082516.1644834354&_gl=1*16ohr5r*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0NjgyNTc2My4yLjEuMTY0NjgyNTc3NS4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf?_ga=2.18223225.191419467.1646825763-783082516.1644834354&_gl=1*16ohr5r*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0NjgyNTc2My4yLjEuMTY0NjgyNTc3NS4w

[12] Anti-Phishing Working Group. In: (). URL: https ://docs .apwg.org/
reports / apwg _ trends _ report _ q4 _ 2020 . pdf ? _ga = 2 . 59653869 .
191419467 . 1646825763 - 783082516 . 1644834354 & _gl = 1 * e9sl22 *
_ga * NzgzMDgyNTE2LjE2NDQ4MzQzNTQ . * _ ga _ 55RF0RHXSR *
MTY0Njg3MTY2Mi4zLjEuMTY0Njg3MTczMC4w.

[13] Grant Ho et al. ‘Detecting and Characterizing Lateral Phishing at
Scale’. In: 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1273–1290.
ISBN: 978-1-939133-06-9. URL: https : //www.usenix . org/conference/
usenixsecurity19/presentation/ho.

[14] Grant Ho et al. ‘Detecting Credential Spearphishing in Enterprise
Settings’. In: 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp. 469–485.
ISBN: 978-1-931971-40-9. URL: https : //www.usenix . org/conference/
usenixsecurity17/technical-sessions/presentation/ho.

[15] Hang Hu and Gang Wang. ‘End-to-End Measurements of Email
Spoofing Attacks’. In: 27th USENIX Security Symposium (USENIX Se-
curity 18). Baltimore, MD: USENIX Association, Aug. 2018, pp. 1095–
1112. ISBN: 978-1-939133-04-5. URL: https : / / www . usenix . org /
conference/usenixsecurity18/presentation/hu.

[16] Xuan Hu et al. ‘Detecting Compromised Email Accounts from the
Perspective of Graph Topology’. In: Proceedings of the 11th Inter-
national Conference on Future Internet Technologies. CFI ’16. Nanjing,
China: Association for Computing Machinery, 2016, pp. 76–82. ISBN:
9781450341813. DOI: 10.1145/2935663.2935672. URL: https://doi.org/
10.1145/2935663.2935672.

[17] Oliver J Hunt and Ivan Krstic. ‘Preventing URL confusion attacks’.
In: (2017).

[18] Md Mazharul Islam, Ehab Al-Shaer and Muhammad Abdul Basit
Ur Rahim. ‘Email address mutation for proactive deterrence against
lateral spear-phishing attacks’. In: International Conference on Security
and Privacy in Communication Systems. Springer. 2020, pp. 1–22.

[19] Mahmoud Khonji, Youssef Iraqi and Andrew Jones. ‘Mitigation of
spear phishing attacks: A Content-based Authorship Identification
framework’. In: 2011 International Conference for Internet Technology
and Secured Transactions. 2011, pp. 416–421.

[20] Scott Kitterman. Sender Policy Framework (SPF) for Authorizing Use
of Domains in Email, Version 1. RFC 7208. Apr. 2014. DOI: 10.17487/
RFC7208. URL: https://www.rfc-editor.org/info/rfc7208.

[21] Murray Kucherawy and Elizabeth Zwicky. Domain-based Message
Authentication, Reporting, and Conformance (DMARC). RFC 7489. Mar.
2015. DOI: 10.17487/RFC7489. URL: https://www.rfc-editor.org/info/
rfc7489.

