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PREFACE 

 

My motivation for choosing a project topic related to agriculture production derives from its 

primary function to our society. Though it is a subjective thought, developing efficient ways to 

bring food to the table seems meaningful. 

 

The work put behind the thesis has been a journey with hours of learning and challenging 

bumps to get past. There is an ocean of methods and details in the field of computer vision. 

To be able to navigate through it demands an understanding at a deeper level and a good 

portion of trial and error with agonizing code. 

 

I want to thank Sidney Pontes-Filho and Gustavo Mello for their insight and support under the 

writing of the thesis and for letting me join my fascination for growing plants with object 

detection.  
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ABSTRACT 

 

This thesis explores object detection with instance segmentation in relation to agriculture. For 

the purpose of discovering a detection model that could potentially boost robotic greenhouse 

harvesters with newer and improved detection accuracy. 

 

The project set out to validate a RGBD dataset of sweet pepper crops, train three instance 

segmentation models and compare the model performances. The RGBD dataset of sweet 

pepper crops was found to have good quality RGB and annotation files but was missing pixel 

values in the depth files. The models of Mask R-CNN, YOLACT and QueryInst was trained from 

scratch and with pretrained weights. Tuning the learning rate was initiated to improve model 

performance. The models were evaluated on the mean average precision (mAP) metric. 

 

QueryInst failed to produce a mAP higher than zero. Mask R-CNN and YOLACT produced mAP 

scores of 45% and 30.1% for mask predictions, and 42.4% and 33.3% for box predictions 

respectively. Mask R-CNN had a slightly better mAP score in both cases. Visualizing the models 

revealed that Mask R-CNN had several correct predictions, while YOLACT predicted fewer 

correct and failed to recognize smaller instances. The project aimed to utilize RGBD data and 

its depth values to produce results in 3D representation. This was realised with the depth 

information.  
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1 INTRODUCTION 

The introduction describes the problem statement, the proposed thesis' solution and defines 

the project plan. Recent research claims that agriculture is facing increased food insecurities. 

Developing accurate crop detection systems for greenhouse robots could be a key component 

to secure a stable food supply. 

 

 

1.1 Problem statement 
 

This section considers food insecurities at a global scale and narrows the problem down to 

crop detection challenges in greenhouses. The focus of the thesis is on object detection 

algorithms, though it emphasizes its research decisions in the scenario of harvesting robots in 

greenhouse environments. On the notion that robotization in greenhouses could prove to be 

beneficial at ensuring a steady food supply. Food insecurities are increasing because of climate 

change (IPCC, 2021) and the need to feed a growing population (UN, 2017). High-tech 

greenhouses are less impacted by weather and support food growing in places where there 

are limited arable land (Baudoin, et al., 2013, pp. 23-26). 

 

Emerging in greenhouse cultivation are robots that monitors and harvest crops to aid farmers 

with management. Robotic greenhouse harvesters have the potential to support greenhouse 

management but needs further development to be a viable option for farmers. The robots 

operate with computer vision to identify and locate crops from the rest of the plant. How well 

this task is performed depends on the accuracy of the detection system it uses to locate the 

crops. There are multiple systems based on different approaches, but the most prominent 

technique uses deep neural networks (DNN) to learn where the objects are (Kootstra, Wang, 

Blok, Hemming, & Henten, 2020). The performance of a DNN detection system is essentially 

based on the dataset it learns from and which model architecture it uses to detect the objects 

(Zaidi, et al., 2021). 

 

 

1.2 Proposed solution 
 

To improve the accuracy of a robotic harvester's detection system, the thesis proposes to 

investigate a newly developed detection model with higher performance. To ensure equal 

footing the newly developed architecture is compared to two established detection 

architectures. Preferably two detection architectures that has shown promise in agriculture 

crop detection tasks. To fit the greenhouse criteria, the three models should learn from a 

dataset with crops that are cultivatable in a greenhouse environment. To heighten the 

accuracy of the detection, the models should output results as instance segmentation and 
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three-dimensional (3D) information. Instance segmentation allows the model to distinguish 

multiple crops from each other with detailed pixel-level localization (Gu, Bai, & Kong, 2022). 

3D represented crops helps the harvester pick fruits in the 3D world and differentiate crops 

based on the additional depth information (Li, Feng, Qiu, Xie, & Zhao, 2022). The proposed 

solution hopes that the development of accurate detection systems can tilt the technology to 

be a profitable and efficient option for farmers. 

 

 

1.3 Project plan 
 

The project explores the topics of DNN, instance segmentation, RGBD (red, green, blue, depth) 

and 3D data in relations to agriculture practices. A RGBD dataset of sweet pepper crops was 

selected for training the models. The established models will be the Mask R-CNN and You Only 

Look at Coefficients (YOLACT) architectures. These were selected on the background of Mask 

R-CNN's regularly use in agriculture detection research and YOLACT's fast-based architecture, 

which stems from the popular You Only Look Once (YOLO) lineage. QueryInst was selected as 

the newer model for comparison due to its recent conception. The project's main experiments 

seek to follow the deep learning workflow and utilize transfer learning and learning rate tuning 

for optimal model performance. Where the models detect and mask the pixel values of 

multiple object instances in images and elevates the output to 3D information. The thesis will 

try to explain the technologies while justifying the choices that were made on the way.  

 

To summarize, the goal of the thesis is to explore object detection with instance segmentation 

in relation to agriculture. This is aimed to be realised by training and comparing the Mask R-

CNN, YOLACT and QueryInst architectures. The thesis will investigate these main tasks: 

• Validate the RGBD dataset of sweet pepper crops 

• Train Mask R-CNN, YOLACT and QueryInst 

• Evaluate and compare the model performances  
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2 BACKGROUND THEORY 

 

The following chapter will clarify the technologies and methods that the thesis is based upon. 

The chapter describes the task of object detection; how a machine learns to detect objects 

from images, and expand on the ideas of artificial intelligence, machine learning, computer 

vision and agriculture practices. 

 

 

2.1 Artificial intelligence 
 

For a greenhouse harvester to recognize sweet peppers, it needs to know what it should look 

for. This is learned by processing a dataset with numerous images that contain sweet peppers. 

The idea of learning has emerged with the objective of artificial intelligence (AI). The field of 

AI sets to build machines that replicates the human nervous system. This has been realized to 

some degree with mathematics and modern computer systems, but only for a limited fraction 

of what the human brain is capable of (Aggarwal, 2018, p. 1). A section of AI called machine 

learning has researched and developed methods that allow machines to learn from 

experiencing data. This has been the initiator for several modern learning techniques, where 

DNNs are at the point for what the thesis is investigating. 

 

2.1.1 Machine learning 
 

Machine learning (ML) learns patterns from a set of data samples, which can be used to predict 

patterns in new unfamiliar data. This has surfaced the prominent techniques of artificial neural 

networks (ANN) and deep learning (DL). The recent developments in computer power and the 

availability of data have been the springboard for their current success. Though ANNs are 

more complex and powerful than the simpler ML algorithms, they share similar processing 

principles. There are three prevailing ways of approaching learning in ML: Supervised, 

unsupervised and reinforced learning (Aggarwal, 2018, p. 2). The next paragraphs focus on 

supervised learning when performing object detection and explains how learning algorithm 

works. 

 

Supervised learning 

Detection models in supervised learning look at numerous labelled images to learn how to 

detect objects in unseen images. To set the context, supervised learning has applications for 

analysing financial markets, finding statistical patterns or speech recognition tasks to mention 

a few. This project focuses on image data and detection tasks. Object detection is a computer 

vision task that sets out to locate and identify certain objects from the surrounding 

environment in images. Supervised learning is the traditional strategy to do this, because of 
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its accurate predictions and its potential to automate manual work. The method relies on 

manually labelled datasets to pinpoint out what and where in the image the model should 

look. The image has tiny pixels in different colours and when combined can form structures 

and observable things in the image. These structures can be narrowed down to geometrical 

lines and shapes, which are called image features. A model can learn when these features are 

observable in an image, and therefore learn to recognize certain objects. This is accomplished 

by training the model on a labelled dataset (Elgendy, 2020, p. 6). 

 

A simple case of training a detection model 

To get a better overview of how the model learns and which components it contains, here is 

a short and compact explanation of the process. It starts by loading an image into a learning 

algorithm. This is termed training. For the model to learn which image features it should look 

at when predicting the location of the crops, it needs guidance. This is learned by predicting 

an outcome that gets evaluated and then the model's inner statistics are updated in an 

iterative manner to improve on its performance. This is denoted as an optimization problem, 

and the model essentially seeks to minimize the error between the predicted localization of 

crops and the actual labelled crops for each loop as seen from the Fig.1 example. 

 

 

Figure 1: How a simplified detection model works. (Images: Generated from the RGBD dataset). 

 

As shown in Fig.1, the prediction is compared with the ground truth in a component called the 

loss function. The prediction guessed on areas without any crops. This generates an error rate 

in the loss function, which the optimizer component seeks to minimize by sending an update 

that changes the network weights which is called backpropagation. The weights decide which 

features the model will focus on when looking at the input image, which in turn affects the 
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predicted outcome. These components repeat their process until a high model performance 

is achieved. This happens when the error rate is small, and it has reached a point called a 

converging model minimum (Goodfellow, Bengio, & Courville, 2019, pp. 99-105). This 

simplified training example serves to reveal the basic components of a detection model and 

their purposes. Details for each component will be explained further into the chapter. 

Extending on the methods of supervised learning, ANNs have in the last decade been on the 

forefront for this task. 

 

2.1.2 Artificial neural networks 
 

From the classic machine learning algorithms, the ANNs are superior at abstracting semantic 

information out of complex data structures (Aggarwal, 2018, p. 1). 

 

How the artificial neural network learns 

Inspired by the animal brain, an ANN, replicates the neurons in a biological brain with a 

network of connecting nodes. The biological brain is structured with nerve cells called neurons 

that are connected through a web of synapses. The synaptic channels send nervous signals 

between the neurons. The connections have varying strength, which gets stronger or weaker 

when the brain's organism is exposed to stimuli. This is how the brain learns. An ANN, Fig.2 

mimics the synaptic connections by designing layers of nodes with weighted connections to 

learn from input data (Aggarwal, 2018, pp. 1-5). 

 

 

Figure 2: Artificial neural network (Elgendy, 2020, p. 9). 

 

Network structure 

For a basic ANN, the nodes contain activation function and the internal components of input, 
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bias, weights and output. Following the stream of the input data, the data is multiplied with 

the weights, summed and passed forward to the activation function. These functions take the 

shapes of linear or nonlinear models that activates at certain threshold values (regarding the 

bias) to pass the data to the next layer. A multi-layered ANN has several hidden layers that 

does these computations to the data before sending it forward. Flowing the data forward in 

one direction between layers is called a feedforward network (Aggarwal, 2018, pp. 11-14). 

 

To be said, there is a difference between training and running the model. Running the model, 

stops the backpropagation process and allows the data to flow one way. This stops the loss 

function and optimizer from updating the weights. 

 

Loss functions 

The loss function calculates the error between the prediction and the ground truth by setting 

a number on how wrong the prediction is. A smaller loss equals a higher model accuracy. The 

two most common loss functions are the mean squared error (MSE) and cross-entropy. The 

MSE is best suited for regression and the cross-entropy exceeds on classification problems 

(Elgendy, 2020, pp. 68-73). 

 

Optimizers 

The optimizer takes the loss function error and strives to minimize it by updating the weights. 

The ANNs can contain millions of weights, which would take a supercomputer ages to find the 

perfect combination of weight values. The purpose of the optimizer is therefore to find a 

"good enough" combination of weights that generates practical predictions. There are various 

optimizers to choose from depending on the task and simplicity, where the technique of 

gradient descent stands as the prevailing approach for ANNs. Three versions have emerged 

from gradient descent (GD), batch (BGD), stochastic (SGD) and mini-batch (MB-GD) (Elgendy, 

2020, pp. 74-83) 

 

The challenges with batch gradient descent are that it may get stuck in local minima and that 

a too large batch size exhausts computer memory. At the start of training, the weights are 

randomly selected. This can make the optimizer minimize the error to local minima and miss 

out on a global minimum which provides lower error rates. The batch size is how many 

samples the computer takes into memory to process at a time. With larger datasets it is 

impractical to process all the samples at the same time. SGD mitigates local minima and is the 

go-to optimizer for ANNs. This is because it tries to improve one sample at a time. Though it 

may get stuck in periods of the training, its random initialization allows it to jump out of local 

minima and to potential global minima. It is fast but will only reach close to the global 

minimum. MB-GD is in-between BGD and SGD by allowing a set batch size to be processed 

(Elgendy, 2020, pp. 83-85). 
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For the ANN to be effective at learning it has been discovered that with more layers the 

network can have a higher performance. This has brought forth the design of DNNs and the 

term DL. 

