
ACIT5900 

MASTER THESIS 
in 

Applied Computer and Information 
Technology (ACIT) 

May 2022 
 

Applied Artificial Intelligence 
 

Can GANs replicate eye-gaze trajectories? 

Marit Øye Gjersdal 

Department of Computer Science 

Faculty of Technology, Art and Design 

 



Acknowledgements

I am sincerely grateful to my supervisor Pedro Lencastre for all the support, help,

and motivation throughout this semester. This thesis would not be possible without

his constant guidance and encouragements. I would also like to thank my co-

supervisors Prof. Pedro Lind and Prof. Anis Yazidi. Their guidance and feed-

back have been greatly appreciated. Lastly, a special thanks my fellow students for

keeping me sane during this endeavour, and to my family for encouragement and

support.

Marit Øye Gjersdal,

15.05.2022

i



Abstract

Generative Adversarial Networks (GANs) have gained popularity in the field of

computer vision. Recently, GANs have shown promising results in generating

sequential data, such as time series data and text. This thesis explores the

ability of a variety of time-series GAN architectures to generate realistic eye-gaze

trajectory data, with the aim to create synthetic datasets for research within Machine

Learning (ML) and statistics. The experiments were conducted in four stages, with

increasingly more complex data for the GANs to generate, to study the limitations of

each GAN model. The first experiments were done on synthetically generated data

of Vector Autoregressive (VAR) processes and intermittent processes, and the final

experiment was conducted on real eye-gaze trajectories. We show that even though

several time-series GAN models are capable of generating seemingly realistic VAR

processes and intermittent processes, there is still some way to go to be able to

generate realistic eye-gaze trajectories. We discuss the limitations of a range of

GAN models, and propose future experiments and models which could be further

studied.

ii



Contents

Acknowledgements i

Abstract ii

Figures v

Tables vi

Acronyms vii

1 Introduction and motivation 1

2 Background and State of the Art 5

2.1 Eye-gaze trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Foraging for information . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Features of eye-gaze trajectories . . . . . . . . . . . . . . . . 9

2.2 GANs - history and applications . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 How GANs work . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 15

2.2.3 GANs using RNNs . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 State-of-the-art GANs for time-series . . . . . . . . . . . . . . . . . . 24

2.3.1 Time-series GANs . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Transformer GANs . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



2.3.3 GANs for eye-gaze and foraging trajectories . . . . . . . . . 32

3 Methodology 34

3.1 Generating synthetic data . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Eye-trajectory data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results 47

4.1 Experiment A - VAR one dimension . . . . . . . . . . . . . . . . . . 48

4.2 Experiment B - VAR two dimensions . . . . . . . . . . . . . . . . . . 51

4.3 Experiment C - Intermittent process . . . . . . . . . . . . . . . . . . 52

4.4 Experiment D - Eye-gaze trajectories . . . . . . . . . . . . . . . . . 52

5 Discussion and conclusions 59

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 66

iv



List of Figures

2.1 The foraging hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Lévy flights and intermittent processes . . . . . . . . . . . . . . . . . 8

2.3 Distribution of saccades . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Distribution of jump sizes . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . 14

2.7 RNN, LSTM and GRU cell architectures . . . . . . . . . . . . . . . . 16

2.8 Unfolded RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Multilayered RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Bidirectional RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 RNN GAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 RCGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.13 TimeGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Generated synthetic data . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 EyeT4Empathy dataset II . . . . . . . . . . . . . . . . . . . . . . . . 39

v



List of Tables

4.1 Results all experiments . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Results experiment A: VAR one dimension . . . . . . . . . . . . . . 54

4.3 Results experiment B: VAR two dimensions . . . . . . . . . . . . . . 55

4.4 Results experiment C: Intermittent process . . . . . . . . . . . . . . 56

4.5 Results experiment D: Eye-gaze trajectories . . . . . . . . . . . . . 57

4.6 Results experiment D: frequency distribution of increments . . . . . 58

vi



Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Network.

AR-FNN Autoregressive Feed Forward Neural Net-

work.

BERT Bidirectional Encoder Representations from

Transformers.

CNN Convolutional Neural Network.

CWGAN Conditional Wasserstein GAN.

GAN Generative Adversarial Network.

GRU Gated Recurrent Unit.

IoR Inhibition of Return.

KS Kolmogorov Smirnoff.

LSTM Long Short-Term Memory.

ML Machine Learning.

NLP Natural Language Processing.

RCGAN Recurrent Conditional GAN.

RCWGAN Recurrent Conditional Wasserstein GAN.

RNN Recurrent Neural Network.

SigCWGAN Conditional Sig-Wasserstein GAN.

TimeGAN Time-series GAN.

VAE Variational Auto-Encoder.

VAR Vector Autoregressive.

vii



Chapter 1

Introduction and motivation

Serving as one of our primary senses, eyesight transcends its primary vital function

of collecting visual information. The very way we forage for information using our

eyes has been observed to be unique to every person, and a person’s gaze has

shown to also provide information about several aspects such as age, gender,

ethnicity (Kröger et al., 2019; Mardanbegi et al., 2018), personality traits (Berkovsky

et al., 2019), drug consumption (Grace et al., 2010; Steffens et al., 2016), empathy

levels (Z. Yan et al., 2017), IQ and skills in a particular field (Kasneci et al., 2021;

Thompson, 2021), as well as getting useful information that could help diagnosing

ADHD (Chauhan et al., 2020; Lev et al., 2020), Alzheimer’s (Antoniades et al., 2010;

Burrell et al., 2012; Perneczky et al., 2011) or autism (Wadhera & Kakkar, 2019), or

be used as a biometric (Bargary et al., 2017; Rigas & Komogortsev, 2017). Thus,

studying eye movement trajectories has been, and still is, of great interest in the

fields of medicine and psychology.

When it comes to foraging for visual information, due to millions of years of

biological evolution the eyes present a complex behaviour that is highly efficient at

finding objects of interest. The process of eye-gaze during foraging for information

in new images and scenery shares properties with other search processes found in

nature (Brockmann & Geisel, 2000).

1



Gathering precise eye-trajectory data is still a tedious task, which can only

be done accurately using professional eye-trackers. This data is often used for

research in medicine and psychology. However, since data from psychology

and psychiatry is extremely sensitive, gathering these data opens up challenges

regarding the confidentiality of the data. This concern typically makes these

datasets inaccessible for public usage and research (Hazra & Byun, 2020).

Generating new unique data which shares the properties of the real data but is

untraceable to the real subjects might open doors for future studies both within

Machine Learning (ML) and statistics. Such data is valuable for applications in

medicine and psychology, which rely on abundant eye-tracker data.

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) that is

concerned with learning from data without being explicitly told the rules of the data

domain. ML has shown to be very useful for capturing complex structures in data

and can efficiently be used for generation or classification. Training artificial neural

networks (ANNs) in the Generative Adversarial Network (GAN) (Goodfellow et al.,

2014) fashion can work very well for generating data replicating complex structures.

Even though GANs were originally designed for computer vision tasks, they have

more recently also gained popularity for generating sequential data (Brophy et al.,

2021).

For this thesis we will study a range of different state-of-the-art GAN models for

sequential data, to find out whether these models will be ideal for replicating human

eye-gaze trajectories. The end goal is to study whether existing GAN models have

the ability to capture all the properties of eye-gaze trajectories to a degree where

it’s indistinguishable from real data. The research question this thesis addresses is

thus as following: Can GANs replicate eye-gaze trajectories of humans searching

for information?

Machine learning models are often described as black boxes, where you can

feed them an input and they produce an output, but what happens inside the model

2



and why it makes the decisions it makes is hard to explain. They are however

extremely useful for capturing complex structures. Statistical based methods on

the other hand are explainable, but they are not as suitable for representing very

complex structures. Mixing machine learning with statistics can be used in a

complementary manner to improve them both. By using Machine Learning models

we can check if the statistical methods have captured all the properties of the eye-

gaze data or are missing some aspects, and likewise the other way around we can

use statistics to measure the performance of the machine learning models.

Such is the case in this thesis, where statistics and AI can play a complimentary

role. When the data is of such complex structures that its quality cannot be

measured statistically, there doesn’t exist any way to accurately evaluate whether

the generated data indeed captured the properties and is indistinguishable from

real data or not. This is the case for eye-gaze trajectory data. We will therefore

first be using synthetic data, where the properties are known, for the testing of

a range of time-series GANs. This way we can to study the limitation of each of

the GAN models. We will first use sequences of simpler processes called Vector

Autoregressive (VAR). Then we will generate intermittent processes, which are

processes that both the eyes’ foraging process and other searching processes in

nature are hypothesised to follow (Land, 2019). If the GAN models are able to

generate data that well captures the properties of the synthetic data, we can finally

train them on real human eye-gaze trajectory data. The aim is that once trained,

the generator can be used to generate eye-gaze trajectory data with the same

properties as the training data.

The hypothesis of this thesis is that it is possible to train recent state-of-the-art

time-series GANs which can replicate human eye-gaze trajectories, capturing the

advanced properties of the human gaze. Further, we hypothesise that if a GAN can

successfully be trained to generate data that captures the properties of synthetic

data made of intermittent processes, this success can be transferred to real eye-

gaze trajectory data. So, if the GANs are trained on real eye-gaze trajectory data

3



instead, they will be able to generate data with the same properties as the real

eye-gaze trajectories.

We assume that by using the synthetic data and evaluating the success of the

models using statistical properties, these results will be transferable to how the GAN

performs on the real data. There is a risk that the unknown properties of the real

data are so different from the synthetic data that the model is not able to capture

them even if it was able to capture the properties of the synthetic intermittent process

data, so this is something we will stay aware of.

This thesis is structured as follows. Chapter 2 first covers theoretical

background on the properties of eye-gaze trajectories and their foraging process,

and then introduces neural networks for sequential data domains, before reviewing

recent state-of-the-art models of generative neural networks for sequential data.

Finally, we also present other research on replicating eye-gaze trajectories.

Chapter 3 presents all the experiments we conduct, the models we use, and how

we will be evaluating and comparing the result. Chapter 4 gives the results of the

experiments conducted, using both synthetic data and real eye-gaze trajectories.

In the final chapter, Chapter 5, we discuss the results, our approach, and suggests

future ideas for addressing our research question.

4



Chapter 2

Background and State of the Art

The eyesight is one of our five primary senses and serves as one of the primary

information collectors for our brain. The way we use our eyes to forage for visual

information has already been used in developing algorithms for self-driving cars

(Rao & Frtunikj, 2018), where quickly searching for objects is key. Eye-tracking is

also being used for task like optimizing advertisements (Scott et al., 2016), website

optimization (Wedel & Pieters, 2017) to determine where in the ad or website

the subjects will be looking to help in design optimizations, and rendering games

(Kaplanyan et al., 2019) by using a model which guesses where on the screen the

player will be looking next. This way rendering times can be decreased by first fully

rendering the part of the screen the player is estimated to look at.

Using eye trajectories also have a much larger potential, especially within

medicine and psychiatry. The way each of us forage for visual information is unique

(Bargary et al., 2017; Rigas & Komogortsev, 2017), and the way we search for

information in new images has shown potential potential as a tool in helping to

diagnose ADHD (Chauhan et al., 2020; Lev et al., 2020), Alzheimer’s (Antoniades

et al., 2010; Burrell et al., 2012; Perneczky et al., 2011) and autism (Wadhera &

Kakkar, 2019).

5



Even though it has been shown that we can use eye-gaze trajectories for

separating between for example, ill and healthy individuals, there still might

remain other properties of eye-gaze trajectories that have not been identified.

In particular properties on the memory effect of the eyes, as they are difficult

to model mathematically (Lambiotte et al., 2015). Being able to retrieve more

properties could possibly help in developing useful tools and application formedicine

and psychology. The solution to retrieve more properties might lay in Artificial

Intelligence (AI), and with the recent rise of advanced machine learning methods

the possibility to utilising eye-tracking along with AI as a medical tool in diagnosing

patients has become a potential reality.

This chapter introduces relevant background on the eyes, the way we forage for

visual information, and some central properties of eye-trajectories. Further follows

an introduction to the relevant AI tools that can be used for eye-trajectories, as

well as an introduction to Generative Adversarial Networks (GANs), which usages

will be explored in this thesis for generating new unique trajectories imitating the

trajectories of the eyes. Finally, in this chapter we provide an overview of state-of-

the-art methods for handling and generating sequential data, and an overview of

the current research in generating eye-gaze trajectories using neural networks.

2.1 Eye-gaze trajectories

2.1.1 Foraging for information

There are some striking similarities found between various searching techniques

in nature. The way sharks forage for food in the ocean (Sims et al., 2012), the

movement of bacteria (Ariel et al., 2015; X.-F. Yan & Ye, 2015), and even children

exploring the Walt Disney Resort (Rhee et al., 2011) all share similar searching

properties in the context of foraging. The foraging hypothesis is a term in biology,

which says that through thousands of years of evolution searching techniques in

nature have been optimized for survival, and that this is the reason why all these

6



Figure 2.1: The foraging hypothesis claims that through evolution searching techniques have been

optimized for survival, and therefore different searching processes in nature follow seemingly the

same searching techniques. The left image is a trajectory of an albatross hunting for fish, and the

right image is the trajectory of a persons eyes when examining “Artwork 71” by German artist Rainer

Gross (Lencastre, 2021). Courtesy of Prof. Sergyi Denisov.

different searches in nature follow seemingly the same underlying process.

The eyes are also hypothesised to search for information in a similar manner

(Brockmann & Geisel, 2000). Figure 2.1 shows the foraging strategy of an albatross

searching for fish (Viswanathan et al., 1996), and the eye-gaze trajectory of a person

studying a painting. Both these trajectories share the pattern of switching between

longer fast movements followed by frequent small movements in one area.

Though the foraging pattern is often assumed to be universal, there is

still debate in the literature on which underlying searching process the foraging

hypothesis in general follow, or if there is no universal process describing the

foraging dynamics (Brockmann & Geisel, 2000). This uncertainty happens partly

because of the similarity between the underlying processes, and due to the lack

of tools to distinguish them. The two candidates discussed in the literature are

Lévy flights (Brockmann & Geisel, 1999) and intermittent processes (Bénichou et

al., 2011). Figure 2.2a shows an intermittent process, while Figure 2.2b shows

Lévy flights. As the figures illustrate there is a striking similarity between the two

7



(a) Intermittent process. (b) Lévy flights.