48

https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf?_ga=2.59653869.191419467.1646825763-783082516.1644834354&_gl=1*e9sl22*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0Njg3MTY2Mi4zLjEuMTY0Njg3MTczMC4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf?_ga=2.59653869.191419467.1646825763-783082516.1644834354&_gl=1*e9sl22*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0Njg3MTY2Mi4zLjEuMTY0Njg3MTczMC4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf?_ga=2.59653869.191419467.1646825763-783082516.1644834354&_gl=1*e9sl22*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0Njg3MTY2Mi4zLjEuMTY0Njg3MTczMC4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf?_ga=2.59653869.191419467.1646825763-783082516.1644834354&_gl=1*e9sl22*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0Njg3MTY2Mi4zLjEuMTY0Njg3MTczMC4w
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf?_ga=2.59653869.191419467.1646825763-783082516.1644834354&_gl=1*e9sl22*_ga*NzgzMDgyNTE2LjE2NDQ4MzQzNTQ.*_ga_55RF0RHXSR*MTY0Njg3MTY2Mi4zLjEuMTY0Njg3MTczMC4w
https://www.usenix.org/conference/usenixsecurity19/presentation/ho
https://www.usenix.org/conference/usenixsecurity19/presentation/ho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ho
https://www.usenix.org/conference/usenixsecurity18/presentation/hu
https://www.usenix.org/conference/usenixsecurity18/presentation/hu
https://doi.org/10.1145/2935663.2935672
https://doi.org/10.1145/2935663.2935672
https://doi.org/10.1145/2935663.2935672
https://doi.org/10.17487/RFC7208
https://doi.org/10.17487/RFC7208
https://www.rfc-editor.org/info/rfc7208
https://doi.org/10.17487/RFC7489
https://www.rfc-editor.org/info/rfc7489
https://www.rfc-editor.org/info/rfc7489

[22] Kyumin Lee, James Caverlee and Steve Webb. ‘The social honey-
pot project: protecting online communities from spammers’. In: Pro-
ceedings of the 19th international conference on World wide web. 2010,
pp. 1139–1140.

[23] James Lewis. ‘Economic impact of cybercrime- No Slowing Down’.
In: 2018. URL: https : / /www .mcafee . com/enterprise / en - us / assets /
reports/restricted/rp-economic-impact-cybercrime.pdf.

[24] Microsoft. ‘Protect yourself from phishing’. In: (). URL: https : / /
support.microsoft.com/en-gb/windows/protect-yourself-from-phishing-
0c7ea947-ba98-3bd9-7184-430e1f860a44.

[25] Chee Keong Ng, Lei Pan and Yang Xiang. ‘Introduction to Honey-
pot’. In: Honeypot Frameworks and Their Applications: A New Frame-
work. Springer, 2018, pp. 1–5.

[26] Matthew B Prince et al. ‘Understanding How Spammers Steal Your
E-Mail Address: An Analysis of the First Six Months of Data from
Project Honey Pot.’ In: CEAS. 2005.

[27] Issa Qabajeh, Fadi Thabtah and Francisco Chiclana. ‘A recent
review of conventional vs. automated cybersecurity anti-phishing
techniques’. In: Computer Science Review 29 (2018), pp. 44–55. ISSN:
1574-0137. DOI: https://doi.org/10.1016/j.cosrev.2018.05.003. URL:
https://www.sciencedirect.com/science/article/pii/S1574013717302010.

[28] Mathias Scharinger et al. ‘Predictions interact with missing sensory
evidence in semantic processing areas’. In: Human Brain Mapping 37.2
(2016), pp. 704–716.

[29] SecurityScorecard. In: (2021). URL: https://securityscorecard.com/blog/
types-of-phishing-attacks-and-how-to-identify-them.

[30] Steve Sheng et al. ‘An Empirical Analysis of Phishing Blacklists’. In:
(Jan. 2009).

[31] Steve Sheng et al. ‘Anti-phishing phil: the design and evaluation of
a game that teaches people not to fall for phish’. In: Proceedings of the
3rd symposium on Usable privacy and security. 2007, pp. 88–99.

[32] Gianluca Stringhini and Olivier Thonnard. ‘That Ain’t You: Block-
ing Spearphishing Through Behavioral Modelling’. In: Detection of
Intrusions and Malware, and Vulnerability Assessment. Ed. by Magnus
Almgren, Vincenzo Gulisano and Federico Maggi. Cham: Springer
International Publishing, 2015, pp. 78–97. ISBN: 978-3-319-20550-2.

[33] ‘Thunderbird’. In: URL: https://www.thunderbird.net/en-GB/.

