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Abstract

In this project, bin-packing has been analysed as a way of better utilizing

resources in a continuous integration system in order to increase its efficiency. The

worst-fit, best-fit, next-fit and first-fit algorithms have been investigated in conjunction

with an optimal job scheduling approach. The many differences between bin-packing

and software testing inspired a solution combining several approaches. The ROST

algorithm, short for Resource-Optimized-Software-Testing algorithm was developed

to be adapted to software testing. The ROST algorithm is a combination of an

optimal job scheduling approach, the worst-fit and the best-fit algorithm where the

algorithm changes based on the current bin capacity. The results show that it is just

as good or better than the other approaches it has been compared to, and

significantly better than the most common solution in continuous integration.
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1 Introduction

The pace of software development has been accelerating since the first digital

computers were created, and there is no indication that this will slow down any time

soon. New technological improvements lay the foundation for even faster development

in the future.

The high pace of software development pressures every technology company to

produce high quality products continuously and at a short interval. The competition is

fierce and the ability to stay ahead of competitors is crucial to staying afloat in the

market. Any lack of quality or slow delivery and the customers will look elsewhere for

better products, causing product sales to decrease. This responsibility trickles down

within the company and puts pressure on the developers and the pace they can release

new features.

The deadline is in an hour. The customers are ready, waiting for the software to

become available on the website. Is the product stable? Is it bug -free? Will it be usable

in the customers’ deployment next week? At the end of the day, if the product isn’t good

enough, a customer is lost.

Software engineering is a field that focuses on solving real world problems by creating

computer systems and applications. A known way of increasing effectiveness in a

software team is by increasing the pace of the workflows. Moving a task from the to-do

list into the done column is the goal, but there are a lot of steps along the way before a

task can be marked as complete. The tasks vary between teams, but very often consist

of development and testing.

Testing is an important step for creating high quality products, and while development

is mostly manual, many forms of testing can be done almost completely automatically.

Continuous integration is a system that automatically builds and tests code changes

when they are added to a code repository. This reduces the amount of manual work for
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the developers considerably and still ensures that a product is delivered with high

quality.

One problem with a continuous integration system is that it requires resources. An

application or system should be tested on all combinations of hardware, OS and

software that it supports in order to reduce the amount of bugs the customers are

exposed to. The continuous integration resources can be hardware or cloud instances

and both of these have a cost.

It is a challenge to optimize the resource cost in a system that demands high amounts

of resources. One way of reducing costs is to make sure that all the available resources

are utilized in the best way. This can remove or reduce the need to acquire more

resources while it still ensures that the system is able to run at a high pace.

The term bin-packing comes from packing items optimally into bins. In a software

system it is a way of sorting tasks to fit as much as possible into as few hardware

resources as possible. Imagine playing Tetris, but not with just two dimension which

most are used too, but in several dimensions. Trying to fit the blocks into all the required

categories while still filling all the boxes optimally is a challenge. A test in a continuous

integration system can have requirements to CPU, GPU, disk usage, memory, operation

system or software.

A busy continuous integration system is constantly placing these Tetris blocks of new

tests into hosts, creating an interesting resemblance to bin-packing. Nevertheless, the

placement isn’t optimized to utilize all the available resources, letting resources go to

waste and tests take longer than needed. Bin-packing could potentially help balance the

placement more optimally, but more research is required to establish the feasibility of

this combination.
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1.1 Problem statement

The bin-packing concept is an interesting approach when investigating optimal resource

utilization in a software testing system. From this, the following problem statement

emerges: Explore the feasibility of applying bin-packing for optimizing resource utilization

in software testing.

The resources are the available hardware components in a computer. Optimizing in

this context means being able to utilize as much as possible of the available resources

by placing tests on the different hardware based on the required resources for each

individual test. Bin-packing is a way of optimizing placement of objects, which in this

case is tests. This is done by looking at the test resource usage together with the

available hardware to fit tests into smaller portions of the remaining resources. The

feasibility of using bin-packing when placing tests onto hosts in a CI system will be

analyzed and discussed to establish if this could improve the hosts’ resource utilization.

1.2 Document overview

The next chapter is the background chapter which will present the concepts used in this

assignment. It will go into details on continuous integration, what it is and how it works.

Within this concept, the differences of using cloud instances and on-premise hardware

for a continuous integration system will be elaborated on. From there we move over to

looking at container orchestration services, what they are, how they work and why they

are important for this assignment.

The next concept is bin packing, different algorithms and how it is used in other IT

solutions. Finally, the background chapter briefly introduces the optimal job scheduling

approach before moving over to the approach chapter.

The approach chapter will explain in more detail how to approach the problem, which

resource method is being used and what advantages and disadvantages this approach
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brings with it. From there the chapter will explain what the goal of the project is and a

little bit about risks and pit falls that might occur along the way.

The results chapter is where we explore the two concepts, bin-packing and automated

software testing and how to combine the two. A model is created where several of the

concepts described in the background chapter is used and at the end, the solution is

tested through a simulation and compared to other approaches.

The discussion chapter goes more into details on what happened during the process

of creating the results and what have affected the results in different ways. At the very

end, possible future development is discussed as this project should be seen as a part of

a bigger project.

1.2.1 Summary of results

In the result chapter, a solution to the resource utilization problem will be presented.

Bin-packing was shown not to be a straight forward fit into software testing and the

model created therefore exist of a combination of several concepts described in the

background chapter. The simulation has shown significant improvement from the

solution that exist today, and smaller improvements from pure bin-packing and job

scheduling approaches.
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2 Background

Before we start looking more closely on the existing research within this topic, let me

introduce you to my own motivation behind this assignment and the challenges of testing

resource management as seen through my eyes.

In my workplace, the daily meeting for the software team starts at 9.30. Here, all the

team members present what they are going to do that day and what they need from the

rest of the team to get it done. During my presentation of implementing a new testing

pipeline to our Github Action continuous integration system (CI), I said: ”if I need to test

run the new pipeline in the CI, I will do it over the weekend”. I didn’t think about it at the

time, but there was no reaction from the team regarding me working during the weekend.

We all know that the CI resources are limited, and using a lot of the capacity will cause

additional and unpredictable waiting time for the rest of the team. When I got to the part

of my task where I had to test my code in the pipeline, I was hesitant because I knew the

test would run in the CI for at least 2 hours, blocking resources from doing other tasks.

This had me wondering what we can do to improve the situation with the limited

resources available. The situation isn’t ideal and a change can improve both efficiency

and employee satisfaction by being able to run tests immediately and prevent having to

do work over the weekend.

2.1 Continuous integration and devOps

Automation is the primary requirement for DevOps, and DevOps’s main concept is

”Automate everything.” (Mohammad, 2020). The concept DevOps is a combination of

practises, tools and philosophies to increase an organisation’s ability to deliver high

quality products at a high pace. Continuous integration is a way of automating building

and testing of code that has been submitted/pushed to a code repository. The goal is to

develop reliable and high quality products continuously and quickly. The concept of

continuous integration was brought forward by Grady Booch in 1991 (Basu, 2017) to

explain how developing using internal releases represent a continuous integration

13



system, though the term was not used in relation to integrating and testing several times

a day. The popularity of continuous integration is growing. A survey based on responses

from 5,993 software developers in 2018 shows that 58% of the respondents were using

continuous integration, and of those who didn’t, 43% planned to use it in the future

(Santamaria, 2018). A simple search of the term ”continuous integration” in finn.no, a

Norwegian application often used for job searches, gave a result of 44 different job ads

requesting this competence just in Norway. Some of the ads were also looking to hire

multiple people. This shows that the desire to build and improve a continuous integration

system is existing.

”Continuous integration is more than a set of practices, it’s a mindset that has one

thing in mind: increasing customer value”(Meyer, 2014). There are many advantages

associated with using a continuous integration system. Bugs can be discovered early

due to constant feedback, releases are likely to have less last minute issues, bugs can

be tracked down to a particular commit and it enforces practices and discipline for the

developers. At this point, it seems that limited time and resources are the only

arguments for not implementing a continuous integration system for automatic testing.

The setting up of the CI system with triggers, pipelines and tests is considered by many

to be one of these time- and resource consuming challenges.

2.1.1 CI in a nutshell: A chain of triggers

Already back in 2016, there were over 40 available continuous integration systems

(Hilton, Tunnell, Huang, Marinov, & Dig, 2016). Some examples of available solutions

are Jenkins, Harness, CircleCI, Github actions, etc. Messages are sent between

different systems or applications to trigger actions, similar to how a human nervous

system sends signals between the brain, organs, muscles and skin. One of the main

functions for continuous integration systems is receiving signals when changes are

made to a common code repository in order to trigger automated builds and tests. The

builds and tests are then often run on separate cloud or hardware instances which the

main controller communicates with. These instances host one or more applications often
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Figure 2.1: Illustration of a workflow and its layers

called runners, executors or agents, though the names vary between vendors. The CI

system runs one or more workflows at a time which contains several jobs. A job typically

consist of the steps of building and running a single or a set of closely related tests.

Figure 2.1 shows how a workflow contains jobs and jobs contains steps. The individual

jobs are often spread out to run on their own host/runner/agent.

Github Action, for instance, has named the hosts runners, while Jenkins uses the term

agents. One of the difference between these two CI systems, however, is that Github

Action can only run one job on one runner, while Jenkins has added an even smaller

component within the agent called an executor. This enables the possibility for one host

to be one agent, but it can have multiple executors which each can run one job. To have

one host run multiple jobs in Github Action, several runner applications have to be

installed on the host. And even though it’s possible to do, the runners then share

environment and disk space. Therefore it is recommended running each runner within

it’s own virtual machine (VM).
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Another functionality such as sending notifications to selected channels on different

triggers or events is also a useful feature for the developers to get instant feedback when

for instance the workflow fails or a certain action is finished.

2.1.2 Cloud vs hardware resources

A continuous integration pipeline requires resources to be able to run jobs. Some

vendors provide the users with runners, but it’s also possible to use self hosted runners.

Self-hosted runners give the developers full control over operating system, hardware and

software, while on the other hand, vendor-hosted runners require less maintenance and

setup. Self-hosted runners can also be either on-premise, cloud instances, in containers

or virtual machines depending on what the vendor supports. For instance, a company

building a hardware product, needs to use self-hosted runners to be able to test

software, firmware and hardware using their own hardware.

When it comes to the security aspect of choosing between cloud instances and

on-premise resources, there are a few factors to take into account. Typically cloud users

don’t know the exact physical location of their data and what other data is stored

together with their own. If there is a data breach at the cloud vendors, the availability,

confidentiality and integrity of many companies’ data may be exposed. If, on the other

hand, data is stored within the organisation’s own infrastructure, the company itself is

fully in control of it. Data has six stages within its life cycle: create, store, use, share,

archive and destroy and all of these stages need to be secured (Kumar, Raj, & Jelciana,

2018). Resource sharing and multi-tenancy are features of a cloud that makes cloud

security more vulnerable. When data is transferred to and from the cloud, encryption is

also important to prevent loss of data confidentiality and integrity. These issues present

a smaller risk when the entire data life cycle happens within a logical and physical

restricted area. However, when a company is responsible for the data of a lot of

customers, security will have to be a priority and it is therefore argued that a cloud can

be more secure than on premise depending on the security measures within a cloud

company.
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On-premise hardware is often more expensive for a company as an investment, but

over 3 years it will likely be less costly than having a cloud subscription and at year 5,

the costs of on-premise is argued to be 50% lower than a cloud subscription (Fisher,

2018). The cloud, however, provides the possibility to scale down services when there is

low or no traffic which therefore makes it possible to spend the money only when it is

needed.

One of the biggest differences between on-premise resources and cloud instances is

how they scale. Both of these can run several jobs within each host, but while it is easy

to create, start, stop and delete cloud instances, hardware takes more time to obtain and

is harder to get rid of. Using cloud instances therefore creates a more flexible system

while on-premise hardware comes with scaling constraints.

In 2020 approximately 81% of businesses had at least one application running in the

cloud (Bulao, 2022). While on-premise has less costs long term, cloud solutions are

considered to provide more flexibility, scaling opportunities, support services and

maintenance. Cloud security, however, can be an argument in both directions depending

on the company’s needs and the resources they have available for security measures. In

the end, both solutions offers advantages and disadvantages and the decision therefore

varies based on the individual company’s needs.

2.2 Industry

As mentioned, there are a lot of vendors for continuous integration services and they all

provide different, yet similar solutions. Some have their own runners at the users

disposal, some recommend using cloud instances, some support on-premise hardware

through a runner application, but most of them support several alternatives. Whatever

resources the company uses, whether it’s cloud or on-premise hosts, maximising the

utilization of the CI resources is a common desire in order to minimize costs. To be able

to maximize resource utilization, auto-scaling runners is required as the system’s

foundation.

17



Several CI systems seem to have adapted to the possibility of auto-scaling runners.

The most common approaches to auto-scaling in continuous integration systems is:

• Using a container orchestration service

• Using the cloud, often in combination with a container orchestration service

There are several container orchestration services where the most popular today is

Kubernetes. Other well known alternatives are Docker Swarm, Apache Mesos and

Nomad. There are also several solutions built on top of Kubernetes, for instance ECS

(AWS), AKS (Azure), GKE (google), Redhat Openshift, VMware Tanzu, Knative, Istio,

Cloudify and Rancher. The main purposes for using container orchestration is to be able

to configure and schedule workloads, load-balance containers, allocate resources

among the containers and monitor the health of the containers and hosts. Evaluating

which host is best suited for a container and evaluating optimal resource usage is the

key advantages for better resource utilization.

Kubernetes is used by several continuous integration systems today to manage

runners. Github action, Azure pipeline and Jenkins are some examples, while Gitlab

uses AWS EC2, built on top of Kubernetes. Table 2.1 shows what auto-scaling methods

the different continuous integration providers support. There also exist some non-official

approaches, but these are not presented by the vendors themselves.

Cloud Container orchestration

Github action AWS Kubernetes

Jenkins AzureVM, EC2 Kubernetes

Azure AWS, GCP AKS

Gitlab EC2 Docker machine

Table 2.1: Some of the CI services that officially support auto-scaling through different methods

What the solutions have in common, however, is that they set hard-coded limits for the

number of instances when scaling and base the scaling purely on the number of queued
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jobs. The resources each job requires does not affect how many executors fit into one

host. The number of runners are therefore scaling freely within the limit when needed.

This is a good solution if the company is using cloud instances as the limit can be set

based on a maximum cost. When using the cloud, new agents can be created based on

the specific resources a job requires. This scaling solution, therefore, works while using

cloud resources. When it comes to on-premise hardware on the other hand, the

available machines can support the maximum limit of runners which is hard-coded, but it

wont support more or less outside these limits if the job requires more or less resources.

This, however, may cause the developers to set the maximum limit of runners based on

the size of the biggest jobs in order to make sure to not over-allocate resources.

Resource over-allocation is a term used when a resource is assigned more work than

the capacity of the resource within a given time. The maximum runner limit is set low to

prevent problems caused by running too many jobs at once and the result of this is that

expensive hardware resources are left unused.

One unofficial approach by Madel, using Jenkins, explores setting resource quotas on

CPU and memory for the whole pool of nodes (Madel, 2018). A node can be seen as a

host, similar to the runner or agents in the continuous integration system. Figure 2.2

shows a cluster(collection of nodes or a node pool) containing two nodes. It is also

possible to set limits on resource usage for individual jobs to prevent them from taking

up too much capacity. This solution also uses Kubernetes like most of the other scaling

solutions, but has come one step further in the process of optimizing resource utilization,

but according to Madel ”Resource Quotas and Auto-scaling Don’t Mix” (Madel, 2018).

The reason for this is that when increasing a cluster with one node, the ResourceQuota,

which is a variable for the resource limit for a node, would have to be updated manually

to make the new resources available to the node pool. So while the node pool can

dynamically scale, updating the ResourceQuota still has to be done manually which

removes the advantages of automation using auto-scale based on resource usage.
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Figure 2.2: Illustration of a Kubernetes cluster and its layers

While cloud scaling-solutions offer more flexibility and therefore utilize the resources

well, the on-premise approaches don’t consider the underlying available cluster

resources. Scaling down while using on-premise resources does not really provide any

economic advantages, and the need for scaling then becomes redundant when the limit

for the number of runners is hard-coded. However, the need to scale up and down is

based more on what jobs needs to be run at any time as they require more or less

resources. The solutions for auto-scaling outlined above do not address the problem of

utilizing local resources in the best way, and rather scale based on the number of jobs

up to a hard coded maximum number of runners. The fact that each job uses different

amount of resources is not taken into account.