Figure 2.2: There are disagreements in the literature of whether eye-gaze trajectories follow

Lévy flights or intermittent processes. These two processes can produce seemingly quite similar

trajectories, however the theories behind them are fundamentally different. (a) Intermittent process.

The trajectory consists of an alteration between two sub-processes: saccades and fixations, where

saccades are longer jump-like movements and fixations are short random movements in a smaller

area. (b) Lévy flights. The trajectory is made up of a random walk with a heavy-tailed distribution

of jump lengths, determined by a parameter α, which results in movements similar to the saccades

and fixations in the intermittent process.

trajectories, even though the processes behind them are fundamentally different.

The intermittent processes theorise that the eyes’ trajectories consist of two

types of processes, alternating between them. These two are saccades and

fixations. Saccades are the fast jump-like movements over a larger distance

where the eyes are moving too fast to retrieve information, while fixations are tiny

movements over a small area, which allows the eyes to gather information.

Lévy flights on the other hand characterizes the trajectories as consisting of

only one process, a random walk, and that the difference seen between short and

long movements comes down to a heavy-tailed probability distribution of having

large steps. A Lévy flight is defined by a single parameter, usually labelled α, which

ranges from 1-3, that controls how frequent these extreme events are happening.

An α of one means more extreme, while three is the least extreme.

Either way, whether the eyes actually follow an intermittent process or Lévy

8



Figure 2.3: Distribution of saccades from four openly available eye-trajectory datasets. (a) Polar

plot of the probability distribution of saccadic jumps’ directions in degrees, and lengths in saccadic

amplitude for the next fixation given the current fixation in the centre. The eyes favour relatively

short horizontal saccades, while vertical saccades are less likely, and very rarely diagonal. (b)

Probability distributions for horizontal saccades (0 and 180 degrees), and vertical saccades (90

and 270 degrees). The distance is shown in saccadic amplitude. Horizontal saccades are more

frequent, and short movements are most common. Figures borrowed from Le Meur and Liu (2015),

Fig 3 (a) and (b), page 156. The colours of the original figure have been slightly adjusted for better

and more inclusive visibility.

flight as a strategy to forage for visual information, neither of these processes seem

to be able to fully capture all the advanced properties of our eye-gaze, and there

are still hidden features in our eye-gaze foraging process that statistical methods

are not fully able to capture.

2.1.2 Features of eye-gaze trajectories

When the eyes are searching for information, they are shown to follow a set of

universal features. These features regard the relation of saccades and fixations,

the lengths and directions of the movements, and that the eyes show a non-Markov

behaviour.

The first of these fundamental properties of the eye movements is that the most

probable saccades are of rather small horizontal movements (Le Meur & Liu, 2015).

9



It has been shown that we make more horizontal saccades than vertical ones,

and even fewer diagonal saccades, and among the vertical ones there tends to be

more saccades upwards than downwards. These properties of the saccades are all

demonstrated in Figure 2.3 (a), which shows the probability distribution of saccade

lengths and direction of the next fixation spot given the current fixation point located

in the centre of the plot. The lengths are measured in saccadic amplitudes which

are the eyes’ change of degree from one fixation to the next, while the direction is

shown in degrees in the image from the current fixation to the next. Figure 2.3 (b)

demonstrates the probability distributions for horizontal saccades in comparison to

vertical saccades, which also shows that horizontal saccades are more frequent,

and shorter movements are most common.

Another central feature of the eyes was demonstrated in a study comparing

searching strategies of the eyes in different difficulties of searches (Credidio et al.,

2012). It was shown that even though the searching strategies changed drastically

as the difficulty of the task increased, they shared a universal distribution of jump

sizes. The distribution of jump sizes from the four difficulties of searches are shown

in Figure 2.4. The small movements during fixations are very frequent, while the

saccadic jumps are decreasingly frequent as the distance of the jumps increases.

A third universal property of the eye-trajectories is that the eyes will not refixate

on a previous visited location for the first few seconds following the fixation, meaning

that eye-trajectories show a non-Markov behaviour (Le Meur & Liu, 2015). This

process is called the inhibition of return (IoR) and is what allows the eyes to explore

a larger area while also gradually giving them the chance of returning to previously

visited locations. The inhibition decreases with time and lasts for about 1.5 to 3

seconds until the probability of refixating shows no decreased probability anymore.

10



Figure 2.4: Log-log plot of the distribution of jump distances. The four upper plots shows the

distribution of each person’s trajectories for three different difficulties of visual searches as well as

a ”find Wally” search. The final figure shows all the above plots together, given the average of

all subjects for each image. Even though the searching strategies the test subjects used for the

four different images were shown to be drastically different, the frequency distribution of position

increments is the same for all. The small movements that happen during fixations are very frequent.

The saccadic movements, which are from about 100 to 10000 times larger than the fixations, are

decreasingly frequent as the distances of the jumps increase. The grey shaded area in the middle

marks the overlapping distances where some increments are a part of saccadic periods, and some

are a part of fixation periods. Figure is borrowed from Credidio et al. (2012), Figure 3 on page 3.

11



2.2 GANs - history and applications

Machine Learning (ML) is the field within artificial intelligence regarding computers

learning from previous experiences or previously seen data instead of being

explicitly given rules for how to make decisions or behave. Machine Learning has

shown to work well for solving complicated problems which have previously been

very challenging to solve using only mathematical or statistical models (Jordan &

Mitchell, 2015).

Within ML, the field of Artificial Neural Networks (ANNs) arose, inspired by

the way the brain learns information from experience. ANNs consist of layers of

perceptrons, which are simple mathematical operators inspired by the neurons in

the brain, enabling them to solve even very complicated tasks. Other highly popular

neural networks that followed ANNs are Convolutional Neural Networks (CNNs)

(LeCun, Bengio et al., 1995) which are designed for two-dimensional data such as

images, and Recurrent Neural Networks (RNNs) for sequences of data (Mikolov et

al., 2014).

In 2013 Variational Auto-Encoders (VAEs) were introduced, which can be seen

as one of the predecessors of GANs (Kingma & Welling, 2013). An autoencoder

relies on the idea of using two networks, an encoder and a decoder, where the

encoder makes a compressed representation of the data, and the decoder tries

to reconstruct the data. They are trained with the goal to minimize reconstruction

error. A loss function is used to compare the original to the reconstructed data, often

by using mean squared error, and back propagation is used to train the network.

Figure 2.5 shows a simple illustration of the autoencoder architecture. Variational

autoencoders use the decoder of the autoencoder as a generator. The decoder is

trained using the encoder, but when generating new samples, the decoder is instead

fed random vectors. This enables the decoder to generate unique samples that

share the properties of the training data. VAEs have showed useful in applications

such as generating new unique levels in platform games (Sarkar & Cooper, 2021),

12



Figure 2.5: Autoencoder architecture illustration. Autoencoders consists of an encoder, who creates

a compressed representation of the input, and a decoder whose task is to reconstruct the original

data. A loss function is used to compare the original to the reconstructed data, and back propagation

to train the network. The figure is borrowed from Brophy et al. (2021), Figure 1 on page 2.

generating traditional style poems (Li et al., 2018), and for generating faces (Hou

et al., 2017). Autoencoders can also be used for generating and predictions of

time-series. Gensler et al. shows how LSTMs can be used in VAEs for solar-power

forecasting (Gensler et al., 2016), and Wei et al. present a framework using LSTMs

and autoencoders to predict traffic flow (Wei et al., 2019).

The idea of Generative Adversarial Networks (GANs) was introduced by

Goodfellow et al. (2014) and has since gained a massive popularity. GANs are a

framework for training neural networks to generate data of complicated structures,

with the goal of generating data with as similar data distributions to the real data

as possible. From early on they were shown to be highly efficient for tasks which

required to learn the data distribution of a domain of images, such as improving

resolution, generating, or manipulating images (Goodfellow et al., 2014). More

recently GANs have also become popular for time-series tasks (Brophy et al., 2021).

2.2.1 How GANs work

A GAN typically consists of two different networks, one generator G and one

discriminator D. The generator is given a random noise vector z as input, which is

essentially random noise, then generates an output which is fed to the discriminator.

The discriminator will either get real data x or data generated by the generator G(z)

13



Figure 2.6: Generative Adversarial Network (GAN) architecture illustration. The generator G is given

a random noise vector z as input, and outputs a fake sequence. Real and fake sequences are given

to the discriminator D, who classifies them as either real or fake. The losses are calculated based

on the correctness of the guesses. The G loss is used to calculate gradients for the generator and

the D loss is used to calculate gradients for the discriminator. The figure is borrowed from Brophy

et al. (2021), Figure 2 on page 3.

and its task is to try determining whether the data is real or fake. The two networks

are trained together in a min-max game fashion. The discriminator is trained to

maximize its correct labelling of the input as real of fake, while the generator tries to

minimize it. Ideally, this simultaneous adversarial training will eventually lead to the

generator learning to create outputs that mimic the distribution of the original data.

Figure 2.6 shows an illustration of the GAN architecture.

When training a GAN it goes through iterations, called epochs, where at each

epoch all the training data is separated into batches. For each of these batches

the generator network generates a batch of data, which is is fed to the discriminator

along with a batch of the real data from the training set. The discriminator will, for

each sample, output a probability that the sample came from the real data. The

minimax loss function Equation 2.1 as first described by Goodfellow et al. (2014), is

then used to calculate a score of how far off the discriminator was in its predictions.

After the loss of the batch is calculated for both the generator and the discriminator,

14



back propagation is used to adjust the different weights in the two networks.

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pgenerated(z)[1 − log D(G(z))] (2.1)

In the minimax loss function (Equation 2.1), the generator G tries to minimize

the output while the discriminator D tries to maximize it. Here, x represents real

training data and z the random vector input that is given to G for generating. D(x)

is the rate of correct guesses the discriminator got on the real data, and D(G(z))

is the rate of correct guesses on the generated data. Ex∼pdata(x)[log D(x)] is the

log probability of the real data x being classified as real, and Ez∼pgenerated(z)[1 −

log D(G(z))] is the log probability p that the generated data is classified as fake.

2.2.2 Recurrent Neural Networks

Since most of the early examples using GANs were for tasks such as image-

generation, the type of networks used in GANs are most often CNNs (Goodfellow

et al., 2014). CNNs are designed to work well for images and other data where the

features have relations across several dimensions of the data, such as in images

where each pixel has relations to nearby pixels in both horizontal, vertical, and

diagonal directions (LeCun, Bengio et al., 1995). When generating sequential data,

it is also possible to use methods like CNNs, by for example representing the

sequence as a one-dimensional grid. However, these methods do not consider

the data as sequences across time but rather as fixed inputs. CNNs are also

normally not suited for sequences of varying lengths since the input and output

sizes generally have to be of a fixed size. Instead, to operate on sequential data, a

faster and more appropriate type of methods are Recurrent Neural Network (RNN)s

(Mikolov et al., 2014).

RNNs are a class of neural networks made for sequential data, that can be

used to predict coming values in a series of data. They can take varying sequence

15



(a) RNN cell architecture (b) LSTM cell architecture

(c) GRU cell architecture

Figure 2.7: RNN, LSTM and GRU cell architectures. RNN networks consists of operators that the

data are passed through. RNN cells, LSTM cells and GRU cells are three popular operators used in

RNNs. All three figures are borrowed from Lopez2019RNNGRU (Lopez2019RNNGRU)

lengths, unlike other simpler networks which only take fixes-sized inputs. An RNN

originally consists of operators called RNN cells (Elman, 1990). An RNN network

can consist of one or more layers of RNN cells. In addition to the recurrent layers,

the networks have an input and an output layer.

Figure 2.7a shows the architecture of a single RNN cell. The output state ht at

time step t is calculated as shown in Equation 2.2. The inputs are the state output

from the previous cell, ht−1, as well as the current input data xt. It calculates the

weighed sum of the inputs using the adjustable weights U and V and a bias vector

bh, and uses an activation function σ which for RNNs is normally Tanh activation

function.

16



ht = σ(Uhxt + Vhht−1 + bh) (2.2)

RNN cells suffer from the vanishing gradient problem. Each cell only gets

the output state from the previous time step as input, and this state was largely

dependent on the input vector to said cell. At every time step the states from earlier

in the sequence will be a smaller part of the equation, at an exponential rate. Since

the most recent data points in the sequences will have contributed the most to the

output, those will affect the gradient the most, and hence the adjustment of the

weights. Due to this, RNN cells are not able to learn long-term dependencies.

Long Short-Term Memory (LSTM) is a type of RNN which uses LSTM cells,

and was created to tackle the problem of lacking long-term dependencies in RNNs

(Hochreiter & Schmidhuber, 1997). Nowadays most RNNs are LSTMs.

Figure 2.7b shows the architecture of an LSTM cell. LSTM cells have two

hidden states: the hidden state ht which is similar to the hidden state of the RNN

cell and can be seen as the short term memory in LSTM, and the cell state Ct which

can be seen as the long term memory of the network. Through the cell state Ct,

information from even the earliest time steps can be carried through to the last time

step. Information is added to and removed from the cell state via the input gate i

and the forget gate f . The third gate, the output gate o, is used to calculate the

hidden state ht.

The cell state of the LSTM is calculated by Equation 2.3a where ft is

Equation 2.3b, it is Equation 2.3c, and Ĉt is Equation 2.3d. ht−1 is the hidden

state from the previous cell, xt is the current input vector, b are the biases, and

W the adjustable weights. To calculate the next hidden state ht, we multiply the

cell state Ct with the output ot, giving ht = tanh(Ct)ot. The output ot is given by

ot = σ(ht−1Who + xtWxo + bo).

17



Ct = Ct−1 ft + itĈt (2.3a)

ft = σ(ht−1Wh f + xtWx f + b f ) (2.3b)

it = σ(ht−1Whi + xtWxi + bi) (2.3c)

Ĉt = tanh(xt + ht−1) (2.3d)

Even though LSTMs are able to tackle the long-term dependency problem of

traditional RNNs, they also present a new issue, namely the increased size of the

network and time it takes to train due to the increased complexity of each cell.

