Can depth data improve the accuracy when

classifying mops?

Stian Blomdal

0
Ny
o° %»

Thesis submitted for the degree of
Master in Applied Computer and Information Technology (ACIT) -
Robotics and Control
30 credits

Department of Computer Science

Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2022

Can depth data improve the accuracy when

classifying mops?

Stian Blomdal

© 2022 Stian Blomdal

Can depth data improve the accuracy when classifying mops?

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/

Preface

This thesis is based on a collaboration project, and all the people who played a part deserves my
gratitude. First of would like to express my gratitude to my main supervisor Henrik Lieng. Thank
you for the support and insight. I would also like to thank Dudor Morar from Inwatec for your
patience and willingness to always help. Thank you Bjerge Aguirre for your support and trust the

last couple of years.

ii

Abstract

Since the emergence of low cost RGB-D cameras, a new world of possibilities have opened up in
the field of Computer Vision. This projects focuses on both the practical and theoretical part of
how depth data can improve the accuracy when classifying objects in an industrial environment.
We have tested both classical machine learning methods and Google’s Residual Neural Network:
MobilNetV2. The goal was to achieve an accuracy that can match HF RFID-tag(95-97%). The
purpose of the research question was to find out more about RGB-D images and what methods

that can be used best for classification.

iii

iv

Contents

Preface

Abstract

1 Introduction

1.1 Motivation e e
1.2 Problem Statement e e
1.3 Constraints e e e e e e e e

2 Background and Related Work

21 Background
211 Interpretability and Explainability
212 Machinelearning L
213 SVM . L
214 KNN . .o
215 Neural Networks
216 DeepLearning
21.7 Deep Neural Networks
2.1.8 Convolution Neural Network
219 PaddingandStride L o
2.1.10 Residual Networks
2111 Transfer Learning
2.1.12 Stereo CameraSensing
22 Related Work
221 RGB-D . . .
222 Semantic Segmentation oL
23 Tools

iii

2.3.1 Realsense software development kit
232 Realsense D435 e
233 Ct++andPython

Methodology

3.1 Transferlearning
3.2 Preprocessing
33 SVMand kNNo
34 Experiments
35 Datacollection

36 Dataanalysis. L

Implementation

41 Hardware

42 Imagecapturing
421 Auto-labeling
422 Manuallabeling o

43 Modeldevelopment

Results

51 MobilenetV2
51.1 Baseline
512 Number of MNV2 e

52 SVM KNN
521 Numberof SVMKNN

Discussion
Conclusions

Listings

Al Code e
A1l Imagecapture
A.1.2 Pretrained MobileNetV2
A13 SVM . o
A14 KNN . .o

Vi

19
19
20
21
21
22
22

23
23
24
24
24
26

27
27
27
29
31
31

33

35

A2 Projectmanagement

A.3 Test results

A3.1 MobilnetV2code e
A32 SVMand KNNcode e

vii

viii

List of Figures

1.1
1.2
1.3

21
2.2

23
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
34

4.1
42
43
44

5.1
52

Twowhite 2
Twoblue 2
Twogreen 2
Machine Learning Methods 6
Adaptive Combiner.

x = input,w = weight,b = bias,y = output 7
DNN [24] . . . 8
Visual vs convolutional hierarchy[27] 10
Inputand Filter [9] 10
Input x filter —> Feature Map([9] o oo L 10
Colours represent different filters [9] 10
Maxpooling [9] 11
Residual block 13
Mlustrationof camera 16
Normalizeddepth 20
Normalized depthwithROI 20
Double Normalized depth withROI 20
Whitemopsavg 21
Caption e 23
Marked door 25
Manualfeeding 25
Final RGB 25
Baseline RGB 28
BaselineDepth 28

ix

5.3
54
5.5
5.6
5.7
5.8

Best whitetest e 31

Best white testmetrics 31
Bestgreentest 32
Best greentestmetrics oo 32
Bestbluetest L 32
Bestblue testmetrics L 32

List of Tables

51 Top results White Mobilnet with PPM1: 29
5.2 Top results Green Mobilnet with PPM1: 30
5.3 Top results Blue Mobilnet with PPM1: 30
54 Top results from SVM and KNN with PPM2: 31
6.1 Averageresults 33
A1 Tentative Projectplan L o 54

xi

xii

Chapter 1

Introduction

1.1 Motivation

Nor Tekstil is a company providing industrial laundry services nation-wide in Norway. One
branch of their services is delivering clean floor mops to their customers. At the laundry in
Drammen, they make use of a machine for packaging mops - this is where Inwatec becomes
important. Inwatec is a Danish robotics company, developing advanced software and smart
machinery to automate workflows in the industrial laundry industry, and is also the manufacturer
of the packaging machine. After the mops are washed and dried, they’re packet into a plastic bags.
Today this machine is able to count the number of mops going through it, before ending up in a
bag. This is done by inserting a high frequency chip in each mop and installing a reader inside
the machine. It is not able to classify the type of mop. This can become an issue if the machine
is fed with a batch of mops different from the kind it’s set to pack. Worst case, the customer
is getting a different kind that they ordered. Nor Tekstil has several checkpoints today in their
production line where one can find similar challenges. Sorting and counting garments throughout
the production line can increase the amount of control variables, which again gives Nor Tekstil
the ability to increase the effectiveness of the laundry. Understanding how to automate the task of

depth perception is beneficial for all parts involved in this project.

1.2 Problem Statement

We want to capture and use RGB-D image data to classify and count mops while being packed
by a packaging machine. Is it possible to achieve the same or better accuracy as HF RFID-chip

classification (95-97%)? We need to mount a camera at a suitable position and angle. Then interface

1

with the packaging machine, get a signal from a photo electric sensor when mops are within the
field of view of the camera, and capture the image data. Create a large enough dataset and label all
images correctly. Create a baseline model, then build models using the most suitable methods for
this project after doing extensive research of related work. Compare results and suggest further
work. One can think about this classification problems as a set of 2 main tasks. Find out what
type of object this is; a white, blue or green mop? When this is established, how many are there
in the image?. By design the machine is able to separate mops from a big pile. The exact amount
separated varies from one up to four. Lets call this a small pile. When the small pile is transported
on the conveyor belt, its not always easy to see for a human how many exactly is in this pile.
Imagine you take four mops and toss them on the floor, they will always land differently and

sometimes four mops looks like two, one looks like two, and so-on. Each picture below inhabits

two mops each - not easy to tell? How do one classify both the type and number of mops?

Figure 1.1: Two white Figure 1.2: Two blue Figure 1.3: Two green

Research question one: Can classification accuracy of RGB-D data be improved by breaking the
problem into two parts?
Research question two: Can classical machine learning methods help to improve classification

accuracy of depth images?