The cloud is more flexible than on-premise resources when it comes to scaling. It is

possible to create new cloud instances to fit the exact purposes of a job and delete it

when it’s no longer needed. Hardware, on the other hand, requires a company to order

or buy new hosts which takes time and manpower to set up once it arrives. It is therefore
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more important to utilize all the available resources as optimally as possible.

2.2.1 Container orchestration service and resource management

Kubernetes is, as mentioned, the most popular container orchestration service today.

Figure 2.2 illustrates how a typical Kubernetes cluster looks, where nodes represent

physical or virtual hosts and pods are the smallest deployable unit, placed into nodes.

Pods can contain one or more containers which share storage and network resources

(Kubernetes, 2021). In Kubernetes, when a pod is defined, it’s possible to specify the

resources needed for it, typically CPU and RAM requirements. Kubernetes then

reserves the requested resources and also limits the pod by its resource limit. This

information is then used to place the pod on a node (Kubernetes, 2022). The scheduler

placing the pods ensures that the node capacity isn’t surpassed.

When allocating resources to a pod, the resource request variable is set to allocate at

least the requested amount. If there are more resources available in the node however,

the pod will utilize these resources up to the set limit for the pod. A process that tries to

allocate resources over the limit is terminated. CPU and memory are the two main

resource types, other than these, non-kubernetes built-in resources are considered as

extended resources which can be tied to nodes or clusters. Kubernetes does not need to

know what the extended resources are and what they are used for, it only needs to know

how much of the resources the nodes have and how much the pods need. This can for

instance be used to specify what GPUs a node has and what GPU a pod needs. The

resource usage of a pod is reported as part of the pod status, or to other monitoring tools

that are available on the cluster (Kubernetes, 2022).

When the current cluster does not have room for the next pod, a new node is required.

In a cloud Kubernetes setup, creating and deleting nodes is possible as the cloud is

considered to be flexible and scalable, but for an on-premise cluster, this isn’t possible.

The observation is therefore that Kubernetes does support auto-scaling and it has the
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opportunity to place pods optimally onto existing nodes based on available and required

resources, but the resource aspect has not yet been adopted by the CI systems.

2.3 The concept of time waste

The goal in a software development project of running automated builds and tests is to

free up the developers to be able to do other work and thereby save valuable time.

However, running these tests still takes time. After a developer has pushed their new

changes to the repository, testing can take a lot of time depending on how many tests

and builds are connected to the new version. The developer is, however, mostly aware

of how long it will take if the testing starts right away and can therefore plan other work in

the meantime. Unpredictable waiting times can be a time-thief as the developer has to

check in regularly to see the progress and it might be hard to commit fully to a different

task when the time available is unpredictable. When checking the remaining waiting

time, it’s also easy to lose focus on the current task a developer is working on. If there

are no available agents in the CI system and a job is queued, unpredictable waiting time

will be the consequence.

The question is therefore: How do we prevent time waste due to unpredictable waiting

time? Jenkins writes about solutions to unnecessary queue times in the CI and how to

solve it. The first step is checking that all machines are online, the next is to make sure

all agents have the correct labels and the third is adding more agents. (Jenkins, 2022).

A label is a description of what setup the agent has so that the jobs know if they can use

the agent or not. Jenkins can have several executors per agent and CloudBees, a

continuous delivery software company, recommends basing the number of executors per

agent on the number of CPU cores for the agent. The number of executors should

maximum be nExecutors = nCores− 1, but the exact number will depend on the use

case and job types (CloudBees, 2022). CircleCI has done a cost analysis of machine vs

queue cost where they state that allowing queue times of more than 1 minute is like

valuing your developers’ time at less than a dollar an hour (Bell, 2016). Even for

expensive hardware Bell recommend to have queue times of less than 10 seconds.
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Bhardwaj writes about addressing the slow performance in Jenkins where memory

limitations and CPU bottlenecks are two of the four problems mentioned (Bhardwaj,

2021). Allocating too few resources to a job can therefore also lead to delays for the

developers.

In the end, it’s easy to plan if we know the number of jobs and the time it takes to

finish a pipeline. The number of jobs, however, is unpredictable. How many developers

who decides to push their changes at the same time is unpredictable and the number of

required runners or executors are therefore also unpredictable. It’s the unpredictability

that causes the problem. The unpredictable waiting time, the unpredictable job

requirements and therefore the unpredictable resource requirements. This is where the

automatic scaling comes in. To be able to react and optimize based on what happens at

any time.

2.4 The Bin-packing problem

Automatic scaling is the foundation for optimizing resource usage in a continuous

integration system. The next step in the process is getting the most out of every

resource available. This is where bin-packing comes into the picture. The bin-packing

problem is about filling a finite or infinite number of containers, or bins, with different

parts, each of different sizes, in order to optimize the amount of content the bins can

contain. The bins have a fixed capacity and the goal is to use as few bins as possible.

Bin-packing was originally used to fill physical bins as optimally as possible, but has later

been adopted to computer systems for instance for backup and placement of virtual

machines. The approach has different solutions which focus on different aspects such

as weight, cost and speed. The approaches also exist for a single or several

dimensions.

Figure 2.3 is an illustration of 5 bins and 9 items where the goal is to use an algorithm

to place the items into as few bins as possible. Figure 2.4 shows an example of how the

bins could be packed as optimally as possible. The optimal solution would be to add all
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items and the result would be a decimal number:

0.5 + 0.7 + 0.5 + 0.2 + 0.4 + 0.2 + 0.5 + 0.1 + 0.6 = 3.7. The lowest amount of bins required

in this scenario is therefore 4.

Figure 2.3: Illustration of 5 bins and 9 items. The goal is to place item(I) 1-9 in bins(B) 1-5 as

optimally as possible.

Figure 2.4: Illustration of an example of an optimal packing solution

2.4.1 Bin-packing algorithms

There are a lot of different bin-packing algorithms which vary in both how optimal the

results are, and how fast the items are placed overall. The bin-packing algorithms can be

divided into online and offline algorithms where the online algorithms aren’t aware of the

next objects to be placed, and the offline algorithms knows all elements to be placed in

advance and can therefore sort them before placing them. The offline algorithms have

shown better results in average than the online algorithms, and especially when sorted
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from larger to smaller items. This will be discussed more closely later in this chapter in

relation to specific algorithms.

The first algorithm presented in this project is the first-fit (FF) algorithm. It looks at all

bins that already have at least one item in them and puts the next item in the first bin it

fits into. If it does not fit in any of them, the item is put in a new bin. The algorithm is fast,

but often non-optimal without sorting the items first. Illustration 2.5 shows how the next

item should be placed in the first bin it fits into, while figure 2.6 shows the finished

placement. The result requires one more bin than the optimal solution in figure 2.4.

Figure 2.5: Illustration of the first-fit-algorithm after placing the first 7 items

Figure 2.6: Illustration of the first-fit-algorithm after placing all items

This placement can also be demonstrated using a script. The following is pseudo code

for the FF-algorithm:
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1 def f i r s t _ f i t ( a l l _ i t ems : l i s t , a l l _ b i n s : l i s t ) −> i n t :

2 f o r i tem in a l l _ i t ems :

3 f o r b in i n a l l _ b i n s :

4 i f i tem f i t s i n b in :

5 place i tem

6 cont inue

7 a l l _ b i n s . append ( new_bin )

8 place i tem in new_bin

9 re tu rn len ( a l l _ b i n s )

The next algorithm, the best-fit (BF) algorithm tries to fit the next item in the bin which

leaves the minimum amount of space after placement. This often gives better results

than the first-fit algorithm as the goal is to fill the bin all the way to the top using the next

item. The order of the items do however affect the results. The given order of the items

in the case described in figure 2.3 gives the same results when using FF and BF while

an other ordering could give different results. The algorithm in this case therefore also

results in the usage of 5 bins.

This algorithm can also be implemented and tested using a script or program. The

following is the pseudo code for BF algorithm:
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1 def b e s t _ f i t ( a l l _ i t ems : l i s t , a l l _ b i n s : l i s t ) −> i n t :

2 f o r i tem in a l l _ i t ems :

3 minimum_remaining_space = I n f

4 f i t t i n g _ b i n = None

5 f o r b in i n a l l _ b i n s :

6 i f b in . space − i tem . space . < minimum_remaining_space :

7 minimum_remaining_space = bin . space − i tem . space

8 f i t t i n g _ b i n = b in

9 i f f i t t i n g _ b i n != None :

10 place i tem in f i t t i n g _ b i n

11 else :

12 a l l _ b i n s . append ( new_bin )

13 place i tem in new_bin

14 re tu rn len ( a l l _ b i n s )

The worst-fit (WF) algorithm is almost the opposite of the best-fit algorithm. Instead of

placing the item in the bin which leaves the least space, it is placed in the bin leaving the

most remaining space after placement. There is also a version of it called the almost

worst fit which puts the item in the second worst bin. This algorithm can be slow as it has

to evaluate every bin each time a new placement is done. This algorithm is often used

for memory allocation in computers to evenly place items out and therefore give more

resources (in this case memory) to each task.

All of the above algorithms can also go into the category of being an AnyFit algorithm.

This means that while the next item can fit in one of the already open bins, a new bin

cannot be opened. Assuming that the worst-fit algorithm isn’t an AnyFit algorithm, the

result would be starting by placing one item in each bin as shown in figure 2.7. Figure

2.8 however illustrates the results of the worst-fit algorithm assuming it is an AnyFit

algorithm. The WF-not-AnyFit algorithm will require as many bins as there are items, if

the number of bins are infinite, while adding the AnyFit constraint, the algorithm require 5
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bins, in this case, the same as FF and BF, though with more space left in each bin.

Figure 2.7: Illustration of the worst-fit-algorithm results assuming that it’s not an AnyFit algorithm

and placing the first 5 items.

Figure 2.8: Illustration of the worst-fit-algorithm results assuming that it is an AnyFit algorithm.

The next-fit (NF) algorithm checks if the next item fits in the same bin as the previous

item and if not, puts the item in a new bin. Once a new bin is opened, the previous ones

are not accessed again. This is a fast algorithm as it only has to loop over the bins once,

but the fact that it can’t go back to previous bins will cause empty space where smaller

items could fit. This approach can be compared to how some people may pack their

grocery bags, when the next item does not fit in the bag, put it aside and start a new bag.

This however shows poor results. Figure 2.9 shows the result of placing the items using

the NF-algorithm resulting in a total of 6 bins. This is worse than all the previous results

except for the worst-fit when not adding the AnyFit constraints.
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Figure 2.9: Illustration of the next-fit algorithm results

First-fit decreasing and best-fit decreasing are offline algorithms which start by sorting

the input sequence by size before placing the items in order to be able to place the

biggest items first. It then follows the BF or FF approach. This is considered a more

optimal solution than a simple FF and BF algorithm, these, however, require that all

items are known before placing them. Figure 2.10 demonstrates the advantages of

beginning with bigger items before the smaller while figure 2.11 shows the opposite

sorting.

Figure 2.10: Illustration of jars used to demon-

strate that placing bigger items first, leaves room

to fit smaller items in between (Buggy, 2020)

Figure 2.11: Illustration of a jar

demonstration that when the smaller

items are placed first, the bigger items

wont fit (Buggy, 2020)
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2.4.2 Bin-packing in IT

Most bin-packing algorithms are developed for placing physical items into physical bins

and can therefore leave spaces between the objects that are placed. This isn’t always

the case in computing, where the resources not used are available no matter the

location. Another difference is the way the axes are defined. Figure 2.12 and 2.13 show

a typical visual representation of bin-packing in 2 and 3 dimensions. In computing, on

the other hand, boxes can’t be stacked, as this won’t clearly represent the resource

usage if we define resources along the axes. Therefore, a more accurate representation

will look like figure 2.14 and 2.15. This is called vector bin-packing or multi-capacity bin

packing. Regular bin-packing can typically be compared to filling up a truck with boxes,

while vector bin-packing can be used for instance in VM placement in the cloud, in the

case where resources cannot be over-allocated. Over-allocation can be useful in

situations where the resource requirements vary a lot or only require the resources in

shorter periods of time. The resources can then be used by different processes at

different times and therefore utilize resources better, like for instance operating systems

are doing. Nevertheless, it can slow down processes if they have to wait for the

resources to be available. An optimal solution in vector bin packing for one bin

represented by a two- or three-dimensional vector ~B would be fitting n items represented

by vectors ~v so that

~v1 + ~v2 + ...+ ~vn = ~B

Figure 2.12: Bin-packing in 2

dimension

Figure 2.13: Bin-packing in 3

dimensions
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Figure 2.14: Vector bin-packing in 2

dimensions

Figure 2.15: Vector bin-packing in 3

dimensions

To establish the dimensions of a bin in bin-packing it’s important to consider the

bottlenecks as they are different from ordinary boxes. The 5 most common bottlenecks

of computing, according to Schultz (Schultz, 2017) are:

• Network speed

• CPU

• Memory

• Disk

• Installed software

Bin-packing has been used for a few years in virtual machine placement onto hosts in

the cloud to optimize resource usage and lower power consumption in, for instance, data

centers (Karthik, Sharma, Maurya, & Chandrasekaran, 2016). Kumaraswamy and Nair

found that the FF, FFD and the Max-Min algorithms achieve maximum performance

while the NF performed badly for virtual machine placement (Kumaraswamy & Nair,

2019). The Max-Min algorithm was created because it was observed that the existing

algorithms were either fast or achieved optimal placement, and the goal was to have one

algorithm that had both. This algorithm is a good example that emphasizes algorithm

efficiency, however, the speed of the algorithm itself is not seen as a critical factor at this

point.
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There is a difference between regular bin-packing and VM packing called the VM

packing problem which occurs when two items together require less space than the two

VMs individually. This is typical when it comes to memory allocation as some items can

share parts of the memory. Jin, Pan, Xu, and Pissinou consider CPU, memory and

power consumption as the three deterministic resources and bandwidth as a stochastic

resource (Jin et al., 2012). Bin-packing has also been used by Rawitz and Patt-Shamir

motivated by network scheduling to ensure quality of service, however they mention that

their approach is applicable to other use cases as it has a general formulation (Rawitz &

Patt-Shamir, 2012). Szoke has also used bin-packing as a way of optimizing planning of

agile releases (Szoke, 2010).

Bin-packing is usually about placing all items in the least possible number of bins. The

opposite approach is called maximum resource bin-packing where the number of bins

used is maximized to minimize the number or size of the total items. In IT this can be a

good approach for distributing items across available hosts to utilize all the available

resources. Boyar et al. however sets one of the constraints for this approach to not

opening a new bin if the current item fits in one of the opened bins (Boyar et al., 2006).

Boyar et al.’s approach can be achieved using the AnyFit version of the WF algorithm.

Nevertheless, the approach with this constraint does not accurately solve the problem of

maximum resource utilization by spreading the items across the available bins and the

not AnyFit WF-algorithm can be a better approach to utilize all resources or bins when

they are limited.

2.4.3 Measuring the results

The goal of this assignment is to explore how the resources available can be utilized

better which should lead to a more efficient CI system. When focusing on several

dimensions or variables during bin-packing, finding the best way of measuring the results

can be a challenge. Kumaraswamy and Nair suggest measuring the bin-packing

algorithms based on the number of servers/hosts required and the CPU utilization of

each server (Kumaraswamy & Nair, 2019). All the virtual machine placement techniques
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analyzed in their paper are designed to achieve efficient CPU utilization. de Niz and

RajKumar looks into bin-packing software components onto hardware to ensure quality

of service while reducing the amount of resources used. This approach partitions

software into smaller pieces and then considers the processor as the bin and shows that

a significant reduction of bins is possible (de Niz & RajKumar, 2006).

2.4.4 A typical hardware setup

To be able to optimize the resource utilization, it is important to start by observing the

resources that are available. The job completion speed is an important focus in a CI

system and there are two main hardware components collaborating to increase the

speed of a computer, the CPU and memory. According to ArsTech the most sold CPUs

on amazon in the first quarter of 2020 has 6 cores, but the top 10 list varies from 4 to 12

cores. The median of the processor cores on the list is 7, as both 6 and 8 cores are

highly represented in the list by 4 instances each. The prices listed on amazon at that

time was for the 4 core CPU slightly below 100$, the 6 core CPUs had a range between

120-211$, 8 cores between 170-400$ and the 12 core CPU was listed to 470$ on

amazon in early 2020 (ArsTech, 2020). Horowitz from HP recommends at least 6 cores

for engineers, data analysts and video editors (Horowitz, 2020). Other than cores, clock

speed is also important to be able to finish each task more quickly. A different employee

of HP, Sirois, recommend a clock speed close to 4GHz for intensive computing (Sirois,

2018).