Another more recent cell type is the Gated Recurrent Unit (GRU) presented in 2014

(Chung et al., 2014). GRU cells are essentially a simpler and more compact version

of LSTM cells, and have been shown to work about as well as LSTMs.

GRU cells only carries one hidden state ht, not two like in the LSTM. Figure 2.7c

shows the architecture of a GRU cell. Instead of the three gates of the LSTM, GRUs

has a reset gate r to decide how much from the previous state to remember, and

an update gate z to decide how much from the previous state to forget.

The reset state r at time t is calculated by rt = σ(xtWxr + ht−1Whr + br). The

update state z is zt = σ(xtWxz + ht−1Whz + bz). The candidate hidden state is

ĥ = tanh(xtWxh + (rtht−1)Whh + bh). Then finally the hidden state is calculated by

ht = ht−1(1 − zt) + ztĥt.

In addition to the GRU cells presented here, there has also been proposed

several other alternatives to the LSTM cell. The LSTM cell is however still the best

performing cell except from a few other cell architectures such as the GRU which

gives comparable results, according to a review by Greff et al. (2016).

There is no clear answer to which one of GRU or LSTM one should choose,

this all depends on the problem and the data. Since the GRU cells have fewer

parameters, they work well for making faster and more compact models. For data

18



Figure 2.8: Unfolded Recurrent Neural Network. An illustration of how we can think of the RNN cell

as a series of cells, one for each time step in the input sequence. The figure is an example of a

single layered, non conditional RNN utilizing an RNN cell. For every data sample x in time step t in

the current training data sample in the batch, xt is fed to an RNN cell along with the output from the

previous cell ht−1, and ot is the output at each time step.

with simpler structure and shorter sequences GRU cells can work very well and be

trained faster than with LSTM cells. For longer sequences LSTMs should in theory

be superior, as they can also capture long-term dependencies in the sequences (Y.

Yu et al., 2019).

Whether using RNN, LSTM or GRU cells, the recurrent neural networks can

consist of one or more recurrent layers, also called hidden layers, which are the

layers consisting of these operator cells (Salehinejad et al., 2017). For multilayered

RNNs, the output from each time step in the first layer will be fed to each

corresponding cell in the next layer as input along with the output of the previous

cell.

Figure 2.8 shows a visualisation of an unfolded one layered RNN, where we

can see that for each xt in the current training data sample of length n, the samples

are fed into an RNN cell along with the output h from the cell that xt−1 was fed into.

In case of LSTM cells instead or RNN cells, the unfolded version will still be the

same, except that both the output state ht and the cell state Ct are passed on to the

next cell.

Figure 2.9 is an illustration of a multilayered RNN. For every cell in the first layer,

19



Figure 2.9: Multilayered Recurrent Neural Network. The figure shows an illustration of an unfolded

multilayered RNN with two layers. The output from every cell in the first layer is fed as input to the

corresponding cell in the second layer, along with the output h from the previous cell in the same

layer.

its output ot is fed as input to the corresponding cell at t in the second layer, along

with the output from the previous cell in the second layer ht−1. The advantages

of using multiple layers in RNNs is that this can allow the network to learn more

complex structures, since each layer will have have its own adjustable weights.

An RNN can also be bidirectional, meaning it passes the information in both

directions of the network (Schuster & Paliwal, 1997). Using a bidirectional RNN

means that the output at each time step is both determined by previous and future

data. In many types of data current elements in the sequence is highly dependent

on future steps, such as in NLP where a word can have different meanings based

on which words come later in the sentence. Bidirectional RNNs open a way for

RNNs to better work for these types of data. Figure 2.10 shows an illustration

of how bidirectional RNNs works. The network consists of one forward passing

layer and one backward passing. The outputs from the cells in the two layers are

concatenated for the final output.

An RNN can also have multiple bidirectional layers. In this case the forward-

and backward-passing layers seen in Figure 2.10 will be considered as one

20



Figure 2.10: Bidirectional Recurrent Neural Network. The network has one forward passing layer

and one backward passing layer, where the sequence is taken in the opposite order. The outputs

of the two layers are concatenated, so the output at each time step t in the forward passing layer is

concatenated with the output at step n − t in the backwards passing layer

bidirectional layer, and multiple of these can be stacked to create a multilayered

bidirectional RNN.

2.2.3 GANs using RNNs

Though initially used in the context of image recognition and replication, GANs have

more recently been used in the context of time-series (Brophy et al., 2021). GANs

for time-series usually utilizes an RNN network for the generator, mostly using LSTM

or GRU cells. For the discriminator they can use either an RNN or a CNN. According

to Brophy et al. (2021) there has not yet been established in the literature a standard

way of training or evaluating GANs for time-series, unlike with the traditional CNN-

based GANs where there is more agreement and established methods.

As with other GANs, Recurrent GANs can also be either conditional or

unconditional. This means that the model either is given a condition as input in

addition to the noise vector, both during training and generating, or is only given

the noise vector as input (Esteban et al., 2017a). Unconditional GANs are used for

generating data that has the same distribution as the training data, and will only be

21



able to produce general samples of that specific domain. Meanwhile, the conditional

GANs can be for a range of different problems: for problems where the generated

samples should be of certain categories within a dataset, where it is trained on a

labelled dataset using the label as a condition; for filling in missing data in a sample,

where its trained on sets of complete data and its incomplete counterpart; or for

predicting the future steps in a sequence, which is the primary aim of many time-

series GANs.

Figure 2.11 is an illustration of a simple RNN GAN architecture. Both the

generator and discriminator are LSTM networks. Figure 2.11a shows the generator,

which is given both random noise and a condition as input, and outputs a sequence.

Figure 2.11b is the discriminator, which takes either a generated sequence or a

real sequence from the training set as input, as well as the condition, and tries to

determine if the sequence was real or not.

RNN GANs learn using the same concepts as other GANs, as described in

subsection 2.2.1. At each batch of data, the loss for each of the networks are

calculated, often by using some sort of minimax function, such as the original

minimax function in Equation 2.1. The weights of both the networks are then

updated using back propagation through time (Brophy et al., 2021). How much

the weights are updated at each epoch is determined by a learning rate. A higher

learning rate will allow the network to learn faster, but if it is too high it can lead to

unstable training and to not reaching optimum weights (Salehinejad et al., 2017).

This process is repeated for all the batches in the training data, which constitutes

one epoch in the training. The GAN will most likely need several epochs to learn to

generate realistic data. The number of epochsmust be determined based on factors

such as the amount of training data, the size of the network, and the computational

resources available.

22



(a) Generator in RNN GAN. (b) Discriminator in RNN GAN.

Figure 2.11: Architecture of a conditional RNN GAN. In this example both the generator (a) and the

discriminator (b) are LSTM networks. The generator (a) is given a condition and random noise as

input, and outputs a sequence. The discriminator (b) is given either a generated sequence or a real

sequence, and its condition, and it tries to determine whether the sequence is real or not. Figures

are borrowed from Esteban et al. (2017a), Figure 1 on page 4.

2.2.4 Transformers

In addition to RNNs, there have also recently come other more sophisticated

methods for handling sequential data. Transformers (Vaswani et al., 2017) are a

newer type of model for discretely represented time-series data which is created

to handle large domains of data. They were initially created for Natural Language

Processing (NLP), and have shown a high performance in tasks such as language

understanding and machine translation. Transformers are even used in Google

Translate, and is one of the reasons that the translator has reached its good

performance in the recent years (Caswell & Liang, 2020). Transformers have

later also been used in other domains of discrete sequential data, such as music

generation (Muhamed et al., 2021a; N. Zhang, 2020).

A variant of transformers are Bidirectional Encoder Representations from

Transformers (BERT). BERT is a variant of transformers that are made to have

”attention” in both directions of the sequence (Devlin et al., 2018), unlike the regular

Transformers which are said to have ”attention” in one direction of the sequences.

23



They both achieve attention by using ’attention blocks’ which can connect any data

in the sequence to one another, hence eliminating the long-term dependency issue

found in RNNs. BERT are seen by many as having revolutionized the NLP field

(Chernyavskiy et al., 2021).

The drawback of Transformers and BERT though is that they are only made

to deal with discretely represented data, such as discrete tokens for the different

words in a language (Vaswani et al., 2017). This may limit which problems areas

outside of NLP they will be ideal for.

2.3 State-of-the-art GANs for time-series

GANs made for time-series data using either RNNs or Transformers have shown

to be able to replicate data in a range of contexts such as generating biomedical

signals (Hazra & Byun, 2020), predicting financial time series (Wiese et al., 2020),

Natural Language Processing (L. Yu et al., 2017), predicting pedestrian trajectory

(Lv et al., 2021), and for generating music (Dong et al., 2018; Mogren, 2016)

In this section we will give an overview of the recent status of time-series GANs

research. Within the time-series GAN literature, the problems and the type of data

the models aim to generate are of a wide variety. We start off by presenting a range

of GANs utilizing RNNs and CNNs for different representations of data and for a

variety of problems. Then we go into a variety of Transformer GAN architectures and

their applications. Finally, we look at research on generating eye-gaze trajectories

and foraging trajectories using Machine Learning, in particular ones using GANs, to

assess the status of existing literature with similar research questions as this project.

2.3.1 Time-series GANs

GANs made for time-series can be categorized based on the representation of

the data they aim to generate. Sequential data can be of either a continuous or

24



a discrete representation. When data is continuous, all consecutive values are

assumed to have a numerical relation, and that there is also a continuous numerical

relation for any value between two consecutive values. However, when the data is

discrete, each value represents some fixed meaning in the data domain, and there

is not necessarily a relation between the numerical values (Brophy et al., 2021).

An example is from NLP, where this numerical representation is normally called

a token (Cartuyvels et al., 2021). In a tokenized sentence, the numerical token

representations can be close numerically even if the words are unrelated. This is

because the tokens are primarily just a way to represent the words numerically, so

that they can be understood by MLmodels, and to separate between identical words

with different meaning, such as the difference between the animal “bear” and the

verb “to bear”.

The time-series GANs in the literature are either created for continuous

representation or discrete representation of data (Brophy et al., 2021). It is therefore

essential to choose a model wisely based on the representation one wishes to

use. For some data domains it has become established in the literature which

representation to use, like in NLP, while in other domains like music there is still

not an agreement on which representation is best suited. Recent literature has also

shown promising results by combining continuous and discrete representation in

the same models (Cartuyvels et al., 2021).

Cartuyvels et al. (2021) emphasizes that most deep learning models are made

to handle continuous representation, and thus that continuous time-series GANs

are often seen as the most convenient to use. Transformer models, from NLP,

which were presented in subsection 2.2.4 is however an example of a category of

models made specifically for discretely represented data. We present some recent

state-of-the-art Transformer GAN models in subsection 2.3.2

In 2017, L. Yu et al. (2017) presented SeqGAN, which is a discrete time-

series GAN which contributed a lot to the further development of sequential GANs.

25



SeqGAN was trained to generate sequences of tokens, and was primarily made for

NLP, but also tested on music. The generator is an LSTM, and the discriminator is a

CNN. L. Yu et al. points out that giving GANs’ generators random noise vectors as

input does not make sense for discrete time-series. The noise vectors are there to

ensure nondeterministic outputs and works because they lead to slight changes in

output values in the first layer of the model. Instead, their suggestion is to feed the

generator with its already generated sequence as a current state input rather than

giving noise vectors. The SeqGAN generator is essentially trained to only generate

the next step in the sequence, but by repeating this for the output it already created

enables it to generate long sequences. SeqGAN uses an LSTM as the generator,

but L. Yu et al. point out that the model works with GRU cells as well.

QuantGAN was created by Wiese et al. (2020) for capturing long-range

dependencies in financial time-series with a discrete representation of the data.

QuantGAN uses Temporal Convolutional Network (TCN) which is a convolutional

network with skip connections, for both the generator and the discriminator. Their

results show that TCN can work better than recurrent networks using GRUs or

LSTMs for certain time-series generation tasks.

Among the first examples of GANs for generating continuous sequential data

was C-RNN-GAN, made in 2016 by Mogren (2016). They attempted to generate

music, by representing each time step using four continuous values: tone length,

frequency, intensity, and time spent since the previous tone. This let them represent

several tones at a time, which enabled C-RNN-GAN to generate polyphonous

chords. The model consists of two RNNs using LSTM cells, where the discriminator

is bidirectional, and the generator is unidirectional, and is trained using the minimax

loss function Equation 2.1 as described in subsection 2.2.1. Mogren explained that

during training the discriminator tended to get too strong, so freezing was applied

when the discriminator loss became much smaller than the loss of the generator, to

prevent the training from stagnating.

26



Figure 2.12: RCGAN architecture. RCGAN is a conditional RNN GAN consisting of two LSTMs.

The Generator G is given noise z and a condition c as input. The discriminator d is given either real

data x and its condition c, of the genrators output G(z), as input, and classifies the data as either

real or fake. The figure is borrowed from (Brophy et al., 2021), Figure 8 on page 10.

To evaluate the output of C-RNN-GAN, four measurements within music

theory were used: polyphony, scale consistency, repetitions, and tone span. For

these measurements the GAN seemed to perform well and generated increasingly

complex music as training proceeded, however Mogren stated that by human

judgement the generated music is not comparable to the training data music.

Recurrent Conditional GAN (RCGAN) (Esteban et al., 2017a) is a model

for replicating multi-valued time-series of medical data by Esteban et al. given

underlying states of the patients as conditions. As with C-RNN-GAN, RCGAN is

designed for continuous sequences, but RCGAN is conditional and hence takes

a sequence as input and predicts a continuance of the sequence. Esteban et al.

aimed to generate synthetic datasets of realistic time-series of otherwise sensitive

data, such as in medicine, to overcome the privacy concerns of using real datasets

in research. RCGAN uses LSTMs for both the generator and the discriminator.

Figure 2.12 is an illustration of the RCGAN architecture, which follows the general

RNNGAN architecture as describe in subsection 2.2.3. The authors, Esteban et al.,

also propose a method for evaluating time-series GANs called “train on synthetic,

27



test on real”, as a way of validating the usefulness of the generated data. They train

a classification model on data generated by the GAN, of two or more classes, and

then test if the classification works on classifying the real data.