 

2.1.3 Deep learning 
 

DL and DNNs have achieved performances that exceed human perception (Elgendy, 2020, p. 

10). Building on previous sections, the greenhouse harvester now has the means to process 

the data and learns by adjusting its weights for better crop detection performance. For it to 

recognize shapes and colours in an image it needs a method to make sense of the pixel values 

(a pixel is one small square in the image that contains a colour). This will help it to define 

geometrical shapes by combining pixel values and set the premise to learn to identify and 

locate a sweet pepper in an image. The method of convolutional neural network (CNN) stands 

in the base of most modern object detection algorithms, because of its high detection 

accuracy and fast computing speed (Elgendy, 2020, p. 11). 

 

Convolutional neural networks 

CNNs rely on multiple layers that build distinct shapes which increase in complexity for each 

successive layer. The first layer will focus on simple shapes as lines and edges. The next layer 

will combine previous layers and form more complex shapes as squares and circles. After 

several sequences recognizable features as leaf-like structures, bending stems and parts of 

fruits will appear. The architecture behind the CNN follows a similar design as the DNN. 

Multiple layers have neurons that activate at certain patterns. The weights between the layers 

are changed to improve the learning of features. This is calculating by the error in the 

prediction and backpropagated to update the weights. The difference is that it does feature 

extraction with convolutional layers as visualized in Fig.3 (Elgendy, 2020, pp. 102-107). 

 

 

Figure 3: Convolutional neural network (Elgendy, 2020, p. 103). 
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Convolutional layers look at small parts of the image and its pixel values to create a new 

modified image that serves as a feature map. They are not fully connected to each pixel in the 

input image but locally connected to a few pixels. This allows the algorithm to focus on specific 

features in the image by applying a filter to the locally connected pixel fields. The filter covers 

a given area by a set matrix size and slides over the image while doing calculations. These 

filters are the weights of the network, so they will be given a random value at initialization and 

be changed as the network learns. The filters have the purpose of amplifying features in the 

image and take out important information and put them into feature maps that the 

classification layer uses to make a prediction (Elgendy, 2020, pp. 108-120). This is the short 

explanation of how CNN functions. State-of-the-art object detection algorithms are built on 

the principles of the CNN architecture. 

 

2.1.4 Deep learning workflow 
 

The overall flow of a DL project is to train a model, analyse its results, change model 

parameters and repeat until an appropriate performance is met. DL models have many 

components that assemble into a system of possible outcomes. This makes it difficult to 

pinpoint out which exact component that generates a certain behaviour. Although, under 

model development there are established decisions that have a larger impact on the result. 

The decisions relate to the model's architecture, pre-processing of the dataset, performance 

metrics to analyse the results and hyperparameter tuning to achieve higher model 

performance (Elgendy, 2020, p. 145). 

 

Selecting the architecture 

The model's architecture derives from the purpose of the project and the desired model 

output, while the data format is based on the model architecture. The purpose of the thesis is 

to do object detection on a dataset of sweet pepper crops, where the object outputs are set 

to be of instance segmentation. These criteria determine which models that can be selected. 

 

Data formats and pre-processing 

DL models need specific data formats to be able to input the data and do processing on it. The 

data in a dataset would often need to be transformed into the data format the model 

understands. This could be to change the colour channels, resize the image shapes, normalize 

the pixel values to a range between one and zero or transform how the data is stored as a 

data type. The data formatting ensures that the input data is of the same base and is necessary 

to produce consistent results and make the model work properly. Getting the right data 

format, is usually settled by thoroughly inspecting the current data and then transforming it 

to the necessary format. There is a chance of human errors or faults from previous data 

handling, which can cause defective information in the dataset. Ensuring that the dataset 

shows what it is supposed to is a safety measure to ensure that the model works as intended 

(Elgendy, 2020, pp. 153-155). 
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Dataset splits 

For learner algorithms it is a routine to split the dataset into either training and testing or 

training, validation and testing. The rule of thumb is that the test data is apart from the sets 

used under training, hence, to ensure that the model gets evaluated on data that it has not 

seen before. The training set is for the model to extract features and learn weights. The 

validation set is for evaluating the model under training and is the initiator of changing the 

model parameters to enhance performance. The testing set is the final evaluation of the 

model performance. For a small dataset, the split itself is normally at 80/20 or 70/30 percent 

between training and testing (Elgendy, 2020, pp. 151-153). 

 

Performance metrics and behaviour 

The performance metric varies in line with the output goal of the model and is a comparison 

between the predicted outcome and the ground truth values. The ground truth values are the 

annotated datafiles that are linked to the image files in the dataset. For object detection the 

performance is calculated by an accuracy metric that compares the predicted area with the 

actual area where the object is in the image. How this metric works will be further specified 

later in the chapter. What makes a good or bad prediction is decided from the performance 

metric (Elgendy, 2020, p. 156). 

 

For DNNs, the performance can be affected by defects in the dataset, bottlenecks in the 

components or poor results because of under- or overfitting. The defects and bottlenecks 

could be exposed by unusual performance results and a long processing time. Problems like 

this could be mitigated by searching the code for errors and analyse each component and their 

behavioural response. Over- and underfitting is a common problem for bad performing 

models. Underfitting issues occurs when the model struggles to learn from the training set, 

while overfitting occurs when the model learns the data too good and is therefore inferior 

when presented with new images. The occurrence of these two states is acknowledged when 

comparing the training and validation error. If the training error is low and the validation error 

high, it can be presumed that the model is overfitting the data. Changing the hyperparameters 

may resolve to better performance. If the training and validation error is high, the problem 

could be that the model is too simple. Adding more layers to the network or training for a 

longer time lets the model go deeper into abstraction and thus detect with greater detail. 

Plotting a learning curve is a helpful tool to visualize the potential under- or overfitting over a 

set time period (Elgendy, 2020, pp. 167-169). 

 

Hyperparameters and tuning 

Hyperparameters and parameters are variables that change inside the DNNs, where 

parameters are modified by the network itself, hyperparameters are used to tune the settings 

of the network. Hyperparameters are defined before training is started and can be roughly 

grouped into hyperparameters that relates to network architecture, learning rate and 
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regularization techniques (Elgendy, 2020, p. 163). 

 

For the network architecture, the hyperparameters are the number of hidden layers, the 

number of neurons and the type of activation functions. The hidden layers define the depth 

of the network and is heavily coupled to the networks ability to learn features. If enough data 

is available, it is proven performance-wise favourable with a deeper network. Adding more 

neurons tend to mitigate problems with underfitting. For activation functions there are many 

available options, though when replicating an existing model, the functions are generally 

already selected to fit the model's design (Elgendy, 2020, pp. 163-164). 

 

The learning hyperparameters address how the network learns by approaching a minimal 

error and optimize the weights. The learning rate decides how many steps the optimizer takes 

when it is searching to find the lowest error rate. A large learning rate makes the optimizer go 

fast but may jump over points with low error rates. On the other hand, a small learning rate 

makes the model learn slowly and use time to achieve results (Elgendy, 2020, p. 164). 

 

Regularization is a technique that seeks to counteract problems with overfitting while training. 

This can be by reducing the importance of random weights, dropping out neurons from the 

training or augment the data so the model has a bigger pool of samples to learn from. The 

purpose of this is to make the network simpler and robust (Elgendy, 2020, pp. 177-180). 

 

2.1.5 Transfer learning 
 

Transfer learning is the idea of training a learner algorithm on a dataset with certain features 

and then transfer these learned weights over to training on a new dataset. Training takes time, 

starting from a point with already optimized weights saves training time. Larger datasets are 

directly connected to better results because it allows the learner algorithm to have a broader 

set of features to learn from. Transfer learning from a larger generalized dataset helps capture 

the basic geometrical shapes and figures that are often shared between objects. In cases 

where the dataset of interest contains few samples, transfer learning from a basic featured 

dataset raises the learner algorithm's results. This is the general idea of transfer learning, but 

it can be implemented in different parts of the model. Either as a pretrained feature extractor 

referred to as a backbone, a pretrained detector referred to as a head or to finetune a few of 

the already trained layers of the model (Elgendy, 2020, pp. 240-244). 

 

For CNNs that do features extraction and detection, the feature extraction part can potentially 

be pretrained and the detection part can be trained from scratch and vice-versa. A pretrained 

feature extractor has optimized its weights to find feature maps. How transferable these 

weights are to datasets with different objects depends on the geometrical similarities in the 

datasets. The generated feature maps increase in complexity as the model delves deeper into 

the network layers. In the model's early stages, the feature maps are from basic geometrical 
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shapes, while later stages recognize complex features specific for that dataset. Optimal results 

are produced when the pretrained dataset and the custom dataset share similarities. It is 

possible to freeze certain layers of the pretrained dataset, to keep the generalized early layers 

if the two datasets do not share similar complex features (Elgendy, 2020, pp. 244-250). 

 

Finetuning takes generalized weights from the feature extractor and trains the rest of the 

network from scratch. This is useful if the targeted dataset has few similarities to the 

pretrained dataset and if the targeted dataset is small. For a small dataset that is not like the 

pretrained dataset, the best approach is to freeze half of the early stages of the feature 

extractor and train the rest of the model from scratch. Because of the dataset's small size, 

finetuning the whole network could make it overfit the data.  (Elgendy, 2020, pp. 250-261). 

 

 

2.2 Computer vision 
 

Computer vision (CV) interweaves with DL by being a considerable part of AI development. CV 

sets out to imitate the human visual system by using sensing devices that captures the world 

around it. This visual information is saved as data that can be processed by a DNN (Elgendy, 

2020, pp. 4-8). 

 

2.2.1 Object detection 
 

Object detection uses computer vision and DNNs to recognize and locate multiple objects in 

an image. Earlier classification methods could only set one label to each image. Object 

detection improves on this approach by breaking down the original image into smaller regions 

of interest and label each region. The located objects are usually framed in with a bounding 

box (Elgendy, 2020, pp. 283-284).  

 

The basis of object detection 

The object detection algorithms of region-based convolutional neural network (R-CNN), 

single-shot detector (SSD) and YOLO, all share a general detection structure. They are based 

on DNNs and have four architectural practices they follow: region proposal, feature extraction, 

non-maximum suppression and evaluation metrics. Region proposal has its own DL algorithm 

that generates bounding boxes for each region that is considered interesting. What regions 

the network decides as interesting is dependent on an objectness score. The top objectness 

scoring regions are passed forward to the feature extraction layers. In this part, the network 

extract features from the image. These features are then used to determine if the image 

contains any recognizable objects. To mitigate a chaos of boxes, the non-maximum 

suppression layers find and combine repeating and overlapping boxes into one bounding box 

for each object. The final piece in the architectural structure is the evaluation metric, this sets 
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a score to the predictions and evaluate the model's performance (Elgendy, 2020, p. 285). For 

the harvester to locate sweet pepper boundaries in greater detail it needs a method to focus 

on pixel extraction. 

 

2.2.2 Image segmentation 
 

Image segmentation seeks to label and locate objects by highlighting their pixels. It improves 

on object detection's localization capabilities; instead of using inaccurate bounding boxes, 

image segmentation masks the exact pixels inside each object. Resulting in higher detection 

accuracy (He, et al., 2021, p. 1).  

 

Types of segmentation 

There are three types of segmentation tasks for images: Semantic, instance and part 

segmentation. Semantic segmentation targets to label all the pixels in the image to a class. 

The classes can be of certain objects in the image or the background. It does not differentiate 

between two entities of the same class. Instance segmentation aims to have multiple 

instances of the same class to differentiate between entities. Part segmentation takes it one 

step further and targets to classify the different parts of the objects (He, et al., 2021, pp. 1-2). 

 

Why is it useful? 

For a harvester robot, detecting every nuance in a crop's shape could be a practical addition 

for a robotic arm when it stretches out to pick a ripe fruit. A pixelwise representation of the 

crops is therefore a favourable approach as to a bounding box, which provides little 

information to support detailed localization. For crop detection, instance segmentation has 

the necessary attributes to distinguish clusters of fruits and with further development can be 

beneficial for counting the total yield. This makes it the preferred alternative (Xu, et al., 2022, 

pp. 1-2). 

 

2.2.3 Evaluation metrics 
 

The most used method for evaluating image segmentation models is the mean average 

precision (mAP). This is used to evaluate both the bounding box and the mask predictions. The 

mAP metric is generated from measuring the intersection over union (IoU) and a precision-

recall curve (PR curve) (Elgendy, 2020, p. 289). 