Besides CPU, the memory, is as mentioned, also an important hardware component

to increase efficiency of task completion. Kingston, a hardware component producer,

recommends at least 4GB RAM for a computer, minimum 8GB for gaming or

professional usage, while a high-end gaming system and workstation is recommended to

have 16 or 32GB memory (Kingston, 2019). The RAM speed of different best-selling

memory cards mostly vary between 3200Mhz and 3600Mhz, but a few listings is down to

1600Mhz (Amazon, 2022).
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As mentioned in the continuous integration chapter 2.2.1, the container orchestration

service Kubernetes has the possibility to scale based on resource limitation and

requests. The scheduler is able to use bin-packing behaviour by looking at the

requested resources and capacity, but which bin-packing algorithm the default

Kube-scheduler uses is not specified. There is, however, a Github repository which

provides a Kubernetes scheduler called best-fit-scheduler, which uses the BF algorithm.

In IT, CPU, memory, power consumption and bandwidth are considered bottlenecks

and can be evaluated as dimensions in bin-packing. A problem with this is that the size

of items may vary after their placement. This is something that isn’t typically taken into

account in traditional bin-packing approaches. Another difference is that in software

testing, items are also being removed after a test is finished, opening room to place new

items.

2.5 Optimal job scheduling

A none-bin-packing approach to the problem of better placement of test jobs, is called

optimal job scheduling. This approach takes job removal into account. Speed is

introduced as a variable based on processing power where the goal is to finish a

collection of tasks/ jobs as fast as possible. This can be approached as a single-stage

jobs problem or a multi-stage jobs problem, where a single-stage jobs only has

independent tasks and a multi-stage job has several tasks that has to be performed in a

specific order. As the CI itself takes care of multi-stage scheduling by not queuing jobs to

agents before all required jobs are finished, the scheduling problem comes down to the

single-stage job approach. This can again be divided into four different problems:

• Single machine scheduling

• Identical machine scheduling

• Uniform machine scheduling

• Unrelated machine scheduling
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The first one, single machine scheduling, uses only one machine to finish the tasks. The

second one, identical machine scheduling is relevant if all available hosts are identical,

where there’s no advantage to choosing one machine over another when there is no

tasks already running on any of the machines. The uniform machine scheduling has

several different machines, where the completion time for a job J on machine I is based

of the speed of machine I = SI and the run time P. The job J run time on machine I is

therefore given by PI ,J = PJ/SI . The last, unrelated machine scheduling, on the other

hand, has no relation between values of PI ,J for different I and J. In a CI context, the job

completion time is based on both the length of the job and the speed of the agent,

leaving us with the uniform machine scheduling problem.

The job scheduling approach only runs one job on one machine or processor at a

time, but opens up space for new jobs once the previous job has finished. This can fill in

the missing piece of bin-packing where items aren’t removed along the way to leave

room for new items. The restrictions to run one item on one host at a time, however,

does not fulfil the requirements of optimizing the resource utilization as tasks often

require less than a whole machine, but can require more than one processor. The timing

and item removal still makes job scheduling partly relevant.

There are different algorithms within machine job scheduling and the goal of the

algorithms can either be to minimize the average completion time, or minimizing the

maximum completion time. The SPT(shortest processing time first) first sorts the jobs

based on length and then assign the job to the machine where it can finish as early as

possible. The SPT algorithm minimizes the average completion time, but is created for

the identical machine problem. Other approaches have the same goal and usually

focuses on placing the next job on the fastest machine or places the longer jobs on the

faster machines. Nevertheless, the approaches are different because there are more

factors to take into account when the machines aren’t identical. Especially in an

unrelated machine scheduling problem, each job has to evaluate how fast they will finish

on each machine before placement.
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In job scheduling, finishing all jobs as fast as possible is the goal. This differs from

bin-packing where packing optimally is the goal. Both of these approaches have been

explored in the IT world, but there has been few to no documented uses of bin-packing

within a software testing perspective. Optimal scheduling, on the other hand, is an

obvious focus within the CI world as fast task completion is a strong pulling force. Even

though Kubernetes supports a form of bin-packing and most CI auto-scaling systems

use Kubernetes or a solution that is based on or similar to Kubernetes, the bin-packing

and resource management solution hasn’t been integrated into the CI systems yet. The

advantages of using bin-packing should be explored further to evaluate if the approach

could grant advantages to the existing CI systems.
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3 Approach / methodology

The literature review has given an insight to existing solutions, how they work and a brief

understanding of the differences between the concepts. Furthermore, to decide on the

correct path to take, it’s important to go back to the problem statement: Explore the

feasibility of applying bin-packing for optimizing resource utilization in software testing.

The goal is to explore the feasibility of using bin-packing in system testing and explore

if bin-packing will impact resource utilization and whether the system will be able to

subsequently run more tests simultaneously. If the bin-packing approach seems to

improve the resource utilization, a further goal is to explore if it is possible to implement

it.

To explore, in this context, is to analyse how the concepts bin-packing and software

testing fit or doesn’t fit together and then design a model from the discoveries. The

model can be tested through a simulation, where the results can be compared to other

existing solutions. This is often an iterative process of designing the model, creating the

prototype and discovering new paths which bring the process back to the literature.

Decision that has to be made can be discovered during the prototyping phase which

leads back to the model or new problems and ideas can lead all the way back to the

drawing board. The goal isn’t final when heading out on this journey and this has to be

kept in mind while going further in the process.

3.1 Research methods

There are several research methods that exist where the exploratory and comparative

resource methods are among them. The exploratory research method is based on

exploring a problem that isn’t yet clearly defined. The approach is open to explore ideas

and paths that appear along the way. The research doesn’t necessarily reach a

conclusion as the goal can keep changing based on what is discovered along the way.

The data that is produced will also vary and can be hard to compare and analyze.
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Another disadvantage of this approach is that it can be hard to determine how to handle

new information that appears during the research period. New information can trigger a

desire to change direction completely, or it can be tempting to not mention the find at all.

However, this is part of the process, and the conclusion doesn’t have to go in favor of the

original statement or idea that the assignment originally started with.

A comparative research method has the goal of comparing the research object to

others to discover similarities, differences, advantages and disadvantages with an

object. This approach seeks to reach a conclusion to the specific problem or question

that was asked. This could for instance be a project about comparing existing research

on a topic to find the best approach among the possibilities. Comparing different

continuous integration systems is an example of a comparative research. This can be a

time consuming research method as many advantages or disadvantages doesn’t appear

until the system is pushed to the limits and implementing several systems into a realistic

scenario is time consuming.

This project started with an assumption of resource shortage in a continuous

integration system which from there was developed into an idea that the resources

available could be utilized more optimally. It was important to go in a concrete direction

when searching for answers and bin-packing was an area that seemed promising. The

advantages, or potential, for optimizing resource utilization in software testing systems

using bin-packing had to be researched before one could begin exploring if using it with

continuous integration was possible to do. This idea doesn’t fit into a comparative

research method as the approach to compare to doesn’t yet exist. This is an area that

needs to be researched by exploration, therefore putting this project in the category of

exploratory research.

Celiku has written a paper about automated canary deployments, which has chosen

an exploratory approach. The reason is that there isn’t a lot of research conducted on

the topic (Celiku, 2021). Both software testing using continuous integration and
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bin-packing are topics that are well known and researched, but the combination of the

two hasn’t been explored, making this a new field to investigate, arguing towards an

exploratory approach.

An important principle in the project is to stay close to reality and not force concepts to

work with each other just to stay true to the concepts themselves. In this case, the

project has to follow the principles of software testing even if the bin-packing concept

doesn’t completely fit. The overall goal is to make CI systems more efficient, not forcing

it into a bin.

When playing video games it is often tempting for many, especially the completionists,

to start by taking the wrong path to find all the loot and know that every corner has been

explored. The point is to make sure to not miss anything. Unfortunately, writing a short

assignment closes many of these doors as the time is very limited and to even get close

to the target, the goal has to be selecting the right path as often as possible to avoid

dead ends and lost time.

3.2 Project outlines and delivery

In this approach I have to make an assumption that lack of resources is an existing

problem, secondly I have to assume that bin-packing for software testing will improve the

situation. It has already been shown that it can optimize VM placement (Jin et al., 2012)

and thereby reduce resource usage. Perhaps it can optimize software test placement as

well.

The research process will start by analysing the two concepts, bin-packing and

software testing using continuous integration, and find the similarities and the

differences. The goal is to create a model which combine the two concepts in a way that

still stays close to reality from the software testing perspective, but how, is currently

undefined. The model will be a description of a possible solution to the problem of

combining the two concepts: bin-packing and software testing. This will show if the
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concepts do or do not fit together. Several bin-packing algorithms will be evaluated: the

next-fit, best-fit, first-fit and worst-fit algorithms as well as an optimal job scheduling

approach.

The next step is to make a simulation to test the model and use this to determine if

bin-packing does what is expected, help utilize the resources better, making a

continuous integration system more efficient without adding more hosts. These things

will be done in the next chapter of this project. The results of the model will be compared

to other approaches and evaluated based on evaluation criteria that will be set in the

result chapter. The simulation will be a python script, creating bins and items, then

placing the items in the bins using different approaches: the model, different bin-packing

algorithms, an optimal job scheduling approach and an approach similar to how

CI-systems do it today. The results from the different approaches will be compared and

used to decide if bin-packing improves the resource utilization of a continuous integration

system. This project will not implement a final solution in an existing CI system, but

explore the potential of combining the concepts.

This project should be seen as a part of a larger project. This is just the first pieces in

a bigger process and the goal for this project isn’t to solve the problem, but to push it in a

direction and create a foundation to be able to implement a prototype later. All questions

might not be answered after finishing this project, but a direction to further explore will be

set.

3.3 High risk, high reward

Even though an exploratory assignment can lead to interesting finds, this approach also

has risks. Is there enough time, will the process reach a currently unset goal, and will the

project go in the direction intended from the beginning? These are all questions that

cannot be answered before the journey is on it’s way or close to the end. Nevertheless,

there are some measures that can be done to reduce the risk. Weekly guidance

meetings to discuss progress, the direction, the model and brainstorming can help keep
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the project on track, ensure timely deliveries and help avoid wrong turns. An active

writing process from the beginning is also a measure taken to ensure that content is

created continuously while it also ensures focus on the assignment which keeps the

brainstorming going. Even though there are a lot of uncertainty to the project, these

measures will ensure that the risks can only cause limited damage. There are a lot of

unanswered questions, yet, the direction is set and the process is ready to begin.
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4 Result

Now that the direction has been set, the research process can being. This chapter will

evaluate bin-packing as an approach for optimizing the resource usage in a CI system.

Different algorithms will be discussed and the goal is to find an approach that will fit well

within existing CI system solutions and the restrictions that comes with it. The goal is to

create a model where the concepts fit with each other and a simulation to test the model

and evaluate it. If this model is implementable will also be discussed.

4.1 What is a bin and what is an item?

The first step towards establishing if bin-packing could be feasible for software testing, is

to explore how different bin-packing algorithms could affect item placement into bins.

First we have to determine what a bin is to be able to describe the characteristics more

precisely. A bin in our scenario has dimensions based on hardware resources that can

be seen as potential bottlenecks in the system. To achieve the goal of optimizing

software testing resource usage, these dimensions have to be the most critical

resources in a hardware setup. If a critical bottleneck isn’t defined as a dimension in the

bin, the resource can be over-allocated which again can cause errors unrelated to the

testing itself. Each hardware resource represents its own dimension in the bin and each

dimension must be taken into account when placing items. The bin dimensions will be

discussed more closely in subsection 4.3.

What an item is should also be decided as this will affect the size of the building blocks

that are placed inside the bins. Figure 2.1 in the background chapter, which illustrates

the content of a workflow, has several possibilities for what can be selected as an item.

The most optimal choice is to use the smallest possible component as an item. It’s much

easier to fit a larger volume of sand into a box, than larger rocks. A step is often

considered the smallest piece of a workflow. It can, however, contain a script running

multiple actions, but the smallest component recognized by the CI are steps. If a step is

selected as an item, every step has to be independent of each other, this can be logical
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Figure 4.1: A visual representation of a three-dimensional bin where the arrows represent one

dimension or resource each. The max capacity of one resource is in this illustration the corner of

the bin on the resource axis.

if no initial setup is required. This, however, is rarely the case, which brings us to the

next, and more abstract CI component, a job. A job contains several steps which often

starts with an initial setup of installing or building the resources required to execute the

steps. Splitting steps with the same requirements into individual ”items” will require

installing and building the same setup several times which can be more time consuming

and resource-heavy than running the steps themselves. It is therefore more natural to

run the steps together with the same setup compared to running the individual steps on

several hosts. A job is therefore considered as the most natural way to represent an item

for bin-packing.

4.2 The ”best-fit” algorithm for CI testing

There are a few other decisions to be made in the process of building a model, where

one of the most important ones is which algorithms to use. The two most natural

algorithms to start with is the first-fit and the best-fit algorithms which are both relatively

straight forward to implement and can be adjusted to the number of dimension and also

to a vector bin-packing approach. The next-fit algorithm, however, seems less relevant
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as it closes a bin when the next item doesn’t fit and the algorithm prioritizes fast

placement over optimal placement. In software testing, jobs are removed after they are

finished and more items can be placed. The number of bins is also finite, and when the

next item can’t be placed in the last bin, the algorithm stops. The algorithm can be

tweaked to start over at the first bin after finishing the last, but when all the bins are full,

the algorithm will continue to iterate over the bins creating an infinite loop until the next

items fit in any bin which might require a lot of processing power. The focus on

optimizing the algorithm speed over optimal placement leads to the assumption that the

NF-algorithm isn’t optimal for software test bin-packing. The worst-fit algorithm, which is

rarely considered in bin-packing due to it often leaving a lot of empty space in each bin,

has interestingly an advantage in IT. The items can use more resources while other

items don’t need it and spreading items between the available bins can reduce the

required run time. This algorithm should therefore be considered for our project.

An online algorithm never knows the next item in the queue, while the offline

algorithms know the queue in advance and sorting the queue in advance has given

better results. An offline algorithm is therefore preferred in regular bin-packing, but the

decision between online and offline algorithms firstly depends on if it is even possible to

use an offline algorithm within IT. Our queue is based on the input flow of jobs from the

CI system. How the test flow looks is based on how often the developers trigger the

pipeline, how many pipelines there are and how many resources are available to run

jobs. The jobs in a single pipeline are known in advance which makes the queue

predictable. The pipeline can therefore be seen as a puzzle where all the pieces are

known in advance, and the job is to put them in the correct location. The problem occurs

when there are multiple pipelines or multiple developers that trigger pipelines in the CI at

the same time. When several pipelines use the same resources, the input flow will be

unpredictable and jobs from different pipelines will, instead of puzzle pieces, be more

similar to Tetris blocks. There is some predictability on what is next, but if a new pipeline

is triggered, unexpected jobs start to appear, and if a pipeline fails in the middle, jobs

that were expected, do not appear at all. As offline bin-packing algorithms consist of
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sorting items before they are placed, it is still possible to use this approach. If we

continuously sort the tests whenever new items enter the queue there is some

resemblance to offline bin-packing.

Figure 4.2: Tetris pieces illustrates jobs,

but they may come from different work-

flows, therefore being unpredictable. (Yal-

cin, n.d.).

Figure 4.3: A jigsaw puzzle where each piece

represent a job in the complete puzzle which

represent a workflow. The puzzle pieces are

predictable. (srisuk, n.d.).

4.2.1 Choosing the algorithm

When evaluating if it is possible to use offline bin-packing algorithms, it’s also important

to ask if it should be used in this context. As mentioned, offline algorithms are preferred

in regular bin-packing, but what about in a CI system? If there always are resources

available so that tests can be placed almost instantly after entering the queue, then there

wont be many, if any, queued items to sort. If there is waiting time however, it might be

more relevant to sort the items before placement. One problem with the decreasing

offline algorithms, however, where items are sorted from bigger to smaller, is that smaller

jobs may be continuously put at the end of the queue and therefore never be able to run.
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In a continuous integration system, the order is important based on other factors than

size. If jobs have different time-use and importance, they may already be sorted in the

pipeline and moving them around can cause reduced efficiency. Placing a test that often

fails early can for instance be helpful as the remaining pipeline will stop and thus reduce

the amount of jobs that have to run. Jobs can also depend on each other, forcing one

job to run after another. Offline algorithms and sorting items before placing them has

shown to improve approximation guarantees (Wikipedia, 2022), but in the end, sorting CI

jobs based on size before placing them onto instances doesn’t seem to be the optimal

solution in real life, but this doesn’t exclude other sorting methods.

Figure 4.4: Illustration of a sorted item queue, sorted by size. When a new item enter the queue,

the items which are smaller than the new item are moved further back in line

The amount of time a bin-packing algorithm uses to decide item placement is often an

aspect discussed when it comes to deciding which algorithm is the best. The time each

algorithm requires is usually just based on how many items are to be placed, but in a CI

system, where the box sizes vary, this has to be taken into account as well. The

calculation is, however, run on the controller machine in a CI system, which most

commonly does not run jobs and will therefore not use resources from the resource pool.