1.3 Constraints

Early on it became evident that there was going to be some constraints on how the topic should

and could be researched. Main constraints were:
¢ Time (four and a half moths)
e Access to code from related work

* Type of data the image sensor produce

On the basis of these constraints a couple of important decisions were made along the way in order
to deliver a finished product on time. Use transfer learning for baseline model. This minimizes
the need for time spent on coding, and gives us a realistic scenario of what method would be used
in a real life image classification problem. Now time has been added to focus on testing other
methods that hopefully can improve accuracy. Only methods that easily could be tested with the
raw data produced was evaluated. This means that for example semantic segmentation was not
tested. For semantic segmentation one needs to have a mask for every training image. This is
done by manually drawing polygons around the objects to classify [37]. The main intuition when
starting this project was that if one wants to find the type and amount, methods that don’t use
of the volumetric features in an image, will be no better than the state of the art 2D-classification
methods. Occlusion of the same type of objects within an image makes it impossible at one point to
distinguish between number of objects by only analyzing the 2D properties. As many as possible
3D-classification methods must be evaluated, but, this is not a paper about testing the state-of-the-

art methods, it’s about testing the methods that is suitable given the before-mentioned constraints.

Chapter 2

Background and Related Work

This chapter describes the practical and theoretical foundation of the project. The main focus is on
the research topic, and related work. This is a Computer Vision and pattern recognition project,
so when researching within a broad topic like this it is necessary to narrow it down to something
more specific. There are several sub-categories and what they are should be clear after the end
of this analysis. But it even in the beginning it’s necessary to narrow it down beyond Computer
Vision and pattern recognition. If one thinks of a picture as a two dimensional space, adding depth
creates a third dimension. This gives us 3D images as a basis for field to study. Combining this with

classification, and type of data produced by the camera, the following material has been created.

2.1 Background

2.1.1 Interpretability and Explainability

Ethical considerations related to this project is not that obvious. But in a general sense it should
be in the back of every researchers mind when creating models that may have the potential to
end up in an applications related to Al, or when using and modifying models and methods that
are currently being used in Al. According to [21], Interpretability is to what extent one is able to
predict the AI’s decision, feeding it with a known input. [13] defines it as the ability of a human
to understand the result a neural network outputs. Explainability or Explainable AI(XAI) is the
methods and processes that allows humans to understand and trust the decisions made by the AL
A useful analogy is if you think about doing a science experiment. Interpretability is that you can
see the different parts of the experiment and know if you light a match near the gas nosel, the gas
will ignite. Explainability is digging into the chemistry behind it all. According to [13] theres been

a surge of work in XAIL We need to fully understand what the model is doing for us to trust it. We

5

need to be able to do extensive debugging of the models we create in order to better understand

them and learn from them. There is a lot of work being done on this, ref [43],[6],[30],[5]

2.1.2 Machine learning

As shown in the figure below, there are generally four major types of ML methods. ML is a method

Figure 2.1: Machine Learning Methods

TN

Machine Learning

—

Supervised Unsupervised Semi-Supervised Reinforcement
Learning Learning Learning Learning
~_ ~ S S S~

for automating the process of model building. The idea is that a system can learn from data, find
patterns, and make decisions with as little human interaction as possible[22]. An effective way to
differentiate between the different sub-fields of ML, is to look at it from a data labeling perspective
and how they gain insight from data. Supervised learning uses labeled data. Unsupervised uses
unlabeled data and Semi-Supervised is a combination of both. Reinforcement learning uses no
data, where the algorithm discovers through trial and error, and the goal is like a video game - get

the highest score [22].

213 SVM

A SVM in its most basic form is a linear binary classifier that can identifies a single boundary
between two classes. For multi-class classification one can use a polynomial kernal. According
to [7] do a polynomial kernel allow to map the input space into a higher dimensional space that
is a combination of products of polynomials. Despite its high computational load, this kernel is

frequently applied to data that has been normalized.

6

2.14 KNN

K-nearest neighbors algorithm (KNN), is a non-parametric, supervised learning classifier [24],
which uses proximity to make classifications or predictions about the grouping of an individual
data point. For a classification problem, a class label is assigned on the basis of a vote. The label
that is most frequently represented around a given data point is used to determine what class the
new observation belongs to, defined by the tuning parameter k. The following paragraph is taken
from [34]: "One Vs Rest Classifier, also known as one-vs-all, this strategy consists in fitting one classifier
per class. For each classifier, the class is fitted against all the other classes. In addition to its computational
efficiency (only n classes classifiers are needed), one advantage of this approach is its interpretability. Since
each class is represented by one and one classifier only, it is possible to gain knowledge about the class by
inspecting its corresponding classifier. This is the most commonly used strategy for multiclass classification

and is a fair default choice.

2.1.5 Neural Networks

According to [10], Neural networks are based on algorithms that are present in our brain and
help in its functioning. A Neural network interprets Numerical patterns which may be present
in the form of Vectors. [24] noted that Artificial Intelligence consists of several subfields, and one
of them is ML. In ML, there is a subfield called Neural Network (NN). This is the backbone of
deep learning. One can think of a NN’s as a set of algorithms trying to replicate the human brain’s
abilities. When designing a network like this, it’s classically comprised of four components: inputs,
weights, a bias or threshold, and an output, the relationship between them is shown in the figure

below.
M —
1 @ X1 w1 b
X2 —y l
v ()
w— ()

Figure 2.2: Adaptive Combiner.x = input, w = weight,b = bias,y = output

2.1.6 Deep Learning

According to [10], Deep learning is a subset of machine learning that gives the system the capability

to function like a human brain and imitate patterns that our brain does for making decisions

7

2.1.7 Deep Neural Networks

Based on [24][18], Deep Neural Networks (DNN's) are considered to be networks that are build by
3 or more layers, including input and output. One of the key benefits of deep learning algorithms
is that they minimized the need for human interaction. The task of finding features in a dataset
is automated. The downside of deep learning algorithms is that they need much more data in
order to perform compared to the more classical machine learning algorithms. A popular way to

visualize a DNN is shown below.

Deep neural network
Input layer Multiple hidden layers Output layer

O

\\Y:\ X

O‘yﬁ’,f
NP

g/y; N
v/

()Z’/

0000

SOOGO
OO0

OO

Figure 2.3: DNN [24]

2.1.8 Convolution Neural Network

According to [4], before Convolution Neural Network’s (CNN’s), hand-crafted features were
created in order to perform classification. The breakthrough of CNN’s is that features are learned
automatically from training examples. CNN'’s proved to be very effective in image classification as
the convolution operation captures the 2D nature of images. CNN’s has been around for over 20
years, but because of large available data-sets and implementation of CNN on massively parallel
GPU’S, its adoption has exploded the past 8-10 years(2016). CNN is based on the human visual
cortex and for image and video recognition it’s the most common one used [1]. The following
subsections will introduce the reader to the different tools and building blocks of a CNN. At
the end a precise description of how one can utilize their full potential by combining them, and

eventually resulting in something most commonly known as an architecture.

Neuron

Neurons in CNN’s can be seen as a combination of an adaptive combiner (shown in 2.3) and
activation function[32]. They are thought of as the building block of the CNN layers. This

representation will come in handy later in this section.