Another continuous GAN is Sequentially Coupled GAN, SC-GAN, which was

made for estimating medication dosages for individuals (Wang et al., 2019). SC-

GAN uses two generators, where the first one is given the current state of an

individual as condition, and then the output is fed to the other generator for

generating recommended medication dosage. SC-GAN was able to perform close

to real data, and for its intended usage it outperformed SeqGAN, C-RNN-GAN and

RCGAN.

TimeGAN (Yoon et al., 2019a) was demonstrated to perform higher than several

state-of-the-art GANs, among others C-RNN-GAN and RCGAN. Time-series GAN

(TimeGAN) Yoon et al., 2019a combines an autoencoder architecture, which is

demonstrated in Figure 2.5, with a GAN architecture. In total TimeGAN consists of

four networks, which are an encoder and a decoder, constituting the autoencoder,

and an RNN as generator and a bidirectional LSTM as discriminator of the GAN

architecture. Instead of giving the discriminator the original real data as input to

classify it as real or fake, it is given the encoded vector of the real data. The

architecture of TimeGAN is illustrated in Figure 2.13.

TimeGAN uses three losses to control the training: Reconstruction loss;

supervised loss; and unsupervised loss. The reconstruction loss is calculated using

the output of the decoder, and is used to calculate the gradients for the encoder and

the decoder. The unsupervised loss is based on the discriminators output and,

similarly to the minimax loss function of the original GAN (subsection 2.2.1), is used

for calculating the generator and discriminators gradients. Finally, the supervised

loss is calculated based on both the generators output and the encoder output of the

real data, and is used for calculating the gradients of the generator and the encoder.

Conditional Sig-Wasserstein GAN, SigCWGAN (Ni et al., 2020a) addresses the

28



Figure 2.13: TimeGAN architecture. TimeGAN combines an autoencoder architecture with a GAN

architecture. It consists of four networks: an Encoder, a Decoder, an RNN generator G and a

Bidirectional LSTM (BiLSTM) discriminator D. The encoders task is to encode tuples of S, X1:T to a

latent representation. S are statistical features of the data, such as a category, X are the temporal

features as a sequence, and T is the sequence length. (ZS, Z1:T) are the noise vectors given as

input to G, which generates G(Zs, Z1T ). hs, h1:T are the latent output from the Encoder, and ĥs, ĥ1:T

are the synthetic latent vectors of G(Zs, Z1T ). The figure is borrowed from (Brophy et al., 2021),

Figure 11 on page 12.

problem of capturing temporal dependencies in time-series data. When creating

SigCWGAN, Ni et al. (2020a) aimed for the model to also be able to predict for

“tails of data”, by which they mean data that are sparse in the dataset. To capture

this, they integrate GANs with the ”signature of a path” extraction, for which they

create a discriminative metric C-Sig-W1. They also propose a generator, called

Autoregressive Feed Forward Neural Network (AR-FNN).

The Autoregressive Feed Forward Neural Network (AR-FNN) generator aims to

capture auto-regressive processes. The model is a three layer feed forward neural

network. The network is designed to predict the next step of a given sequence. To

generate a sequence, the process is repeated over and over where for every new

iteration the previously predicted sample is added to the condition.

Instead of an RNN networks as discriminator which is commonly seen, they

29



propose a C-Sig-W1 metric. This aims to capture the temporal dependencies in

time series, and not only the data distribution which can be a limitation of other

discriminators. They show that the C-Sig-W1 metric works well to capture the auto-

correlation functions of the data.

Ni et al. has also implemented a Conditional Wasserstein GAN (CWGAN) (Ni

et al., 2020b), which does not use their “signature of the path” metric C-Sig-W1.

They implemented it using AR-FNN as both the generator and the discriminator. In

addition, Ni et al. implemented a recurrent version of CWGAN, which uses RNNs for

both the generator and discriminator. This version is called Recurrent Conditional

Wasserstein GAN (RCWGAN).

In 2020 Hazra and Byun (2020) presented SynSigGAN, a GAN designed for

generating any kind of synthetic biomedical signal. Similarly to what we address in

this thesis project, Hazra and Byun address the issue that when using medical data

in research there is often a confidentiality concern regarding the data. Therefore,

generating synthetic data with the same properties as the training data would have

many usages in research. Often though, medical data with certain properties can

be limited, and the design of SynSigGAN is therefore made to be able to generate

data of similar properties using only a small set of real data.

The SynSigGAN generator is a bidirectional grid LSTM. A GridLSTM (Kalch-

brenner et al., 2015) is an improved version of LSTM that can deploy cells along any

dimension of the network, not only the temporal. The discriminator is a one dimen-

sional CNN. SynSigGAN was tested on four types of biomedical signals: electro-

cardiogram, electroencephalogram, electromyography and photoplethysmography.

Hazra and Byun show in their evaluation that SynsigGAN performs better than ex-

isting models for their problem.

Since the field of GANs generating time-series data is still very much in the

research phase, it remains in the literature to agree upon what evaluation metrics

to use to best evaluate the generated data, according to Brophy et al. (2021).

30



Due to this, the models are compared to problem-specific measures made by the

researchers in the literature. When researchers then compare their model to other

models, many tend to stick to the self-made, domain-specific evaluation metrics,

hence the comparisons is only domain specific and cannot necessarily be said to

apply in other research questions or with other data (Brophy et al., 2021).

2.3.2 Transformer GANs

The popular Transformers (Vaswani et al., 2017) and BERT (Devlin et al., 2018)

have the recent years been attempted used in GANs for a range of tasks.

Transformer GANs have been attempted used in music generation (Muhamed et

al., 2021a; N. Zhang, 2020), trajectory forecasting (Giuliari et al., 2021; Lv et al.,

2021), and even for non-sequential tasks within computer vision (Jiang et al., 2021;

Lin et al., 2018). Jiang et al. (2021) shows how the use of two transformers as the

adversarial networks of a GAN can generate realistic images, and they propose this

as a method as opposed to using CNNs in GANs for computer vision tasks.

For trajectory forecasting, Lv et al. (2021) made a transformer GAN for

predicting the possible future trajectories of multiple pedestrians in a scene, for

usages such as self-driving cars and robots. Their model is able to generate several

trajectories at once.

Muhamed et al. (2021a) recently were able to generate high quality, realistic

music using a Transformer GAN. They trained their model in the GAN fashion, using

a Transformer as the generator and a BERT as the discriminator. When making

humans score their Transformer GAN generated music to the current state-of-the-

art Transformers for music generation, their music was shown to be preferred by

the test subjects.

31



2.3.3 GANs for eye-gaze and foraging trajectories

Using ANNs to replicate eye-gaze trajectories is not a new concept. In 2011, years

before GANs were proposed as a way to train generative models, Y. Zhang et al.

(2011) made a neural network for predicting human interest spots in images. The

network was trained to predict the next point following a given sequence from a

fixation period in an eye-gaze trajectory. To generate a trajectory, they repeated

the generation process while periodically adding saccades to imitate the saccadic

movement from one fixational period to the next.

Pan et al. (2017) proposed SalGAN, which uses a CNN based GAN to predict

saliencymaps of where in an image a person would look. They were only concerned

with predicting where in an image people would look, and not in which order, making

it very different from the problem addressed in this thesis project.

Assens et al. (2018) introduced PathGAN, which is a conditional RNN GAN for

predicting where in an image people will look and in what order. PathGAN generates

trajectories, making it more similar to what we wish to achieve compared to SalGAN.

However, the image that is given as condition for the PathGAN model to predict

the eye-gaze trajectory is a very central part of this model. However, the foraging

process of the eyes, which is what we aim to capture in this thesis project, is not a

focus of PathGAN.

Moving away from eye-gaze trajectories onto foraging trajectories, which has

similarities with human eye-gaze trajectories when foraging for visual information

(subsection 2.1.1), are Roy et al. (2021) who use GANs with LSTMs and CNNs in

various combinations to generate the trajectories of animals foraging for food (Roy

et al., 2021). Unlike the previously mentioned networks that predicted eye-gaze

trajectories based of where in an image a person would look, the project by Roy

et al. can be considered more similar to the problem we address in this thesis, due

to the similarity of foraging trajectories and eye-gaze trajectories when searching

for information.

32



As shown, GANs have been used in replicating eye-movements of humans

looking at images to predict where they will look (Assens et al., 2018), and GANs

have also been used to replicate trajectories of animals foraging for food (Roy et

al., 2021). However, as far as we are aware, there has not been conducted any

work in replicating eye-gaze trajectories as sequences by the use of Generative

Adversarial Networks for the purpose of replicating the process of which our eyes

search for information.

33



Chapter 3

Methodology

This project aims to test a range of GAN models for time-series to see if they can be

suitable for generating realistic eye-gaze trajectories of the eyes’ foraging process.

In order to study the limitations of each model, we conduct the experiments in four

stages, with increasingly complex data sets for the GAN models to replicate.

We chose to use Vector Autoregressive (VAR) generated data for our first two

stages of our experiments. VAR data, both in one and two dimensions, have been

used as a demonstrative example by Ni et al. (2020a) and Yoon et al. (2019a) in

their comparisons of a range of models. The one dimensional VAR data has a short

temporal dependence, as in that the current movement is dependant on the recent

past movements. The two dimensional VAR data has both the temporal dependency

and a feature dependence across the two dimensions, making the process slightly

more complex.

The third data we will use is intermittent processes, which we assume will

be more difficult for the models to replicate than the two dimensional VAR data.

Intermittent processes consist of two different processes, saccades and fixations,

which they change between periodically (Land, 2019). Replicating intermittent

processes will require the models to be able to learn longer dependencies than

34



the two dimensional VAR data, hence be more challenging.

Finally, we will use real eye-gaze trajectories. Due to the similarities

between intermittent process and eye-gaze trajectories, we assume that the models

performing well for intermittent processes will be the same to perform well for real

eye-gaze trajectories. These does however have a more complex process than the

underlying intermittent process, so there might be discrepancies.

This chapter first explains howwe generate the three datasets of synthetic data.

Then we present the real eye-trajectory dataset we are using. We will then go into

explaining the experiments we conduct, which GAN models we chose to use in the

experiments, and which evaluation metrics we will use to evaluate the results of the

different experiments.

3.1 Generating synthetic data

For the first three experiments we use two types of synthetic data: Vector

Autoregressive (VAR) generated data, and intermittent processes. The VAR data

we will be using has previously been used as an illustrative example both by Yoon

et al. in TimeGAN (Yoon et al., 2019a), and by Ni et al. in SigCWGAN (Ni et al.,

2020a) when comparing a range of different time-series GAN models. The second

type of synthetic data we use are intermittent processes, which as discussed in

subsection 2.1.1 is a type of process that has similarities to the process of eye-gaze

trajectories when foraging for information.

For a one dimensional (1D) VAR process, each new state Xt is calculated by

Equation 3.1a with Equation 3.1b where ϵ is a normal distributed variable with mean

0 and standard deviation 1. We define ϕ as the temporal correlation of the time

series and σ is the feature correlation.

35



Xt = Xt−1 + δXt−1 (3.1a)

δXt−1 = ϕ × δXt−2 + ϵ (3.1b)

For a two dimensional (2D) VAR process, each new state X(t), Y(t) is

calculated by Equation 3.2a with Equation 3.2b and Equation 3.2c where ϵ is a

normal distributed variable with mean 0 and standard deviation 1.

Xt, Yt = (Xt−1 + δXt−1, Yt−1 + δYt−1 (3.2a)

δXt−1 = ϕ × δXt−2 + σ × δYt−2 + ϵ (3.2b)

δYt−1 = ϕ × δYt−2 + σ × δXt−2 + ϵ (3.2c)

The VAR data was generated using the implementation by Ni et al. (2020a).

The code to generate the data is shared in their GitHub project (Ni et al., 2020b).

We generate a set of one dimensional data, using Equation 3.1, with σ = 0.8. For the

second experiment we use Equation 3.2, also with σ = 0.8 and ϕ = 0.8. Figure 3.1a

is an example of a one dimensional trajectory from our generated dataset, and

Figure 3.1b of a two dimensional. The reason we choose 0.8 as the values for

σ and ϕ is because these values were used by Ni et al. (2020a) when comparing a

range of different models’ performances. Therefore, by using the same values, we

expect to see similar results as they did for the experiments where we use this data.

To generate the synthetic intermittent processes, the processes are started with

either a fixation period F or a saccadic period S, decided on random. To determine

the duration of each saccade and fixation, we define a rate λ for changing from one

process to the other. λSF is the rate of transition from saccade to fixation, and λFS

is the rate of transition from fixation to saccade. At τ time-interval, PSF = e−λSFτ

36



(a) VAR 1D

(b) VAR 2D (c) Intermittent process

Figure 3.1: One plotted example of a generated synthetic data of each of the data types used in the

first three experiments. (a) VAR 1D shows the value (x axis) over time (y axis). (b) and (c) show the

flattened plot of the x and y values of the data across a sequence of 2000 time steps.

is the probability of changing from a saccade to a fixation, and PFS = e−λFSτ is the

probability of changing from a fixation to a saccade.

A saccade has one constant angle for the whole duration of the saccadic period,

chosen at random, and the length of the saccade that was determined by PSF. The

step length in a saccade is determined by a constant saccadic velocity.

For a fixation every new time step in the duration, given by PFS, is determined

by a new random angle, and a step length. The step lengths are normally distributed

37



with a mean 0 and variance given by a diffusive parameter D. Figure 3.1c is a plot of

a 2000 time steps long generated intermittent process from the generated training

dataset.

3.2 Eye-trajectory data

EyeT4Empathy database (Lencastre, 2021) was built by researchers at the AI lab

at OsloMet. The dataset contains eye-movements from 60 participants, divided in

two datasets based on the images and task they recorded. For this dataset they

used paintings without specific motives. Participants were asked to describe what

they saw in the image after looking at it for one minute. The aim was to assess how

people forage for visual information in an unfamiliar scene. For collecting the data

they used the eye-tracker Tobii Pro X3-120. The data has authorization by NSD, the

Norwegian Centre for Research Data, allowing collection and publishing the data.