The algorithm processing time is also predictable based on the algorithm selected or is

at least deterministic over time. The calculations are also assumed to be fast when using

a decent machine today. This leads to the assumption that the algorithm time is

negligible in a CI system when selecting the best algorithm.

Even though the time an algorithm uses is assumed negligible, time to completion for

each job is an important factor within CI-testing. One thing that is very different between
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bin-packing of CI-jobs and regular bin-packing is that in CI systems items are being

removed after a job is done, making software testing more dynamic than regular

bin-packing. Therefore, how quickly a task can finish on a machine will affect how

efficient the CI is overall. This brings timing in as a concept and placing tasks on specific

hosts can either slow down or accelerate the overall process. When a task is done, it

leaves more room for new jobs to be placed on the hosts. Over time the individual job

time can be observed and used to make projections on how long it will take before tasks

finish and therefore do an even better evaluation of where it is best to place a new job.

This, however, requires a very complex algorithm beyond pure bin-packing if more than

just the time should be accounted for. The variables used in the algorithm has to be

adjusted over time based on the observation of how long tests run for and how this affect

other jobs.

4.3 Selecting bin dimensions

After deciding on which algorithms to use, the dimensions of the bins have to be set.

How many dimensions should be evaluated depends on what resources are most

important in a CI system. As mentioned, some tests may have to run on a lot of different

hardware combinations in order to cover all the supported areas of an application. There

are a lot of different CPU’s, GPU’s, software, OS’s etc which work in different ways, but

to generalize this project in order to be representable for several use cases, it’s

important to not focus too much on the details and select dimensions which are common

for most or all CI systems. It can also be tempting to select dimensions that are easy to

implement, but as each hardware resource comes with different characteristics which

influence how the system will work, it is important to focus on the most critical resources.

4.3.1 Software as a dimension

Let’s look into how selecting different resources as dimensions will affect the solution.

Network, CPU, memory, disk and software are the 5 bottlenecks in computing identified

by Schultz (Schultz, 2017). If software would be selected as a dimension, it’s either
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there, or it’s not. It would be hard to turn software into a scale. If a computer has some

of the software that is required to run a job, but not all, it can’t run there, leaving it to be a

very simple dimension to use. Software is also a resource you can’t run out of, except in

rare cases where number of processes are limited by licences. The question is then,

how relevant is it to use it as a dimension? If some software is required for most of the

jobs, it’s natural to have it installed on all the agents. It is also common to build docker

containers within a job so that all the required software is installed within the container

and doesn’t have to be on the agent itself. The only truly important software to have on

an agents then is docker, which in that case should be installed on all the hosts. This

setup removes the requirement to check for software on agents, as all required software

is installed in the setup step of a job.

4.3.2 Disk space as a dimension

Disk space can also affect a continuous integration system based on the setup. Again, if

the jobs are set up as docker containers, it wont affect how the CI system runs by much.

Docker containers are by default setup to use maximum 10GB, which isn’t a lot, though it

can be changed. It is also natural to remove containers after a job is finished to make

sure they don’t stay on the system and use up space without being in use. If logs are

gathered and stored after a container is finished, it also seems unnatural to store it on

the agents. It is more common to send and gather logs in a common logging system and

plenty of log management systems exist for this purpose. If space should become an

issue, it can be selected as a dimension, but for a CI system, a cleanup after a job or a

cleanup on a regular basis will in most cases cover it. If an agent runs out of space

however, the current job will return errors and the pipeline will fail, which sends a clear

signal that a cleanup is needed.

Disk I/O speed is a different aspect that could be a bottleneck in a system. I/O stands

for input/output operations to a disk, commonly known as reading and writing to disk.

When a job starts in a CI system, a work space folder is created and the repository code

is cloned to the directory. This action alone can be slow if the I/O disk speed is slow.
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Therefore, it’s important to inspect I/O performance to increase job speed, and placing

jobs on the hosts with faster I/O speed can improve the overall workflow speed.

Nevertheless, the job run time can be predicted as long as the job runs on the host

alone. Multiple simultaneous jobs on the same host, however, will make the time

unpredictable as several jobs may want to use the I/O capacity at the same time. Figure

4.5 shows a screenshot of a Github Action workflow job. The time it takes to setup the

job and check out the code is only a few seconds even though the repository that is

cloned is of a significant size. No matter if the host has high I/O speed, it still won’t be a

significant increase in time since a slower speed such as a few seconds is not a lot in

relation to the run time of the other steps.

Figure 4.5: Screenshot from a Github Action workflow with a few steps including the time each

step takes. When the code checkout and job setup only takes a few seconds, it indicates that the

I/O speed is a very small factor of the complete job run-time.

4.3.3 Memory as a dimension

How much memory is available for a job will affect job performance, but only to a point.

Conversely, too little memory can more likely cause crashes. The RAM (Random Access

Memory) sets the hard upper limit to how many tasks can be performed at the same time

as data is stored here for every running operation. An operating system, for instance,

often pretend to have more memory available for each process until the process tries to

allocate too much memory, and the process is killed in response. How a memory limit

will affect the job, however, depends on where the limit is set. If a process runs out of

available memory, the process can freeze or even cause an out-of-memory exception

which will cause a job to fail. If the job asks for more memory than whats available on
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the system, the job is killed, also causing the job to fail. Increasing the memory above

this will increase the speed of the process up to a limit where increasing the memory

won’t show any significant differences. The CPU, which will be addressed in the next

paragraph, and RAM are however closely working together and can limit each other.

Combining one bad and one good resource can be seen as letting a fast employee work

with a slow machine or the other way around. It is therefore important to explore which

one is running at full capacity when processes are running slow to know which of the

resources is the bottleneck for a single job. The Linux operation system also has the

ability to allocate part of a disk as swap space. This space can then be used as

additional memory if needed, it does however require the host machine to be set up with

a swap space in addition to the regular disks.

4.3.4 CPU as a dimension

The CPU is the brain of a computer. Using CPU as a dimension for bin-packing will, like

memory, affect how fast a job can finish. CPUs have two dimensions in itself, the

number of cores, but also the clock speed of the cores. The number of cores decides

how many tasks can run simultaneously while the clock speed determines how fast a

single task will finish. Deciding on which one is the most important to increase can be

difficult as they both play an important part in increasing efficiency. Finishing tasks

quickly opens room to perform more tasks, and running more tasks simultaneously does

the same. As CloudBees recommended, the number of executors per CPU core should

maximum be nExecutors = nCores− 1, other than that the requirements will vary

depending on what each job requires (CloudBees, 2022). This means that at least one

CPU core is needed for each task, but there is also an upper plateau where using more

cores for a job isn’t improving the completion time as there is a limit to how many parallel

computer tasks are performed by a job. The results therefore depend on what a job

actually does. A python script, for instance, only uses a single core, though there are

scientific libraries such as numpy and multiprocessing libraries such as the

multiprocessing module that have the ability to utilize several or all of the cores at the

same time. Being able to detect the requirements and usage of each job is therefore
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important to be able to place them optimally across the available agents.

4.3.5 Network as a dimension

As Bhardwaj mentioned, CPU and memory bottlenecks can be the main sources of a

slow performing CI (Bhardwaj, 2021). Using CPU and memory as a dimension for

bin-packing, therefore, seems inevitable to be able to perform better and more efficiently,

which is the goal. Nevertheless, there are other dimensions that also affects the

efficiency of job completion. Network or bandwidth can affect installation of job

requirements, communication between agents and the controller and the upload speed

of artifacts, but there has been no discovery of network being mentioned as a bottleneck

for CI systems. Bandwidth is in general very important for software developers, and the

installation of high performance network equipment in general can eliminate this as a

bottleneck from a CI system.

4.3.6 Assessing the suitability of a dimension over time

In their article, Kumaraswamy and Nair based their results on number of servers

required and CPU utilization (Kumaraswamy & Nair, 2019). What should be the main

focus, however, should be based on the bottleneck of the specific system. If the

simulation implemented to evaluate bin-packing algorithms both returns the number of

bins required together with how well each resource is utilized in a bin, it’s easy to see

where there is improvement potential and where the main bottlenecks are. It can also

reveal the best area for potential improvement, for instance if a CPU should be upgraded

or if a RAM card can be moved to a different host. The amount of resources allocated to

a single job should also be evaluated after observing a job over time. Starting by giving a

job a high amount of resources and from there reducing it little by little to see how it

affect the job will eventually give a reasonable amount of information to decide where the

limit should be set. The main evaluation on which dimensions to focus on, however, can

be based on how many jobs can run simultaneously, how well all resources are utilized

or on how quickly a pipeline is able to finish.
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4.3.7 The difficulties of assigning resources

The jobs, as mentioned, have to be assigned resources, either by setting a specific

amount or an upper or lower limit. This is an approach that fits well into an existing

Kubernetes cluster setup. It is, however, hard to determine how much minimum

resources each job should have or what its maximum use might be. I propose that the

best way to determine where the limits should be set is to observe the jobs over time. If

the jobs are assigned very little resources to begin with and gradually increase the

amount, it can be observed where the plateau is, and that can be an option to use as a

lower limit. Where the job run time doesn’t increase with increasing resources is a good

starting point to set the upper resource limit. Observing a host’s resource utilization over

time is also a good way to discover if a job’s resource limits should be increased or

decreased. Determining job resource limits is time consuming, hard to do and not a part

of bin-packing at all. Implementing job resource limits can therefore be hard, especially

for new jobs and pipelines where no resource usage is recorded over time.

4.3.8 The path to follow and a path left unexplored

Selecting dimensions will affect how many dimensions are used for the bin-packing

algorithm. The more dimensions, the more evaluations has to be made for each item

placement. Some dimensions could be considered more important as they are the main

bottleneck of a system, some dimensions may require setting a hard limit while some

can be overstepped as it will only slow a process down. One aspect that will be

discussed in more details later on is the fact that job sizes vary, which also opens more

room to set the resource limits in different ways. If the job resource limits are set too low,

the CI jobs will slow down or, in worst case, crash. If, on the other hand, the resource

limits are set too high, there will be a lot of unused resources, therefore not fulfilling the

goal of this assignment of optimizing the resource utilization.

There are a lot of potential dimensions to choose from and it can, therefore, be hard to

select the correct ones that will cover most use cases. Different companies also have
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different requirements and the dimensions for their CI should then be evaluated for their

individual needs. There might exist dimensions not identified and discussed in this paper

that can be bottlenecks and extremely important to a company, which can make

combining bin-packing and CI software testing impossible. This is, however, considered

an edge case. Nevertheless, selecting the wrong resources for this assignment can

cause the results to not correspond with reality and therefore not correctly addressing

the problem from a real world perspective. The safest dimension to approach to not

exclude many use cases is focusing on CPU, which has, as discussed, been used in

other IT approaches using bin-packing for instance by Kumaraswamy and Nair

(Kumaraswamy & Nair, 2019). The job completion speed does, however, also require

enough memory to be able to fully utilize the CPU and, therefore this is selected as the

second dimension. These are also the two main Kuberenetes resources and adding

additional custom resources is therefore not necessary.

CPU and memory has been selected as the path we follow going forward with this

project. Other dimensions will be left behind at this point and will therefore not be

explored further. Network speed, installed software and disk space are some paths that

will not be explored further as well as some other potential bottlenecks such as GPU and

port collision. These are dimensions that can be discussed more in detail in other

research built on top of this assignment.

4.4 Bin-packing in software testing

A factor in software testing that differs from bin-packing, is that once an item is placed, it

can’t be relocated. It has to finish the whole job before it will be removed. In a physical

bin, items can be removed and used to fill a bin more optimally if the original placement

isn’t good enough, though this isn’t desired and also something most bin-packing

algorithms don’t take into account.

Another interesting aspect that is often the case for software testing, but isn’t very

common in bin-packing solutions, is that the bin-sizes can vary. The order of the bins
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may therefore affect the bin-packing result as well as the placing algorithm. Optimal job

scheduling is an approach that has a separate approach category which focuses on this,

called the uniform machine scheduling. The approach is often to place items on the

machines where the job can finish the fastest, and this depends on the available

resources in the individual computer. So while a bin-packing approach doesn’t focus on

the differences of the bin, a job scheduling approach can be used to select the bin where

the job will finish faster.

In software testing, an item’s resource requirements may also vary over time. As

mentioned, a job consist of several steps where some steps may require different

amounts of resources, and the setup itself may be the most resource demanding

depending on what is being tested. The setup step often consist of building a docker

container, cloning the whole repository and downloading and installing software. When

simple, smaller tests are ran after this, the resources the test itself requires is less than

the actual setup. This is, however, seldom the case when running stress-testing,

recursive testing or similar. Then the test itself will try to use as much resources as

possible to either test the capacity of the system or use a lot of resources to complete

multiple actions simultaneously. Figure 4.6 shows a graph of three separate processes,

where the CPU usage varies over time. The blue graph has high CPU usage on setup,

the green has increasing CPU usage over time while the red process remain relatively

stable. Nevertheless, taking the variation into account while placing the item can be very

important, yet challenging. Should the size of the item be set based on the maximum

resource consumption, the least, the current usage at the evaluation time or something

in between? This will also affect how to place the object optimally.

When using on-premise hardware, the hardware is seldom turned on and off

depending on incoming workflows. Karthik et al., on the other hand, has a green focus

while using bin-packing in data centers with the goal of reducing power consumption

(Karthik et al., 2016). Not turning the machines off to save power sets power

consumption to a constant and removes the need to take it into account when placing
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Figure 4.6: A graph showing the CPU usage of three separate processes. (Hwang et al., 2016).

items. The problem can therefore be investigated from a different perspective: How can

we optimally place items to best fill the available bins, as opposed to an original

bin-packing approach which has the goal of using the fewest possible bins. Since

resource usage varies over time, giving a job more resources could reduce the amount

of time a single job needs to complete. It might therefore be interesting to investigate a

different initial approach of placing items into bins: start by placing one item in each bin.

If the setup is the most resource demanding in the bin-packing process, opening all the

bins and placing items evenly is definitely an approach that should be considered.

Placing one item in one bin each to begin with can ensure that the tasks finish faster so

that more resources are available when the next items are being placed. Figure 4.7

shows how regular bin-packing would optimally place items to reduce the number of bins

used while figure 4.8 shows an example where the items are spread out more equally,

therefore leaving more resources available that the jobs can use in addition if needed.

All the machines are utilized in figure 4.8 instead of leaving one or more computers idle

in figure 4.7 while the jobs are fighting for resources on the other machines.
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Figure 4.7: Illustration of an example of an optimal packing solution in regular bin packing, the

rightmost server is empty and could be used to run tests

Figure 4.8: Illustration of items spread more equally across the available bins. This can be seen

as a more optimal approach for bin-packing in software testing as there are more resources avail-

able to the items.
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4.5 An alternate perspective: Optimal Job scheduling

Optimal job scheduling is an approach that should be considered and tested in software

testing because it considers where a job can run the fastest. In the background chapter

it is argued that single-stage job scheduling is the approach that is most fitting in a

software testing area. The four types of single-stage job scheduling are: Single-machine

scheduling, identical-machine scheduling, uniform-machine scheduling and

unrelated-machine scheduling. The single-machine scheduling isn’t relevant in this case

unless there is only one host available. Identical-machine scheduling can be relevant if

the hosts are all the same, but the most interesting one is the uniform-machine

scheduling which uses multiple different hosts. This specific approach solves the

problem in software testing that bin-packing rarely focuses on: that the bin sizes may

vary.

In job scheduling there are, however, some constraints that are not relevant for a CI

job scheduling solution. A deadline to finish all jobs cannot be used if developers

constantly trigger new pipelines. The solution also cannot be measured by when all jobs

finish unless a limited input stream is used for testing. The job scheduling approach

usually doesn’t allow more jobs to run simultaneously on one machine either and the

available resources to a job is therefore constant. The time required to finish a task in

this case doesn’t vary based on how much of the resources are used for other tasks.

One thing that can be done to make the job scheduling approach more representable is

to set the upper and lower resource limits for each job within a range that makes sure

that the task completion time doesn’t change based on how much resources are

available. The lower and upper limit could for instance be the same. The downside is

that this approach doesn’t take the variation of resource requirements into account and

there will be unused resources. This approach alone therefore also has downsides and

while it may improve the situation it doesn’t solve all the problems software testing faces

when trying to optimize resource usage.
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4.6 Optimizing item placement using a combination of two

bin-packing algorithms

Using a single bin-packing algorithm for optimal placement, doesn’t seem to completely

fulfil the criteria of resource optimization in a continuous integration system. This is due

to the various differences from software testing, together with the fact that the optimal

placement will vary depending on the current queue state. There are two main queue

states that will affect how items should be placed:

• 1. Available bin capacity, no item queue

• 2. Full bins, long item queue

The first state will be in a situation where every new item in the queue can be placed

immediately, while the second has several items that need placement and they can

therefore be placed in a different order if this would optimize the overall results. These

are in most cases independent states, unless a lot of items are placed in the queue in a

short period, as the system might not be able to place the items quickly enough to empty

the queue immediately. The other exception is if the bins are already full, but no new

items are added to the queue for a little while, and the bins will slowly finish their tasks.