Biology and math

[29] and [33] noted that Convolutional Neural Networks (CNN) is inspired by the animal visual
cortex, more specifically, the discovery of the way neurons are connected with a certain pattern
in a cat’s brain [17] as cited in [27]. The neurons cover a part of the visual field, tiled together
by overlapping each other. Neurons respond to stimuli through simple and complex cells, and a
convolutional operation can mathematically replicate this [27, p.2] [33, p.4]. Figure 2.4 shows the
relationship between the visual system and base convolutional operations.

On the left, we can see that the simple cells have a preferred location in an image that causes
activation, and further the complex cells react to activation of the simple cells[27]. On the right, we

can see the filtering process that we up to now have called convolutional operation.

Convolutional layer

The core building blocks of a CNN is the convolutional layers. This is where the feature extraction
is happening. A filter also known as a kernel, with a specific size is applied to the input, and the

output is considered to be the feature represented as weights[42]. Lets define a feature we wanna

9

Complex @ Pooling
Cells . _ Layer

Simple | °o? I. Convolutional
Cells o7 | /o] Layer

Figure 2.4: Visual vs convolutional hierarchy[27]

search for in an input, represented as a 3x3 matrix. This is applied throughout the input with a
set of predefined rules for movement. It slides a window over the inputs to find where the feature
matches and map this into another matrix. This is called the feature map. Figure 2.5 visualizes

both input and filter. Figure 2.6 shows how its mapped onto a feature map.

Ix1|1x0 [1x1| 0 | O
0x0 [1x1|1x0| 1 | 0 4
1 1 1 00
Ox1 [0xO0 [1x1 | 1 1
0 1 1 1 0 110 1
Of0|1]1]0
Oj0 |1 [1]1 0Of[1]0
O|1|1[0]0
010 1 1 0 110 1
0|1 11010 Input x Filter Feature Map
Input Filter / Kernel
Figure 2.6: Input x filter —> Feature
Figure 2.5: Input and Filter [9] Map[9]

This is done for as many filters that are applied in the network.

Figure 2.7: Colours represent different filters [9]

10

2.1.9 Padding and Stride

How much the window slides is called stride. In figure 2.8 a stride of 2 is performed, with a pooling

window of 2x2 .

Pooling

[9] and [20] noted that pooling is performed by down-sampling each feature map. By reducing
the height and width, keeping the depth intact, training time is shortened. Maxpooling is the most
common type of pooling. This is yet another convolutional operation that slides a window over

the inputs and maps the max value into another matrix.

max pool with 2x2

5 6|7 8 window and stride 2 6 8
3

[§%]
=
W
E e

Figure 2.8: Maxpooling [9]

Batch Normalization

[23] as cited in [31, p.111-113] explains how Batch Normalization helps the network train faster
and achieve higher accuracy. This is done to every layer in a neural network. A vector is grabbed
before going through a layer, then each component of the vectors in the batch is normalized by

subtracting the mean and dividing by the standard deviation.

Activation Function

The purpose of applying the activation function is to increase the non-linearity in images[38], [20].
In image classification, one of the most effective functions is the rectified linear units (ReLU).
fretu(hix) = max(0,h;x).. This is a function that sets a all negative values as zero, and positive
values equals as the input. [20] explains that one of the keys to recent success in NN is the use
of ReLU and that it’s generally a better solution than the conventional Sigmoid-like units. This is

why we have used this activation function, as described in the Methods section later in this report.

11

Dropout

Dropout is one of the most common method for preventing overfitting in DNN's [9, section 4.1]
[31, p45]. As described in [9, section 4.1] [31, p45-46], dropout works by "dropping" or disabling
neurons. [9] noted that dropout is analogous to a company with an expert in finance being away
from work for a period of time each week. This forces the coworkers that were dependent on
this expert to learn something new and work with people they usually wouldn’t. This makes the
company more dynamic and raises the overall competency level of the employees. The parameter
for tuning the amount of dropout is called dropout-rate. If the dropout rate p = 0.2, 20 percent of
the neurons are being disabled. If a neuron is disabled, its input and output are inactive for the

rest of the training step but can be active the next.

Loss function and gradient decent

The loss function is used for gradient descent. In simple terms we need to know the error when
predicting an image - how far away from the desired output are we?. If y is the desired output and
x; is the input from the previously connected neuron, what is the rate of change in y with respect
to x;. We can check this by doing the equivalent to gradient descent by taking the derivative of
the output with respect to the input. In simple words, the loss is used to calculate the gradients.
And gradients are used to update the weights of the network. This is how a CNN is trained. In the
experiments done in this thesis, the loss is calculated using the "sparse categorical cross entropy"

function from Tensorflow.

N
Y lyilog (9:) + (1 — i) log (1 —)] 2.1)

i=1

Z\H

Where w are the model parameters - weights of the neural network. y; is the true label, and #; is

the predicted label.

2.1.10 Residual Networks

When searching for "Image classifiaction" on IEEE, the most cited publication, with over 50,000
citations, and used in over 180 patents, is the paper; "Deep Residual Learning for Image
Recognition" [19]. Clearly our solution space contains this paper and technology related to it.
In 2016 [19] proved the ResNet can go deep, 152 layers, 8x deeper than VGG nets but still having
lower complexity. With the ResNet model they achieved 3.57 percent error on the ImageNet test
set[19]. This result won 1st place on the ILSVRC 2015 classification task[19]. Moving forward the
popularity of ResNet’s grew. A ResNet is a CNN with residual blocks. In a CNN each layer feeds

12

into the next, but in a network with residual blocks, each layer feds into the next layer and directly

into layers that are 2 to 3 blocks away. It’s skipping. See figure below. Given input x, F(x) is the

X

A
weight layer

Flx) Jrelu

weight layer

y

X

identity

Figure 2.9: Residual block

result of x after it has been passed through two convolutional layers, with relu between them. The
identity of x is then added to F(x) given the output as F(x) + x. This means the next layer learns

new information and at the same time retain knowledge learned in previous layers[19].

2.1.11 Transfer Learning

The main idea is that one can transfer knowledge from one model to another. If a model has
learned a set of features by being trained on a large dataset, the intuition is that it could serve a
good model of the visual world. [25] as cited in [2], noted that by utilizing deep and complex CNNs
but freezing their layers, thereby decreasing the trainable parameters and allowing for knowledge
transfer from training on large image datasets. Specifically one can use a pre-trained model as is, or
perform transfer learning by only training the top layers of the pre-trained model, and the newly-
added classifier layers. By doing this, we’re allowing to "fine-tune" feature representations in the
pre-trained model in order to make them more relevant for the specific task [2]. The intuition
behind transfer learning for image classification [2] is that if a model is trained on a large and
general enough dataset, this model will effectively serve as a generic model of the visual world.
You can then take advantage of these learned feature maps without having to start from scratch by

training a large model on a large dataset.