For this thesis we will only be using dataset II. Figure 3.2 shows two randomly

chosen examples of trajectories from dataset II. The dataset contains a large range

of features, but in this project we will only be concerned with the features ’Gaze point

X’ and ’Gaze point Y’. The data contains just below 15 percent nan values, which

is important to consider before training the models as this can potentially negatively

affect the training. In subsection 3.3.1 we describe how we fill in the missing values

to reduce their potential negative impact.

3.3 Methodology

The aim of this project is to explore whether GANs are able to replicate eye-gaze

trajectories. We will test a range of different time-series GANs, on four different

sets of data, and evaluate how the models perform on the different data and where

each of them falls short. In this section we first explain the experiments that are

conducted for this project. Then we describe the models we chose to use in

38



(a) Trajectory from EyeT4Empathy. (b) “Artwork 71” by the artist Rainer Gross.

Figure 3.2: EyeT4Empathy dataset II, example of trajectory. The trajectories in dataset II are the

sampled trajectories from the first minute of participants looking at the seemingly random painting,

after being asked to describe what they see in the painting. The aim was to capture how the

participants use their eyes to forage for information in an unfamiliar scene. (a) Plot of a trajectory

from EyeT4Empathy dataset II. This trajectory shows how the eyes seemingly explore the image in

(b) in the same sense as the Intermittent Process, as shown in Figure 3.1c. (b) The image that the

participants were asked to study. This image is the painting “Artwork 71” by the artist Rainer Gross.

The image is borrowed from the EyeT4Empathy dataset, available online (Lencastre, 2021).

the experiments and their implementations. Finally, we present how we will be

evaluating the different models’ results for each experiment.

3.3.1 Experiments

This section describes the experiments conducted in this project. The goal is to

explore a variety of existing GAN models’ ability to replicate eye gaze trajectories.

The experiments are conducted in four stages, with four different types of data of

what we believe to be four increasingly difficult datasets to learn by a time-series

GAN. The purpose is to be able to filter out the models that are not working for

the simpler datasets, and to get an insight into the limitations of each model by

observing where and on which data the different models start to struggle.

We will conduct four experiments with the different models implemented as

described in subsection 3.3.2. The first experiment, which from now on will be

39



referred to as experiment A, uses one dimensional VAR data. Experiment B uses

two dimensional VAR data. Experiment C uses generated intermittent processes.

All data in experiments A, B and C are generated as described in section 3.1.

Experiment D is the final experiment, using real eye-gaze trajectories from the

EyeT4Empathy dataset (Lencastre, 2021).

For all experiments, the training of the models were done on the increments

from one point in the time series to the next. For experiment A on one dimensional

VAR data, which originally is a sequence of positions x, we define a new series of

distances dx between the points at every time step t where dxt = xt+1 − xt. For

experiment B, C, and D, which are all with two-dimensional data in which each point

is defined by an x and a y value, we define a new series of distances dx and dy at

every time step t where (dxt, dyt) = (xt+1 − xt, yt+1 − yt).

For experiment D, to overcome the issues of missing values in the trajectories,

we had two options: either removing the missing values, or calculate dummy values

to replace them. Since the training is done on the increments between two points,

removing the missing values can lead to some unnaturally high increments, which

is a feature the GANs will be learning to replicate during training. To avoid this,

we calculated the distances dx and dy from the previously known position (x0, y0)

to the next known position (x1, y1) calculated by (dx, dy) = (x1 − x0, y1 − y0), and

then filled in the number n of consecutive missing values evenly in a straight line at

each time step t, so that (xt, yt) = (xt−1 +
dx
n , yt−1 +

dy
n )

During experiment A and B, the models’ losses were calculated on generated

sequences of 50 time steps, from given conditions of 50 time steps. For experiment

C and D, the conditional GANs are fed a sequence of 50 and generate sequences

of 100 time steps. Note that this is substantially more than what most of the models

used in these experiments have been shown to generate in the literature. The

SigCWGAN paper (Ni et al., 2020a) and TimeGAN paper (Yoon et al., 2019a) both

used VAR data for comparing a range of different models, however in both these

40



papers the models were trained to generate only very short sequences at training

time. Ni et al. generated sequences of three points from a condition of three points

during training.

The reason we in this project train the models on longer sequences is because

the saccadic periods and the fixation periods in the real eye-gaze trajectories lasts

much longer than 3-6 time steps. For the models to learn to capture both the

saccadic and fixational periods in the generated sequences, the sequences that are

generated during training and fed to the discriminator should reflect this difference,

at least to a certain degree. Generating longer sequences during training does

though affect the time it takes to train the models, so this is a trade-off. Another

trade-off for the time it takes to train is the total amount of training data. Using

more data when training the models not only takes more time per iteration, but

also requires more memory usage. In experiment D we used a random selection

of the dataset (section 3.2) in order to make the training time and computational

requirements manageable.

The sequences used in experiment A, B and C were of a total of 40000 time

steps each. For experiment D we used a total of 20000 time steps of real eye-gaze

trajectories. For all the experiments, the data was divided into 80% for training and

20% for evaluation. For the final evaluation in chapter 4, new data was generated,

except in experiment D where we had set aside data before training to use in the

final evaluation.

3.3.2 Models

All the models used in the experiments are models made for continuous sequential

data. The reason behind this is that all the synthetic data and the eye trajectory

data we will use in these experiments are originally represented as continuous

sequences. In addition, as discussed in section 2.3, most of the state of the

art models are made for sequential data, with the models made for NLP as an

41



exception. It is however, as we also presented in section 2.3, possible to convert

various types of continuous data into a discrete representation and using them

for training instead. By doing this, we could potentially use models made for

discrete sequential data such as SeqGAN (L. Yu et al., 2017) and Transformer GANs

(Muhamed et al., 2021a). This would require testing various ways of representing

the data as discrete tokens. This possibility is further discussed in chapter 5.

The models we chose to use for the experiments are CWGAN (Ni et al., 2020b),

RCGAN (Esteban et al., 2017a), RCWGAN (Ni et al., 2020b), SigCWGAN (Ni et al.,

2020a), and TimeGAN (Yoon et al., 2019a). All these models are conditional GANs,

whose aim is to be given a sequence which it tries to continue for a set amount of

steps. The background on these models and on conditional GANs are given in

subsection 2.3.1.

Our choice of using SigCWGAN was due to the AR-FNN, which was designed

to work for ”tails of data”. This might make it ideal for eye-gaze trajectories. As

shown in subsection 2.1.2, eye-gaze trajectories will consist of far more short

increments than long ones. This is due to the small, frequent movements during the

fixation periods, as opposed to the longer, faster increments in the saccadic periods.

Thus, we can see the long increments to be what ... refer to as “tails of data”,

which may be difficult for models to capture. In addition, Ni et al. aimed to ensure

that SigCWGAN could capture temporal dependencies, which is also essential to

successfully replicate eye-gaze trajectories. As described in subsection 2.1.2, in

addition to the more short-termed dependency of switching between saccadic and

fixational periods, the eyes have shown to not revisit recently viewed locations for

a period of about 1.5 to 3 seconds (Le Meur & Liu, 2015).

We use the original implementation of SigCWGAN, by Ni et al. The code

available on (Ni et al., 2020b). The implementation is done using PyTorch, in

Python 3. We ran SigCWGAN 500 iterations for experiment A, 1000 iterations for

experiment B, 2000 iterations for experiment C, and 4000 iterations for experiment

42



D. To make the comparison fair for the models, all the models were trained until

they had stopped improving for several iterations, which differed a lot from model to

model and is why the amount of training iterations varies a lot from model to model

in our experiments.

To compare the impact of the C-Sig-W1 metric in SigCWGAN, we also in-

clude Conditional Wasserstein GAN (CWGAN) and Recurrent Conditional Wasser-

stein GAN (RCWGAN) in the experiments. CWGAN is implemented similar to

SigCWGAN, but does not use the C-Sig-W1 metric. RCWGAN is the recurrent

version of CWGAN, where both the generator and discriminator are RNNs instead.

Both these models were implemented by Ni et al., and the implementations we used

are available on (Ni et al., 2020b). CWGAN was only used for experiment A and B,

where we trained it for 1000 iterations on both experiments. RCWGAN was trained

for 5000 iteration for A and B, 10000 for C, and 20000 in experiment D.

TimeGAN is, as we saw in subsection 2.3.1, using a combination of GAN and

autoencoder architecture. This model has shown useful in a range of tasks, and

is recently used a lot as a benchmark (Ni et al., 2020a). We use the TimeGAN

implementation by Ni et al. (2020a), which according to (Ni et al., 2020a) is based

off the original TimeGAN code by Yoon et al. (2019a), whose original implementation

is available on GitHub (Yoon et al., 2019b) in Python 3 using Tensorflow 3.

The implementation of TimeGAN used in this project is available on (Ni et al.,

2020b). This implementation is done using PyTorch, in Python 3. We ran the training

10000 iterations for experiments A and B, and 20000 for C and D.

RCGAN was used as a comparison in both TimeGAN and SigCWGAN. The

results by Yoon et al. showed that TimeGAN performed better than RCGAN,

however the comparison by Ni et al. showed very similar results between TimeGAN

and RCGAN. We therefore wanted to include RCGAN in our experiments. For

RCGAN we use the implementation by Ni et al. (Ni et al., 2020b). It is based off the

original RCGAN implementation by Esteban et al., whose original code is available

43



(Esteban et al., 2017b). We trained RCGAN 5000 iterations for experiments A and

B, and 10000 iterations for experiments C and D.

3.3.3 Evaluation metrics

We defined a set of statistical measures to evaluate the results of the experiments.

For each of the models in each experiment L2 distance, Kolmogorov Smirnoff (KS)

test, distance intensity of the auto-correlation profiles and the similarity profile of the

auto-correlations were calculated. The first two measures, the L2 distance and the

KS test, only concerns the distribution of the data without taking into consideration

the time aspect of the generated data. The auto-correlation of the increments is the

simplest method to compare two samples of data which considers the time-aspect.

The L2 distance measures the squared difference between two distributions.

Let p(x) be the original probability distribution function of the synthetic data and

q(x) the probability distribution function for the GAN generated distribution. Then,

the L2 distance dL2 is given by Equation 3.3.

√
dL2 = ∑

x
(p(x)− q(x))2 (3.3)

The goal of the GAN generated data in these experiments is that it should have

the same distribution as the original data for its respective experiment. In order to

actually know whether the distribution of the real data and the GAN generated data

come from the same distribution, we use a statistical test called the Kolmogorov

Smirnoff (KS) test. The KS test gives us a probability value p of whether two

samples of data comes from the same distribution. We then take the distance of

the probability value p. The p distance is calculated by log(1/p). The value can be

from 0 and up, and will be larger for a smaller p value.

44



We set the threshold for an acceptable p distance at 95 percent similarity. This

is calculated by log(1/0.05), which is ≈ 1.3. A p distance value lower than this

means that there is an over 95 percent chance that the samples come from the

same distribution.

The two final measurements, which both regards the auto-correlations of the

samples, are the difference in the profiles and the differences in absolute values. We

will call the first one the “distance intensity” and the second the “similarity profile”.

To compute these quantities we will compare the auto-correlation functions ac f of

the original synthetic data ac fo(i) and of the GAN generated data ac fGAN(i). Each

element represents the correlation of the increment of the process with the i-th

previous increment in the time-series.

dint =

√√√√i=N

∑
i=0

(ac fo(i)− ac fGAN(i))2 (3.4)

The distance intensity dint of the auto-correlations are calculated by Equa-

tion 3.4. The distance varies between 0 and 1, where 0 means a very little distance,

and 1 means a high distance. If the result is 0, this means that the absolute value

of the correlations is similar.

spro f =
∑i=N

i=0 (ac fo(i)× ac fGAN(i))2√
∑i=N

i=0 (ac fo(i)× ac fo(i))2 ×
√

∑i=N
i=0 (ac fGAN(i)× ac fGAN(i))2

(3.5)

Similarity profile spro f of the auto-correlations is measured by Equation 3.5,

where acr is the auto-correlation function, o is the original data, and GAN is the

generated data. If the similarity profile is 1 it means that the auto-correlations have

a similar profile, and if it is 0 they have a very different profile. Negative values

are also possible, but rare. To check if the similarity is statistically significant, we

define a similarity threshold at 99 percent, which is calculated for each sample. If

the similarity profile is higher than 99 it is very high, and we can say confidently that

45



the profiles match better than random auto-correlation functions. Note though that

this does not necessarily mean that the generated data is good or realistic, only that

it is certainly better than random data.

46



Chapter 4

Results

This section will present the results of each of the four experiments conducted for

this thesis. Table 4.1 includes all the results from all the models that were trained, in

each of the four experiments. For each model, ten samples of 2000 time steps were

generated upon finishing training, to use in the evaluation. Each cell in Table 4.1

gives the average and the standard deviation of the ten generated samples for the

respective metric, for the respective model, as well as the one smallest result and

the one highest result among the ten samples. The results marked as bold are the

best results for that metric in the respective experiment. For the similarity distance

of the auto-correlation functions all values where the average had an accuracy of

over 99 percent are marked as bold.

For the evaluation of experiment A, we used the series’ of generated

increments and compared them to an original series of VAR 1D, represented as

increments, which is the same representation dx that the models were trained on

as described in subsection 3.3.1 . For the rest of the experiments, for which the data

was two dimensional, the evaluation was done using the combined increments of

dx and dy at every time step. We call this combined increment ds, so the two-

dimensional sequences, both original and generated, were thus represented as

dst =
√

dx2
t + dy2

t for the evaluation of experiments B, C, and D.

47



For each of the experiments, a table of figures showing the results of one

randomly chosen sample per model is provided, like Table 4.2 which is the result

table for experiment A. These tables are all at the end of this chapter. For each

of the tables, the first row is a plot of a generated time series per model. The

second row is the distribution of increments, dx in experiment A and ds in the other

experiments. The third row is the auto-correlation profiles of each sequence. To

compare the generated samples to how they ideally should be, the plots in all three

rows also shows the results for one sample of the type of data used for training in

that respective experiment.

4.1 Experiment A - VAR one dimension

In this experiment, five GAN models were trained to replicate VAR 1D data. The

training data was generated as described in section 3.1, and Figure 3.1a is a plot

of a sequence of 2000 point of VAR 1D data.