Full bins and a queue will again leaves us with two options, a locked queue where the

first object in the queue has to be picked before the next, or an open queue where any

item in the queue can be picked at any time.

With a locked queue, the item to be placed is always decided for us, the algorithm

therefore only has to select the bin to place the item in. In bin-packing terms this equals

an offline queue, where the items are known, however, they won’t be sorted as offline

bin packing approaches usually do. An open queue, on the other hand, opens up many

new placement opportunities. If the goal is to finish as many jobs as quickly as possible,

the hosts are filled up with small jobs and the bigger jobs will continuously be pushed

backwards in the queue. In this case a full pipeline with a mix of job sizes will take a long

time to finish even though a lot of jobs finish quickly. Sorting the other way around and
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placing the bigger items first may leave room to place smaller items in between, but the

issue of jobs continuously being placed towards the back of the queue will still be an

issue.

To solve the queue sorting issue, a new variable should be introduced: a maximum

queue time. When an item has been in the queue for a certain amount of time, it has to

be placed at the next opportunity. This is harder to do when the smaller items are placed

first as it is likely that several items have to finish in a single bin before the bigger item

can be placed and a lot of room can be available in other bins to continue placement

there. If the bigger items are placed earlier on the other hand, queue sorting seems

more optimal.

A second approach using an open queue is to have the goal of filling all bins. This

means placing items whenever there is room for them no matter the order of the queue.

One problem with this approach is that smaller items can fill up small spaces easily while

bigger items can’t. The theory is that eventually all bins will only contain smaller items

and the bigger items will never fit. New small items will replace small items every time

and bigger items will queue indefinitely.

One thing that should be strongly considered while selecting the order of the items is

that there are several other factors that will affect how efficiently jobs finish. Some jobs

depend on other jobs, and once a job finishes a lot of others may enter the queue. Jobs

with no jobs depending on them are therefore less important to run early because the

pipeline doesn’t finish before everything else finishes anyways. Jobs that fail often could

also be placed early to be able to cancel the workflow as early as possible if it is going to

fail. Taking the downsides to sorting the queue into account, the items for this approach

will be in a locked queue.

When the goal is to remove queue time completely, the first queue state, when there is

bin space available and no queue, is the one that should be considered. Nevertheless,
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with lack of resources, the second queue state is more likely to occur and the goal will be

to reduce queue time. The approach should therefore consider both of these states and

the best approach is therefore hard to pin down to a single algorithm. The following

approach is therefore proposed:

• For queue state 1, when a job is placed in an empty queue and there is room to

place the item immediately, the worst-fit bin-packing algorithm should be used.

This will cause all the items to be placed out evenly and all machines will be

utilized, leaving more resources available for the jobs to be able to finish faster.

• For queue state 2, when a job is added to the queue and it cannot be placed

immediately, the placement algorithm should be changed to use the best-fit

algorithm to be able to fill the remaining space in the bins leaving each bin as full

as possible.

Changing the algorithm based on several criteria is not a common way of using

bin-packing. This approach of combining algorithms can be called an adaptive algorithm

which changes based on queue state. The trigger to change between the algorithms is

checked whenever a new item enters the queue or when an item from the queue is

being placed. If there is one job that doesn’t fit and the algorithm used at the moment is

the worst-fit algorithm, then it should change into the best-fit algorithm. If the current

algorithm is the best-fit algorithm and there is no queue and the job can be placed

immediately after entering the queue, the algorithm is changed to the worst-fit algorithm.

This is the easiest way to know exactly when to switch algorithm and it doesn’t require

any prior knowledge of patters or expected jobs.

A different trigger condition could be set after observing the CI system over time. A

specific time of day when developers arrive at work and go home from work could also

be the trigger point for changing between the algorithms in order to be prepared for an

expected situation. If there are certain other conditions that often lead to a switch in

queue state, the algorithm can change a short period of time before the queue is filled up

to be better prepared for the expected queue state. This, however, requires learning
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over time and discovering when or what usually happens before the queue state is

changed. The first approach is therefore easier to use, especially before any data is

recorded about typical queue behavior. Nevertheless, the disadvantage to not changing

ahead of expected queue states will cause the first items that should be placed using the

best-fit algorithm to wait for enough space to clear up in a bin, when starting the best-fit

algorithm earlier could have made sure enough space was left to at least place a few

more items.

One aspect that this approach doesn’t consider is that some machines are faster than

others. Some job scheduling approaches place items on a machine that will ensure that

the item finishes as fast as possible, thus, placing the items on the fastest machines.

This can be added to this approach by sorting the bins or host machines so that the first

bin evaluated for placement always is the fastest. Let’s call the combined approach, the

Resource-Optimized-Software-Testing algorithm or ROST algorithm. Below is a short

code sample of how to sort the bins based on CPU clock-speed before running the

algorithm.

1 a l l _b i ns_so r t ed = a l l _ b i n s . so r t ( key=lambda bin : b in . clock_speed ,

reverse=True )

4.7 Defining the case scenario

To test the ROST algorithm through a simulation, the first step is to create a case

scenario. The case scenario might not be completely realistic as there are many factors

that play a part, but the assumptions are based on observations from real situations. The

simulation is a tool to try to compare the model created with other possible solutions to

establish the usefulness of the selected path. Since the case scenario might be

unrealistic, it can’t be compared to other studies, and the same case scenario variables

created here therefore have to be tested with several approaches in order to be truly

comparable.
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Selecting how a typical job and bin look is the first step. Starting with the bins, it’s

important to recreate a typical hardware setup. To create a simple case scenario which

don’t require too many jobs, 4 bins are used. As these on-premise resources are

supposed to handle quite some load, it is natural to select components from the higher

end, therefore typically go for CPUs with at least 6 cores, mostly 8 cores and maybe

even use a 12 core CPU. Based on Horowitz’ proposition in the background chapter

(Horowitz, 2020) the following four computer CPUs are suggested: [6, 8, 8, 12]. The

speed of each CPU core should also be decided as this will define how quickly a job can

finish. As this doesn’t decide if an item fits in a bin or not, this is not a dimension in a bin,

but can decide the order the bins are sorted. Based on the list of best-selling CPU’s on

Amazon (ArsTech, 2020), the CPU speeds are set to [4.2, 4.4, 4.1, 4.6]. Next, the

memory has to be decided for the above computers. It’s preferable to use higher

amounts of RAM together with the better CPU’s. Based on Kingston’ proposition

mentioned in the background chapter (Kingston, 2019) the following memory to the four

hosts is suggested: [8, 16 16, 32]. To make the simulation easier, the speed of the

memory is all assumed to be the same.

In addition, the job requirements have to be decided. The total number of jobs need to

be able to at least fill all the bins and a little bit more. It can be hard to define the size of

a job, specifically when the resource usage varies over time with the setup step and the

actual testing. By using the assumption that the smallest computer can be hard-coded to

fit two jobs, the smallest computer has to be able to fit minimum the two biggest jobs in

the workflow at the same time or the biggest job twice. In a perfect world, the biggest job

will at maximum size perfectly fit twice into the smallest host, we’re giving it the

requirements of 3 CPU cores and 4 GB of RAM at max usage.Therefore, all jobs should

be created randomly within the range of 1 too 3 CPUs or 1 to 4 GB of memory, to cover

many different test cases. The resource usage will also be decreased after the setup

stage. The resources required after the setup is something that also has to be observed

over time in an actual system, but for now, to illustrate the concept, one CPU core and

one GB of RAM is removed from the requirements, if possible, after the setup is
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complete.

The number of cores and memory required often also reflects the size of the job and

the run-time for the individual job should be set based on these. For now, the individual

job run-time is set to (CPU +RAM) ∗ factor seconds where the factor is used to

increase run-time if we want to observe the system over time. To begin with, the factor is

set to 10 for the individual job run-time, but the factor should be a parameter so it’s easy

to adjust. The factor is added to ensure that the jobs at least are big enough to run for a

few seconds when the run-time on the individual machines is divided with the CPU

clock-speed. We assume that the setup time is complete halfway in the run-time.

4.8 Evaluating the simulation

When creating and running the simulation, it’s also important to know how the results

should be evaluated. This is an important part of creating a model, but it can be hard to

evaluate results from an exploratory assignments as the goal isn’t strictly defined from

the beginning. Nevertheless, there are several propositions that have been discussed as

important and some that have been argued to be less important.

One thing that has been considered less important is the time an algorithm takes. The

portion of time the algorithm uses is very small compared to actually running jobs. The

algorithm execution time will also be predictable and the model should therefore not be

evaluated based on how much time they take. Nevertheless, the complete run-time is

important as improving the resource utilization in the end is done to increase efficiency.

The main unpredictable time estimation is the queue time, but also the complete

workflow run-time as the speed of the different hosts vary. The most important

evaluation, therefore, comes down to how fast a large set of jobs can finish compared to

other methods. This evaluation isn’t something used in bin-packing, but in

job-scheduling and it is more fitting with the software testing concept.
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Another obvious way of evaluating a system is how many jobs can run simultaneously.

While bin-packing often measures the results of the algorithm based on how few bins a

finite number of items require, fitting as many items into a finite number of bins is a more

fitting approach for software testing as the number jobs most commonly is unknown and

can be more than what the bins can fit. The number of items fit into each bin is also a

similar measurement to ensure clear, numerical and comparable results. The problem is

that the input flow and job variation can be random and therefore cause differences

between each run. It is therefore important to test with different input flows and compare

it with a different approach using the same input flows. It is, however, harder to evaluate

based on this while the simulation is running, as jobs continuously move in and out of the

system.

The utilization of each individual resource is also a way of measuring the approaches

efficiency. The resource utilization is a common evaluation used in bin-packing.

Nevertheless, the same problems will be faced with this measurement as with the

number of jobs as the bins continuously change and the input workflow has a huge

impact on the results. It is interesting to investigate how the resource utilization along the

way affect the complete workflow run-time, and a continuous print can show the situation

to the user, but logging it in a good, comparable way is a different challenge.

Finally, the conclusion on how to evaluate the results of the simulation will be the

complete run-time of the set of jobs generated. The same job input flow will be used in

all the approaches to give comparable results, and several input flows will be used to

ensure that specific input flows wont affect the results. The bin utilization will be printed

continuously to the user during the placement to be able to use the data for further

investigation and discussion of the results.

4.9 Exploring the possibility for implementation

In the end, the approach is only usable if it is actually implementable. The next step is

therefore to explore what is required to implement a combination of bin-packing with a CI
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system.

Most CI systems, as mentioned, uses a container orchestration service for

auto-scaling which makes it possible to create new runners/agents on the hosts and

delete them after a job is done. Secondly, Kubernetes already supports resource

managed scaling where a runner and host can be assigned resources based on the job’s

requirements. The algorithm used to assign runners to hosts, however, isn’t specified,

but it’s possible to change the Kubernetes scheduler which decides the algorithm used.

With all the groundwork already existing, the implementation seems doable.

Adjusting the individual job requirements, however, is a challenge. The queue of jobs

in the CI systems will send requests to create new runners. In Kubernetes a job resource

usage is set based on the request which is the minimum amount the resource needs to

run and a limit which is the highest amount it should be able to use. The scheduler uses

the request and limit to optimally place the newly created runner on a host. Deciding on

the request and limit of a job’s resources, however, require logging and calculations of

resource usage over time. The simplest implementation from the CI providers would be

for the developers to set the resources manually when creating a new job, but this is also

something that can be done using artificial intelligence. If the system can set default

values for a job and adjust them over time, this tool would be a lot easier to use for the

developers. This does, however, require some work from the CI providers.

The blog written by Madel stated that auto-scaling and resource quotas don’t mix

(Madel, 2018). The reason behind this was that the solution is mainly created to create

new hosts in a cloud cluster and when adding a new host, the resources has to be set

manually. When the solution, however, is used to scale runners on existing hosts, all the

hosts’ resources are already known. Adding a new host, however, will require some

manual work. Nevertheless, the scaling in this case doesn’t adjust hosts, but runners on

the hosts and no manual work is required while auto-scaling.
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The question is then, why hasn’t this been done before? The simulation will show us

how valuable combining bin-packing with software testing is and give us an answer to if

this approach is useful. If it shows that the approach actually utilizes resources better

and improves the speed of running workflows, the next challenge is the implementation.

Without artificial intelligence, to set job resource requirements is a huge manual

workload for the users of the CI. On the other hand, implementing an artificial

intelligence approach demands a lot of work from the CI providers. There might be many

other things within a CI system that is more requested by the users and is less resource

costly for the CI providers to implement, which therefore has a higher priority. Creating

value for the users or customers are often a priority, and this might have a too high cost

value compared to user value to spend time on. This approach also only targets the

users which has on-premises hosts and doesn’t provide cloud users any advantages,

which again lower the usefulness of this approach. Staying ahead of the competitors,

however, is important in a large pool of CI providers, and this could give a competitive

advantage. To come to a final conclusion on the question, the results of the simulation

has to be analyzed.

4.10 Analysis

How well does actually software testing and bin-packing work together, and why haven’t

these two concepts been combined earlier? A model has been created, using the

bin-packing concept within the restrictions and needs of a continuous integration system.

The approach that was discussed describes a solution in which not one, but two

algorithms are used to fill the gaps bin-packing is lacking by itself. In the end, a concept

from job scheduling is also used to properly be able to utilize all the available resources

in the best way.

Two dimensions were selected as the most important to focus on while placing CI jobs

onto hosts. There is, however, a lot of room to make mistakes while selecting

dimensions and the needs of individual companies vary, making it difficult to select

dimensions that will fit all. This approach, however, can be adapted to fit with different
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dimensions if necessary, but for the simulation, CPU and memory will be used.

There are also more algorithms that haven’t been fully evaluated or even mentioned in

this paper. As well as other algorithms and other dimensions, there are also other

approaches to reducing CI queue time. This area has not nearly been explored enough.

The simplest, but also most expensive solution is to buy more computers. A brute-force

solution like that, would not be sustainable economically nor environmentally.

If we for a moment look away from the model we have created and look at the

bin-packing approach as a whole, the main goal is to avoid unwanted situations. One of

these situations is starvation of jobs where some jobs never get to actually be placed,

which is caused by sorting a queue continuously when the hosts are full. Offline

bin-packing has the advantage of knowing the items in the queue and can sort the items

based on what will optimally fill the bins, but in a software testing perspective, the items

which ends up in the back of the queue can be starved. With infinite bins and few jobs,

sorting can help place items optimally, without the problem of starvation, but then again,

there wont be a space issue to begin with. Sorting items is therefore not optimal within a

continuous integration system.

Another unwanted situation in bin-packing is that bins aren’t properly filled and a lot of

space remains. Using the worst-fit algorithm can often cause this scenario. When all

bins are filled using the worst-fit algorithm, the next item can’t be placed immediately. A

switch to the best-fit algorithm earlier will ensure fuller bins and more items get placed.

The problem, however, is that it can be difficult to find a fitting trigger condition to switch

at the right time. One suggestion can for example be to switch when some or all bins

have reached a threshold, but setting that limit can be hard and the variation of items

and bins will cause a lot of different placement situations that will affect when the trigger

condition actually kicks in. When the trigger condition is set to change from worst-fit to

best-fit when the next item doesn’t fit, the possibility of left-over space is high as the

purpose of the worst-fit algorithm is exactly that, to put the item in the bin which leaves
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the most remaining space.

These unwanted situations come from concepts within bin-packing that don’t properly

fit into a software testing solution. This isn’t a match made in heaven where everything

naturally fits together without adjustments. At first glance, bin-packing seemed to solve

most of the CI resource utilization issues, but when looking at the details, there are

several unwanted situations and problems with combining the two concepts.

4.10.1 The simulation

To evaluate the model, the ROST algorithm, it is interesting to see how it works

compared to other solutions. A python script is used to simulate the solution and

compare it to other approaches. The worst fit, best fit, optimal job scheduling approach is

run individually as well as an approach where two items are placed in each bin no matter

the space. The results are then compared to the results of the ROST algorithm.

4.10.2 Creating jobs

In the Python simulation, jobs and items are created and then used to run each of the

approaches. A job has the variables CPU, RAM and run-time. The run-time is set based

on the CPU and RAM requirements multiplied by a factor to increase the run-time so the

results will be measurable. In addition, each job has a number to keep track of the items.