2.1.12 Stereo Camera Sensing

One of the most recent published surveys on RGB-D datasets, [28] starts off by classifying different
sensors able to obtain depth information into the following categories: Structured Light, Time-of-

Flight (TOF), Light Detection and Ranging (LIDAR), and Stereo Camera Sensing (SCS). We will

13

focus on the latter. To create a depth map, one can use two or more image sensors or lenses
[28]. A straightforward strategy to measure depth from two or more cameras is Triangulation. The
Triangulation idea is the same as applied in Structured Light sensors, but using a camera instead of
a projector. The idea is that finding the position of a pixel in the image plane of camera Aprojected
from a point P in the space, and the position of a pixel projected by the same point P in camera B,
it is possible to find the depth of that point in a scene with the intrinsic parameters of the camera.
After finding both lines projected in both cameras from point P, it is only necessary to know the
distance between the two cameras (baseline distance) and internal parameters of the cameras to
know the depth of the point P. A limitation of this strategy occurs when the point of interest
has no texture. For instance, it is practically impossible to determine which point of a smooth
painted wall observed in the image projected by camera A is equivalent to the image projected by
camera B. Therefore, it is difficult to determine a point’s depth with acceptable accuracy without
the correspondence of the pixels in both image planes. Recently, Deep Learning based methods
have tried to address this limitation, increasing the accuracy of the estimation [27]. Examples of

such types of sensors include light field cameras and ZED cameras.

2.2 Related Work

Can I make the case that something is missing in the current literature? I have different vague
ideas about how to solve the problem with a quite elementary overarching algorithm, comprising
of one model for determining the type, and then depending of the type chose 1 out of three models
determining the amount. The most work using depth information has been focused on semantic

segmentation and object recognition.

2.2.1 RGB-D

After the emergence of low cost sensors like Microsoft’s Kinect and Intel’s Reals Sense, the number
of RGB-D datasets has grown, and as a consequence so has the number of methods for classifying
the data. Early methods for classifying RGB-D combines CNN and Recurrent Neural Network
(RNN) [36] as cited in [15]. The methods is to learn low level translation invariant features
with the CNN for both RGB and depth images, but do it separately. Then the learnt features
is fed into multiple RNNs to map out more high level features. This method proved to reduce
computation time. A similar approach is done by[11], who are training two CNNs on RGB and

detph, and then fuse them together creating one fusion stream, and leaving one stream from each

14

network untouched. By doing this, one can learn the weights of the fusion and the independent
features from the input. In [16], Gupta explores the idea of stacking the depth channel onto a
CNN architecture, but with modifications. They represent each pixel using horisontal disparity,
pixel height above ground ,and angle bewteen normals and gravity, known as HHA. Theese
three features can be represented as a 3 channel image and therefor make use of the feature
extracting skills of a CNN. [41] assumes that pixels on the same 3D-plane tend to share the same
class. They have developed a generic model, Z-ACN can be applied to all applications such
as classifcation,segmentation,and object detection. [14] shows that by applying a 5x5 and 3x3
encoding filters to the depth image and normalizing the original data, one can create a 3-channel
input for an CNN, which performs better than just replicating the original depth channel into 3
identical ones. An advantage of this encoding method is that the pre-processing filters can be easily
incorporated as part of the CNN. This can be achieved by adding a new convolutional layer to the
depth path of the RGB-D CNN. Others have tried to take the volumetric approach by modifying
the kernel to instead of having the size of w, h, 1 as input, has a k, k, d and outputs w, h,m. Each
stride traverses the grid similar to a 2D convolution operator and increases depth by a given stride

once each 2D plane has been convolved [15].

2.2.2 Semantic Segmentation

Depth provides additional geometric information that can benefit an RGB semantic segmentation
model [26] as cited in [3]. We define the semantic segmentation task as follows: given an input
RGB image I € R**W3, the objective is to produce an output semantic segmentation map
S € RHXWXC where C is the number of semantic classes. In other words, for each of the H x W
pixels of an RGBimage, the semantic segmentation task produces a probability distribution over C

IRHXW

categories. In an RGB-D context, a depthmap D € is available in addition to the RGB input

so as to enhance the accuracy of the predicted segmentation map.

2.3 Tools

2.3.1 Realsense software development kit

Realsense software development kit (Realsense SDK 2.0) from Intel, supports a wide range of
programming languages and development platforms[8]. With one of the supported languages
we can apply settings on the camera. It’s also possible to perform a variety of useful post and

pre-processing operations, on both color and depth-image. Examples of settings and processing

15

are; framerate, resolution, filtering, shutter speed, exposure etc.

2.3.2 Realsense D435

The Intel RealSense depth camera D435 [8] is a stereo camera, offering depth in addition to regualr
RGB. It’s wide field of view is perfect for applications such as robotics or augmented and virtual
reality, where seeing as much of the scene as possible is vitally important. With a range up to 10m,
this small form factor camera can be integrated into any solution with ease, and comes complete

with our Intel RealSense SDK 2.0 and cross-platform support.

Right Imager IR Projector Left Imager RAGB Module

Figure 2.10: Illustration of camera

Here are some specs from [8]
* Range .3mto3m
¢ Depth Field of View (FOV) 87° x 58° (+3°)
¢ Depth Accuracy <2 percent at 2 m
* Depth Stream Output Resolution Up to 1280 x 720
¢ Depth Stream Output Frame Rate Up to 90 fps
* RGB Frame Resolution 1920 x 1080
* RGB Sensor FOV 69° x 42°

Note that the FOV are different for the RGB and depth sensors. This will be useful to remember

later in this report.

16

2.3.3 C++ and Python

Inwatec has explained that they use C++ because of the speed. When having to do computationally
demanding task in matter of milliseconds, C++ is outperforming other languages like Python.
So when Inwatec allready had developed a software for image capturing, the choice was easy.
Python was used for all other tasks in this project. It allows for the use of popular machine
learning libraries like Tensorflow and Keras to tune the pre-trained model, scikit to create the
SVM and KNN, and other useful tools like Matplotlib, Numpy and OpenCV for data processing

and visualisation. All code used in this project can be found in A.1.

17

18

Chapter 3

Methodology

This chapter presents the chosen methodologies for investigating the research question. A
taxonomy was created in order to map out key features in the field of RGB-D as early as possible.
We investigated features like number of citations, methods used, dataset used, Due to the limited
size of the dataset, a set of good strategies for optimisation had to be considered. In situations
similar to this, where the datatset is not large enough to feed the network and achieve satisfying

results, three methods are commonly proposed.
* Transfer learning [2],[39],[44], [12].
¢ Preprocessing [40], [35].
* Select a less complex architecture, with less trainable parameters [2].

All these methods will be considered and the next subsections describe them.

3.1 Transfer learning

To create a baseline model with transfer learning is a strategy that assumes that the pre-trained
model gives a good indication of what accuracy a state of the art model can achieve on the custom
RGB-D dataset. MobilNetV2’s https://tfhub.dev/google/tf2-preview/mobilenet v2/feature vector/4
feature extractor was loaded with keras to create a model without the dense layer, enabling us to
add and train the top layers. The model needs 3 channels (RGB), 224x224 pixels as input to work.
We train on RBG and depth separately. When training on depth data we need to create 3 instances

of the depth image, one for each channel.