From Table 4.2 it becomes apparent that, at least for this one sample, CWGAN

fails to generate a realistic sequence. The sequence itself, shown in the first row,

does not look as expected, and the histogram in the second row shows that the

distribution of increments for this generated sequence is skewed towards negative

increments. The auto-correlation profile also appears to be further from the auto-

correlation profile of the original data compared to the rest of the models. From

Table 4.1 we can confirm that the auto-correlation similarity indeed is smaller than for

the rest of the models. SigCWGAN does however have a higher distance intensity

than CWGAN. Common for all the models is that they seem to have a tendency of

favouring smaller increments than the original data.

48



Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

C
W
G
A
N

0.
16
3
±
.0
09

0.
19
9
±
.0
01

0.
18
3
±
.0
08

0.
17

±
.0
1

0.
39

±
.0
4

L 2
0.
15

0.
17
7

0.
18
2

0.
21
6

0.
16
9

0.
19
4

0.
15
3

0.
19
1

0.
31
4

0.
43
7

25
±
2

37
±
4

35
±
5

31
±
6

16
3
±
18

p
20
.5
62

28
.0
1

32
.2
63

44
.9
42

27
.5
22

42
.5
05

23
.9
06

45
.0
39

12
7.
61
1

19
1.
42
8

0.
86
9
±
.0
08

0.
34

±
.0
7

0.
31

±
.0
8

0.
26

±
.0
9

0.
5
±
.2

di
st
an
ce

in
te
ns
ity

0.
85
1

0.
88
1

0.
25
4

0.
45
6

0.
14
9

0.
43
4

0.
05
6

0.
38
8

0.
22
3

0.
88
9

0.
58

±
.0
5

0.
98
9
±
.0
07

0.
99
4
±
.0
04

0.
98
2
±
.0
09

0.
4
±
.2

Ex
pe
rim

en
tA

VA
R
1D

si
m
ila
rit
y

pr
of
ile

0.
47
6

0.
65
2

0.
97
1

0.
99
6

0.
98
5

0.
99
8

0.
96
8

0.
99

0.
18
2

0.
74

0.
73
3
±
.0
04

0.
24
1
±
.0
09

0.
09

±
.0
2

0.
21

±
.0
2

0.
20
6
±
.0
06

L 2
0.
72
4

0.
73
9

0.
22
2

0.
25
2

0.
05

0.
13
3

0.
17
8

0.
23
1

0.
19
4

0.
21
6

in
f

16
7
±
14

24
±
12

13
0
±
21

50
±
10

p
in
f

in
f

14
3.
42

18
7.
84
3

4.
54
1

51
.2
85

92
.7
07

16
0.
66
9

30
.9
65

64
.1
76

0.
44
6
±
.0
8

0.
28
3
±
.0
7

0.
7
±
.1

0.
18

±
.0
7

0.
99
1
±
.0

di
st
an
ce

in
te
ns
ity

0.
25
5

0.
56

0.
2

0.
42
9

0.
46
8

0.
93

0.
06
8

0.
31
8

0.
99
1

0.
99
1

0.
87

±
.0
3

0.
99
4
±
.0
05

0.
8
±
.1

0.
99
2
±
.0
05

0.
14
3
±
.0
02

Ex
pe
rim

en
tB

VA
R
2D

si
m
ila
rit
y

pr
of
ile

0.
83

0.
92
7

0.
98
4

0.
99
9

0.
46
5

0.
95
1

0.
98
4

0.
99
8

0.
14

0.
14
6

C
on
tin
ue
d
on

ne
xt
pa
ge

49



C
on
tin
ue
d

Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

C
W
G
A
N

0.
69

±
.0
1

0.
57

±
.0
1

0.
60

±
.0
1

0.
55

±
.0
3

L 2
0.
67
7

0.
70
7

0.
54
7

0.
58
2

0.
58
4

0.
62
3

0.
49
2

0.
61
6

-

in
f

in
f

in
f

in
f

p
in
f

in
f

in
f

in
f

in
f

in
f

in
f

in
f

-

0.
6
±
.2

0.
4
±
.1

0.
6
±
.2

0.
4
±
.2

di
st
an
ce

in
te
ns
ity

0.
20
1

0.
81
6

0.
17
7

0.
52
7

0.
15
4

0.
78
9

0.
02
5

0.
72
2

-

0.
89

±
.0
7

0.
99
2
±
.0
05

0.
99
1
±
.0
04

0.
96

±
.0
3

Ex
pe
rim

en
tC

In
te
rm
itt
en
t

Pr
oc
es
s

si
m
ila
rit
y

pr
of
ile

0.
79

0.
99
9

0.
98
3

0.
99
7

0.
98
2

0.
99
9

0.
89
9

0.
98
9

-

0.
32

±
.0

0.
32

±
.0

0.
32

±
.0

0.
32

±
.0

L 2
0.
32

0.
32

0.
32

0.
32

0.
32

0.
32

0.
32

0.
32

-

in
f

in
f

in
f

in
f

p
in
f

in
f

in
f

in
f

in
f

in
f

in
f

in
f

-

0.
98
4
±
.0
04

0.
5
±
.1

0.
95

±
.0
2

0.
5
±
.2

di
st
an
ce

in
te
ns
ity

0.
97
3

0.
98
7

0.
41
3

0.
70
9

0.
88
8

0.
97
3

0.
14

0.
72
5

-

0.
1
±
.1

0.
92

±
.0
4

0.
6
±
.1

0.
92

±
.0
6

Ex
pe
rim

en
tD

Ey
eT
4E

m
pa
th
y

da
ta

si
m
ila
rit
y

pr
of
ile

-0
.0
71

0.
34
8

0.
84
7

0.
97

0.
42
3

0.
72
3

0.
82
3

0.
97
8

-

Ta
bl

e
4.

1:
R
es
ul
ts
fro
m
al
lf
ou
re
xp
er
im
en
ts
.T
en

ge
ne
ra
te
d
sa
m
pl
es

of
20
00

tim
e
st
ep
s
fo
re
ac
h
m
od
el
w
er
e
ev
al
ua
te
d.

Ea
ch

ce
ll
in
th
is
ta
bl
e
ha
s

fo
ur
va
lu
es
.O

n
th
e
to
p
it
sh
ow

s
th
e
av
er
ag
e
an
d
th
e
st
an
da
rd
de
vi
at
io
n
of
th
e
ge
ne
ra
te
d
sa
m
pl
es

fo
rt
he

re
sp
ec
tiv
e
m
et
ric
,a
nd

on
th
e
bo
tto
m
of
ea
ch

w
el
lw

e
ha
ve

th
e
m
in
im
um

an
d
m
ax
im
um

va
lu
e
am

on
g
th
e
te
n
sa
m
pl
es
.H

er
e,
”L

2”
is
th
e
L 2

di
st
an
ce
,”

p”
is
th
e

p
di
st
an
ce

of
th
e
KS

te
st
,”
di
st
an
ce

in
te
ns
ity
”i
s
th
e
di
st
an
ce

in
te
ns
ity

of
th
e
au
to
-c
or
re
la
tio
n
fu
nc
tio
n,
an
d
”s
im
ila
rit
y
pr
of
ile
”i
s
th
e
si
m
ila
rit
y
pr
of
ile

of
th
e
au
to
-c
or
re
la
tio
n
fu
nc
tio
n.

50



By just looking at the single samples in Table 4.2, TimeGAN and RCGAN

appear to be the ones performing the best. In Table 4.1 though, when evaluating ten

generated samples, SigCWGAN has the strongest performance on the L2 distance

with 0.163 ± .009 and on the KS test with a p distance of 25 ± 2. For the distance

intensity RCWGAN performed the best with a score of 0.18 ± .07. On the L2 distance

all models except CWGAN performed similarly. On the p distance, all models failed

to perform below the 1.3 acceptance limit.

4.2 Experiment B - VAR two dimensions

Experiment B included five models trained on VAR 2D data. For this experiment,

RCGAN performed well regarding the L2 distance with a value of 0.093 ± .004.

RCGAN also performed the best among the models for the p distance, but the score

of 25 ± 12 is still much higher than the acceptance limit. Even the lowest score

among RCGANs samples of 4.541 is too high. For the auto-correlation distance,

which also concerns the time aspect of the data, RCGAN performed worse than

tree of the other models.

As expected from seeing the results of experiment A, CWGAN had a very

poor performance in this experiment also. It performed a little bit better than on

experiment A, according to the evaluation metrics in Table 4.1, but from the example

shown in Table 4.3 it is very apparent that this GAN did not work well in this

experiment.

SigCWGAN was the only one of the models in this experiment to not perform

over the acceptance limit of 99 percent for the similarity distance. None of the

models were anywhere near the acceptance limit for the KS test.

51



4.3 Experiment C - Intermittent process

RCWGAN outperformed the other three models in this experiment, with an L2 of

0.55 ± .03, a distance intensity of 0.4 ± .2, and a similarity profile of 0.96 ± .03. The

similarity profiles for all models were over our set threshold for 99 percent, meaning

that all the models were able to generate data that had a closer auto-correlation

profile to the intermittent processes than random data would have had. From the

second row in Table 4.4 it becomes even more apparent that the models favour

smaller increments than the original data. The original data has a distribution of

mostly smaller increments, but then also has a peak of longer increments which are

the saccades in the intermittent process. From these histograms of the samples

from the models it seems that none of the models were able to capture this

distribution.

The leftmost plot in the first row of Table 4.4 shows an example of a 2000

steps long sequence of original intermittent processes like the ones themodels were

trained to generate, and the rest of the first row shows one example of a sequence

generated by each different model after completing the training. SigCWGAN is the

only one of the models that seems to have to some degree captured the saccadic

jumps’ constant direction.

4.4 Experiment D - Eye-gaze trajectories

In the final experiment we trained four of the models on eye-gaze trajectories from

the EyeT4Empathy dataset II.

RCWGAN was the model to perform the best in this experiment for the auto

correlation measured with a distance intensity of 0.5 ± .2 and similarity profile of

0.91 ± .06 TimeGAN almost had a distance intensity as low as RCWGAN, but

SigCWGAN and RCGAN had much higher distance intensity with 0.984 ± .004 and

0.95 ± .02 respectively.

52



All the models had an infinite high p distance, which means that there is

an almost non-existing probability that the generated data came from the same

distribution as the real eye-gaze trajectory data.

The reason the L2 distance for this experiment are the same for all in Table 4.1 is

that the bins that were calculated puts all the data within the same bins, since all the

models’ generated data has much smaller increments than the real data. This gives

the impression that the models might have only produced constant increments,

which is not the case. The second row of Table 4.5 shows how the increments

are being placed into the same bin, and hence appears to be the same for all the

models.

Table 4.6 demonstrates the differences in the increments for one sample for

each of the models. It is apparent that both the dx, dy, and ds increments of the

samples from each of the models are in fact not the same for all models.

53



Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

C
W
G
A
N

Ta
bl

e
4.

2:
Ex
am

pl
es

of
ge
ne
ra
te
d
tra
je
ct
or
ie
s
fro
m
ex
pe
rim

en
tA

,a
lo
ng

w
ith

th
e
di
st
rib
ut
io
ns

of
th
e
in
cr
em

en
ts
,a

nd
th
e
au
to
-c
or
re
la
tio
n
pr
of
ile
.

Th
e
fir
st
ro
w
sh
ow

s
on
e
ex
am

pl
e
of

a
ge
ne
ra
te
d
tra
je
ct
or
y
of

20
00

tim
e
st
ep
s
pe
rm

od
el
,a

fte
rb

ei
ng

tra
in
ed

on
on
e
di
m
en
si
on
al
VA

R
da
ta
.
Th
e

se
co
nd

ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’
di
st
rib
ut
io
n
of
in
cr
em

en
ts
co
m
pa
re
d
to
an

ex
am

pl
e
of
re
al
VA

R
1D

da
ta
.T

he
bo
tto
m
ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’

au
to
-c
or
re
la
tio
n
pr
of
ile

of
th
e
in
cr
em

en
ts
,c
om

pa
re
d
to
a
sa
m
pl
e
of
re
al
da
ta
.

54



Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

C
W
G
A
N

Ta
bl

e
4.

3:
Ex
am

pl
es

of
ge
ne
ra
te
d
tra
je
ct
or
ie
s
fro
m

ex
pe
rim

en
tB

.
Th
e
fir
st
ro
w
is
a
pl
ot

of
on
e
ex
am

pl
e
of

a
ge
ne
ra
te
d
tra
je
ct
or
y
of

20
00

tim
e

st
ep
s
pe
rm

od
el
,a
fte
rb
ei
ng

tra
in
ed

on
tw
o
di
m
en
si
on
al
VA

R
da
ta
.T

he
se
co
nd

ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’
di
st
rib
ut
io
n
of
in
cr
em

en
ts
co
m
pa
re
d
to
an

ex
am

pl
e
of
re
al
VA

R
2D

da
ta
.T

he
bo
tto
m
ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’
au
to
-c
or
re
la
tio
n
pr
of
ile

of
th
e
in
cr
em

en
ts
,c
om

pa
re
d
to
a
sa
m
pl
e
of
re
al
da
ta
.

55



In
te
rm

itt
en
t

Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

Ta
bl

e
4.

4:
Ex
am

pl
es

of
ge
ne
ra
te
d
tra
je
ct
or
ie
s
fro
m
ex
pe
rim

en
tC

.T
he

fir
st
co
lu
m
n
sh
ow

s
an

ex
am

pl
e
of
20
00

tim
e
st
ep
s
fro
m
th
e
or
ig
in
al
in
te
rm
itt
en
t

pr
oc
es
s
da
ta
.
Th
e
m
od
el
s
w
er
e
gi
ve
n
se
qu
en
ce
s
of
50

po
in
ts
of
in
te
rm
itt
en
tp
ro
ce
ss

da
ta
at
ge
ne
ra
tio
n,
w
hi
ch

ar
e
th
e
do
tte
d
bl
ac
k
se
ct
io
n
of
th
e

pl
ot
s.
Th
e
fir
st
ro
w
is
a
pl
ot
of
on
e
ex
am

pl
e
of
a
ge
ne
ra
te
d
tra
je
ct
or
y
of
20
00

tim
e
st
ep
s
pe
rm

od
el
.T

he
se
co
nd

ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’
di
st
rib
ut
io
n

of
in
cr
em

en
ts
co
m
pa
re
d
to
th
e
re
al
sa
m
pl
e.