70 c lass _Job ( ) :

71 def __ i n i t __ ( se l f , cpu , ram , num, j ob_ l eng th_ fac to r ) :

72 s e l f . cpu = cpu

73 s e l f . ram = ram

74 s e l f .num = num

75 s e l f . runt ime = ( cpu+ram ) * j ob_ l eng th_ fac t o r

76

77 def __str__ ( s e l f ) :
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78 re tu rn f ” I tem { s e l f .num} has requirements : cpu : { s e l f . cpu

} , ram : { s e l f . ram } ”

To cover several situations, the items are random generated for each run. This is done

by setting the lower limit of the CPU and RAM to 1 and the upper limit for CPU to 3 and

the upper limit for RAM to 4. These limits ensure that at least two items of the biggest

size fits in the smallest bin. The same items are used for all approaches within a single

run, but are recreated when re-running the full simulation to investigate how different

items affect the results.

87 def _c rea te_ tes ts ( j ob_ l eng th_ fac to r = 10) −> None : # Random

generate 20 jobs w i t h i n the given i n t e r v a l values

88 f o r i i n range (20) :

89 _BinVar iab les . b in_ i tems . append (

90 _Job ( cpu = random . rand i n t (1 ,3 ) , ram = random . rand i n t

(1 ,4 ) , num= i , j ob_ l eng th_ fac t o r = j ob_ l eng th_ fac to r )

91 )

4.10.3 Creating bins

A bin has the parameters CPU, RAM and clock-speed, as well as an identifying number.

When the object is created, an empty list is also created to be able to put items in it later

on. The CPU and RAM is saved to two variables when the object is created to be able to

edit one of them as the items go in and out while keeping track of the overall capacity.

The bin object also have a few methods, the __str__ method is overridden to print how a

bin and the bin content look at the print time. This is to be able to observe how the bins

fill during the simulation. Figure 4.9 shows how a single bin is printed where the width

represent the CPU and the height represent the RAM.

The bin object also has a method for placing items and one for removing the item.

When the item is placed, the item is added to the bin’s item list and the available CPU

and RAM for the bin is reduced. A thread is also created which runs the method for
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Figure 4.9: A screenshot from the simulation showing the print of a single bin. The width repre-

sent the CPU and the height represent the RAM.

removing the item. This method sets the timer until the item should be removed from the

bin. Halfway through the time, the resource usage of the item is reduced by one, if it

uses more than one already, and when the rest of the time has passed, the full item is

removed from the bin. The complete code for the bin can be seen below:

11 c lass _Bin ( ) :

12 def __ i n i t __ ( se l f , cpu , ram , num, clock_speed ) :

13 s e l f . f u l l _ cpu_capac i t y = cpu # The f u l l capac i t y i s set

as we l l as one va r i ab l e t ha t w i l l vary based on i tem

content

14 s e l f . f u l l _ ram_capac i t y = ram

15 s e l f . cpu = cpu

16 s e l f . ram = ram

17 s e l f .num = num

18 s e l f . i tems = [ ]

19 s e l f . clock_speed = clock_speed

20

21

22 def __repr__ ( s e l f ) :

23 re t u rn s t r ( s e l f )

24

25
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26 def __str__ ( s e l f ) : # Draw bin showing capac i t y

27 bin_drawing = ( ” \ n ” + ” ” + ” _ ” * s e l f . f u l l _ cpu_capac i t y

+ ” \ n ” )

28 f o r i i n range ( s e l f . f u l l _ ram_capac i t y ) :

29 i f i == s e l f . ram :

30 bin_drawing += ” | ” + ” ¯ ” * ( s e l f .

f u l l _ cpu_capac i t y − s e l f . cpu ) + ” | ” + ” ” * (

s e l f . cpu−1) + ” | ” + ” \ n ”

31 e l i f i > s e l f . ram :

32 bin_drawing += ” | ” + ” ” * ( s e l f .

f u l l _ cpu_capac i t y − s e l f . cpu )+ ” | ” + ” ” * (

s e l f . cpu−1) + ” | ” + ” \ n ”

33 else :

34 bin_drawing += ” | ” + ” ” * ( s e l f .

f u l l _ cpu_capac i t y ) + ” | ” + ” \ n ”

35 bin_drawing += ( ” ” + ” ¯ ” * s e l f . f u l l _ cpu_capac i t y + ” \ n ”

)

36 re t u rn bin_drawing

37

38

39 def remove_item ( se l f , i tem ) :

40 runt ime = i tem . runt ime / s e l f . clock_speed

41 t ime . sleep ( runt ime / 2 ) # a f t e r h a l f the t ime reduce

resource usage

42 cpu_reduced = False

43 ram_reduced = False

44 i f i tem . cpu > 1:

45 cpu_reduced = True

46 s e l f . cpu += 1

47 i f i tem . ram > 1:
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48 ram_reduced = True

49 s e l f . ram += 1

50 t ime . sleep ( runt ime / 2 )

51 s e l f . i tems . remove ( i tem )

52 i f cpu_reduced :

53 s e l f . cpu += ( i tem . cpu−1)

54 else :

55 s e l f . cpu += i tem . cpu

56 i f ram_reduced :

57 s e l f . ram += ( i tem . ram−1)

58 else :

59 s e l f . ram += item . ram

60

61

62 def place_i tem ( se l f , i tem ) :

63 s e l f . i tems . append ( i tem )

64 s e l f . cpu −= i tem . cpu

65 s e l f . ram −= item . ram

66 countdown = thread ing . Thread ( t a r ge t = s e l f . remove_item ,

args =( item , ) )

67 countdown . s t a r t ( )

4.10.4 The algorithms tested

After the items and bins are created, the algorithms can be run. There are five different

approaches being tested. The first one is the hard-coded approach, where no matter the

available bin-space, the bin can hold two items. The second and third approach are

common bin-packing approaches, the worst-fit and best-fit approach. The fourth

approach is a combination of job-scheduling and a first-fit approach, the bins are sorted

by clock-speed in decreasing order and then a first-fit bin-packing approach is used to
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place items on the first host available. The final approach is the ROST algorithm

approach, which starts with a job-scheduling approach by placing one item in each bin,

where the bins are sorted by clock-speed in decreasing order. Thereafter, the items are

placed using either worst-fit or best-fit based on the current queue state. It starts with the

worst-fit approach until the next item can’t fit in any bin, then the algorithm is changed to

the best-fit. If the next item, however, fits into more than half the bins, the algorithm is

switched back to the worst-fit approach. This continues until all items are placed. The

implementation of each algorithm can be seen in the Appendix 7.1.

4.10.5 The output of the simulation

During the simulation, the current bin situation can be printed in a table to easily observe

how the process is going.

258 def _c rea te_p re t t y_ tab le ( ) −> None :

259 os . system ( ’ c l ea r ’ ) # c l s on Windows , c l ea r on unix

260 tab le = Pre t tyTab le ( )

261 tab l e . f ie ld_names = [ ” Agent 1 ” , ” Agent 2 ” , ” Agent 3 ” , ” Agent

4 ” ]

262 agents = _BinVar iab les . ava i l ab l e_b ins

263 tab le . add_row ( [ s t r ( agents [ 0 ] ) , s t r ( agents [ 1 ] ) , s t r ( agents [ 2 ] )

, s t r ( agents [ 3 ] ) ] )

264 p r i n t ( t ab l e )

Figure 4.10 is a screenshot of the terminal during execution of the simulation. The

immediate observation is that the CPU seems to be the bottle neck in all the bins, but

especially in the larger ones, with the current setup of bins and items. This can be due to

several factors:

• 1. The bins have too much RAM in relation to CPU

• 2. The items should have higher RAM requirements in relation to CPU

• 3. CPU is more commonly a bottleneck in hosts
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The first two factors can be caused by selecting wrong CPU and RAM for the hosts and

items in this project or this can be how typical setups and items look, which therefore

leads to the third situation, that CPU is a more common bottleneck in a system.

Figure 4.10: A screenshot from the simulation showing a table containing the four bins named

Agent 1-4. The width of each of the four bins represent the CPU and the height represent the

RAM.

The worst-fit and best-fit algorithm evaluates the best placement based on remaining

space of CPU and RAM, but after watching the bins and seeing that CPU is more likely

to be a bottleneck, changing the evaluation to purely focus on CPU if the item fits in both

dimensions can provide better results.
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Another observation made when running the simulation was that in the ROST

algorithm approach, the switching of the algorithms happens almost immediately, which

means that the first items are placed very fast and the algorithm itself doesn’t use much

time, which was the assumption. It is therefore running the jobs which uses most of the

time. As this is a simulation to efficiently gather data, the job run-times are also set to be

much shorter than a normal CI job would be. Each job run-time is only a few seconds

compared to what could be several minutes or even hours for particular tests. The speed

of the host the job is running on is therefore even more important in a real scenario.

4.10.6 Implementation challenges

There were some challenges with the simulation that didn’t occur before implementation,

for instance, what to do if all bins are full. The decision was made to wait for one second

and then try placing the item again. an other, more complicated approach could be for

the bins to send a signal whenever there are changes in the bin and the signal can

trigger a new check. this, however, would be more complicated to implement, so the first

approach was selected. How to reduce the item size after the setup wasn’t completely

planned out either. The decision was made to use the initial size for the first half of the

run-time, then reduce each resource by one, if they were bigger than one initially. After

that, continue for the remaining time before the item is removed.

An additional challenge was to adjust the run-time based on if there was little room left

on the host. Setting the run-time based on how many items are in the bin already is a

possibility, but changing it after placement if a new item enters the bin is more difficult.

The function has to check regularly if anything is added to the bin and from there adjust

the remaining time until the job is finished. Due to the complications of implementing

this, it was decided not to adjust run-time based on the number of items or the remaining

space in the bin. This, however, cause the simulation to stray further from reality and it

therefore removes some of the advantages of the worst-fit and the ROST algorithm,

while using the worst-fit approach. The worst-fit algorithm was selected due to the fact

that it spread the items out, grating them more usable resources while on a host by
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themselves, and this won’t come to light if there is no penalty to filling one bin at the

time.

Another decision made was that no job should be able to use more resources than

available on the host so that no bin resources are over-allocated. This restricts the

placement of the items, but also doesn’t require implementation of resource sharing and

adding run-time to all bin items.

4.10.7 Evaluating the results

As previously discussed, the best way of measuring the results from the simulation is to

time each of the approaches using the same items and same bins. The algorithms finish

when all items are placed and therefore we have to include a function which times the

approach as well as the emptying of the bins.

245 def _time_approach ( f unc t i on ) −> None :

246 s t a r t = t imer ( )

247 func t i on ( )

248 empty_bins = 0

249 whi le empty_bins != 4 :

250 empty_bins = 0

251 f o r agent i n _BinVar iab les . ava i l ab l e_b ins :

252 i f len ( agent . i tems ) == 0:

253 empty_bins += 1

254 end = t imer ( )

255 re tu rn t imede l t a ( seconds=end− s t a r t )

Since the items are random for each run of the simulation, it was ran ten times to get a

good overview of the results. The results can be seen in table 4.1.

The results shows that the ROST algorithm is as fast or faster in seven out of ten runs,

is worse in three cases, but on average the results of the ROST algorithm is a little faster
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Hard-coded Worst-fit Best-fit Optimal job-scheduling ROST algorithm

1 01:17 00:30 00:27 00:30 00:29

2 01:15 00:27 00:29 00:29 00:29

3 01:13 00:33 00:36 00:33 00:32

4 01:14 00:31 00:31 00:32 00:30

5 01:13 00:37 00:33 00:33 00:33

6 01:26 00:38 00:37 00:38 00:37

7 01:15 00:32 00:36 00:32 00:33

8 01:16 00:28 00:26 00:26 00:26

9 01:20 00:33 00:33 00:32 00:31

10 01:14 00:34 00:36 00:33 00:33

Average 01:16 00:32 00:32 00:32 00:31

Table 4.1: The results from the simulation. The simulation is run ten times with the same input for

all approaches, but different input for each run. The best run-time for one run of the simulation is

in the colored cells. The results are shown in minutes and seconds.

than the other approaches. In two of the three cases where the ROST algorithm isn’t the

fastest, it comes in second, and in the last case, where it comes in third, it is only a

second slower than the two other approaches which shares the first place. All the bin

packing and job-scheduling approaches, however, are much better than a hard-coded

approach which is typically used for CI systems today. Figure 4.11 shows a graph to

easier compare the bin packing approaches to the hard-coded approach and it’s easy to

see the advantages to using bin-packing for placing CI jobs onto hosts.

Figure 4.12 shows a comparison of the results without the hard-coded approach. The

milliseconds from the run-time has been rounded off in table 4.1, but is used in this

graph. This shows that while the bin-packing and job-scheduling approaches aren’t far

from the ROST algorithm, the ROST algorithm is still a little bit more efficient on average.
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Figure 4.11: A comparison of the average run-time of each approach.

Figure 4.12: A comparison of the average run-time of each approach excluding the hard-coded

approach.
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Figure 4.13 shows the variation for each run. The differences in run-time is caused by

the variation of the job sizes. Each approach uses the same input during the same

simulation run, but the jobs are random for each of the ten runs. The graph shows that

some inputs grant advantages to some algorithms while other input might be better for

other approaches. The worst-fit for instance is the best with the input in run two, while it

is the worst with the input in run five. The graph therefore demonstrates how the input

strongly affect the effectiveness of the algorithms.

Figure 4.13: Graph of how the run-time varies for each run. Each run has different input, but all

approaches uses the same input for the same run.

The simulation shows that the ROST algorithm is similar to or better than existing

bin-packing approaches in run-time. A plus with the ROST algorithm is that it is better at

distributing jobs across the available resources instead of packing one by one machine.

This is an advantage that would have provided even better results if the simulation also

added a penalty in run-time for all jobs on hosts with low leftover capacity. The results

from the simulation is also a low scale example to demonstrate the different approaches.

In reality, a job won’t take a few seconds, but often several minutes and the queue time
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and workflow run-time will therefore be a lot longer than in this simulation. Saving a

second might not seem like a lot, but when this is used in a larger scale, the time saved

will be more significant.

4.10.8 Further development of the simulation

In most exploratory assignments there are limited time, which often is part of drawing the

line to where the research has to stop. While creating the simulation, a lot of further

exploration potential and improvement potential was discovered and with more time,

these would have been prioritized. The first step to improving the simulation is to include

a run-time penalty to all jobs on a host with little left-over capacity. This will reward

approaches which distribute jobs more evenly such as the worst-fit and the ROST

algorithm.

Furthermore, the input jobs variation is limited. In other scenarios the job sizes might

even be bigger than the smallest hosts can handle, and how the different algorithms will

be affected by this is interesting to investigate further. Different job input has as shown

caused variations to the time used by the individual algorithm, but it can also affect how

well it performs compared to the others. Providing the simulation with hard-coded input

flows with different type of edge cases is also interesting to investigate. Observing these

results to see how the ROST algorithm’s results are affected by such edge cases in

comparison to the other approaches is very interesting.

Another addition to the simulation would be to increase the case scenario to be more

similar to real scenarios with more and bigger jobs and running it continuously to

observe the results over time. It would also be interesting adding a delay every now and

then before new jobs enter the queue to observe how changing back to the worst-fit

algorithm would affect the ROST algorithm results.

Investigating the potential around resource sharing would also be interesting. If one

job use more resources in the first minute, while another job uses more resources in the
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last minute, placing these together will create a synergy. Furthermore, as the bins can

be printed continuously during the placement of the items, it can be interesting to create

jobs and bins with different dimensions than the ones chosen and from there observe

which of them are bottlenecks in the system.

One thing that is lacking in the simulation is a measuring unit for optimal placement.

The run-time of a complete pipeline is a good unit for comparing how this will work in a

CI system, but it would be interesting to get more data such as a unit to investigate

optimal placement. This would provide a better way of analysing how each item is

placed using the different approaches. This simulation is seen in a macro view, where

the pipeline is analysed as a whole, but investigating each individual bin and job more

closely could lead interesting observations.

4.11 Chapter summary

This chapter started with deciding what pieces of software testing would fit as an item

and what dimensions would be used in a bin. A job was selected as the item and the

dimensions were set to CPU and RAM as these were discovered to be the most

common bottlenecks in a CI system. From there, different bin-packing approaches were

analysed to find one that fits with automatic software testing. Many differences between

the two concepts were discovered leading to the conclusion that not one algorithm would

fit perfectly by itself. The approach chosen to further investigate was a combination of

two bin-packing algorithms, the worst-fit and the best-fit depending on the queue state. A

little inspiration were also used from the optimal job scheduling approach to top it all off.