[34] Jingguo Wang et al. ‘Research Article Phishing Susceptibility: An
Investigation Into the Processing of a Targeted Spear Phishing
Email’. In: IEEE Transactions on Professional Communication 55.4 (2012),
pp. 345–362. DOI: 10.1109/TPC.2012.2208392.

[35] Chris Weber. ‘Unicode Security Guide’. In: (). URL: https://websec.
github.io/unicode-security-guide/visual-spoofing/.

49

https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-economic-impact-cybercrime.pdf
https://support.microsoft.com/en-gb/windows/protect-yourself-from-phishing-0c7ea947-ba98-3bd9-7184-430e1f860a44
https://support.microsoft.com/en-gb/windows/protect-yourself-from-phishing-0c7ea947-ba98-3bd9-7184-430e1f860a44
https://support.microsoft.com/en-gb/windows/protect-yourself-from-phishing-0c7ea947-ba98-3bd9-7184-430e1f860a44
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.05.003
https://www.sciencedirect.com/science/article/pii/S1574013717302010
https://securityscorecard.com/blog/types-of-phishing-attacks-and-how-to-identify-them
https://securityscorecard.com/blog/types-of-phishing-attacks-and-how-to-identify-them
https://www.thunderbird.net/en-GB/
https://doi.org/10.1109/TPC.2012.2208392
https://websec.github.io/unicode-security-guide/visual-spoofing/
https://websec.github.io/unicode-security-guide/visual-spoofing/

[36] Yue Zhang et al. ‘Phinding phish: Evaluating anti-phishing tools’. In:
(2007).

[37] Eugenia Lostri Zhanna Malekos Smith and James A. Lewis. ‘The
Hidden Costs of Cybercrime’. In: 2020. URL: https : //www.mcafee .
com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf.

50

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf

Chapter 7

Appendix

7.1 LevenstheinDistance.js

export d e f a u l t function getLevenstheinDistance (s t r ing1 , s t r i n g 2) {
const matrix = [] ;

// Set up base matrix
f o r (l e t i = 0 ; i < s t r i n g 1 . length + 1 ; i += 1) {

const row = [] ;
f o r (l e t j = 0 ; j < s t r i n g 2 . length + 1 ; j += 1) {

row . push (j) ;
}
row [0] = i ;
matrix . push (row) ;

}

// Check current against [-1][-1], [-1][0], [0][-1]
f o r (l e t i = 1 ; i < s t r i n g 1 . length + 1 ; i += 1) {

f o r (l e t j = 1 ; j < s t r i n g 2 . length + 1 ; j += 1) {
i f (s t r i n g 1 [i − 1] === s t r i n g 2 [j − 1]) {

matrix [i] [j] = matrix [i − 1] [j − 1] ;
} e lse {

matrix [i] [j] = 1 + Math . min (
matrix [i − 1] [j − 1] ,
matrix [i − 1] [j] , matrix [i] [j − 1]

) ;
}

}
}
// console.log(matrix);
return matrix [s t r i n g 1 . length] [s t r i n g 2 . length] ;

}

51

7.2 Domain Regex

/ (? : [a−zA−Z0−9]+@) ([a−zA−Z0−9\W] +) (? : . [a−z] { 2 , 3 }) / g

7.3 Source code

The repository for all the code was at the end of the project period made
public and can be viewed here https://github.com/Gorboe/securemail

52

https://github.com/Gorboe/securemail

	Abstract
	Acknowledgments
	Introduction
	Problem Statement

	Background and Related Work
	Phishing
	The phishing lifecycle
	Ways to disguise URL's and domain names
	Homograph attacks
	Malware attacks
	Source Spoofing

	Related works
	Phishing Trends

	Approach
	Levenshtein distance
	Common alterations
	The process
	Technologies used

	Results
	The program
	Testing
	DnsTwist

	More complicated problems

	Discussion
	Provides value
	Future works/Limitations
	False-positives
	Warnings and alerts
	First is trusted
	Mutations
	Further development

	Performance

	Conclusion
	Appendix
	LevenstheinDistance.js
	Domain Regex
	Source code