 

Intersection over union 

IoU measures the overlap between the prediction and the ground truth by a 0-100 percentage 

score. Where a higher score means a closer overlap. In research and for model performance 

charts, IoU scores over threshold values of 50 and 75% are usually selected to sort out the 
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predictions that are closer to being correct. The IoU score sets the base for measuring the 

accuracy for each prediction, but this does not count for predictions that are incorrect 

(Elgendy, 2020, pp. 289-291). 

 

Precision and recall 

Higher precision minimizes the amount of wrongly labelled predictions, and a higher recall 

minimizes the amount of missed labels predictions. Explaining precision and recall is easier 

with an example. From an image with tomatoes and other crops, the model has a goal to 

predict the location of tomatoes. If it locates a tomato correctly, the prediction is a true 

positive. If the location is wrong, it is a false positive. If the model locates another crop and 

classifies it as something else then a tomato, this is a true negative. The tomatoes the model 

missed to locate are false negatives. These terms are then used to calculate the precision and 

recall (Elgendy, 2020, pp. 147-148). 

 

Mean average precision 

The mAP metric builds on the earlier mentioned calculations and outputs a score in the range 

of 0-100. From calculating the PR curve for all the model classes, the mAP can be determined 

by measuring the area under the curve (AUC). The mAP metric is often referred to as just AP. 

It is commonly used with COCO evaluation (Elgendy, 2020, pp. 289-292). 

 

2.2.4 Instance segmentation models 
 

The instance segmentation models build on ideas unravelled in the previous chapters and add 

techniques that improve shortcomings or fixes known challenges. It is a maturing field that 

has still room for improvements when it comes to detection accuracy and speed. 

 

Model architectures 

There are three types of instance segmentation architectures: Single-stage, two-stage and 

multi-stage. The two-stage architecture is the most used configuration because of its high 

accuracy and adequate processing time. The multi-stage and two-stage architectures can be 

divided into a sequence of two parts: Object detection and object segmentation. The single-

stage deviates from this by being able to do both parts at the same time (Gu, Bai, & Kong, 

2022, p. 8). 

 

A two-stage detector uses region proposal in the first stage to feed regions of interest to the 

second stage of the model, where the model predicts the class and localization of potential 

objects. The single-stage detectors do the classification and localization at the same time by 

applying a network that suggests masks for image regions. The method is more effective, 

because it finds correlation between the detection and segmentation tasks, where the two-
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stage execute these steps separately. This makes the single-stage detector a lot faster but on 

behalf of accuracy (Gu, Bai, & Kong, 2022, p. 17). Although, research states that the trade-off 

is in the single-stage's favour by gaining more speed than it loses on accuracy (Bolya, Zhou, 

Xiao, & Lee, YOLACT, 2019). 

 

Mask R-CNN 

Mask R-CNN (He, Gkioxari, Dollar, & Girshick, 2017) builds on the previous object detection 

models from the R-CNN family. The R-CNN family relies on a region proposal network (RPN) 

to suggest regions of interest (ROI) in the feature maps generated by the CNN backbone. Mask 

R-CNN brings in the novel approach of RoIAlign, which uses small feature maps from the input 

data to align the ROIs with higher precision. This allows for the generation of accurate object 

masks. 

 

YOLACT 

YOLACT, (Bolya, Zhou, Xiao, & Lee, YOLACT, 2019) adds a mask section to the one-stage-based 

object detector. A fully convolutional network (FCN) is used to propose masks for the entire 

image, in addition to a prediction head that produce coefficients for each mask instance from 

the FCN in parallel. This allows the network to localize instances. In contrast to Mask R-CNN, 

the network drops the RPN layer which makes it a lot faster. A consequence of this, is that the 

predictions lack quality and makes therefore YOLACT performs worse at detecting smaller 

objects. 

 

QueryInst 

QueryInst's (Fang, et al., 2021) novel approach is to treat every instance as a learnable query. 

This query is shared by the bounding box detection and mask segmentation layers in parallel 

to achieve state-of-the-art performance in 2021. QueryInst can be built upon existing query-

based detectors as Sparce R-CNN. It runs six query stages in parallel that query features from 

mask RoIs with dynamic mask heads that do convolutions.  

 

2.2.5 Three-dimensional data 
 

Visualizing a 3D scene or object can be realized with datatypes as RGBD, volumetric, multi-

view, point clouds or mesh structures. 

 

Data representation 

From a 2D image with width and height, the 3D representation adds the third dimension of 

depth. 3D data structures can be sorted into Euclidean space or non-Euclidean space. 

Euclidean space defines the data graphically with (x, y, z) coordinates resembling (width, 
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height, depth) and is supported by the methods of RGBD, volumetric and multi-view. This 

approach is more suitable to work with 2D DL architectures because of their computable 

coordinate representations. Unlike the non-Euclidean methods as point clouds and mesh 

without set representations (Ahmed, et al., 2019, p. 3).  

 

Euclidean methods 

RGBD provides 2,5D information by storing a 2D colour image and a 3D depth map. It has had 

a rise in interest because of its inexpensive equipment costs, simplicity and versatile use. 

Volumetric data uses voxels to represent 3D shapes. Voxels are squares of a set size that can 

be both visible parts and internal non-visible parts. This makes it quite memory heavy to 

process as well as it lacks high-resolution data. Multi-view captures the 3D object by looking 

at 2D images from various angles circling around the object. This is less computational heavy 

but suffers from selecting the optimal number of views for each object. Both volumetric and 

multi-view is therefore most useful when analysing stationary 3D objects (Ahmed, et al., 2019, 

pp. 4-5). 

 

Non-Euclidean methods 

Examining the non-Euclidean methods, point clouds are unstructured formations of points 

that creates a 3D scene. Though it has local Euclidean coordinates, the global lack of structure 

and because of connectivity issues between points, the point cloud is challenging to compute. 

Mesh data is represented by a set of polygons which is formed by multiple 2D bounded 

geometrical figures. The irregular mesh structure has limited compatibilities with current 

DNNs. Mainly because of the availability of datasets and its transferability with current DNNs. 

RGBD data representation is the current favourable choice (Ahmed, et al., 2019, pp. 3-6). 

 

RGBD data 

RGBD is the combination of the colour channels RGB (red, green, blue) and the depth values. 

RGB is the colour values for each pixel in an image and can have a value between 0-255. Mixing 

the colour channels together creates a distinct colour for one specific image pixel. The depth 

values can be combined with RGB to give each pixel a distance from the vision device. This can 

be used to 3D-represent the scene or capture depth information in relation to the image 

pixels, thus allowing for object localization with depth information (Ward, Laga, & 

Bennamoun, 2019, pp. 1-2). 

 

Normally, RGB and depth values are two separate image files similar to Fig. X. This makes it 

possible to process the RGB image with well-established 2D detection models, before the 

depth image is used to find the object's placement in 3D. Both image files are in matrix 

formats, with three dimensions that decide the width, height and multiple channels for each 

image. The two first dimensions set the coordinated position for each pixel in the image, 

starting with (0, 0) position at the top left pixel. The channels can have RGB data, depth data 
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or other signal values (Elgendy, 2020, pp. 20-22). 

 

                      

Figure 4: RGB image (left), depth image (right). (Images: Generated from the RGBD dataset). 

 

There are a few challenges related to RGBD data. In the case of a sweet pepper crop, the plant 

has leaves and stems that often blocks the robotic vision from seeing the whole crop. This 

makes object detection algorithms prone to accuracy loss when one crop can be mistaken for 

two if separated by occlusion or crops hidden behind plant material will not be recognized at 

all. Related to the RGBD devices, they are affected by changes in illumination and have a 

limited sensor range, these issues can cause blurry and missing data. For 3D information 

compared to 2D, there are computational drawbacks because of the additional layers that 

needs processing. The equipment is also expensive and to get the optimal data extraction it 

requires the ability to handle sensors with more complexity. This makes quality RGBD datasets 

sparse compared to pure RGB datasets (Ward, Laga, & Bennamoun, 2019, pp. 3-4). 

 

3D data extraction 

3D datasets are captured with sensory devices that extract 3D information. These devices 

range from everyday cameras to devices that use frequencies as sonar, infrared and laser 

(Martinez-Guanter, et al., 2019, pp. 2-4). There are three prevailing methods of acquiring 3D 

data in agriculture: Lidar, stereovision and RGBD. 

 

Lidar measures the distance from the device to the surrounding environment by calculating 

the time it takes for a laser light to bounce back to the device. This generates a point cloud. 

Lidar is very accurate, but it lacks colour registration and is rather complex to work with. 

Therefore, it is best suited for mapping and navigation rather than crop detection tasks 

(Martinez-Guanter, et al., 2019, p. 3). Stereovision uses two RGB cameras and structure-of-

motion (SfM) photogrammetry to generate 3D data. The two cameras calculate 



22 

 

correspondence between pixels in the captured scene with the SfM algorithm and the camera 

parameters. Although it is the currently most accurate method, the high processing time 

makes it unsuitable for real time appliances (Gené-Mola, et al., 2019, pp. 1,6). RGBD data is 

acquired with RGBD cameras that have both an RGB camera and a depth sensor attached to 

it. The depth sensor relies on the time-of-flight principle, which measures the time between 

an emitting infrared light and the reflection back to the device (Lin, Tang, Zou, Xiong, & Fang, 

2019, p. 3). RGBD devices have so far, the upper hand regarding colour texture availability, 

low user complexity and a reasonable pricing. The RGBD qualities gives a greenhouse 

harvesting robot narrow vision between rows of crops and fast processing speeds when doing 

crop detection while moving. 

 

Methods for processing RGBD 

Processing RGBD data for image segmentation tasks can follow various pipelines to when the 

3D information should be included to which part of the network structure. For DL there are 

three current approaches to processing RGBD data with multiple objects. 

 

The first method processes the RGB data and does detection on it in 2D before it elevates the 

findings into 3D coordinates. This allows for the use of well-established 2D object detection 

algorithms. In addition, the depth values often have less resolution which leads to poorer 

quality when the data is 3D represented. Though, the method does not benefit from the 

additional information the depth data gives. The second method tries to correct this by 

processing the depth data directly. There are various proposed approaches to handle the data, 

most treat the depth data as another image to be processed by algorithms based on CNN. The 

third method transforms the RGBD into 3D volumetric data. This data format can then be 

processed by fully 3D CNNs. Though this sets a high pressure on computational capabilities, 

and it is estimates that it takes up to 30 minutes longer to process data compared to the 2D 

approaches (Ward, Laga, & Bennamoun, 2019, pp. 11-13). 

 

 

2.3 Agriculture 
 

To build on the thesis' scenario, this section will unfold important terms in agriculture. 

Agriculture has from early humans been the key to a growing civilization. Throughout history, 

technological breakthroughs have created better tools to optimize the farm work. Heavy 

machinery improved the field work under the industrial revolution. In the last decades, 

chemicals have made farming more profitable by protecting the crops. Biotechnology is 

improving the crops genetic capabilities to withstand hazards and maximize yield (Johns 

Hopkins, 2022). Current research uses big data and devices to gather heaps of data to analyse 

and monitor farm management. Closing in are the use of fully automized harvesting robots 

(Kootstra, Wang, Blok, Hemming, & Henten, 2020). 
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2.3.1 Practices in agriculture 
 

Agriculture has various practices depending on the crop and the surrounding climate. The 

thesis has defined set criteria it pursues to follow when it comes to selecting a dataset and the 

purpose of the detection models. This section unravels why the set criteria are considered. 

 

Traditional farming is commonly performed on open fields. This is a very efficient way of 

farming, because of convenient mass-harvesting machinery (Kootstra, Wang, Blok, Hemming, 

& Henten, 2020, p. 99). Though, practical for only certain crops. High-value crops like 

tomatoes, peppers and apples cannot be mass-harvested by machinery and requires manual 

work to be collected. Normally, these crops are cultivated in orchards or inside greenhouses. 

 

A high-tech greenhouse has the benefit of allowing environmental control and enables a 

facility to be located (in theory) anywhere. Depending on the location, a drawback is the 

potential sky-high energy expenditures from regulating the grow-lights and temperature if 

placed in a disadvantageous regional climate (Baudoin, et al., 2013, p. 35). In a controlled 

environment, fresh-water and fertilizers can be carefully optimized. This helps reduce the 

depletion of critical and limited regional resources. A greenhouse environment will be able to 

stabilize the outer weather extremities and work as a cover for crop damage (Baudoin, et al., 

2013, pp. 23-25). This sets a base for predictability where research can develop harvester 

robots. To make it as profitable as to open-field farming, the technology must be of the highest 

quality. 