19

https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4

3.2 Preprocessing

How can we make the pretrained model improve accuracy by introducing depth data? We will

test of a number of preprocessing methods (PPM), marked as bold text. PPM1: swap one of the

color channels with the depth channel, with the following combinations: RGD,RDB,DGB,DDD.

PPM2: select Depth-ROI based on measurements on maximum and minimum height of all object

in the dataset. Set a threshold for accepted values, and change all values outside to a value within

Depth-ROI. All three figures shows the same three depth images. Top has one mop, middle has

two mops, and lowest has three mops. Figure 3.2 and 3.3 uses different preprosessing methods.

Normalized

Figure 3.1:

depth

M.

Q
K
i

il-

Figure 3.2: Normalized
depth with ROI

20

 anen

-
K
}

Figure 3.3: Double Normal-
ized depth with ROI

3.3 SVM and kNN

The use of a less complex model could be beneficial considering our small dataset, and there is
hope. Especially considering the use of SVM and KNN for classification of depth image. By
calculating the sum of all depth values in an depth image, the hypothesis is that there will be a
significant difference in distribution depending on how many mops that are located inside the FOI
of the camera. Either the models finds this feature themselves, or we compute the sum of points,
add it as a feature and let the models do the rest. Both methods will be tried. The figure below

shows the average value of a pixel per class.

430.0

m Average height in millimeters

4775 |

475.0 4

4725 4

millimeters
&
o
(=]

467.5 A

485.0 4

4625 4

460.0 -

2
Number of mops

Figure 3.4: White mops avg

3.4 Experiments

All experiments will follow a structure based upon a test procedure, designed by combining all
of the previously proposed methods Visualizing the data after applying a method is useful for

gaining a deeper understanding of the results.

21

3.5 Data collection

After each test, all metrics data are stored in an Excel sheet in A.3.

3.6 Data analysis

First we need to inspect the dataset. Different tools are used to visualize all RGB and depth
images in order to gain insight into any key takeaways from each class. Smaller pre-tests with
visualisation of each step of preprocessing must be done in order to find mistakes before running
through thousands of images. When all test is finished, most common key metrics can be analysed

with scatter plot, bar plot, confusion matrix, and basic sorting functions in Excel.

22

Chapter 4

Implementation

This is where I describe what I actually did in my research, like field studies, experiments,

implementations, media productions, interviews, etc.

4.1 Hardware

As mentioned in 1.2 hardware needed to be installed in order to begin image capturing. The
picture below shows the machine, where the blue marked box is a custom made steel bracket for
attaching the camera. The conveyor belt transporting the mops is tilted at an angle, meaning that
the bracket needed to match the same angle in order to get useful depth data. After attaching the
camera to the bracket, the camera is connected to the Al-pc, which is connected directly to the PLC

running the machine.

Figure 4.1: Caption

23

4.2 Image capturing

After installation of necessary hardware, learning how to use the software and camera for image
capturing, several attempts were made to start building a RGB-D dataset. This part of the project
was most time consuming. Little to no prior knowledge about RGB-D data, how to use the
equipment, what data to capture, and making sure the quality was good made this a long process

split into two major parts.

4.2.1 Auto-labeling

Initially an attempt to perform auto-labeling was done. The PLC receives a signal when mops is
within the field of view of the camera, this signal is then registered by the image capturing software
running on the AI-PC, and triggers the software to capture data. Since its a constant stream of data,
one has the option to manually calibrate which frame to save. Either exactly at the time the sensor
was triggered or x amount of frames before. When the HF antenna then reads the chips within
the reading range, the PLC recvies the tag numbers of the present mops. The idea is that one can
know exactly how many mops that where within the camera’s field of view at the time of capturing
- given that the calibration is done correctly, and the HF-reader gives the correct data. After several
tests it proved to be a solution that was to imprecise, and manual labeling was the better option.
At the end of this process we learned that the data being captured was not of such a quality that
one could make use of both RGB and depth images together. The field of view of the depth image
is greater than the RGB image. If we want to be able to use the proposed methods, both the depth
and RBG images needs to be aligned, so that the field of view after image capturing is the same
for both images. Lets say you wanna merge RGB and depth features for a region in a 224x224
pixel image. Depending on what image one is observing, the same region in the images does not
represent the same regions in the real world. This makes the problem much more difficult and was

avoided.

4.2.2 Manual labeling

By bypassing the first separation stage of the machine, one can feed the mops manually, providing
full control of how many mops that are captured by the camera. Watching live what the image
that was captured look like, is a extra step for making sure the quality of the dataset is as good as
possible. Image 4.2,4.3 ,and 4.4 illustrates where the machine is fed manually, how it looks after

they’re placed on the conveyor belt, and finally a screenshot of the image taken when the mops

24

reaches the cameras field of view.

;‘ se~ U5 Kommuniser + [‘b. Filer og tilbehar ~ D Kommenter &

-

) X # runimagesSaving(dataQueue *): void

Al 1k
gt \

87.4kB 1413

Figure 4.3: Manual feeding Figure 4.4: Final RGB

Started with configuring the image capture software to store the following images in a specified
folder on the Al-pc, then started the software, and fed the machine with the amount and type
correspondning to the configuration. When this step is done, the same procedure is repeated until
all types (Blue, Green, White), and amount of each type(1,2,3) was stored inside 9 different folders.

It took about 30 hours to capture around 2300 images, feeding the machine 4500 mops. Adding a

25

new class of 4 mops to each type could enable us to simulate a classification scenario that’s similar
to live classification, but it would require feeding the machine with 3000 new mops, and there was

simply no more time.

4.3 Model development

Since Inwatec provided a good framework for capturing images, the main focus was on
development of software for testing the different machine learning methods. Originally the plan
was to run all testing on the AI-PC. But after a couple of weeks with struggling to get all libraries
to work, versions to match, and other challenges related to the latter, the decision was made to
switch to Google Colab. Benefits like access from everywhere, scalable data recources, all libraries

work imiteatly, no need to install GPU software on local machine - the list goes on.

26

Chapter 5

Results

In this chapter the results from all test performed will be presented. The use of tables and confusion

matrices will be used to present the data.

5.1 MobilenetV2

5.1.1 Baseline

We tested on both RGB and depth images separately. Figure 5.1 and 5.2 display the results in form
of two confusion matrices, one for each data type. We attempt to classify all 9 classes. There’s are
a total of 2347 images, test size is set to 20 percent with the train test split from [34]. Random state
is set to 42, so the test is reproducible. The baseline tests produce the best results after 30 epoch,

after testing 10,20, and 30 epochs.