Th
e
bo
tto
m
ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’
au
to
-c
or
re
la
tio
n
pr
of
ile

of
th
e
in
cr
em

en
ts
,c
om

pa
re
d
to
th
e
re
al

sa
m
pl
e.

56



Ey
eT
4E

m
pa
th
y

Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

Ta
bl

e
4.

5:
Ex
am

pl
es

of
ge
ne
ra
te
d
tra
je
ct
or
ie
s
fro
m
ex
pe
rim

en
tD

.T
he

fir
st
co
lu
m
n
sh
ow

s
an

ex
am

pl
e
of
20
00

tim
e
st
ep
s
fro
m
th
e
or
ig
in
al
ey
e-
ga
ze

tra
je
ct
or
y
da
ta

fro
m

th
e
Ey
eT
4E

m
pa
th
y
da
ta
se
tI
I(
Le
nc
as
tre
, 2

02
1)
.
Th
e
m
od
el
s
w
er
e
gi
ve
n
se
qu
en
ce
s
of

50
po
in
ts
of

ey
e-
ga
ze

tra
je
ct
or
y
da
ta

at
ge
ne
ra
tio
n,

w
hi
ch

ar
e
th
e
do
tte
d
bl
ac
k
se
ct
io
n
of

th
e
pl
ot
s.

Th
e
fir
st
ro
w
is
a
pl
ot

of
on
e
ex
am

pl
e
of

a
ge
ne
ra
te
d
tra
je
ct
or
y
of

20
00

tim
e
st
ep
s

pe
rm

od
el
.
Th
e
se
co
nd

ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’
di
st
rib
ut
io
n
of
in
cr
em

en
ts
co
m
pa
re
d
to
th
e
re
al
sa
m
pl
e.

Th
e
bo
tto
m
ro
w
sh
ow

s
th
e
tra
je
ct
or
ie
s’

au
to
-c
or
re
la
tio
n
pr
of
ile

of
th
e
in
cr
em

en
ts
,c
om

pa
re
d
to
th
e
re
al
sa
m
pl
e.

57



Ey
eT
4E

m
pa
th
y

Si
gC

W
G
A
N

Ti
m
eG

A
N

R
C
G
A
N

R
C
W
G
A
N

Ta
bl

e
4.

6:
Ex
pe
rim

en
tD

:
fre
qu
en
cy

di
st
rib
ut
io
n
of

th
e
in
cr
em

en
ts
,f
ro
m

th
e
sa
m
e
ge
ne
ra
te
d
sa
m
pl
es

pe
rm

od
el
as

us
ed

in
Ta
bl
e
4.
5.

Th
e
fir
st

co
lu
m
n
sh
ow

s
an

ex
am

pl
e
of

20
00

tim
e
st
ep
s
fro
m

or
ig
in
al
ey
e-
ga
ze

tra
je
ct
or
y
da
ta
.
Th
e
fir
st
ro
w
is
cu
m
ul
at
iv
e
hi
st
og
ra
m
s
of

dx
an
d

dy
fo
rt
he

sa
m
pl
es
,a

s
de
fin
ed

in
su
bs
ec
tio
n
3.
3.
1.

Th
e
se
co
nd

ro
w
is
a
cu
m
ul
at
iv
e
hi
st
og
ra
m

of
th
e

ds
fo
r
th
e
sa
m
pl
es
,a

s
de
sc
rib
ed

in
th
e
be
gi
nn
in
g
of

ch
ap
te
r4

58



Chapter 5

Discussion and conclusions

In this thesis we have explored the possibility to generate new, unique eye-

gaze trajectories of the eyes’ foraging process using time-series GAN models.

Being able to generate datasets of realistic synthetic eye-gaze trajectories could

be used in research within statistics and artificial intelligence for applications

in for example psychology and medicine. We hypothesized that it would be

possible to train existing state-of-the-art GANs for time-series to replicate eye-gaze

trajectories, capturing the advanced properties of the human gaze when searching

for information in an unfamiliar scene or image.

The experiments were divided into four stages, which we referred to as

experiments A, B, C, and D. For the first three experiments we generated

three different datasets of processes of increasing complexity. We wanted to

get an understanding of the limitations of each of the models. To achieve this

we experimented with data of increasingly complex processes that we assumed

would be increasingly challenging for the models to replicate, before doing a final

experiment using real eye-gaze trajectories of the eyes’ foraging process. We

assumed that the models would be able to perform similarly well for the real eye-

gaze trajectories in experiment D as they did for the intermittent processes in

experiment C, due to the hypothesis in the literature that the eyes’ foraging process

59



follows an intermittent process (Land, 2019).

For the experiments we tested five different time-series GAN architectures:

Recurrent Conditional GAN (RCGAN); Conditional Wasserstein GAN (CWGAN);

Recurrent Conditional Wasserstein GAN (RCWGAN); Conditional Sig-Wasserstein

GAN (SigCWGAN); and Time-series GAN (TimeGAN) (subsection 3.3.2). The

methods we used in these experiments are conditional GANs which work by giving

the generator a short sequence of a real eye-gaze trajectory, and let the generator

continue this sequence for a given length. We trained the models to generate a

continuance of an eye-gaze trajectory given a short sequence of 50 time-steps of

a real eye gaze trajectory from the EyeT4Empathy (Lencastre, 2021) dataset II. To

evaluate the models’ performances we used two evaluation metrics to evaluate the

data distribution, and two metrics to evaluate the temporal correlation.

We expected SigCWGAN to perform better than RCGAN and TimeGAN, based

on the comparisons on VAR data by Ni et al. (2020a). We also expected that

TimeGAN might perform slightly better than RCGAN, based on the comparisons

by Yoon et al. (2019a). There were however some differences in both of their

comparisons compared to ours, the main being that in their evaluations the models

had only been trained on generating short sequences. In our experiments however,

we used longer conditions and generated longer sequences during training.

5.1 Discussion

5.1.1 Findings

For experiment A, using one dimensional VAR data, we found that SigCWGAN

performed best on the distribution metrics, L2 distance and p distance of the KS

test. However, SigCWGAN had the highest distance intensity of the auto-correlation

function. RCWGAN performed the best on the temporal dependence metrics,

distance intensity and similarity profile of the auto-correlation, and was a close

60



second on the distribution of increments.

These findings are not in alignment with the findings of Ni et al. (2020a). When

they used 1D VAR data generated with the same value for the temporal correlation ϕ

as we used in our experiments, they found that SigCWGAN outperformed RCGAN

and TimeGAN on the distance of the auto-correlation function. Other than this, our

findings in experiments A align with the findings of Ni et al., such as our finding that

RCGAN performed slightly better than TimeGAN on our metrics.

When using two dimensional VAR data in experiment B, we had expected

similar results as for the first experiment. We instead foundRCGAN to be performing

the best on our metrics on the distribution of increments, L2 distance and p distance.

On the distance intensity of the auto-correlation function however, RCGAN only

performed better than CWGAN, while RCWGAN had the smallest distance.

For two dimensional VAR data where σ = 0.8 and ϕ = 0.8, same as in

our experiment B, (Ni et al., 2020a) found that SigCWGAN performed better than

TimeGAN and RCGAN on all their five evaluation metrics. Yoon et al. (2019a) used

a predictive score and a discriminative score to compare TimeGAN to among others

RCGAN. They found that TimeGAN performed the best in replicating VAR data with

the same values and σ and ϕ as ours, and RCGAN came out as second. However,

we found that RCGAN has a smaller L2 distance and p distance than TimeGAN,

but TimeGAN had a smaller distance intensity of the auto-correlation function than

RCGAN.

For both experiments A and B CWGAN fell short, and was not able to perform

as well as any of the other four models. This was as expected as CWGAN is non-

recurrent. Based on the poor results in these two experiments, we chose not to

continue using CWGAN in experiment C and D.

For experiment C we had expected the models to perform poorer than they did

in experiment B. We anticipated intermittent processes to be harder for the GANs to

learn to generate than two-dimensional VAR data, due to the switching between the

61



saccadic and fixational processes. Surprisingly, the models did not perform much

poorer, but in fact performed better for a few of the evaluation metrics.

Interestingly, it seems that all the four models in experiment C were able

to, at least to a certain degree, capture the alternation between fixations and

saccades, which we could see in the first row of Table 4.4 in the chapter 4. This

alternation is, as we discussed in subsection 2.1.1, the most central property of the

intermittent processes, so it would be a great achievement for themodels to properly

capture it. All four models produced a distribution of increments which is preferring

much shorter increments than in the intermittent process data. This is consistent

with previous findings sawing that machine-learning models have a tendency of

underestimating large increments (Lind et al., 2017).

Our assumption that the models which performed well for intermittent pro-

cesses in experiment C would be the same models to work well for the real eye-

gaze trajectories in experiment D. We found this to partly be the case. None of the

models were able to reach the aim of replicating eye-gaze trajectories to a degree

where they are indistinguishable from real ones. RCGAN and TimeGAN were the

two models with the smallest distance intensities of the auto-correlation function,

and this was also the case for experiment D. SigCWGAN did not have a satis-

factory similarity profile of the auto-correlation function, something the three other

models were able to achieve.

Even though our results show the generated data to not be very similar to

the real data for all models in experiments D, we did have some interesting

observations. In the plotted example of auto-correlation of RCWGAN, it is apparent

that RCWGAN was able to achieve a similar shape as the real data even though the

distance of the auto-correlation was high. This may be an indication of RCWGANs

potential in replicating eye-gaze trajectories. The plotted trajectories for all four

models used in both experiments C and D also show that the generated samples

indeed show a tendency of switching between shorter and longer increments, which

62



may be a sing that they may indeed have a potential of capturing the switching

between saccades and fixation of the real eye-gaze trajectories.

5.1.2 Limitations

We have identified these as the primary limitations who can have impacted the

results of this project.

In order to capture both saccadic and fictional processes of the eye trajectories,

we chose to train the models in experiments C and D by giving them sequences

of 50 points and generating sequences of 100 time steps, which increased the

training time. In addition, due to limited time and computational resources, we

chose to only use a subset of the EyeT4Empathy dataset 2, which made the training

computationally feasible. We expect the models to have had better results, if we

were able to increase the generated time steps for each sequence during training,

and the total amount of training data.

Data can be represented in several different ways, as discussed in subsec-

tion 2.3.1. In each of these experiments only one representation was used. To limit

the scope of the experiments of this project, we chose to only use models created

for continuous data. The reason being that both the synthetic and real data used

in these experiments are all originally represented continuously. Nevertheless, as

discussed in section 2.3 the same data can be represented both in a continuous

and a discrete manner. For the synthetic data and the eye-gaze trajectories this

would involve having to transform the data into discrete tokens, which must also

be possible to revert to the continuous representation for later usage. In NLP and

music generation several methods for changing the original data into discrete rep-

resentation. In NLP it is common to use multi-dimensional vectors, and in music

generation we saw examples of tokenizing based on tone duration, pitch, etc. For

the type of trajectories there is no standard way of converting, hence we would need

to try different representations. This was not tested in this project due to the very

63



limited time aspect of this master thesis.

5.1.3 Strengths

Based on literature review, in subsection 2.3.3, we found research aiming to predict

where in an image humans will look. Assens et al. (2018) used conditional GANs,

where the image is the condition. They were not concerned of the foraging process

of the eyes, as our project is. GANs have also been used to generate foraging

trajectories of animals foraging for food (Roy et al., 2021), which can be seen as a

more similar research question to ours, but still from quite a different domain. To

our knowledge there is no research on using time-series GANs to replicate eye-gaze

trajectories of the foraging process of the human gaze.

There is no consensus in the literature on which metrics to use when comparing

time-series GANs (Brophy et al., 2021). We chose four evaluation metrics which

we believe can fit all time-series with temporal dependencies, in order to compare

the underlying statistical processes behind the sequences of the original data and

the generated data. Two of the metrics concerns only the distribution of the data,

while the other two measures the auto-correlation and thus captures the temporal

dependencies of the data.

5.2 Conclusion and future work

The time-series GAN models tested in our experiments all fell short of being able to

generate realistic eye-gaze trajectories. Some of the models showed promising

results when generating VAR and Intermittent processes, which does give us

an indication that with some further adjustments, those models might be able to

generate realistic eye-gaze trajectories.

In this project we tested time-series GANs with a continuous representation of

the data. Even though the results of the models in our experiments fell short of

64



generating realistic eye-gaze trajectories, we believe that time-series GANs have a

potential of generating eye-gaze trajectories. We propose to study the possibility of

changing the representation of the data into a discrete manner. If so, other state-of-

the-art GANmodels using RNNs such as SeqGAN (L. Yu et al., 2017), or QuantGAN

(Wiese et al., 2020) could be tested, or Transformer or BERT based GAN models.

Specifically, we have faith in the architecture of Symbolic Music Generation with

Transformer-GANs by Muhamed et al. (2021a), whose implementation is publicly

available as a GitHub project (Muhamed et al., 2021b).

65



Bibliography

Antoniades, C. A., Xu, Z., Mason, S. L., Carpenter, R. H. S. & Barker, R. A. (2010).
Huntington’s disease: changes in saccades and hand-tapping over 3 years.
Journal of neurology, 257(11), 1890–1898.

Ariel, G., Rabani, A., Benisty, S., Partridge, J., Harshey, R. & Be’Er, A. (2015).
Swarming bacteria migrate by LévyWalk.Nature communications, 6(1), 1–6.

Assens, M., Giro-i-Nieto, X., McGuinness, K. & O’Connor, N. E. (2018). PathGAN:
Visual scanpath prediction with generative adversarial networks. Proceed-
ings of the European Conference on Computer Vision (ECCV) Workshops,
0.

Bargary, G., Bosten, J. M., Goodbourn, P. T., Lawrance-Owen, A. J., Hogg, R. E.
& Mollon, J. D. (2017). Individual differences in human eye movements: An
oculomotor signature? Vision research, 141, 157–169.

Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. (2011). Intermittent search
strategies. Reviews of Modern Physics, 83(1), 81.

Berkovsky, S., Taib, R., Koprinska, I., Wang, E., Zeng, Y., Li, J. & Kleitman, S. (2019).
Detecting personality traits using eye-tracking data. Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 1–12.