 

2.3.2 Harvester robots 
 

A chain of practices works together to deliver a pack of tomatoes on the table. Seeds must be 

sown, the tomato plants need continuous nurture and optimal surrounding conditions to 

grow, and when the time is right the tomatoes needs to be picked and packed ready for 

delivery. In agriculture there are both outdoor and indoor production and emerging robots 

are specialized at different environments and fruits. Today there are few robots that can 

accomplish these manual tasks. Tasks as moving around without damaging the crops and 

having the ability to remove occlusions to get a better view of the surroundings. Inside a 

greenhouse environment, the plants get bigger in an unique and uncontrollable manner as 

they grow. Developing automation in this type of environment has shown to be a challenge, 

because of all the variations in the environment. In addition, over time the vision and 

electronics will also be affected by humidity, temperature and changes in illumination 

(Kootstra, Wang, Blok, Hemming, & Henten, 2020). Although these obstacles, there are some 

systems starting to take form both in research and in the industry. In the past decades as 

stated in this review paper (Bac, Henten, Hemming, & Edan, 2014) there have been over 50 

attempts to commercialize a fully automated robotic system without success. The cause being 

that the systems have too poor performance to be a useful replacement for manual work.  
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3 LITERATURE REVIEW 
 

This chapter analyses current literature in agriculture on instance segmentation models. The 

literature review sets a bar for where the thesis aspires to contribute. 

 

 

3.1 Mask R-CNN for sweet pepper detection 
 

Halstead et al. developed three crop-based datasets which was tested with Mask R-CNN and 

Faster R-CNN (Halstead, Denman, Fookes, & McCool, 2020). The research pursues to 

generalize sweet pepper crop detection with a cross-domain approach by capturing datasets 

based on different species and environments. Their results show that Mask R-CNN has 

increased performance on cross-domain datasets compared to previous R-CNN frameworks, 

while it offers more accurate localization with object masks. 

 

The conducted research demonstrates Mask R-CNN capabilities and transferability to 

agricultural detection environments. The thesis takes inspiration from their work and 

implements their RGBD sweet pepper dataset as the main data source. 

 

 

3.2 State-of-the-art in 2021 crop monitoring robot 
 

Smitt et al. presents a robot capable of crop surveying a greenhouse environment (Smitt & 

Mccool, 2021). Their solution takes RGB and depth data to map the facility and count potential 

yield, being one of the first to show results of accomplishing these tasks. For their detection 

system they use Mask R-CNN with the depth data to delimit the range of which crops that 

would be detected and counted. The detection model was trained on the three datasets from 

the research of Halstead et al. 

 

Mask R-CNN is also here selected for detection, which adds on its adoption for crop detection 

tasks. Their research utilises the depth values after the mask segmentation has been 

completed. The report sets the bar for where the technology is today by being the state-of-

the-art in greenhouse monitoring. 
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3.3 Transfer learning for Mask R-CNN and YOLOv5 
 

Autz et al. compares pretrained models to models trained from scratch on agriculture datasets 

(Autz, Mishra, Herrmann, & Hertzberg, 2022). The experiments were conducted with Mask R-

CNN and YOLOv5, a two-stage detector versus a one-stage. The results for Mask R-CNN 

producing a mAP of 75% when trained from scratch and a mAP of 74.55% when pretrained on 

COCO. The authors conclude that performance is higher if the network is trained from scratch, 

then if trained on large pretrained networks but large agriculture datasets are not yet 

available. 

 

The report states the shortage of quality datasets in agriculture. Their research is based on 

just one dataset of sugar beets and the models do not share the attribute of instance 

segmentation. This produces results based on a small foundation. In contrast to this report, 

the thesis trains the instance segmentation version of YOLO, YOLACT and compares it with 

Mask R-CNN and QueryInst. 

 

 

3.4 Tomato detection with Mask R-CNN and YOLACT 
 

Xu et al. researched accurate recognition of fruits and stems for cherry tomato crops for the 

purpose of automatic picking (Xu, et al., 2022). The authors developed an improved Mask R-

CNN that achieved a mAP of 93.76% and had a higher accuracy then the standard Mask R-CNN 

and YOLACT architectures. Processing an image takes 0.04 seconds. Their novel contribution 

implemented RGBD data to enhance the feature extraction. 

 

The report concludes RGBD has the potential to boost model accuracy, which was a key 

investigation criterion when starting the thesis but was in the end not implemented. YOLACT 

is used to compare the results, which adds on its acceptance for crop detection tasks. The 

thesis wants to compare the Mask R-CNN with the newer QueryInst to see if it outperforms 

Mask R-CNN and YOLACT. 

 

 

3.5 Sweet pepper harvester with shape- and colour detection 
 

Arad et al. developed a harvester robot called SWEEPER which uses RGBD cameras and a 

shape and colour sensitive algorithm to detect crops (Arad, et al., 2020). The algorithm is only 

capable of semantic segmentation. Under testing, SWEEPER achieved a crop detection rate of 

69% accuracy. In total a 18% of the ripe crops were harvested in a commercial greenhouse 

layout. 
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The research was produced in January 2020, though the field is having a rapid development 

this research represents the state of current harvester on the market. The act of harvesting a 

crop requires a stepwise execution from detection, reaching, cutting, handling and storing. 

The vision system is the first layer that starts this stepwise process. A better vision system 

would improve the rest of the chain of harvesting. 

 

 

3.6 3D crop localization in an apple orchard 
 

Li et al. present a one-stage detector to better tackle occlusion and noise in the vision system 

of a robotic harvester (Li, Feng, Qiu, Xie, & Zhao, 2022). Their model uses YOLACT++ to process 

2D information and detect crops with instance segmentation and bounding boxes. The point 

cloud was generated from the segmented masks and the depth data from the robot's RGBD 

vision system. This produced better 3D localization results for partial occluded crops. 

 

The article also conducts a comparison between Mask R-CNN and YOLACT architectures with 

ResNet-50 and ResNet-100 backbones, in addition to measure the FPS for each model. This 

serves as a good benchmark for the model's performances on an agriculture dataset that has 

similarities to the thesis' sweet pepper dataset. Relative to the article, the thesis trains the 

newer detection model of QueryInst to analyse its performance against the established 

detectors. 

 

 

3.7 3D crop detection based on colour, depth and shape 
 

Lin et al. researched the detection of spherical and cylindrical crops based on colour, shape 

and depth features for a robotic harvester (Lin, Tang, Zou, Xiong, & Fang, 2019). The model 

recognises the crops by colour which creates a mask that is used to filter the depth data to 

focus on the crops alone. The data is processed by an image segmentation method that sorts 

the crops into clusters. This data is then transformed to a point cloud which a 3D shape 

detector uses to detect crops. Their results show a mAP of 87%, 74% and 81% for pepper, 

eggplant and guava detection, but the detection time can take up to 4.70 second to finish. 

 

The report presents results for an approach unlike the DL architectural basis of the thesis. DL 

demands large quantities of data to excel and takes therefore time to establish, algorithms as 

in the article shows that alternative approaches are possible with workable performance. 
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3.8 Point cloud instance segmentation for multiple species 
 

Li et al. (Li, et al., 2022) present a 3D based network that recognise tobacco, tomato and 

sorghum, focusing on the instance segmentation of leaves on the purpose of detecting plant 

species and plant parts. Their research shows a mAP of 83.30% for detecting the species and 

instance segmenting out the leaves. They state there is a shortage for well labelled 3D 

datasets. 

 

Though it is not directly related to the 2D model approaches nor the crop detection as in the 

thesis, the research shows alternative ways to get high accuracy detection from fully 3D based 

networks. There is little research to be found on 3D instance segmentation for agriculture and 

the shortage of datasets maybe the main cause. Approaching 3D data with 2D detectors seems 

to produce the best performing models for the time being.  
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4 METHODOLOGY 
 

The methodology explains in detail how the testing of the dataset and the selected models 

was conducted and which decision that were made. 

 

 

4.1 The programming framework 
 

The framework consists of multiple programming components that are used as tools to 

develop the project. 

 

Python programming language 

Detection models rely on a programming language, code extensions and hardware 

technologies that process large chunks of data to work efficiently. To build the project, the 

programming language of Python (Rossum, Guido, Drake, & Fred, 2009) was selected because 

of its wide acceptance in computer science and ML communities. Its broad acknowledgement 

avail examples and helpful tips online, which reduces the time stuck on error handling. The 

models used in the project are quite complex; in the way they handle the data and which 

libraries that is needed for them to run. Libraries are extended code that simplifies 

programming. For ML there are libraries that make building DNNs simpler with existing 

functions for DNN components. These libraries often have DNN models ready for deployment. 

Building the detection models from scratch would take time, the thesis seeks to use existing 

code and edit it to fit the purpose of the project. 

 

Compute unified device architecture 

Certain aspects regarding the hardware and software (devices and versions are further 

detailed in the Appendix) were dependant on the right build to make the code work as 

intended. To train the models effectively, using a graphic processing unit (GPU) is essential. 

Compared to the central processing unit (CPU), the GPU process data at higher speeds. 

Accomplishing this on a computer can be utilized with compute unified device architecture 

(CUDA) compatible graphic cards. CUDA joins the processing capabilities of the GPU with a 

software like Python, making it available for use when programming (NVIDIA, Vingelmann, P., 

Fitzek, & P., 2020). This serves as the bridge between the GPU and the Python libraries used 

in the coming detections models. 

 

Google Colaboratory 

The project was first initiated on a local computer, but it was early discovered that the setup 

lacked computational resources to handle the task of instance segmentation. The model 
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training was therefore moved to Google Colab. This is a free online GPU service which 

facilitates for training ML algorithms (Google Colab, 2022). The platform was used for training 

the model at a much higher speed than locally. 

 

The local computer was still used for visualizing the dataset and the model results, because of 

the simplicity of working locally with files and programs, and because Colab had a few 

restrictions to its usage. For good reasons, Colab is restricted to a few hours of connections to 

the GPUs, therefore it was best to keep this valuable time for training purposes. The local 

computer was set up with Anaconda (Anaconda Software Distribution, 2020), a package 

management tool to easier install and remove Python packages. Packages communicate with 

one another, and it is therefore crucial to have the right versions that are compatible for 

smooth code production. 

 

 

4.2 The datasets 
 

The datasets are crucial to the task of object detection, because they directly relate to how 

the DNNs learn to locate and recognize objects. 

 

4.2.1 Dataset selection 
 

On the premise of a greenhouse harvester certain criteria were sought for. The object of 

detection should be a crop cultivatable in a greenhouse environment, the annotations should 

preferably be the type of instance segmentation and there should be depth data for the 

possibility to 3D localize the crops. 

 

From these dataset specifications, several public datasets from an agriculture dataset survey 

(Lu & Young, 2020)  were investigated and a few private datasets were inquired access to 

through e-mail. Conclusively, a dataset from Agrobotics was selected because it matched the 

criteria to the letter by having images of sweet pepper crops in the format of RGBD. The 

dataset was shared by Michael Halstead in Agrobotics and was developed in the conducted 

research from “Fruit Detection in the Wild” (Halstead, Denman, Fookes, & McCool, 2020). To 

be said, there was a limited number of viable datasets for 3D localization tasks, few were 

available to the public and finding a practical sample for the set criteria required a 

comprehensive search through individual websites. 

 

Other public depth-based datasets that were considered: Fuji apple dataset (Gené-Mola, et 

al., 2019), an RGBD-based dataset of apples captured with a Kinect V2 camera with annotated 

bounding boxes distinguishing out the fruits. A broccoli dataset (Kusumam, Krajnik, Pearson, 

Duckett, & Cielniak, 2017) captured with a Kinect V2 and transformed into a point cloud, 
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where the annotations were the centroids for each broccoli flower. A sugar beets dataset 

(Chebrolu, et al., 2017) from multiple sensors capturing LiDAR, RGBD and GPS coordinates, 

with annotated segmentation of the crops and weeds. Comparing the datasets, the RGBD 

dataset of sweet pepper crops exceeded the others by having indoor crops with instance 

segmented annotations. 

 

 

4.2.2 Dataset file inspection 
 

The dataset contained RGB images, depth images, raw annotation files of each crop and 

instance annotations based on crop colours. 

 

The RGB and depth files 

The RGB images are in the PNG format. The depth data were in the tagged image file format 

(TIFF), which stores and compresses large image files. The annotations were also in the PNG 

format. The PNG format permits image visualization, while also containing data with extra 

attributes. This allows for labelling areas of the image and saving this as attached annotated 

data to the PNG file. A great deal of time was put into understanding the data, especially the 

PNG, which was very difficult to extract information from when there was no overview of what 

it contained. PNGs can contain various data and there was no Python code to inspect it all at 

once. There was also an uncertainty if the TIFF file was opened the right way and that it 

conserved the data due to hard-to-find information on how to perform the data extraction 

correctly. 