A case scenario were created and a simulation to test the approach. It was then

compared to a best-fit, worst-fit, a first-fit combined with job scheduling approach and a

hard-coded approach based on the solution that CI systems use today.

The ROST algorithm starts with an optimal job scheduling approach which puts one

item in each bin, starting with the fastest one. When each bin has one item, the worst-fit

algorithm is used as long as there is more room to fit more items. When the next-item
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don’t fit, the algorithm is switched to a best-fit approach, to fully utilize the rest of the bin

space for the upcoming items.

The ROST algorithm was shown through the simulation to be just as good or better

than the other approaches when the run-time of a full workflow was measured. The

simulation, however, lacks the run-time penalty on items which is running in bins with low

capacity, which is assumed to provide better results for the worst-fit and ROST

algorithm, because they spread items out more evenly among the hosts. The simulation

could still be improved to cover more cases and show more detailed results, but it overall

gave an impression of how the ROST algorithm could work in a continuous integration

system.
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5 Discussion

In this chapter, the path that has been selected will be discussed and reflected upon.

This section is more about the journey taken on this exploratory adventure, than the

actual results. How and why did we end up here?

5.1 A bin-packing approach, colored by software testing

The simulation shows that using bin-packing in general improves the results by a lot

compared to a hard-coded approach, which is the common way of doing things today.

The ROST algorithm shows even better results than the pure bin-packing approaches by

some. The simulation is, however, a very minimized example, and the differences may

be even bigger in a real size scenario. Saving a second in an approach that takes

around 30 seconds can in a bigger scale be minutes and as Bell from CircleCI stated in

their machine vs queue cost analysis: ”allowing queue times of more than 1 minute is

like valuing your developers’ time at less than a dollar an hour” (Bell, 2016). The drastic

reduction in run-time from the hard-coded approach to the bin-packing approaches

shows that if more items fits in each bin, it will provide more space for more jobs,

therefore reducing queue time and increase efficiency.

The results are overall colored by the fact that I choose to hold on to the bin-packing

concept even though it at times seemed to not properly fit into this assignment. The

solution in the end seems to fit, but during the process there were a lot of times that the

path I had chosen was in doubt. At some point during the research period, it was

discovered that a regular bin doesn’t match with how computer resources are packed.

Thankfully the vector bin-packing concept was discovered shortly after, putting the

assignment back together after it nearly fell apart. Later on, when the job scheduling

problem was discovered, the bin-packing approach again looked to be less relevant than

job scheduling due to the time concept of jobs finishing and being removed after

completion. Instead of completely changing paths, however, it was decided that the time

spent on exploring bin-packing couldn’t go to waste, and the goal was therefore to find a
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model that could use both of the approaches.

Something else that strongly affected the results was the desire to stay true to the

software testing concept over forcing bin-packing to fit straight in. The differences

between bin-packing and software testing were many, causing more doubt around the

whole bin-packing concept, but in the end, it was incredibly important to not make a fake

scenario where everything would fit perfectly and instead tweak the algorithms to fit

software testing over the other way around.

5.2 A challenging, but educational journey

The doubts to the concept experienced along the way also caused doubt around the

exploring research approach. Nevertheless, in the end, an exploratory approach was

exiting as I got challenges along the way to handle, and had to be creative to find new

ways of approaching the initial idea. The results look very promising for further

exploration and implementation, and the model and approach is more interesting than

simply using an existing bin-packing algorithm within a CI-system. An exploratory

assignment opens up more room to be creative, and discoveries can be more surprising

than in a comparative study where there is a bigger understanding of what will happen.

Choosing an exploratory assignment has also put its marks on the results. There was

as mentioned several times that the path taken was doubted and it was time consuming

to continuously discover new concepts that might fit better or concepts by bin-packing

and continuous integration that didn’t go well with each other. The exploratory approach

was interesting and a lot of new discoveries were made along the way, but the short time

available forced the assignment back onto a straighter path than expected in the

beginning. From experience with video games, it is common to start by selecting the

wrong path to make sure that every part of the map is properly explored instead of

rushing to the goal. It is often tempting to do the same while approaching a subject in an

exploratory way. Unfortunately, the time period available were too short to be able to

84



investigate every corner. The exploration into the task had to come to an end due to lack

of time.

It was challenging trying to find a whole new way of approaching the problem with

such short time. One issue with an exploratory assignment is that you don’t know what

you will find, or if something usable is discovered at all. The exploration had to come to a

halt after discovering one suitable approach as there was no time to look further after

better approaches. There are several other bin-packing algorithms for instance that

haven’t been properly investigated and we also barley touched the surface of the job

scheduling approach. There are also plenty of potential bin dimensions that could have

been discussed more closely or even tested out in the simulation, but time is a constraint

that is hard to get around.

Though challenging, I still think the exploratory approach was the right way of

approaching this subject. In the beginning, it didn’t seem right to see this as an

exploratory assignment, as the immediate idea was that using bin-packing would be

perfect and that it would solve all the problems. On the contrary, when looking at the

details, it became clear that this wasn’t a perfect match. The project started to look more

like puzzle-solving trying to solve new problems using existing tools (Kuhn, 1962). The

time frame was challenging, but the results became, in my opinion, more interesting than

they might have been with a comparative approach. In the end, the path taken lead to an

interesting assignment, and I would have chosen the same again if I started over, though

having more time could have pushed the project even further towards implementation.

5.3 Combining the concepts: software testing and bin-packing

Bin-packing has been used for many years, mostly for physical packing, but also within

the IT world. It has, however, not been used within software testing. The reason is, I

believe, due to the mismatches between the two concepts and the complex choices that

have to be made before it can easily be used. When experiencing many challenges to

using a concept and implementing it into a solution, it might take a while before it is
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prioritized by the CI providers. However, the simulation shows that even using pure

bin-packing algorithms with adding the job removal concept and taking the job size

variation into account improves the situation by a lot because the host machine

resources are better utilized. Therefore, it might seem that prioritizing this will provide

much value for the customers, however, the concept needs to be explored a bit further

before it is easier to use for the customers.

Software testing using a continuous integration system seen through bin-packing

goggles is about optimally placing jobs onto runners or agents in order to utilize all the

resources as efficiently as possible. The differences, however, are many. Firstly, the

jobs are being removed after they have finished their tasks compared to regular

bin-packing where the goal is simply to pack all items and close the box. Secondly, the

job sizes may vary over time, which is also highly unlikely within regular bin-packing.

Third, there is a finite number of bins where the bin sizes often vary in sizes. Lastly, the

resources cannot be stacked like in regular bin-packing, the problem therefore has to be

approached as a vector bin-packing problem. All these differences makes it hard to

approach this as a simple bin-packing problem and all of these aspects have to be taken

into consideration to make the concepts fit. It is hard to stay true to the directions set

purely by bin-packing using one algorithm to place the items. This assignment has

therefore taken a turn, it’s own path where the concept ”bin-packing” still has been used,

but with a twist to make sure to address the issues with combining it with software

testing.

The complex choices along the way is also part of why I believe this combination

hasn’t been promoted much elsewhere. Although the goal is a utopia where every item

fits perfectly alongside the others, the reality doesn’t always reflect this. Choosing the

best algorithm for this task was difficult as a single one didn’t perfectly fit, and in the end

a combination of two algorithms was chosen as the best option. Nevertheless, there

exist other algorithms that haven’t been addressed in this paper, which might be an even

better fit. The trigger conditions to switch between the algorithms also has to be selected
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based on conditions which might vary for individual companies. On top of choosing

algorithms, the most complex choice lays with setting the individual resource

requirements for each individual job. There could be numerous jobs in a pipeline and

each job has to be evaluated for each individual resource to best utilize the resources.

This brings us to another complex choice, the dimensions to use. There are plenty of

possible dimensions, some may be bottlenecks, and some may not be and if too many is

selected, the complexity of selecting the best place to put an item increases as each

dimension has to be evaluated. Which ones are more important to utilize better and

which ones can be neglected? This is a difficult task and the choices may vary from

company to company and even from job to job based on what the jobs are doing.

Even though the resources will be better utilized in the end, it may seem that the path

to achieve it is highly resource demanding and wont pay off for a very long time where

the alternative is adding more bins, or in this case, hosts. This is, however, a costly

investment both financially, but also environmentally and utilizing all resources better

should be a prioritization. Nevertheless, the concept needs to grow into something more

concrete before it is optimal to implement it as there are still loose threads and problems

that aren’t solved.

The results of this assignment is also based on the decision to focus on self-hosted

on-premise hardware as hosts. The cloud is as mentioned more flexible and scalable

and can already utilize the resources well by creating runners or agents based on the

job’s needs instead of having a constant size. Cloud instances, however, aren’t free, and

while it might be cheaper the first couple of years, owning the hardware is usually

cheaper in the long run. As mentioned, there are also security aspects that needs to be

considered while using the cloud as the developers don’t fully have control of the cloud

units, where the data is stored and where the data is transported. Another question is,

how does the CI system handle cloud instances that have finished their jobs, do they

stay online and under utilized or are they shut off before creating a new instance to fit

perfectly for the next job? Automatically adjusting a cloud instance size as the job size
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varies can also be difficult. Cloud auto-scaling might therefore also be interesting to

explore further and optimize, but this hasn’t been a focus in this project.

5.4 Towards improved software testing

In the end, is using bin-packing to better utilize resources within a continuous integration

system feasible? The short answer is: ”no”. There are a lot of differences between the

pure concept of bin-packing and software testing, but with some adjustments, the

answer could be, ”yes”. The concept alone doesn’t cover all the aspects required by

software testing, but if one take the finite bins of different sizes, the item size variations,

the job removal and the bin size variation into account, it seems possible. The

implementation, however, can be highly complex due to all the choices that has to be

made. Selecting dimensions, algorithms, trigger conditions and job requirements

requires a lot of time and observations of the system to make the best choices.

In a world with limited resources, it is always important to focus on utilizing resources

better. In this case, it comes down to making developers more effective and utilizing

computer hardware better. Developer waiting time is an expensive resource and

hardware itself is also a costly resource. Buying more hardware is an expensive and

environmentally negative solution to decrease CI job queue time and better resource

utilization should be a priority.

This project should be seen as a part of a bigger project where the end goal is

implementing an easy to use, resource optimizing solution into a CI system. There are

still more work that needs to be done, more decisions that needs to be made and more

paths that needs to be explored.

5.5 Future work

There are often several other factors that come to play when selecting an agent for a job.

For instance different software, OS, or other hardware than what was explored in this
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assignment. Typical bottlenecks in a CI system is something that can be explored

further, but how to handle it in the setup typically won’t differ much from what has been

discussed in this assignment as Kubernetes has the option to add non-Kubernetes

built-in resources.

One of the biggest problems discussed in this assignment is the difficulties of

assigning the correct amount of resources to each individual job. Something that would

make this approach more usable and easier to implement, is to add a machine learning

concept to the adjustable variables. The system can learn and adjust by itself based on

wishes set by the developers. Each job can for instance have some standard resource

limits and based on the outcome, the system can either give more or less resources to

the jobs. If the developers want the jobs to run as fast as possible, the system can adjust

until it finds the point where adding more resources doesn’t change anything and set the

limit there. On the other hand, if the developers want the jobs to just have enough

resources to run as much as possible at the same time, the resource limit can be set just

beyond the breaking point where less resources would cause errors. Adding this to the

system will make the approach much more usable for the developers as it is a lot easier

to set up. This will remove much of the complexity, and the usefulness of optimizing the

resource utilization is therefore much easier to vouch for.

The job size variation has only been briefly touched upon in this assignment. The job

size variation is an important focus when it comes to utilizing all resources in the best

possible way. To properly decide how much space a job require, it is important to see

how the resource usage varies over time in a continuous integration system. If, for

instance, resource usage goes up at some point, and other jobs have filled the remaining

space on the host already, the job requiring more resources might at worst get

cancelled. It is therefore important to figure out when to allocate more or less resources

to a job to make sure it has enough available at the point when the size changes while

still not setting aside resources which can be used by other jobs. How to handle this is

something that requires more research as this approach doesn’t consider increasing
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resource requirements.

In this paper I’ve explored the usefulness of using bin-packing in system-testing, but

actually implementing it is a job for the future. The possibility of implementation has been

briefly discussed, it seems possible, but issues often don’t present themselves before

the implementation process. Running the algorithms in real scenarios might also unveil

advantages or disadvantages that haven’t been discovered through this process, and

watching the project come to life and observing it over time will be interesting.

There are other ways of making a continuous integration system more effective than

utilizing resources better. Adding more hosts to the system has been mentioned, but the

downsides to this is the cost both financially and environmentally. Another simpler way

of increasing efficiency is to make sure the test order is optimal. It can for instance be

better to place tests that fail often early in the pipeline to stop all other tests before they

use resources unnecessarily. Placing jobs that have a lot of dependencies early can

also grant advantages such as queuing more jobs faster and therefore possibly complete

the pipeline faster. Splitting a job into smaller jobs is also something that can improve

the situation, as it’s easier to fit more sand in a jar than rocks or pebbles. This, on the

other hand, requires that the hosts don’t have hard-coded limits to improve the situation.

Reducing the amount of bugs or test the code before it is run through the CI system will

also ensure that the pipeline fails less often and therefore cause fewer necessary runs of

a pipeline. Another improvement which will increase CI efficiency is to make sure that

unnecessary plugins and software isn’t installed every time a job runs as the setup

usually is what takes the most time. Despite all the other improvement areas mentioned,

using bin-packing for placing jobs optimally onto hosts seems to be a huge improvement

in comparison to a hard-coded approach and can therefore be a huge step in the right

direction of increasing efficiency.

Using the cloud has also been briefly discussed in this assignment, and as the cloud is

more flexible than using on-premise resources, it might be interesting to investigate what
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advantages using the cloud as agents instead of on-premise hosts will grant. There

might, however, be resource utilization issues using the cloud as well, and on top of that,

a lot of developers prefer or require on-premise hardware to run their pipeline for

different reasons. Some companies create their own hardware and have to test

specifically on that, or the price and security factor can be the reason why some choose

to use the CI system with on-premise hardware. Nevertheless, it might be interesting to

see if there are improvement potential to using bin-packing for better resource utilization

in a cloud setting as well.
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6 Conclusion

The goal of this project was to: explore the feasibility of applying bin-packing for

optimizing resource utilization in software testing. Its possible advantages and

disadvantages has been critically investigated and a novel model, which addresses

relevant shortcomings has been present.

A non-trivial answer to selecting a placement algorithm in a CI system was hard to

determine. A lot of bin-packing algorithms exist and some of them have been discussed

in this project. The many differences between bin-packing and software testing did at

many times cause doubt during the process, but solutions were found which pushed the

project forward. These differences lead to the realization that a single bin-packing

algorithm isn’t a perfect fit into the software testing concept, but that combining several

approaches can address the gaps identified in this paper.

One of the most significant differences between bin-packing and software testing is

that in software testing, items are removed from a bin after a certain amount of time.

When a software test finishes, it opens up room to place new items in the bins. In

addition, software test job requirements may vary over time, whereas in bin-packing,

items are rigid and constant. Furthermore, bin-packing is about packing the given items

into as few bins as possible, but in software testing, it is about finishing the most jobs as

fast as possible. Finally, since software testing in CI is about optimizing several

resources rather than just physical space, a vector-based bin-packing method must be

applied.

This projects, like any research, has opened many new doors, but also closed others.

It has been shown that bin-packing in general will shorten the required time to run a

continuous integration pipeline and that the model presented, the ROST algorithm, is just

as good or better than existing bin-packing algorithms.
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The ROST algorithm is a combination of several approaches. The first step of the

approach is to use an optimal job scheduling approach to put one item in each bin,

starting with the fastest one. Secondly, the bin-packing algorithm called worst-fit is used

to distribute items evenly out on the hosts. When the next item doesn’t fit in any bin, the

algorithm is switched to another bin-packing algorithm, the best-fit algorithm. This is

used to place the final jobs onto hosts in order to optimally utilize the remaining

resources. If, however, the next job fits in more than half of the available bins, the

approach switches back to the worst-fit algorithm.

There are still some challenges to handle before implementing this into a CI system.

Every job has to be assigned an amount of resources, and setting the correct limits are

critical to fully utilize all available resources. This requires a lot of knowledge about the

jobs and where the critical resource limits are. Further development is required to

investigate if this could be automated using machine learning.