Brockmann, D. & Geisel, T. (1999). Are human scanpaths Levy flights?
Brockmann, D. & Geisel, T. (2000). The ecology of gaze shifts. Neurocomputing,

32, 643–650.
Brophy, E., Wang, Z., She, Q. & Ward, T. (2021). Generative adversarial networks

in time series: A survey and taxonomy. arXiv preprint arXiv:2107.11098.
Burrell, J. R., Hornberger, M., Carpenter, R. H. S., Kiernan, M. C. & Hodges,

J. R. (2012). Saccadic abnormalities in frontotemporal dementia. Neurology,
78(23), 1816–1823.

66



Cartuyvels, R., Spinks, G. & Moens, M.-F. (2021). Discrete and continuous
representations and processing in deep learning: looking forward. AI Open,
2, 143–159.

Caswell, I. & Liang, B. (2020). Recent Advances in Google Translate. Retrieved
May 9, 2022, from https://ai.googleblog.com/2020/06/recent-advances-in-
google-translate.html

Chauhan, H., Prasad, A. & Shukla, J. (2020). Engagement Analysis of ADHD
Students using Visual Cues from Eye Tracker. Companion Publication of the
2020 International Conference on Multimodal Interaction, 27–31.

Chernyavskiy, A., Ilvovsky, D. & Nakov, P. (2021). Transformers:” The End of
History” for NLP? arXiv preprint arXiv:2105.00813.

Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. (2014). Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.

Credidio, H. F., Teixeira, E. N., Reis, S. D. S., Moreira, A. A. & Andrade Jr, J. S.
(2012). Statistical patterns of visual search for hidden objects. Scientific
reports, 2(1), 1–6.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C. & Yang, Y.-H. (2018). Musegan: Multi-track
sequential generative adversarial networks for symbolic music generation
and accompaniment. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1).

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179–211.
Esteban, C., Hyland, S. L. & Rätsch, G. (2017a). Real-valued (medical) time series

generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633.
Esteban, C., Hyland, S. L. & Rätsch, G. (2017b). RGAN. Retrieved May 7, 2022,

from https://github.com/ratschlab/RGAN
Gensler, A., Henze, J., Sick, B. & Raabe, N. (2016). Deep Learning for solar power

forecasting—An approach using AutoEncoder and LSTM Neural Networks.
2016 IEEE international conference on systems, man, and cybernetics
(SMC), 2858–2865.

Giuliari, F., Hasan, I., Cristani, M. & Galasso, F. (2021). Transformer networks
for trajectory forecasting. 2020 25th International Conference on Pattern
Recognition (ICPR), 10335–10342.

67

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://github.com/ratschlab/RGAN


Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. & Bengio, Y. (2014). Generative adversarial nets. Advances in
neural information processing systems, 27.

Grace, P. M., Stanford, T., Gentgall, M. & Rolan, P. E. (2010). Utility of saccadic
eye movement analysis as an objective biomarker to detect the sedative
interaction between opioids and sleep deprivation in opioid-naive and opioid-
tolerant populations. Journal of Psychopharmacology, 24(11), 1631–1640.

Greff, K., Srivastava, R. K., Koutń, J., Steunebrink, B. R. & Schmidhuber, J. (2016).
LSTM: A search space odyssey. IEEE transactions on neural networks and
learning systems, 28(10), 2222–2232.

Hazra, D. & Byun, Y.-C. (2020). SynSigGAN: Generative adversarial networks for
synthetic biomedical signal generation. Biology, 9(12), 441.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8), 1735–1780.

Hou, X., Shen, L., Sun, K. & Qiu, G. (2017). Deep feature consistent variational
autoencoder. 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), 1133–1141.

Jiang, Y., Chang, S. & Wang, Z. (2021). Transgan: Two pure transformers can
make one strong gan, and that can scale up. Advances in Neural Information
Processing Systems, 34.

Jordan, M. I. & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255–260.

Kalchbrenner, N., Danihelka, I. & Graves, A. (2015). Grid long short-term memory.
arXiv preprint arXiv:1507.01526.

Kaplanyan, A. S., Sochenov, A., Leimkühler, T., Okunev, M., Goodall, T. & Rufo, G.
(2019). DeepFovea: Neural reconstruction for foveated rendering and video
compression using learned statistics of natural videos. ACM Transactions on
Graphics (TOG), 38(6), 1–13.

Kasneci, E., Kasneci, G., Appel, T., Haug, J., Wortha, F., Tibus, M., Trautwein, U.
& Gerjets, P. (2021). TüEyeQ, a rich IQ test performance data set with eye
movement, educational and socio-demographic information. Scientific Data,
8(1), 1–14.

Kingma, D. P. & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

68



Kröger, J. L., Lutz, O. H.-M. & Müller, F. (2019). What does your gaze reveal about
you? On the privacy implications of eye tracking. IFIP International Summer
School on Privacy and Identity Management, 226–241.

Lambiotte, R., Salnikov, V. & Rosvall, M. (2015). Effect of memory on the dynamics
of random walks on networks. Journal of Complex Networks, 3(2), 177–188.

Land, M. (2019). Eye movements in man and other animals. Vision research, 162,
1–7.

Le Meur, O. & Liu, Z. (2015). Saccadic model of eye movements for free-viewing
condition. Vision research, 116, 152–164.

LeCun, Y., Bengio, Y. et al. (1995). Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10),
1995.

Lencastre, P. (2021). EYET.zip. https://doi.org/10.6084/m9.figshare.17049761.v1
Lev, A., Braw, Y., Elbaum, T., Wagner, M. & Rassovsky, Y. (2020). Eye Tracking

During a Continuous Performance Test: Utility for Assessing ADHD Patients.
Journal of Attention Disorders, 1087054720972786.

Li, J., Song, Y., Zhang, H., Chen, D., Shi, S., Zhao, D. & Yan, R. (2018).
Generating classical chinese poems via conditional variational autoencoder
and adversarial training. Proceedings of the 2018 conference on empirical
methods in natural language processing, 3890–3900.

Lin, C.-H., Yumer, E., Wang, O., Shechtman, E. & Lucey, S. (2018). St-gan:
Spatial transformer generative adversarial networks for image compositing.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 9455–9464.

Lind, P. G., Vera-Tudela, L., Wächter, M., Kühn, M. & Peinke, J. (2017). Normal
behaviour models for wind turbine vibrations: Comparison of neural networks
and a stochastic approach. Energies, 10(12), 1944.

Lv, Z., Huang, X. & Cao, W. (2021). An improved GAN with transformers for
pedestrian trajectory prediction models. International Journal of Intelligent
Systems.

Mardanbegi, D., Killick, R., Xia, B., Wilcockson, T., Gellersen, H., Sawyer, P. &
Crawford, T. J. (2018). Effect of aging on post-saccadic oscillations. Vision
research, 143, 1–8.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M. & Ranzato, M. (2014). Learning
longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753.

69

https://doi.org/10.6084/m9.figshare.17049761.v1


Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with
adversarial training. arXiv preprint arXiv:1611.09904.

Muhamed, A., Li, L., Shi, X., Yaddanapudi, S., Chi, W., Jackson, D., Suresh,
R., Lipton, Z. C. & Smola, A. J. (2021a). Symbolic Music Generation
with Transformer-GANs. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(1), 408–417.

Muhamed, A., Li, L., Shi, X., Yaddanapudi, S., Chi, W., Jackson, D., Suresh, R.,
Lipton, Z. C. & Smola, A. J. (2021b). Transformer-gan. Retrieved March 25,
2022, from https://github.com/amazon-research/transformer-gan

Ni, H., Szpruch, L., Wiese, M., Liao, S. & Xiao, B. (2020a). Conditional sig-
wasserstein gans for time series generation. arXiv preprint arXiv:2006.05421.

Ni, H., Szpruch, L., Wiese, M., Liao, S. & Xiao, B. (2020b). Conditional-Sig-
Wasserstein-GANs. Retrieved March 28, 2022, from https : / / github . com /
SigCGANs/Conditional-Sig-Wasserstein-GANs

Pan, J., Canton, C., McGuinness, K., O’Connor, N. E., Torres, J., Sayrol, E. &
Giro-i-Nieto, X. (2017). SalGAN: Visual Saliency Prediction with Generative
Adversarial Networks. arXiv.

Perneczky, R., Ghosh, B. C. P., Hughes, L., Carpenter, R. H. S., Barker, R. A. &
Rowe, J. B. (2011). Saccadic latency in Parkinson’s disease correlates with
executive function and brain atrophy, but not motor severity. Neurobiology of
disease, 43(1), 79–85.

Rao, Q. & Frtunikj, J. (2018). Deep learning for self-driving cars: chances and
challenges. Proceedings of the 1st International Workshop on Software
Engineering for AI in Autonomous Systems, 35–38.

Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J. & Chong, S. (2011). On the levy-
walk nature of human mobility. IEEE/ACM transactions on networking, 19(3),
630–643.

Rigas, I. & Komogortsev, O. V. (2017). Current research in eye movement
biometrics: An analysis based on BioEye 2015 competition. Image and Vision
Computing, 58, 129–141.

Roy, A., Bertrand, S. L. & Fablet, R. (2021). Generative Adversarial Networks (GAN)
for the simulation of central-place foraging trajectories. bioRxiv.

Salehinejad, H., Sankar, S., Barfett, J., Colak, E. & Valaee, S. (2017). Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078.

70

https://github.com/amazon-research/transformer-gan
https://github.com/SigCGANs/Conditional-Sig-Wasserstein-GANs
https://github.com/SigCGANs/Conditional-Sig-Wasserstein-GANs


Sarkar, A. & Cooper, S. (2021). Generating and blending game levels via quality-
diversity in the latent space of a variational autoencoder. The 16th Interna-
tional Conference on the Foundations of Digital Games (FDG) 2021, 1–11.

Schuster, M. & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11), 2673–2681.

Scott, N., Green, C. & Fairley, S. (2016). Investigation of the use of eye tracking to
examine tourism advertising effectiveness. Current Issues in Tourism, 19(7),
634–642.

Sims, D., Humphries, N., Bradford, R. & Bruce, B. (2012). Lévy flight and
Brownian search patterns of a free-ranging predator reflect different prey field
characteristics. Journal of Animal Ecology, 81(2), 432–442.

Steffens, M., Becker, B., Neumann, C., Kasparbauer, A. M., Meyhöfer, I., Weber,
B., Mehta, M. A., Hurlemann, R. & Ettinger, U. (2016). Effects of ketamine on
brain function during smooth pursuit eye movements. Human brain mapping,
37(11), 4047–4060.

Thompson, V. A. (2021). Eye-tracking IQ: Cognitive capacity and strategy use on a
ratio-bias task. Cognition, 208, 104523.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł. & Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 5998–6008.

Viswanathan, G., Afanasyev, V., Buldyrev, S., Murphy, E., Prince, P. A. & Stanley,
E. (1996). Lévy flight search patterns of wandering albatrosses. Nature,
381(6581), 413–415.

Wadhera, T. & Kakkar, D. (2019). Eye Tracker: An Assistive Tool in Diagnosis of
Autism SpectrumDisorder.Emerging trends in the diagnosis and intervention
of neurodevelopmental disorders (pp. 125–152). IGI Global.

Wang, L., Zhang, W. & He, X. (2019). Continuous patient-centric sequence gener-
ation via sequentially coupled adversarial learning. International Conference
on Database Systems for Advanced Applications, 36–52.

Wedel, M. & Pieters, R. (2017). A review of eye-tracking research in marketing.
Review of marketing research, 123–147.

Wei, W., Wu, H. & Ma, H. (2019). An autoencoder and LSTM-based traffic flow
prediction method. Sensors, 19(13), 2946.

Wiese, M., Knobloch, R., Korn, R. & Kretschmer, P. (2020). Quant gans: Deep
generation of financial time series. Quantitative Finance, 20(9), 1419–1440.

71



Yan, X.-F. & Ye, D.-Y. (2015). Improved bacterial foraging optimization algorithm
based on Levy flight. Computer System & Applications, 24(3), 124–132.

Yan, Z., Pei, M. & Su, Y. (2017). Children’s empathy and their perception and
evaluation of facial pain expression: An eye tracking study. Frontiers in
Psychology, 8, 2284.

Yoon, J., Jarrett, D. & der Schaar, M. (2019a). Time-series generative adversarial
networks.

Yoon, J., Jarrett, D. & der Schaar, M. (2019b). TimeGAN. Retrieved May 7, 2022,
from https://github.com/jsyoon0823/TimeGAN

Yu, L., Zhang, W., Wang, J. & Yu, Y. (2017). Seqgan: Sequence generative
adversarial nets with policy gradient. Proceedings of the AAAI conference
on artificial intelligence, 31(1).

Yu, Y., Si, X., Hu, C. & Zhang, J. (2019). A review of recurrent neural networks: LSTM
cells and network architectures. Neural computation, 31(7), 1235–1270.

Zhang, N. (2020). Learning adversarial transformer for symbolic music generation.
IEEE Transactions on Neural Networks and Learning Systems.

Zhang, Y., Zhao, X., Fu, H., Liang, Z., Chi, Z., Zhao, X. & Feng, D. (2011). A
time delay neural network model for simulating eye gaze data. Journal of
Experimental & Theoretical Artificial Intelligence, 23(1), 111–126.

72

https://github.com/jsyoon0823/TimeGAN

	Acknowledgements
	Abstract
	Figures
	Tables
	Acronyms
	Introduction and motivation
	Background and State of the Art
	Eye-gaze trajectories
	Foraging for information
	Features of eye-gaze trajectories

	GANs - history and applications
	How GANs work
	Recurrent Neural Networks
	GANs using RNNs
	Transformers

	State-of-the-art GANs for time-series
	Time-series GANs
	Transformer GANs
	GANs for eye-gaze and foraging trajectories


	Methodology
	Generating synthetic data
	Eye-trajectory data
	Methodology
	Experiments
	Models
	Evaluation metrics


	Results
	Experiment A - VAR one dimension
	Experiment B - VAR two dimensions
	Experiment C - Intermittent process
	Experiment D - Eye-gaze trajectories

	Discussion and conclusions
	Discussion
	Findings
	Limitations
	Strengths

	Conclusion and future work

	Bibliography