27

True label

True label

Test loss, Test acc: [0.7706772685050964, 0.699999988079071]

-
f
] 16% 5% 0% 0% 0 0% 1 0%
B
b
%- %
o
]
b
ERE
=
[$]
—
o
T - 0%
13
3
~
o
E- %
3
5
™
e
- 0%
13
8
—
o
% E i3
~
o
= U
g
b
Y
= (1) () % {1 {13] {1
' ' ' ' ' ' ' | "
CBlue_1 CBlue_2 CBlue_3 CGreen_1 CGreen_2 CGreen_3 COWhite_1 CQWhite_2 ONhite_3

Predicted label

Figure 5.1: Baseline RGB

Test loss, Test acc: [1.4068788290023804, 0.4723404347896576]

o

\

E n% % 17% 2% 0% 2% 0% 0%

a8

NI

EE 15% 0% % n% 0%

8

I"“I

g m 19% 4% % 5% %

8

HI

P- omm 15% % 1% % 4

[C)

[a]

NI

g- % 4 % 0% 10% 2% 0% 0% 0%

9

[=]

I"1I

E- 21 P n% kS 29%

[C)

[a]

'_‘I

2. m = 3 A 3 =

=

[=]

NI

2 m 2 = 2% = o

=

[=]

I"-‘I

£ = % % 0% 2% 12% % 18%

=

[=]
!] ! !]]] " "
DBlue_1 DEBlue_2 DSlue 3 DGreenl DGreen2 DGreen3 DWhite 1 DWhits_2 DWhite_3

Predicted label

Figure 5.2: Baseline Depth

28

08

086

04

-02

-00

06

05

0.4

-02

-01

0o

5.1.2 Number of MNV2

After creating a baseline model, an attempt to split the problem into two domains, type and
number classification. We tried classifying only the type of mop (color), total of 3 classes, Blue,
green and white. Test size is 20 percent with randomm state set to 42. After 7 epochs the model
classified with 100 percent accuracy and a loss of 0.007. So the focus from her it to classifying
only the number of mops, total of 3 classes, 1,2 and 3 mops. Test size is 20 percent with random
state set to 42. Table 5.1 shows the results from only classifying number of white mops with

PPM1: swap one of the color channels with the depth channel, with the following combinations:

RGD,RDB,DGB,DDD. The same procedure was done for both green 5.2 and blue 5.3 mops.

Table 5.1: Top results White Mobilnet with PPM1:
Type of test | Acc | Model Pretrained | dtype | Epochs | Gaus filter | DEPTH ROI
White_RGB | 80.3 | Mobilnet | True float | 30 False False
White_RGD | 79.6 | Mobilnet | True float | 10 False False
White_RGD | 79.6 | Mobilnet | True float | 30 False False
White_DGB | 78.4 | Mobilnet | True float | 30 False False
White_RGB | 77.7 | Mobilnet | True float | 10 False False
White_DDD | 74.5 | Mobilnet | True float | 30 False False
White_RDB | 73.9 | Mobilnet | True float | 10 False False
White_RGG | 73.3 | Mobilnet | True float | 10 False False
White_RDB | 70.1 | Mobilnet | True float | 30 False False
White_DDD | 69.4 | Mobilnet | True float | 10 False False

29

Table 5.2:

Top results Green Mobilnet with PPM1:

Type of test | Acc | Model Pretrained | dtype | Epochs | Gaus filter | DEPTH ROI
Green_RGB | 71.8 | Mobilnet | True float | 10 False False
Green_RGB | 71.8 | Mobilnet | True float | 30 False False
Green_DDD | 70.5 | Mobilnet | True float | 30 False False
Green_RDB | 69.2 | Mobilnet | True float | 10 False False
Green_RDB | 68.6 | Mobilnet | True float | 30 False False
Green_RGD | 66.1 | Mobilnet | True float | 10 False False
Green_DGB | 63.5 | Mobilnet | True float | 10 False False
Green_DDD | 63.5 | Mobilnet | True float | 10 False False

Table 5.3: Top results Blue Mobilnet with PPM1:
Type of test | Acc | Model Pretrained | dtype | Epochs | Gaus filter | DEPTH ROI
Blue_RGD | 75.6 | Mobilnet | True float | 10 False False
Blue_RGB 73.9 | Mobilnet | True float | 30 False False
Blue_RGB | 70.7 | Mobilnet | True float | 10 False False
Blue_ RDB | 70 Mobilnet | True float | 10 False False
Blue_DGB | 69.4 | Mobilnet | True float 10 False False
Blue_DDD | 64.9 | Mobilnet | True float | 10 False False

30

52 SVM KNN

In this section the results from using SVM and KNN with PPM2: is presented. For the SVM a

polynomial kernal is used. For the KNN, a One Vs rest classifier is used and tested from 0-20 k.

5.2.1 Number of SVMKNN

Table 5.4: Top results from SVM and KNN with PPM2:

Type of test | Acc Model | dtype | DEPTH ROI | ROI VALUE | NORM Val | k-value
D_White | 90.4% | SVM | int True 400-550 0-10

D_White | 86.6% | KNN | int True 400-550 0-20 2
D_Green | 87.8% | SVM | int True 400-550 0-10

D_Green | 80.1% | KNN | int True 400-550 0-10 4
D_Blue 85.3% | SVM | int False 400-550 0-5

D_Blue 72.0% | KNN | int True 400-550 0-20 16

Following is the confusion matrix and metrics report from the best results from each color type,
marked with bold in table 5.4. Numbers from 0-2 indicate number of mops-1. Meaning 0 is actually

the class with 1 mop.

Test acc: 0.9044585987261147

True label

precision recall fl-score support

- e 9.94 .96 .95 49
1 8.88 .83 8.85 53

2 a.89 8.93 8.91 55

accuracy 6.98 157

. -00 macro avg 8.%e @.91 6.98 157

Predict]ed label weighted avg @.0e @.98 6.98 157

Figure 5.3: Best white test Figure 5.4: Best white test metrics

31

True label

True label

Figure 5.5:

Test acc: 0.8782051282051282

1
Predicted label

Best green test

Test acc: 0.8535031847133758

Figure 5.7:

1
Predicted label

Best blue test

32

[

accuracy
macro avg
weighted avg

precision

recall fi-score

[

.95
.83
.87

.88
.88
.88

suppert

te
53
53

156
156
156

Figure 5.6: Best green test metrics

accuracy
macro avg
weighted avg

precision

9.92
g.8@
9.85

recall

8.90
8.78
9.88

fl-sc

@ @

@ @

ore

.01
.79
.87

.85
.86
.85

support

ce
55
52

157
157
157

Figure 5.8: Best blue test metrics

Chapter 6

Discussion

First of all, it became evident quite early on in the testing process that the pretrained model would
perform excellent when classifying only the colour type, and that’s when we decided to make it a
2 step classification problem. If one can predict the colour 100% of the time for all color images,
then we had to focus on determining the best method for classifying the number. Intuitively an
engineering approach to it seemed most promising. By using the depth images could possibly
yield the best results if one could capture the volumetric feature in each depth image. We compare
the average of the top results from the pretrained model and the top results from the SVM &

KNN test in figure 6 SVM shows a significant increase in accuracy compared to both KNN and

Average Acc | Model

87.9% SVM
79.6% KNN
75.9% MobilNetV2

Table 6.1: Average results

MobilNetV2. In this scenario where we used MobilenNetV2 as a baseline model, we managed to
answer both the research questions. Lets revisit them. Research question one: Can classification
accuracy of RGB-D data be improved by breaking the problem into two parts? It looks like it, we
have shown a significant boost of accuracy, compared to solving the problem as one task.