 

The annotation files 

The raw annotation files are of the type PNG and had all the annotated instances with each 

instance part as its own file. The raw annotations were first used as the main source for 

labelling. A program was made to combine all the instances and all the separate parts into a 

distinct variable for image sample. This is detailed in the annotation_to_segmentation 

function from the visualize_annotation.py (21). The program also gave each instance its own 

colour on the premise that this could distinguish the instances from each other in coming 

processing tasks. When starting on the model pre-processing it was though discovered that it 

was easier to use the already coded labels from the supplementary annotations of instances 

based on colour and crop ripeness instead. The annotation files based on crop colour had each 

instance of fruit separated into a ripeness colour ranging from black, green, mixed and red. 

Therefore, four annotated image files are available per image sample. Each instance had its 

own placement in the image as pixel coordinates and could be identified by a designated label. 

These annotation files were therefore selected for further processing. 
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The dataset split 

In total, 150 samples and their belonging depth and annotation data were taken out from the 

dataset to be used to train and test the models. Following the previously covered in section 

2.1.4 Deep learning workflow, the samples were divided into a 1/3 separation, where training 

was given 100 samples and testing 50 samples. In addition, a separate test image was used to 

visualize the model performances. The split was decided to be train/test because that fitted 

the input structure of the Mask R-CNN architecture. An attempt was made to figure out a way 

to make the Mask R-CNN code follow a train/validation/test structure, but it turned out 

cumbersome to investigate the lines of code that was behind the evaluation metric. 

 

 

4.2.3 Inspecting the dataset images with visualization tools 
 

To quality assure that the dataset contained what it was supposed to have, the dataset was 

visualized and inspected with various Python tools as further showed with figures in the results 

chapter. Getting to know the data was also necessary to understand its transmission with the 

coming detection models. A set of helper functions were made with NumPy, OpenCV, 

Matplotlib and Pillow. Matplotlib and OpenCV was used to upload the data to NumPy arrays 

for further data manipulation. These libraries are generally used Python computing tools for 

array computing, image processing and data visualization. 

 

Inspecting the RGB and depth files 

Examining the RGB and depth images revealed image areas without representable values, 

though on the positive side RGB and depth values looked to share the same pixel placements. 

Given a dataset sample, read_data (1) loaded the RGB, depth and annotation masks into 

variables. In subplot_rgb_depth_2D (2) the RGB and depth were visualized and inspected with 

Matplotlib as showed in Fig.6. The depth data was concatenated into the RGB with a NumPy 

stack function that added the depth as an extra channel. Matplotlib treated the depth channel 

as a binary mask, visualizing every value over one. The visualization revealed that when the 

two images were overlayed, there was indications of missing data where the image had areas 

that were completely white. This was seen in the depth image as well, where the image looked 

almost black and lacked contrast. The depth pixels were also checked by measuring the 

frequency of the values with a histogram representation in histogram_depth (3). An OpenCV 

equalizer function was also added to the depth image, to get a better representation of the 

data as seen in Fig.7. The missing data could be from the sensor's laser pulse not bouncing 

back. When manually looking at the overlayed image there was areas with missing data 

around leaves and crops that had valuable depth information. From known issues with this 

sensor, this could be caused by moisture on the lens or bad lightning conditions. 

 

An effort was made to visualize the depth data without any functional results. The library of 

Open3D (Open3D, 2022) was tested due to its echoing recommendations through online 
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forums. Their visualization function was reliant on camera intrinsic parameters to visualize the 

scenes properly. This was not acquirable from the RGBD dataset of sweet pepper crops, but 

an attempt to use a generalized approach was tried which produced the obscured results as 

shown i Fig.5. Matplotlib was also tested for 3D visualization, but it turned out difficult to make 

it show colour, while it also was unpractically slow to work with. 

 

           

Figure 5: Representing depth in 3D, original RGB (left), Open3D attempt (middle) and Matplotlib attempt (right). 

 

Inspecting the annotation files 

The annotation files were manually examined to ensure that the labels were placed correctly 

in the samples. Parts of the read_data (1) function combined the four annotation files of crop 

instances into one variable and sorted the labels in the right order for easier processing. An 

offset measured the length of the number of labels for each annotated image to mitigate that 

crop instances from the images ended up sharing the same label. The output was then 

changed so that each annotated crop had its own label even if the instance had multiple 

unconnected parts. Developing this function was achieved through tips from the 

Stackoverflow (Stackoverflow, 2022) community and by printing out important data 

transformations to detect if the code changed to something out of order. 

 

subplot_mask_2D (4) visualized the crop instances with distinct colours per labelled crop. In 

addition, a bounding box framed the area which the crop's pixels were annotated by 

calculating their minimum and maximum positions in the image as seen in Fig.8. The masked 

images were then confirmed to be true by manually counting and comparing the annotations 

to the generated masked image. This was completed for ten randomly picked samples from 

the dataset. Stating an assumption of consistency in the dataset with correctly placed 

annotations for the crop instances. 
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4.2.4 Other datasets for pretraining purposes 
 

Selecting the most suited dataset for transfer learning could improve model performance. The 

most prominent current general datasets for instance segmentation tasks are the Microsoft 

common objects in context (COCO), Pascal visual object classes (VOC), Large vocabulary 

instance segmentation (LVIS) and Open image. COCO contains 2.5 million annotations for 328 

thousand images with 80 classes available for instance segmentation. The images vary in 

resolution and captures objects from everyday scenes. It is the most implemented dataset 

because of its large image base of general objects (Gu, Bai, & Kong, 2022, p. 5). 

 

For pretraining the models, the COCO dataset was selected over the others because of its large 

general database of instance annotated images and its available pairing with established 

model frameworks. The sweet pepper dataset maybe too small to achieve desirable results. 

Therefore, utilizing pretrained weights from a COCO dataset might be an important function 

to boost the performance of model. 

 

 

4.3 Models 
 

Building the detection models ready for predictions requires hardware and software with 

capacities to train the models. The detection models were selected on behalf of the Literature 

review chapter, current agriculture approaches and Papers with Code's most implemented 

instance segmentation models (PaperswithCode, 2022). This indicated that Mask R-CNN and 

YOLACT were two reliable model architectures for agriculture tasks. The thesis wanted to rival 

the two established algorithms with a newer addition. Available from the MMDetection 

library, QueryInst was released in 2021 and was therefore selected as the third model. 

 

4.3.1 Model selection 
 

For selecting the models, there were a few criteria that should be met to have a functioning 

solution and a smooth project development. The models needed to be capable of processing 

RGBD images and output instance segmentation results. Preferably the models should have 

high performances and a renowned reputation in the field to ensure that the implementation 

is working and there is available information for error handling. 

 

Ideas that were dropped 

Initially, the final model was going to use ensemble methods in a layer over the three 

detection models. For clearer communication between the detection models and the 

ensemble methods, an emphasis was made to run all the models on the same GPU-accessing 

library. Two top GPU-accessing libraries were Tensorflow and PyTorch. Using both, would 
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most likely cascade in dependency problems with other libraries and CUDA. Dependency 

problems happen when libraries of different versions not compatible with each other is used 

to build a program. A popular science report has often many suggested code approaches for 

the report's solution besides official code examples. As seen from Papers with Code, PyTorch 

is a commonly used tool in instance segmentation papers and was therefore selected for this 

project. 

 

Concerning the ensemble method, it is a technique that can be used to train separate models 

and combine their results into an average score to reduce generalization errors. One model's 

poor performance will have less impact on the final ensemble score, when the score is the 

average result for all models (Goodfellow, Bengio, & Courville, 2019, pp. 256-258). The project 

had already started implementing two models when it was decided to drop this feature. Even 

though the models were built on PyTorch, their outputs were quite different. It would take 

time to implement an ensemble that could understand the model outputs and configurate 

this data together. This seemed unrealistic to achieve with the time left before thesis deadline. 

 

Before it was decided to be dropped, 3D-based models were searched for. Two point cloud-

based alternatives were found, SSTNet (Liang, Li, Xu, Tan, & Jia, Instance Segmentation in 3D 

Scenes using Semantic Superpoint Tree Networks, 2021) and OccuSeg (Han, Zheng, Xu, & Fang, 

2020). They offered instance segmentation output, but were specialized in scene 

reconstruction, could be hard to implement because of less popularity and needed the data 

to be of the point cloud format. From further reading it was also discovered that the 2D-based 

models could potentially process a third depth layer, therefore the fully 3D-based models 

were dropped. 

 

It was decided to use 2D detection models that only handled the RGB data from the RGBD 

dataset of sweet pepper crops and instead elevate the final output to be represented in 3D. 

This was not optimal nor the desired outcome when first starting on this project. Though, 

because of lack of available tutorials, few models to choose from and a still blooming 3D 

processing community, priorities were made to be able to finish the project on time. Feeding 

the 2D detection model with the extra depth dimension could be possible without too much 

alteration, but still required throughout understanding of the three models for it to function 

properly. It is also uncertain how the networks would handle the 2D annotations. Based on 

the large addition of data the depth information adds to the networks, the project could have 

encountered shortcomings on computer resources. The reasonable path regarding time was 

then decided to be by applying 2D detection models to the dataset. 

 

How the models were selected 

From the literature review, the dataset search and reading research related to agriculture, an 

overview started to form. Mask R-CNN was often referred to in agriculture detection task and 

had the highest popularity on Papers with Code for instance segmentation (Papers with Code, 

2022). This made it a safe bet. Since Mask R-CNN was based on the two-stage architecture it 
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seemed natural to seek out a one-stage architecture for comparison. The YOLO lineage got 

high appraise on Papers with Code, though it only handled detection through bounding boxes 

its instance segmentation based relative YOLACT seemed like a good fit. YOLACT also appeared 

in agriculture detection research as in the apple orchard detection article by Li et al. (Li, Feng, 

Qiu, Xie, & Zhao, 2022) and from the cherry tomato detection article by Xu et al. (Xu, et al., 

2022). In addition to the detection model survey by Zaidi et al. (Zaidi, et al., 2021) which 

highlights recent development in the field. YOLACT was on these premises selected as the 

second model. 

 

Both Mask R-CNN and YOLACT had newer improved versions, as Mask Scoring R-CNN (Huang, 

Huang, Gong, Huang, & Wang, 2019) and YOLACT++ (Bolya, Zhou, Xiao, & Lee, YOLACT++: 

Better Real-time Instance Segmentation, 2019), these were though not engaged, because 

newer could potentially mean less robust code and fewer tutorials to learn from, which could 

in worst case make the project get stuck at error handling. Considering the two first models 

were safe bets; the idea was that the third model could be more of a wild card. The QueryInst 

model available in the MMDetection library was selected because of implementation 

convenience, differing architecture and that it was newer and scored better at benchmark 

tests (Fang, et al., 2021, p. 6). 

 

4.3.2 Model training 
 

The three models shared a few similar architectural configurations. These configurations work 

as the base for the forthcoming model training sections. 

 

Backbone 

The backbone of ResNet-50 was selected because the deeper ResNets are marginally 

improving the accuracy in exchange for complexity and thus longer training time (He, Gkioxari, 

Dollar, & Girshick, 2017, pp. 6-7). ResNet-50 is a feature extractor that has shown a high 

performance (Elgendy, 2020, p. 230) and is therefore commonly included in ML libraries like 

the thesis utilizes. This makes it a convenient choice and the preferred pick under model 

training. 

 

Optimizers 

For the optimizer, a mini-batch SGD with Momentum or Adam is the recommended choice for 

DL (Elgendy, 2020, p. 174). These generalize well on multiple types of DL architectures by 

adding learning decay to make the learning rate more dynamic under training. Momentum 

helps the gradient descent move in a relevant direction by adding a portion from the previous 

step vector. Often set as gamma equals 0.9 (Ruder, 2017, p. 4). Adam shares similarities with 

momentum's push in the right direction by multiplying with an average of past gradients. It 

also adds an average of past squared gradients to mitigate shrinking learning rates (Ruder, 
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2017, p. 7). This is the short and simplified explanation. If obtainable in the model repository, 

these optimizers will be favoured. 

 

The batch size will preferably be set to 4 with 2 number of workers to speed up the training. 

4 was selected to ensure that the training did not exhaust the limited Google Colab resources, 

and over 2 workers made a warning message appear in the Colab terminal. 

 

Learning rate and epochs 

After initiating a test run on Google Colab, running the model took around 30 minutes per 

10th epoch with default settings. Google Colab has a limited resource capacity within a 12-

hour window with diminishing GPU availability (Google Colab, 2022). A maximum of 50 epochs 

was therefore favoured. For DL learning rate (LR) tuning, the LR is recommended to start from 

0.01, and go down a tenth per training regime (Elgendy, 2020, p. 169). The thesis aspires to 

train the models with varying training rates to identify if the performance will hit a minimum 

faster because of the limited training time of 50 epochs. 