In the end, the approach according to this research, seem implementable as the

auto-scaling using Kubernetes already provides most of the building blocks. This

approach has also shown, through the simulation, to provide great advantages to better

resource utilization and workflow efficiency in comparison to the solution most commonly

used for CI systems today.
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7 Appendix

7.1 The simulation

1 from datac lasses impor t da tac lass

2 impor t th read ing

3 impor t t ime

4 from t im e i t impor t de f au l t _ t ime r as t imer

5 from datet ime impor t t imede l t a

6 impor t random

7 from p r e t t y t a b l e impor t Pre t tyTab le

8 impor t os

9

10

11 c lass _Bin ( ) :

12 def __ i n i t __ ( se l f , cpu , ram , num, clock_speed ) :

13 s e l f . f u l l _ cpu_capac i t y = cpu # The f u l l capac i t y i s set

as we l l as one va r i ab l e t ha t w i l l vary based on i tem

content

14 s e l f . f u l l _ ram_capac i t y = ram

15 s e l f . cpu = cpu

16 s e l f . ram = ram

17 s e l f .num = num

18 s e l f . i tems = [ ]

19 s e l f . clock_speed = clock_speed

20

21

22 def __repr__ ( s e l f ) :

23 re t u rn s t r ( s e l f )

24
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25

26 def __str__ ( s e l f ) : # Draw bin showing capac i t y

27 bin_drawing = ( ” \ n ” + ” ” + ” _ ” * s e l f . f u l l _ cpu_capac i t y

+ ” \ n ” )

28 f o r i i n range ( s e l f . f u l l _ ram_capac i t y ) :

29 i f i == s e l f . ram :

30 bin_drawing += ” | ” + ” ¯ ” * ( s e l f .

f u l l _ cpu_capac i t y − s e l f . cpu ) + ” | ” + ” ” * (

s e l f . cpu−1) + ” | ” + ” \ n ”

31 e l i f i > s e l f . ram :

32 bin_drawing += ” | ” + ” ” * ( s e l f .

f u l l _ cpu_capac i t y − s e l f . cpu )+ ” | ” + ” ” * (

s e l f . cpu−1) + ” | ” + ” \ n ”

33 else :

34 bin_drawing += ” | ” + ” ” * ( s e l f .

f u l l _ cpu_capac i t y ) + ” | ” + ” \ n ”

35 bin_drawing += ( ” ” + ” ¯ ” * s e l f . f u l l _ cpu_capac i t y + ” \ n ”

)

36 re t u rn bin_drawing

37

38

39 def remove_item ( se l f , i tem ) :

40 runt ime = i tem . runt ime / s e l f . clock_speed

41 t ime . sleep ( runt ime / 2 ) # a f t e r h a l f the t ime reduce

resource usage

42 cpu_reduced = False

43 ram_reduced = False

44 i f i tem . cpu > 1:

45 cpu_reduced = True

46 s e l f . cpu += 1
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47 i f i tem . ram > 1:

48 ram_reduced = True

49 s e l f . ram += 1

50 t ime . sleep ( runt ime / 2 )

51 s e l f . i tems . remove ( i tem )

52 i f cpu_reduced :

53 s e l f . cpu += ( i tem . cpu−1)

54 else :

55 s e l f . cpu += i tem . cpu

56 i f ram_reduced :

57 s e l f . ram += ( i tem . ram−1)

58 else :

59 s e l f . ram += item . ram

60

61

62 def place_i tem ( se l f , i tem ) :

63 s e l f . i tems . append ( i tem )

64 s e l f . cpu −= i tem . cpu

65 s e l f . ram −= item . ram

66 countdown = thread ing . Thread ( t a r ge t = s e l f . remove_item ,

args =( item , ) )

67 countdown . s t a r t ( )

68

69

70 c lass _Job ( ) :

71 def __ i n i t __ ( se l f , cpu , ram , num, j ob_ l eng th_ fac to r ) :

72 s e l f . cpu = cpu

73 s e l f . ram = ram

74 s e l f .num = num

75 s e l f . runt ime = ( cpu+ram ) * j ob_ l eng th_ fac t o r
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76

77 def __str__ ( s e l f ) :

78 re t u rn f ” I tem { s e l f .num} has requirements : cpu : { s e l f . cpu

} , ram : { s e l f . ram } ”

79

80

81 @dataclass

82 c lass _BinVar iab les :

83 ava i l ab le_b ins : l i s t

84 bin_ i tems = [ ]

85

86

87 def _c rea te_ tes ts ( j ob_ l eng th_ fac to r = 10) −> None : # Random

generate 20 jobs w i t h i n the given i n t e r v a l values

88 f o r i i n range (20) :

89 _BinVar iab les . b in_ i tems . append (

90 _Job ( cpu = random . rand i n t (1 ,3 ) , ram = random . rand i n t

(1 ,4 ) , num= i , j ob_ l eng th_ fac t o r = j ob_ l eng th_ fac to r )

91 )

92

93

94 def _create_b ins ( ) −> None :

95 _BinVar iab les . ava i l ab l e_b ins = [

96 _Bin ( cpu = 6 , ram = 8 , num = 1 , clock_speed =4.2) ,

97 _Bin ( cpu = 8 , ram = 16 , num = 2 , clock_speed =4.4) ,

98 _Bin ( cpu = 8 , ram = 16 , num = 3 , clock_speed =4.1) ,

99 _Bin ( cpu = 12 , ram = 32 , num = 4 , clock_speed =4.6)

100 ]

101

102

101



103 def _ be s t _ f i t ( ) −> None :

104 a l l _ b i n s = _BinVar iab les . ava i l ab l e_b ins

105 f o r i tem in _BinVar iab les . b in_ i tems :

106 min_remaining_space = 999999

107 f i t t i n g _ b i n = None

108 whi le f i t t i n g _ b i n == None :

109 f o r agent i n a l l _ b i n s :

110 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

111 remining_space = ( agent . cpu − i tem . cpu ) + (

agent . ram − item . ram )

112 i f remining_space < min_remaining_space :

113 min_remaining_space = remining_space

114 f i t t i n g _ b i n = agent

115 i f f i t t i n g _ b i n != None : # found best b in

116 f i t t i n g _ b i n . p lace_i tem ( i tem )

117 # _c rea te_p re t t y_ tab le ( )

118 else : # Item doesn ’ t f i t i n any b in

119 t ime . sleep (1 )

120

121

122 def _wo r s t _ f i t ( ) −> None :

123 a l l _ b i n s = _BinVar iab les . ava i l ab l e_b ins

124 f o r i tem in _BinVar iab les . b in_ i tems :

125 max_remaining_space = −1

126 wo r s t _ f i t _ b i n = None

127 whi le wo r s t _ f i t _ b i n == None :

128 f o r agent i n a l l _ b i n s :

129 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

130 remining_space = ( agent . cpu − i tem . cpu ) + (

agent . ram − item . ram )
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131 i f remining_space > max_remaining_space :

132 max_remaining_space = remining_space

133 wo r s t _ f i t _ b i n = agent

134 i f wo r s t _ f i t _ b i n != None : # ava i l ab l e b in

135 wo r s t _ f i t _ b i n . p lace_i tem ( i tem )

136 # _c rea te_p re t t y_ tab le ( )

137 else : # no ava i l ab l e b in

138 t ime . sleep (1 )

139

140

141

142 def _opt imal_ job_schedul ing ( ) −> None : # A f i r s t − f i t approach

wi th b ins sor ted by c lock speed

143 a l l _b i ns_so r t ed = sor ted ( _BinVar iab les . ava i l ab le_b ins , key=

lambda tab le : t ab l e . clock_speed , reverse=True )

144 f o r i tem in _BinVar iab les . b in_ i tems :

145 placed_i tem = False

146 whi le not placed_i tem :

147 f o r agent i n a l l _b i ns_so r t ed :

148 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

149 agent . p lace_i tem ( i tem )

150 placed_i tem = True

151 # _c rea te_p re t t y_ tab le ( )

152 break

153 i f not placed_i tem :

154 t ime . sleep (1 )

155

156

157 def _two_jobs_in_each_bin ( ) −> None :

158 a l l _ b i n s = _BinVar iab les . ava i l ab l e_b ins
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159 f o r i tem in _BinVar iab les . b in_ i tems :

160 ava i l ab l e_b i n = None

161 whi le ava i l ab l e_b i n == None :

162 f o r agent i n a l l _ b i n s :

163 i f len ( agent . i tems ) < 2:

164 agent . p lace_i tem ( i tem )

165 # _c rea te_p re t t y_ tab le ( )

166 ava i l ab l e_b i n = agent

167 i f ava i l ab l e_b i n == None :

168 t ime . sleep (1 )

169

170

171 def _ ros t_a lgo r i t hm ( ) −> None :

172 a l l _ b i n s = _BinVar iab les . ava i l ab l e_b ins # S ta r t w i th a job −

schedul ing (1 i tem in each bin , s t a r t w i th f a s t e s t b in )

173 a l l _b i ns_so r t ed = sor ted ( a l l _b i ns , key=lambda tab le : t ab l e .

clock_speed , reverse=True )

174 a l l _ i t ems = _BinVar iab les . b in_ i tems

175 f o r index i n range ( len ( a l l _ b i n s ) −1) :

176 a l l _b i ns_so r t ed [ index ] . p lace_i tem ( a l l _ i t ems [ index ] )

177 wo r s t _ f i t _ a l go r i t hm = True

178 f o r index i n range ( len ( a l l _ b i n s ) −1 , len ( a l l _ i t ems ) ) : # Place

the next i tems using worst − f i t or best − f i t depending on

the remaining b in space .

179 i f wo r s t _ f i t _ a l go r i t hm and not

_sw i t ch_ to_bes t_ f i t _a l go r i t hm ( a l l _ i t ems [ index ] ) :

180 _p lace_wo rs t_ f i t ( i tem = a l l _ i t ems [ index ] , a l l _ b i n s =

a l l _b i ns_so r t ed )

181 e l i f wo r s t _ f i t _ a l go r i t hm and

_sw i t ch_ to_bes t_ f i t _a l go r i t hm ( a l l _ i t ems [ index ] ) :
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182 p r i n t ( ” Swi tch ing to best f i t ” )

183 wo r s t _ f i t _ a l go r i t hm = False

184 _p l ace_bes t_ f i t ( i tem = a l l _ i t ems [ index ] , a l l _ b i n s =

a l l _b i ns_so r t ed )

185 e l i f not wo r s t _ f i t _ a l go r i t hm and not

_sw i t ch_ to_wo rs t_ f i t _a l go r i t hm ( a l l _ i t ems [ index ] ) :

186 _p l ace_bes t_ f i t ( i tem = a l l _ i t ems [ index ] , a l l _ b i n s =

a l l _b i ns_so r t ed )

187 e l i f not wo r s t _ f i t _ a l go r i t hm and

_sw i t ch_ to_wo rs t_ f i t _a l go r i t hm ( a l l _ i t ems [ index ] ) :

188 wo r s t _ f i t _ a l go r i t hm = True

189 p r i n t ( ” Swi tch ing to worst f i t ” )

190 _p lace_wo rs t_ f i t ( i tem = a l l _ i t ems [ index ] , a l l _ b i n s =

a l l _b i ns_so r t ed )

191 else :

192 ra i se RuntimeError ( ” Acc iden ta l case scenar io occured ,

one or more cases aren ’ t covered i n the i f

statement ” )

193

194 def _sw i t ch_ to_bes t_ f i t _a l go r i t hm ( i tem : _Job ) −> bool :

195 i t em_ f i t s = False

196 f o r agent i n _BinVar iab les . ava i l ab l e_b ins :

197 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

198 re tu rn False

199 re tu rn True

200

201

202 def _sw i t ch_ to_wo rs t_ f i t _a l go r i t hm ( i tem : _Job ) −> bool :

203 i tems_f i t s_ in_num_bins = 0

204 f o r agent i n _BinVar iab les . ava i l ab l e_b ins :

105



205 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

206 i tems_f i t s_ in_num_bins += 1

207 i f i tems_f i t s_ in_num_bins > ( len ( _BinVar iab les . ava i l ab l e_b ins

) / 2 ) : # I f i tem f i t s i n more than ha l f o f the b ins

208 re tu rn True

209 re tu rn False

210

211

212 def _p lace_wo rs t_ f i t ( i tem : _Job , a l l _ b i n s : l i s t ) −> None :

213 max_remaining_space = −1

214 wo r s t _ f i t _ b i n = None

215 f o r agent i n a l l _ b i n s :

216 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

217 remining_space = ( agent . cpu − i tem . cpu ) + ( agent . ram

− item . ram )

218 i f remining_space > max_remaining_space :

219 max_remaining_space = remining_space

220 wo r s t _ f i t _ b i n = agent

221 i f wo r s t _ f i t _ b i n != None : # ava i l ab l e b in

222 wo r s t _ f i t _ b i n . p lace_i tem ( i tem )

223 # _c rea te_p re t t y_ tab le ( )

224 else : # no ava i l ab l e b in

225 ra i se RuntimeError ( ”No bins ava i l ab l e should not occur

i ns i de the worst − f i t a lgor i thm , f i x e r r o r s ” )

226

227

228 def _p l ace_bes t_ f i t ( i tem : _Job , a l l _ b i n s : l i s t ) −> None :

229 min_remaining_space = 999999

230 f i t t i n g _ b i n = None

231 whi le f i t t i n g _ b i n == None :
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232 f o r agent i n a l l _ b i n s :

233 i f i tem . cpu < agent . cpu and i tem . ram < agent . ram :

234 remining_space = ( agent . cpu − i tem . cpu ) + ( agent .

ram − item . ram )

235 i f remining_space < min_remaining_space :

236 min_remaining_space = remining_space

237 f i t t i n g _ b i n = agent

238 i f f i t t i n g _ b i n != None : # found best b in

239 f i t t i n g _ b i n . p lace_i tem ( i tem )

240 # _c rea te_p re t t y_ tab le ( )

241 else : # Item doesn ’ t f i t i n any b in

242 t ime . sleep (1 )

243

244

245 def _time_approach ( f unc t i on ) −> None :

246 s t a r t = t imer ( )

247 func t i on ( )

248 empty_bins = 0

249 whi le empty_bins != 4 :

250 empty_bins = 0

251 f o r agent i n _BinVar iab les . ava i l ab l e_b ins :

252 i f len ( agent . i tems ) == 0:

253 empty_bins += 1

254 end = t imer ( )

255 re tu rn t imede l t a ( seconds=end− s t a r t )

256

257

258 def _c rea te_p re t t y_ tab le ( ) −> None :

259 os . system ( ’ c l ea r ’ ) # c l s on Windows , c l ea r on unix

260 tab le = Pre t tyTab le ( )
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261 tab le . f ie ld_names = [ ” Agent 1 ” , ” Agent 2 ” , ” Agent 3 ” , ” Agent

4 ” ]

262 agents = _BinVar iab les . ava i l ab l e_b ins

263 tab le . add_row ( [ s t r ( agents [ 0 ] ) , s t r ( agents [ 1 ] ) , s t r ( agents [ 2 ] )

, s t r ( agents [ 3 ] ) ] )

264 p r i n t ( t ab l e )

265

266

267 def _main ( ) −> None :

268 _crea te_ tes ts ( j ob_ l eng th_ fac to r =15)

269

270 _create_b ins ( )

271 p r i n t ( ” Running ROST a lgo r i thm approach ” )

272 t ime_ros t_a lgo r i t hm = _time_approach ( _ ros t_a lgo r i t hm )

273 p r i n t ( ”ROST a lgo r i thm approach complete ” )

274

275 _create_b ins ( )

276 p r i n t ( ” Running hard−coded approach ” )

277 time_hard_coded = _time_approach ( _two_jobs_in_each_bin )

278 p r i n t ( ” Hard−coded approach complete ” )

279

280 _create_b ins ( )

281 p r i n t ( ” Running Worst− F i t approach ” )

282 t ime_wo r s t _ f i t = _time_approach ( _wo r s t _ f i t )

283 p r i n t ( ”Worst− F i t approach complete ” )

284

285 _create_b ins ( )

286 p r i n t ( ” Running Best− F i t approach ” )

287 t ime_bes t _ f i t = _time_approach ( _ be s t _ f i t )

288 p r i n t ( ” Best− F i t approach complete ” )
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289

290 _create_b ins ( )

291 p r i n t ( ” Running Optimal Job schedul ing approach ” )

292 t ime_job_schedul ing = _time_approach ( _opt imal_ job_schedul ing )

293 p r i n t ( ” Optimal Job schedul ing approach complete ” )

294

295 tab le = Pre t tyTab le ( )

296 tab l e . f ie ld_names = [ ” Hard−coded ” , ”Worst− F i t ” , ” Best− F i t ” , ”

Optimal Job−Schedul ing ” , ”ROST Algor i thm ” ]

297 tab l e . add_row ( [ time_hard_coded , t ime_wo rs t_ f i t , t ime_bes t_ f i t

, t ime_job_schedul ing , t ime_ros t_a lgo r i t hm ] )

298 p r i n t ( t ab l e )

299

300

301 i f __name__ == ” __main__ ” :

302 _main ( )
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