Research question two: Can classical machine learning methods help to improve classification
accuracy of depth images? The results from both KNN and SVM shows a better result than with
the pretrained model. In the literature it seems like the volumetric approaches perform better

when trying to classify RGB-D data, and so do our methods.

33

34

Chapter 7

Conclusions

This report has shown the implementation of how to capture image data in a industrial
environment, then build a dataset with a total of 9 classes. The quality of the images varies, and
the size of the dataset is not more than about 260 images per class. So when reading the results it
should not be interpreted as evidence with solid confidence, but more as a proof of concept. We
answered both of the research question and visualized the results in the form of the most common
way in the literature; Confusion matrix and tables with precision, recall, f1-score support, accuracy,
macro average and weighted average. For further work it would be interesting to try and build
a larger dataset with higher quality of images. Testing semantic segmentation for RGB-D data,

depth aware CNN and other volumetric methods could help improve the accuracy.

35

36

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

[9]

Shrestha. Ajay and Mahmood. Ausif. ‘Review of Deep Learning Algorithms and Architec-
tures’. In: IEEE Access 7 (2019), pp. 53040-53065. DOI: 10.1109/ACCESS.2019.2912200.

Ioannis D. Apostolopoulos and Mpesiana Tzani. ‘Industrial object, machine part and defect
recognition towards fully automated industrial monitoring employing deep learning. The
case of multilevel VGG19'. In: CoRR abs/2011.11305 (2020). arXiv: 2011.11305. URL: https:
//arxiv.org/abs/2011.11305.

Sami Barchid, José Mennesson and Chaabane Djéraba. ‘Review on Indoor RGB-D Semantic
Segmentation with Deep Convolutional Neural Networks’. In: 2021 International Conference
on Content-Based Multimedia Indexing (CBMI). 2021, pp. 1-4. DOI: 10.1109/CBMI50038.2021.
9461875.

Mariusz Bojarski et al. ‘End to End Learning for Self-Driving Cars’. In: CoRR abs/1604.07316
(2016). arXiv: 1604.07316. URL: http://arxiv.org/abs/1604.07316.

Mariusz Bojarski et al. “Explaining How a Deep Neural Network Trained with End-to-End
Learning Steers a Car’. In: (2017). DOI: "1704.07911".

Mariusz Bojarski et al. “VisualBackProp: efficient visualization of CNNs'. In: (2017). arXiv:
1611.05418 [cs.CV].

Jair Cervantes et al. “A comprehensive survey on support vector machine classification:

Applications, challenges and trends’. In: Neurocomputing 408 (2020), pp. 189-215.

Intel Corporation. Build it your way. https: / /www . intelrealsense.com /sdk- 2. 2022 (Online;
accessed 29-04-2022).

Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural Networks. https: / /
towardsdatascience . com / applied - deep - learning - part - 4 - convolutional - neural - networks -

584bc134cle2. 2021 (Online; accessed 14-05-2021).

37

https://doi.org/10.1109/ACCESS.2019.2912200
https://arxiv.org/abs/2011.11305
https://arxiv.org/abs/2011.11305
https://arxiv.org/abs/2011.11305
https://doi.org/10.1109/CBMI50038.2021.9461875
https://doi.org/10.1109/CBMI50038.2021.9461875
https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/"1704.07911"
https://arxiv.org/abs/1611.05418
https://www.intelrealsense.com/sdk-2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Ask Any Difference. NLLLOSS. https://askanydifference.com/difference-between-deep-learning-
and-neural-network/. 2022 (Online; accessed 20-03-2022).

Andreas Eitel et al. ‘Multimodal Deep Learning for Robust RGB-D Object Recognition’. In:
CoRR abs/1507.06821 (2015). arXiv: 1507.06821. URL: http://arxiv.org/abs/1507.06821.

Liuhao Ge et al. ‘Robust 3D Hand Pose Estimation in Single Depth Images: From Single-
View CNN to Multi-View CNNs’. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), pp. 3593-3601.

Leilani H. Gilpin et al. ‘Explaining Explanations: An Overview of Interpretability of Machine
Learning’. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA). 2018, pp. 80-89. DOI: 10.1109/DSAA.2018.00018.

Radhakrishnan Gopalapillai et al. ‘Convolution-Based Encoding of Depth Images for
Transfer Learning in RGB-D Scene Classification’. In: Sensors 21.23 (2021). 1SSN: 1424-8220.
DOI: 10.3390/521237950. URL: https://www.mdpi.com/1424-8220/21/23/7950.

David Griffiths and Jan Boehm. ‘A review on deep learning techniques for 3D sensed data
classification’. In: CoRR abs/1907.04444 (2019). arXiv: 1907.04444. URL: http://arxiv.org/abs/
1907.04444.

Saurabh Gupta et al. ‘Learning Rich Features from RGB-D Images for Object Detection and
Segmentation’. In: CoRR abs/1407.5736 (2014). arXiv: 1407.5736. URL: http://arxiv.org/abs/
1407.5736.

Hubel. D. H. and Wiesel. T. N. ‘Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology’. In: vol. 160. 1. 1962 (Online;

accessed 09-05-2021), pp. 106-154.

Larry Hardesty. Explained: Neural networks. https: / / news.mit.edu /2017 / explained- neural-
networks-deep-learning-0414. 2017 (Online; accessed 07-05-2021).

Kaiming He et al. “Deep Residual Learning for Image Recognition’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

Ide. Hidenori and Kurita. Takio. ‘Improvement of learning for CNN with ReLU activation
by sparse regularization’. In: 2017 International Joint Conference on Neural Networks (I[CNN).
2017, pp. 2684-2691. DOI: 10.1109/1JCNN.2017.7966185.

IBM. Explainable Al https:/ /www.ibm.com /watson / explainable-ai. 2021 (Online; accessed
24-11-2021).

38

https://askanydifference.com/difference-between-deep-learning-and-neural-network/
https://askanydifference.com/difference-between-deep-learning-and-neural-network/
https://arxiv.org/abs/1507.06821
http://arxiv.org/abs/1507.06821
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.3390/s21237950
https://www.mdpi.com/1424-8220/21/23/7950
https://arxiv.org/abs/1907.04444
http://arxiv.org/abs/1907.04444
http://arxiv.org/abs/1907.04444
https://arxiv.org/abs/1407.5736
http://arxiv.org/abs/1407.5736
http://arxiv.org/abs/1407.5736
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://doi.org/10.1109/IJCNN.2017.7966185
https://www.ibm.com/watson/explainable-ai

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

SAS Institute INC. Machine Learning - What it is and why it matters. https: //www.sas.com/

en _us/insights/analytics/machine-learning.html# machine-learning-today-world. 2021 (Online;
accessed 05.11.2021).