 

Visualizing the results 

The models were visualized on just one image excluded from the training sets. The image 

showed 24 instances of sweet peppers. Predictions over a IoU threshold of 50 was considered 

as true positives to show the instances the models predicted were over a 50% certainty for 

that class. Mask visualization was selected for pixels that model predicted was over 95% 

certain belonged to the instance. 

 

Evaluation 

The evaluation was produced by the Pycocotools for Mask R-CNN and from an internally 

function for the MMDetection models. They both followed the COCO evaluation standard and 

produces the similar output metrics. An attempt was initiated to better evaluate the training 

itself with graphs showing the loss rate over time, but it did not match with the Pycocotools 

evaluation. So, it turned out be one or the other. Pycocotools were the preferred pick. As 

stated in the section 2.1.4 Deep learning workflow, a learning curve would be a practical 

addition to analyse how the training loss and validation loss behaved over time. From 

PyTorch's issues page (PyTorch, 2022), having a way to acquire the loss seems like an open 

case. Figuring out a solution to this would take lot of time and requires a deep understanding 

on how PyTorch process code under training and evaluation. Since it was not available for 

Mask R-CNN it was discarded for the two other models as well. 

 

In Chapter 5, the evaluation metrics showing the mAP scores with a IoU threshold of 50 

(IoU=50) was selected because it is regularly used in literature. The scores for IoU on an 

average over 10 IoU thresholds between 50 and 95 (IoU=50:95) was also included because it 

is stated as COCO's primary challenge metric and it sets a measure for how certain the model 
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was when compared with IoU=50 (COCO, 2022). 

 

4.3.3 Mask R-CNN 
 

As previously reviewed literature states, the mask R-CNN is an established algorithm used in 

many crop-detection models for agriculture applications. 

 

Implementation code 

From Papers with Code (PaperswithCode, 2022) one of the topmost implemented papers for 

instance segmentation was the Matterport mask R-CNN (Matterport, 2019). This was first 

selected on the notion that its popularity makes it clear to implement. Parts of the code was 

though outdated, and Anaconda did not support the requirements for the Tensorflow GPU 

version. After some time trying to fix these problems, it was decided instead that the project 

should use PyTorch for all its code implementation to round up the detection models under 

the same conditions. Broadening the search, there were many tutorials and a few older ones. 

To lower the chance of dependency problems an up-to-date tutorial from PyTorch was 

selected (PyTorch, 2022). This had the option to use a pre-trained model on the COCO dataset 

and use transfer learning to expand the training to the RGBD dataset of sweet pepper crops. 

 

PyTorch model requirements 

The requirements for the tutorial were a dataset containing images and annotations of object 

instances, a tool called Pycocotool for evaluation, reference scripts and a few libraries detailed 

in Appendix (6). The RGBD dataset of sweet pepper crops contained all the data information 

but needed to be altered to fit the model. For the model to process the data correctly, the 

input should be a Python dictionary containing: An image in PIL format, bounding boxes with 

two X and Y coordinates, distinct labels for each instance, an image identifier, an area variable 

defining the bounding box area, an instance mask for each object and their pixel placement in 

the image. The Pycocotools (GitHub, 2022) was downloaded to be used as the evaluation 

metric that produced mAP scores. Helper functions were downloaded from the PyTorch 

GitHub page to simplify the processing as further detailed in the Appendix (6). 

 

Pre-processing 

For the Mask R-CNN model based on the PyTorch tutorial, the dataset needed alterations for 

the model to understand what kind of data it was getting tasked to process. The RGB image 

files did not need any configuration. After searching for a tutorial, it was discovered that the 

common practice of storing the annotations was in a JSON or TXT file. It was decided not to 

copy this, but rather make a code snippet that structured the data in the required format. 

 

To sort the annotation images into one processable variable, the read_data (1) loop was again 
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used for that purpose and was included in the Python training file, further detailed in 

mrcnn_train.py (21). Running the training file caused an error with the generated bounding 

boxes. Two of the bounding box coordinates shared the same value in the same axis, which 

would form a straight line in-between two instances instead of a box. This was barely visible 

when zooming in on the image area. The annotations were then counted manually by looking 

at the image and compared with the np.unique function. This function stated how many 

unique instances the program counted. It was then discovered that the program counted for 

extra instances. To get a better view of the problem, the image was visualized with the object 

masks. This revealed that two instances had overlapping pixels, which originated from how 

np.add adds the pixel values together and therefore create a new instance. An if statement 

was added to ensure that when there were labels exceeding the expected number calculated 

from the offset, the extra labels were given the value zero. Though, this made the in-between 

label areas exclude data, it was just a few pixels that were deleted and had little impact on the 

overall model. This required a thoroughly search in the code by printing out every important 

data transformation to detect where the code changed. 

 

Error handling 

Then CUDA out of memory errors occurred. The earlier error handling was solved on a local 

computer. To solve the new CUDA error, the batch size was reduced from 2 to 1 to ease the 

memory reserve, but without any improvements. It was decided to conduct further training 

of the model on Google Colab for better performance with their available GPUs. 

 

The RGBD dataset of sweet pepper crops and the reference scripts were uploaded to a Google 

Drive and further testing was continued there. It was then discovered that multiple errors 

spawned from the reference scripts. The latest stable PyTorch version was 1.11.0, but the 

reference scripts from the tutorial was from an earlier PyTorch version. An attempt was made 

to use the latest reference scripts and error handle the outcomes, but this ended up with the 

need to change code snippets in the main PyTorch library. This approach was dropped, 

because in turn it could potentially disturb the programming base for the next models. The 

reference scripts supporting the latest stable PyTorch version and Torchvision version of 0.12 

was selected conclusively. 

 

Training the program on Google Colab with CUDA, made the program jump processes. The 

program was though training fine with the CPU on the local computer. Training on the CPU 

would take closer to 15 hours if the same pace was kept, while training on the GPU still gave 

CUDA memory errors. So, it was not a practical solution. From the errors in Colab it was 

guessed that something in the way the data were processed was the fault of the jumping. 

After trying a lot of different approaches, it was discovered that Colab required the listed files 

to be sorted before it could process them. 

 

A fault in the annotations were found for frame_2019_10_1_10_0_59_656095, where the 

labels 7 and 8 were jumped and thus making the algorithm get an error when generating 
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bounding boxes. The sample was removed from the folder. Training went smoothly after this. 

 

Hyperparameter selection 

For the tuning of hyperparameters it seemed right to take inspiration from the agriculture 

papers and then vary some of the parameters to see if the model improves on the RGBD 

dataset of sweet pepper crops. 

 

The original Mask R-CNN paper, Halstead et al. sweet pepper experiments and the improved 

Mask R-CNN on cherry tomatoes were the basis for the hyperparameter selection: 

 

• Learning rate: 0.02, batch size: 16, momentum: 0.9, weight decay: 0.0001, epochs: 

160000, backbone: ResNet-50, hidden layers: unknown (He, et al., 2021). 

• Learning rate: 0.001, batch size: 4, momentum: 0.9, weight decay: 0.0005, epochs 250, 

backbone: unknown, hidden layers: 256 (Halstead, Denman, Fookes, & McCool, 2020). 

• Learning rate: 0.001, batch size: 8, momentum: 0.9, weight decay: 0.0001, max epochs: 

19500, backbone: unknown, hidden layers: unknown (Xu, et al., 2022). 

 

Since the research shared similar hyperparameters, Halstead et al. was the followed example 

because their research also handled the RGBD dataset of sweet pepper crops, and their model 

was prepared for fewer parameters. Although, in the report, it was stated that their 

hyperparameters were mostly based on the PyTorch library's defaults (Halstead, Denman, 

Fookes, & McCool, 2020, p. 4). 

 

How the training was conducted 

Training was completed from scratch and with pretrained COCO weights. They both shared 

the pretrained backbone of ResNet-50, had 256 hidden layers and were trained for 50 epochs 

on a batch size of 4. The optimizer was set to stochastic gradient descent (SGD) with a 

momentum of 0.9 and a weight decay of 0.0005, which in PyTorch is a mini-batch SGD. A 

learning scheduler was set to the tutorial's default value with a step size of 3 and a gamma of 

0.1. This made the model multiply the learning rate with 0.1 every 3rd epoch. get_transform 

in mrcnn_train.py (21) randomly flipped the images to heighten variation in the training set. 

 

Training from scratch 

Initiating training with a learning rate of 0.001 and training for 25 epochs made the learning 

rate drop drastically and settled the box and mask predictions at a mAP of 1.1% and 1.4% 

(IoU=50). Since the learning scheduler made the learning rate drop remarkably, it was decided 

that further learning rate testing was without the learning scheduler. 

 

Training was initiated with a learning rate of 0.01, 0.001 and 0.0001 for 50 epochs to analyse 
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the performance of the model. From the testing it was discovered that the learning rate of 

0.01 and 0.001 had close performance results. Comparing the IoU=50 with IoU=50:95, the 

model with a learning rate of 0.001 was more certain with its predictions. 

 

Training with pretrained weights 

The model was trained with pretrained Mask R-CNN model (PyTorch, 2022) weights from 

COCO train2017 (COCO, 2022). Few custom configurations were available for the pretrained 

model. Training was initiated with a learning rate of 0.01, 0.001 and 0.0001 for 50 epochs to 

analyse the performance of the model. 

 

Evaluation 

The evaluation metrics was generated from the PyTorch library and the Pycocotools. The 

evaluation is not changing any hyperparameters or influencing the training. The metric tests 

the performance of the training each epoch on a separate test set. This prints out a table of 

the predicted boxes and masks with mAP scores for common IoU thresholds for both precision 

and recall. There were few options to acquiring the loss, it was decided to include the last loss 

rate for epoch 50 in each run to give an impression on what number the training loss reached. 

 

Visualization 

The script mrcnn_test.py (21) was used to load the trained models. The function borrowed 

code snippets from the training file to initiate model configurations. This was tested on one 

test sample.  The box and mask predictions and ground truths were visualized in four 

Matplotlib subplots. A score threshold was implemented to only show instances over the 

threshold of 50% certainty. This accumulated from the classification probability measure. For 

the mask visualization, a threshold of 95% certainty was implemented to show the pixel values 

that the model was most certain belonged to the respective instance. The visualization would 

have been better if the image predictions were combined, but because of limited time a 

solution to the problem was not considered. 

 

4.3.4 YOLACT 
 

In object detection, YOLO has had a streak of noteworthy performance over the past years 

with a series of improving models. YOLACT derives from the YOLO architecture and adds to it 

instance segmentation capabilities. 
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Deciding the implementation code 

There were multiple versions of YOLACT when searching the internet, on Papers with Code 

one of the highest scoring libraries to implement the algorithm was the OpenMMlab library 

(OpenMMLab, 2022). Their MMDetection toolbox had pretrained models for instance 

segmentation purposes, and from here the YOLACT was selected as the second detection 

model. 

 

Pre-processing 

For the model to work properly, it was decided to transform the dataset into the COCO JSON 

annotation format. The complete transformation took inspiration from MMDetection's own 

tutorial (MMDetection, 2022) and from the earlier Mask R-CNN implementation structure and 

was joined in the convert_pepper_to_coco function from the annotation_to_coco.py (21) file. 

The function gathered the sample's height, width, filename, annotated area and its bounding 

boxes into a Python dictionary, which was saved as an uploadable JSON file for further 

processing. This was completed for two subsets, training and testing. 

 

Each MMDetection model had its own configuration file, where preparations were made 

before training the model. Parts of yolact_train.py (21) inherited attributes from the 

configuration file and allowed for model parameters and hyperparameters to be customized. 

 

Error handling 

A problem occurred with the creation of the JSON file. The model was not capable of handling 

the mask data in the same manner as the previous Mask R-CNN architecture did. Instead of 

an array with the mask's pixel positions it required the data to be as a polygon with just the 

coordinates for the mask contour. This was realised with an image processing library called 

Scikit-Image and its find_contours function (Walt, et al., 2014). 

 

The tutorial was based on a Mask R-CNN configuration file, a few of the variables had to be 

changed to run training smoothly. Understanding how the configuration file of 

yolact_default_config.py (21) was structured and how the data was processed took some 

research. Few online examples were directly related to the YOLACT configuration file 

structure. The script yolact_train.py (21) was used to change certain values in the 

configuration file. 

 

Model configurations 

Model attributes mostly followed the default settings from the standard configuration file as 

detailed in the yolact_config_default.py (21), which had similar values as established in the 

Model training section. Dataset pathways and number of classes was changed to fit the RGBD 

dataset of sweet pepper crops. A warmup for the learning rate was turned off, to have a more 
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consistent learning rate through the training. This could have been tuned on for better 

performance in the early and late stages of training but was decided not to be tampered with 

for simplicity and saving time. 

 

Evaluation metric 

The evaluation metric was mean average precision (mAP). This was built into to the model and 

shared a similar output structure as the COCO evaluation standard. The loss was not included, 

because it was uncertain how it was calculated. 

 

How the training was conducted 

Like the Mask R-CNN approach, YOLACT was trained from scratch and with pretrained COCO 

weights. The backbone was based on ResNet-50 and the model was trained for 50 epochs on 

a batch size of 4. The optimizer was set to stochastic gradient descent (SGD) with a momentum 

of 0.9 and a weight decay of 0.0005. Different learning rates were tested for optimal 

performance on the dataset. 

 

Training from scratch 

The training was planned for a learning rate of 0.01, 0.001 and 0.0001 to generate the best 

performance in the short 50 epochs time window. The training behaved a bit differently 

compared to Mask R-CNN. Starting training generated an error message stating that the 

classification score reached infinite or NaN. Changing the batch size, lowering the loss weights 

or removing the learning rate warmup layer still produced the same error message. Lowering 

the learning rate to 0.0001 made the training start. Running through 50 epochs, the model 

converged slowly. 

 

Training with pretrained weights 

Training was initialized with pretrained weights and the learning rates of 0.01, 0.001 and 

0.0001. Using a static training rate of 0.01, without the warmup parameters, resulted in the 

previous infinite classification score error. Though, when initiating training with the warmup 

the model trained with a 0.01 learning rate. The warmup parameter increases the learning 

rate at the first epoch before it decays down. To keep the training fair to Mask R-CNN's 

hyperparameter settings, the static learning rate was favoured. The learning scheduler was 

also turned off. The model was trained with a learning rate of 0.001 and 0.0001 for 50 epochs. 

 

Visualization 

The visualization file of yolact_test.py (21) used parts of the model training configuration of 

yolact_train.py (21) to initiate a model instance that was based on the newly trained model. 

The generation of figures was handled by the MMDetection function, show_result_pyplot. The 
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test image from the test dataset was used to visualize the model predictions. 

 

4.3.5 QueryInst 
 

QueryInst based its architecture on queries for each instance, which made it produce higher 

mAP results on the COCO dataset compared to the Mask R-CNN and YOLACT. 

 

Implementation 

The model architecture was loaded from the MMDetection library, and the implementation 

followed the same structure as with YOLACT. The earlier configurated JSON annotation files 

for training and validation were used as input. queryinst_train.py (21) initiated the training 

by preparing and inheriting attributes from a configuration file relevant for the QueryInst 

model. This was similar to the queryinst_default_config.py (21) file. The configuration file 

deviated from the YOLACT configuration file, but defined classes and optimizer related 

variables in the same manner. The file itself was selected from four possible model 

architectures that was based on different backbones. Requirements are stated in Appendix 

(7). 

 

Evaluation metric 

Evaluation was as before produced from MMDetection's replication of the COCO evaluation 

table showing the scores in mAP. 

 

How the training was conducted 

QueryInst was from default based on the ResNet-50 backbone and used the optimizer of 

Adam with a learning rate of 0.0001 and a learning rate warmup configurator. The optimizer 

was changed to SGD and the learning rate configurator was turned off, to keep a static 

learning rate. It was planned to train the model for the learning rates of 0.01, 0.001 and 

0.0001 from scratch and with pretrained weights. 

 

Training 

The model was trained with the three learning rates for 50 epochs each. Though, without 

showing any improvement on the evaluation score and staying at zero mAP through the full 

run. Training was finalised for 50 epochs for each configuration to see if the models just 

needed more time to converge to a minimum. An attempt was made to change the number 

of model stages from 6 to 1 and 3, without any difference to the score. The number of query 

proposals was changed from 100 to 50, 10 and 1 but without any success either. The model 

configurations were changed back to its default settings and a new run was initiated. As 

before the model showed no progress on the score. Number of stages and number of query 
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proposals was changed again to see if it impacted the score. The different approaches were 

tried with and without pretrained weights. 

 

It was also discovered that the line that previously for YOLACT saved the model checkpoint 

was not functioning as intended. Being able to visualize the results could have revealed if the 

problems derived from the evaluation metric, but without a saved model that was not 

possible. The files config file and the pretrained model was checked again to ensure there 

was not a mix up. The MMDetection version was 2.24.1 and the latest MMCV version of 

1.15.1 was checked and the versions should be compatible. Github was searched for all 

known issues related to QueryInst on the MMDetection page. No issue matched the zero 

evaluation score. From QueryInst's report it was stated that the training took 36 to 50 

epochs so the training time should not be the issue. Although it was announced from a user 

in the issues page on MMDetection Github that the QueryInst used a long time to train. 

Therefore, a last attempt was initiated to run the model on default settings for 100 epochs 

to see if it made any difference. After 100 epochs the evaluation was still on zero as detailed 

in Appendix (20). QueryInst was ultimately dropped from the comparison. 

 

4.4 3D representation 
 

In lack of a better ways of representation, the depth was visualized besides the model 

predictions. This was realized with visualize_annotation.py (21). Although the visualization 

does not present too much information. The image values from the annotations and the 

depth can easily be combined to allow each object in the image be available as (x, y, z) image 

coordinates. As shown in Fig.6 with the RGBD visualization. A NumPy dstack function was 

used to add the depth value as the fourth channel in the image array. 
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5 RESULTS 
 

This chapter seeks to concisely present the results that were detailed in the methodology 

chapter. 

 

 

5.1 Dataset visualization 
 

The dataset files are inspected with various Python tools to ensure that they have RGB, depth 

and annotation files that are correct. 

 

RGB and depth visualization 

The RGB and depth data were visualized with Matplotlib in Fig.1 to ensure that their pixel 

placements matched, and that the depth data was correct. 

 

 

Figure 6: RGB and depth visualized. 

 

Their pixel placements look to match in Fig.6, RGBD (right) otherwise the overlay would have 

been shifted. A print(RGBD.shape) command declares the image height as 1280 pixels and 

width as 720 pixels. The depth image and the RGBD image gave indications of missing data by 

exposing areas that where completly white. The presumed missing data were further 

investigated in Fig.7 by shaping the frequency of the pixel values into a histogram 

representation. 
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Figure 7: Depth equalized and histogram plotted. 

 

The histogram representation shows a high number of pixels having the value of zero. This 

confirms that the dataset samples have areas where the data lacks visual representation. 

Multiple samples were tested, and they also showed the same tendency. By manually looking 

at the samples, the missing data did occur in areas around the leaves and crops, which impacts 

the quality of the depth information. From known issues with the RGBD sensors, the missing 

data could be caused by out-of-range object parts, disadvantageous illumination conditions 

and moisture on the lens. 

 

Mask and bounding box visualization 

The dataset annotations were manually inspected by generating masked RGB images with the 

crop instances from subplot_mask_2D (4) and manually comparing these with the raw 

annotation files. 
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Figure 8: Annotations visualized. 

 

In Fig.8 three generated masked samples were visualized to be compared and counted. 

Examples 1, 2 and 3 had respectively 8, 7 and 5 instances of crop rightly accounted for. In the 

ten samples inspected no unaccounted-for crops could be found. It was on these discoveries 

presumed that the dataset annotations were correctly labelled and placed in the images. After 

initiating training, a mistake in the annotation was found in sample 

frame_2019_10_1_10_0_59_656095, which was therefore removed from the training set. 

 

 

5.2 Model training and evaluation 
 

The training was realised with and without transfer learning from a pretrained model. Further 

details on how the results were accomplished can be found in Chapter 4. 

 

5.2.1 Mask R-CNN 
 

Mask R-CNN was trained, evaluated and visualized from scratch and with pretrained COCO 

weights. 

 

Training Mask R-CNN 

Training Mask R-CNN produced the results in Tab.1. 
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Model 
NR: 

Learning 
rate: 

Loss: Box mAP 

(IoU=50): 

Box mAP 

(IoU=50:95): 

Mask mAP 

(IoU=50): 

Mask mAP 

(IoU=50:95): 

M01 0.01 0.52 64.7% 41.7% 69.4% 42.7% 

M02 0.001 0.92 64.3% 38.5% 69.0% 38.8% 

M03 0.0001 1.69 23.4% 7.6% 27% 11.8% 

M04PRE 0.01 0.25 61.7% 42.4% 68.1% 45% 

M05PRE 0.001 0.40 61.9% 40.9% 66.6% 42.5% 

M06PRE 0.0001 1.23 64.3% 38.5% 69.0% 38.8% 

Table 1: Mask R-CNN results, Appendix (8,9) 

 

Model M01 and M02 had similar results. The training loss was marginally lower on the model 

M01. For the pretrained models, M04PRE had the highest score, though the two other models 

were closely after. M06PRE showed a higher score for the IoU=50, but a slightly higher loss as 

well. Comparing the models with and without weights, they are close in score. M04PRE going 

out as the overall best performing. 

 

Visualizing the models generated the results in the figures below. 

 

 

Figure 9: Model M01 results. 

 

Model M01 predicted in all 28 instances. The model wrongfully placed a few masks, coupled 

two instances together and was unsuccessful in localizing 4 out of the total 24 instances. 
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Figure 10: Model M02 results. 

 

Model M02 predicted in all 38 instances. The model wrongfully placed 7 instances, separated 

2 instances into multiple objects and was unsuccessful at localizing 5 instances. Compared to 

model M01, model M02 had slightly poorer performance. 

 

 

Figure 11: Model M03 results. 

 

Model M03 predicted in all 6 instances. The model wrongfully predicted 0 instances but 

missed out on 18 instances and the mask predictions were poorly matched. 
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Figure 12: Model M04PRE results. 

 

Model M04PRE predicted in all 21 instances. The model wrongfully predicted 3 instances and 

missed out on 5. 

 

 

Figure 13: Model M05PRE results. 

 

Model M05PRE predicted a total of 31 instances. The model wrongfully placed 8 instances and 

missed out on 3. Similar performance as the previous M04PRE. 
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Figure 14: Model M06PRE results. 

 

Model M06PRE predicted in total 32 instances. The model wrongfully placed 8 instances and 

missed out on 4. Again, the performance rivals the two previous model implementations, but 

with slightly lower mAP score. 

 

5.2.2 YOLACT 
 

YOLACT was trained, evaluated and visualized partly from scratch and with pretrained COCO 

weights. 

 

Evaluation 

Training YOLACT from scratch was only possible for a learning rate of 0.0001 and lower, while 

with pretrained weights it was possible for a learning rate of 0.001 and 0.0001. The produced 

results are shown in Tab.2, where the model number differs the pretrained with the letters 

PRE. 
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Model 
NR: 

Learning 
rate: 

Box mAP 

(IoU=50): 

Box mAP 

(IoU=50:95): 

Mask mAP 

(IoU=50): 

Mask mAP 

(IoU=50:95): 

Y01 0.0001 0.1% 0% 0% 0% 

Y01PRE 0.001 55.3% 33.3% 57.0% 30.1% 

Y02PRE 0.0001 49.7% 30.0% 55.1% 31.9% 

Table 2: YOLACT results, Appendix (10). 

 

Model Y01 had very poor mAP score. Could be that it would have achieved better performance 

if it was trained for longer. Y01PRE and Y02PRE had closely related scores. The original 

pretrained model scored a 29.0% mAP on the COCO dataset (Bolya, Zhou, Xiao, & Lee, Github, 

2022). Though, the scores are not directly comparable it gives the impression that Y01PRE 

scores high. 

 

Visualization 

Model Y01 was dropped from visualization due to its poor performance. The pretrained 

models generated the results in Fig.15. 

 

 

Figure 15: YOLACT visualization. 

 

Model Y01PRE predicted in all 13 instances. The model wrongfully placed two instances and 

was unsuccessful in localizing 13 out of the total 24 instance. Model Y02PRE predicted in all 3 
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instances. It wrongfully places zero but combined two instances into one. Even though their 

mAP scores were closely related, the visualization of Y02PRE was considerably poorer. 

Comparing Y01PRE to the Mask R-CNN results reveal a much pickier model with fewer wrong 

instance predictions but failed to recognize smaller crops. 

 

 

5.3 Model comparison 
 

The best performing models from each architecture in section 5.2 are compared for a closer 

analysis. 

 

Model 
NR: 

Learning 
rate 

Loss Box mAP 

(IoU=50) 

Box mAP 

(IoU=50:95) 

Mask mAP 

(IoU=50) 

Mask mAP 

(IoU=50:95) 

M04PRE 0.01 0.25 61.7% 42.4% 68.1% 45% 

Y01PRE 0.001 N.A. 55.3% 33.3% 57.0% 30.1% 

Table 3: Mask R-CNN and YOLACT score comparison. 

 

From the mAP scores Mask R-CNN's model M04PRE scored higher than the YOLACT model. In 

addition to converging at a lower learning rate. Google Colab varies the available resources 

when training depending on peak hours. Therefore, comparing the training times are just 

mere estimations. YOLACT trained usually under 15 minutes and Mask R-CNN from 1 hour and 

more. 

 

 

Figure 16: Mask R-CNN and YOLACT visual comparison. 
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Comparing the visualized predictions, Mask R-CNN matched all the instances that YOLACT 

found, plus the smaller instances, which YOLACT totally missed. 

 

 

5.4 3D representation 
 

The predictions are visualized together with the depth data. 

 

 

Figure 17: 3D representation of models. 

 

In Fig. 17, the depth data is shown as a grayscale image where the black colour equals zero 

distance from the capture device and lighter colours resemblance pixels farther away. As seen, 

the depth data is lacking information in all the black areas of the image. This looks to be 

valuable depth information that would have been practical for a robotic harvester. 
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6 DISCUSSION 
 

 

Chapter 1 introduced food insecurities as a rising problem and claimed that improving 

agriculture detection technology could help mitigate the problem. It was discovered that 

current crop detection systems for robotic greenhouse harvesters are not a profitable option 

for farmers. A solution was proposed, improving the detection system of the robotic harvester 

could give the technology the edge it needed to be an efficient alternative for farmers. The 

project plan was to train Mask R-CNN, YOLACT and QueryInst on a RGBD dataset of sweet 

pepper crops and compare their performance. As a final, the results were going to be 

represented in 3D space. 

 

Project criteria 

A few project criteria were set from the proposed solution. A dataset with crops cultivatable 

in a greenhouse environment was to be preferred. This dataset should also include 

annotations that could be used for instance segmentation and RGBD data for 3D 

representation. The models being DNNs with instance segmentation capabilities. All set in the 

scenario of a robotic greenhouse harvester. 

 

On the project's way, decisions were made to select the RGBD dataset with sweet pepper 

crops. This was a befitting dataset to the criteria, because it had RGBD information, 

annotations for instance segmentation and greenhouse cultivatable crops. There were few 

other options as the public agriculture dataset survey proved (Lu & Young, 2020). The dataset 

had few samples to train on, 99 to be precise, after removing a bad annotation. Initially it was 

thought that this would generate poor results, but as seen in Tab.1, 2, and 3 the models 

reached functional scores for both architectures with pretrained weights. Where Mask R-CNN 

also scored high when training from scratch. The two model architectures had the data 

augmented before processing, these happen at random (Stackoverflow, 2022). It is therefore 

hard to calculate how much this impacted the model, but at least it multiplied the amount of 

training samples. The dataset had just one crop type to locate, which is very specific when 

grading its practicality for farmers. From Chapter 3, the reports also based their research on 

one crop: sweet peppers (Halstead, Denman, Fookes, & McCool, 2020), tomatoes (Xu, et al., 

2022), while one report detected peppers, eggplants and guavas at the same time (Lin, Tang, 

Zou, Xiong, & Fang, 2019). Developing detection systems that could generalize over several 

crop species would be optimal. 

 

About the decision of using DNNs for detection tasks. Chapter 3 revealed that most object 

detection research are currently utilizing supervised DL to achieve the highest performance. 

Papers with Code instance segmentation benchmarks are heavily influenced by DL models 

(PaperswithCode, 2022). Current agriculture trends states that DL is boosting robotic 
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perception and the detection algorithms (Kootstra, Wang, Blok, Hemming, & Henten, 2020, p. 

100). Lin et al. (Lin, Tang, Zou, Xiong, & Fang, 2019) based their detection on simpler 

algorithms that scored high on mAP but had a processing time of 4.70 second per detection. 

This approach would still need improving to rival DL. 

 

Initially, the project wanted to have a higher focus on utilizing the 3D data. Finding research 

that handled instance detection in 3D was hard to come by as discovered in section 4.3.1 

Model selection. The limited research on the field conveys to less available information online, 

which makes program development potentially more difficult to work out. The different 

approaches for processing 3D information are found to be by: Joining a 2D prediction with 3D 

information (Li, Feng, Qiu, Xie, & Zhao, 2022), process point clouds with fully 3D-based 

detection models (Li, et al., 2022) and process the depth information as an extra layer for 2D 

detectors (Xu, et al., 2022). Processing RGB and depth information in a 2D-based detector 

suggests being a possible middle way for current technology. This way, the optimized 2D-

based detectors have a lead on regarding speed and accuracy. Fully 3D-based networks are 

increasing with cheaper devices and a bigger acquirable 3D dataset (Ahmed, et al., 2019). 3D 

representation brings an opportunity to distinguish crops apart and heighten the model's 

ability to localize crops behind occlusion. This is an ongoing challenge in agriculture detection 

(Kootstra, Wang, Blok, Hemming, & Henten, 2020, p. 96). 3D representation could potentially 

support a robotic harvester and its gripper to reach target crops (Li, Feng, Qiu, Xie, & Zhao, 

2022). Processing the depth training as an extra channel would have been the optimal 

approach for the project. 

 

Instance segmentation was a favoured trait, because it would produce detailed pixel masks 

for multiple object instances (Gu, Bai, & Kong, 2022, p. 3). There was not found any 

comparable alternative that offered the same detailed information for multiple instances. The 

discovered literature was sticking to this approach as well. 

 

Results 

The dataset was visualized to validate if it passed the project criteria. This was achieved by 

inspecting and visualizing the different files and their data. The RGB and annotation files were 

found to be of functional value, but the depth data lacked data points. This made it inaccurate 

as discovered in sections 5.1 and 5.4. The original idea of 3D representing the data, preferably 

with the annotations was not fulfilled. Matplotlib had few options for 3D visualization, the 

large set of datapoints made the program slow to work with. The RGB data array and depth 

was though combined as visualized in the RGBD image in Fig.6. 

 

The model plan was to train and compare two established detection architectures against a 

newer architecture. This was partly achieved. Mask R-CNN and YOLACT were two detection 

models commonly implemented both for general detection tasks and in agriculture research 

(Zaidi, et al., 2021). QueryInst was developed in 2021 and showed promise on benchmarks 

(Fang, et al., 2021). The Mask R-CNN trained with and without pretrained weights and could 
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show to practical detection capabilities in Tab.1 and 2. YOLACT could not be trained with 

learning rates higher then 0.0001 without, and 0.001 with pretrained weights. This was caused 

by an error in the initialization of training and could stem from the default model settings 

pushing a parameter related to classification too high. QueryInst was trained with numerous 

hyperparameter combinations but could not reach a score over 0 mAP. Comparing the results 

for Mask R-CNN and YOLACT, revealed that Mask R-CNN had a slight better performance in 

Tab.4. It being a two-stage detector, it was favoured from the start to perform better (Xu, et 

al., 2022, p. 5). YOLACT was close in score, while its training time was down to a fourth of Mask 

R-CNN. The visualization showed that YOLACT had fewer wrong predictions and failed at 

recognizing small objects. This is a known shortcoming stated in YOLACT (Bolya, Zhou, Xiao, & 

Lee, YOLACT, 2019). Since there already has been minor flaws in the dataset, it is possible that 

the Mask R-CNN predictions captured unannotated instances. 

 

The results show Mask R-CNN's and YOLACT's potential to produce results from a small 

dataset based on sweet pepper crops. The results failed to bring forth an eventual better 

performing model and the comparison between established and newer architectures flopped. 

 

Research 

After the idea of agriculture crop detection, a research plan was organized. Related papers to 

object detection in agriculture was gathered. From the literature review an impression of the 

field and where the project could contribute was formed. Topics like DL, instance 

segmentation and 3D data processing takes time to understand all the directions and methods 

available. To produce the results and the approach to inspecting the dataset, was influenced 

by the practices described in section 2.1.4 Deep learning workflow (Elgendy, 2020). The 

programs and the tools that was utilized under the project development was inspired and 

based off tutorials related to the model architectures. GitHub (GitHub, 2022) and 

Stackoverflow (Stackoverflow, 2022) was visited for problem solving program errors. 

 

In hindsight, the project could have been shorted down to just Mask R-CNN training with 

added weight on investigating the depth values as an extra channel fed into the detection 

model. A downfall to this project was too many complex topics that took hours to navigate.  
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7 CONCLUSION 
 

The main goal of the thesis was to explore object detection with instance segmentation in 

relation to agriculture. The project set out to train and compare the architectures of Mask R-

CNN, YOLACT and QueryInst. Three main tasks where set to be investigated. 

 

Validate the RGBD dataset of sweet pepper crops 

The dataset files were first inspected with various Python tools to acquire their data 

specifications. This revealed data and was necessary to visualize the depth and annotation 

files. The RGB files were a intact and functional. The annotations files showed the masked 

instances and their belonging bounding boxes when visualized. There was a flaw in one of the 

samples, which was removed from the dataset. The depth data was missing valuable pixel 

information in image areas, which could produce inaccurate depth coordinates. 

 

Train Mask R-CNN, YOLACT and QueryInst 

Training was completed for Mask R-CNN, YOLACT and QueryInst, but the latter failed to 

produce a mAP score over zero. Hyperparameter tuning was initiated by experimenting with 

learning rates in the range of 0.01, 0.001 and 0.0001 for the intention of improving 

performance. Major model architecture components shared by the models were preserved to 

create an equal footing. The training was initiated from scratch and from pretrained weights 

to investigate if it improved the performance. 

 

Evaluate and compare the model performances 

The training results were evaluated with the mAP metric and visualized. The evaluation metric 

showed that Mask R-CNN's mAP of 45% passed YOLACT's mAP of 30.1% for the mask 

predictions. For the box predictions Mask R-CNN mAP of 42.4% did better than YOLACT's mAP 

of 33.3%. From visualizing the models, Mask R-CNN had several correct predictions, while 

YOLACT predicted correct it missed a few instances, especially the smaller ones. 

 

Mask R-CNN and YOLACT show promising results on a small dataset of sweet pepper crops.  
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9 APPENDIX 
 

(1) read_data, function from visualize_annotation.py 

 

 

(2) subplot_rgb_depth_2D, from visualize_annotation.py 
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(3) histogram_depth, from visualize_annotation.py 
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(4) subplot_mask_2D, from visualize_annotation.py 

 
 

(5) Local computer, specifications: 

Asus PC, Intel i5-4460 3.20 Ghz processors, 8 GB RAM, NVIDIA GeForce GTX 750 Ti, Windows 

10 Home build 19042, cudatoolkit 11.5 v.496.76, CUDA 10.1. The latest and stable PyTorch 

version 1.11.0 compatible with CUDA 11.3. 

 

(6) Mask R-CNN requirements 

Packages: Pytorch, torchvision, cuda, cython, numpy, pillow, git. 

Github repository: Pycocotools. 

PyTorch helper functions: coco_eval.py, coco_utils.py, engine.py, transforms.py, utils.py.  

 

(7) YOLACT and QueryInst requirements 

Packages: Pytorch, torchvision, cuda, MMCV, MMDetection. 

Pretrained model: yolact_r50_1x8_coco_20200908-f38d58df.pth. 

Pretrained model: queryinst_r50_fpn_1x_coco_20210907_084916-5a8f1998.pth 
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(8) Mask R-CNN mAP scores 

 

LR of 0.01 

 

LR of 0.001. 
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LR of 0.0001 

 

 

(9) Mask R-CNN, pretrained mAP scores 

LR of 0.01 



68 

 

 

LR of 0.001 

 

LR of 0.0001 
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(19) YOLACT mAP scores 

LR of 0.0001, bounding box (upper) & mask (lower) metrics 

 

 

 

Pretrained, LR of 0.001 



70 

 

 

 

Pretrained, LR of 0.0001 

 

 

(20) QueryInst 

100 epochs run 
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(21) Folder structure for the program code. Available in an external folder. 

MODELS AND DATASET WERE REMOVED FROM ZIP-FILE DUE TO SiZE. 

dataset 

 -> test: containing depth, mask and rgb test data. 

 -> train: containing depth, mask and rgb training data. 

 -> val: containing depth, mask and rgb validation data. 

mrcnn 

 -> models: containing the Mask R-CNN trained models. 

 -> coco_eval.py, coco_utils.py, engine.py, transform.py, utils.py. 

 -> mrcnn_test.py 

 -> mrcnn_train.py 

queryinst 

 -> queryinst_default_config.py 

 -> queryinst_r50_fpn_1x_coco_20210907_084916-5a8f1998.pth 

 -> queryinst_test.py 

 -> queryinst_train.py 

yolact 

 -> models: containing the YOLACT trained models. 

 -> annotation_to_coco.py 

 -> yolact_default_config.py 

 -> yolact_test.py 

 -> yolact_train.py 

visualize_annotation.py 