Sergey loffe and Christian Szegedy. ‘Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift’. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings
of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 448-456. URL: http://
proceedings.mlr.press/v37 /ioffe15.html.

Eda Kavlakoglu. AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What's the
Difference? https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-

networks. 2020 (Online; accessed 09-05-2021).

Simon Kornblith, Jonathon Shlens and Quoc V. Le. ‘Do Better ImageNet Models Transfer
Better?’ In: CoRR abs/1805.08974 (2018). arXiv: 1805.08974. URL: http://arxiv.org/abs/1805.
08974.

Seungyong Lee, Seong-Jin Park and Ki-Sang Hong. ‘RDFNet: RGB-D Multi-level Residual
Feature Fusion for Indoor Semantic Segmentation’. In: 2017 IEEE International Conference on

Computer Vision (ICCV). 2017, pp. 4990-4999. DOI: 10.1109/ICCV.2017.533.

Grace W. Lindsay. ‘Convolutional Neural Networks as a Model of the Visual System: Past,
Present, and Future’. In: Journal of Cognitive Neuroscience (Feb. 2020 (Online; accessed 09-05-
2021)), pp. 1-15. 1SSN: 0898-929X. DOI: 10.1162/jocn _a 01544. eprint: https:/ /direct. mit.
edu /jocn /article- pdf /doi/10.1162 /jocn\ a\ 01544 /1888650 /jocn\ a\ 01544.pdf. URL:
https://doi.org/10.1162/jocn%5C a%5C 01544.

Alexandre Lopes, Roberto Medeiros de Souza and Hélio Pedrini. ‘A Survey on RGB-D
Datasets’. In: ArXiv abs/2201.05761 (2022).

Matsugu. M et al. ‘Subject independent facial expression recognition with robust face
detection using a convolutional neural network’. In: Neural networks : The official journal
of the International Neural Network Society. 2003 (Online; accessed 01-05-2021), pp. 5-6. DOL:
10.1016/50893-6080(03)00115-1.

Keisuke Mori et al. ‘Visual Explanation by Attention Branch Network for End-to-end
Learning-based Self-driving’. In: 2019 IEEE Intelligent Vehicles Symposium (IV) (2019),
pp- 1577-1582.

39

https://www.sas.com/en_us/insights/analytics/machine-learning.html##machine-learning-today-world
https://www.sas.com/en_us/insights/analytics/machine-learning.html##machine-learning-today-world
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://arxiv.org/abs/1805.08974
http://arxiv.org/abs/1805.08974
http://arxiv.org/abs/1805.08974
https://doi.org/10.1109/ICCV.2017.533
https://doi.org/10.1162/jocn_a_01544
https://direct.mit.edu/jocn/article-pdf/doi/10.1162/jocn_a_01544/1888650/jocn_a_01544.pdf
https://direct.mit.edu/jocn/article-pdf/doi/10.1162/jocn_a_01544/1888650/jocn_a_01544.pdf
https://doi.org/10.1162/jocn%5C_a%5C_01544
https://doi.org/10.1016/S0893-6080(03)00115-1

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Nikhil Buduma Nithin Buduma. Fundamentals of Deep Learning, 2nd Edition. O’Reilly Media,
Inc, 2021. 1SBN: 9781492082163.

Rabah Nory, Mustafa Aljumaili and Nezar Ismat. ‘Fire Detection Using Convolutional Deep
Learning Algorithms’. In: AUS 26 (Apr. 2019), pp. 441-448. DOI: 10.4206/aus.2019.n26.2.53.

P.Ongsulee. “Artificial intelligence machine learning and deep learning’. In: 2017 15th
International Conference on ICT and Knowledge Engineering (ICT KE). 2017 (Online; accessed
10-05-2021), pp. 1-6. DOI: 10.1109/ICTKE.2017.8259629.

F. Pedregosa et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of Machine Learning

Research 12 (2011), pp. 2825-2830.

Max Schwarz, Hannes Schulz and Sven Behnke. ‘RGB-D object recognition and pose
estimation based on pre-trained convolutional neural network features’. In: 2015 IEEE

International Conference on Robotics and Automation (ICRA) (2015), pp. 1329-1335.

Richard Socher et al. “Convolutional-Recursive Deep Learning for 3D Object Classification’.

In: NIPS"12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 656—-664.

Abhiroop Talasila. Generating Image Segmentation Masks — The Easy Way. https : / /
towardsdatascience.com / generating- image- segmentation- masks- the- easy - way- dd4d3656dbd1.

2022 (Online; accessed 25-04-2022).

SuperDataScience Team. The Ultimate Guide to Convolutional Neural Networks (CNN). https:
/ /www.superdatascience.com /blogs / the- ultimate- guide- to- convolutional- neural- networks- cnn.

2018 (Online; accessed 14-05-2021).

Eleftherios Trivizakis et al. ‘Extending 2-D Convolutional Neural Networks to 3-D for
Advancing Deep Learning Cancer Classification With Application to MRI Liver Tumor
Differentiation’. In: IEEE Journal of Biomedical and Health Informatics 23 (2019), pp. 923-930.

Sebastien C. Wong et al. ‘Understanding data augmentation for classification: when to
warp?’ In: CoRR abs/1609.08764 (2016). arXiv: 1609.08764. URL: http://arxiv.org/abs/1609.
08764.

Zongwei Wu et al. ‘Depth-Adapted CNN for RGB-D cameras’. In: Proceedings of the Asian
Conference on Computer Vision (ACCV). Nov. 2020 (Online; accessed 20-04-2022).

Zharfan Zahisham, Chin Poo Lee and Kian Ming Lim. ‘Food Recognition with ResNet-50".
In: 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology
(IICAIET). 2020, pp. 1-5. DOI: 10.1109/1ICAIET49801.2020.9257825.

40

https://doi.org/10.4206/aus.2019.n26.2.53
https://doi.org/10.1109/ICTKE.2017.8259629
https://towardsdatascience.com/generating-image-segmentation-masks-the-easy-way-dd4d3656dbd1
https://towardsdatascience.com/generating-image-segmentation-masks-the-easy-way-dd4d3656dbd1
https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-networks-cnn
https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-networks-cnn
https://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1609.08764
https://doi.org/10.1109/IICAIET49801.2020.9257825

[43] Wenyuan Zeng et al. ‘End-To-End Interpretable Neural Motion Planner’. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 8652-8661.

[44] Qilin Zhang et al. ‘Can Visual Recognition Benefit from Auxiliary Information in Training?’

In: ACCV. 2014.

41

42

Appendix A

Listings

A.1 Code

A.1.1 Image capture

Data sharing source file

#include "Data_Sharing.h"

//initialise atomic variables

std

std ::
std ::
std :
std ::

:ratomic_int g_sensorID (0);
atomic_int g _RFID_ID (0);
atomic_int g_numberOfChips (0);
tatomic_int g_currentProgram (0);

atomic_bool g_sensorTriggered (false);

ImageData_struct dataQueue:: getData(int id)

{

//Get lock to block other thread from accessing

boost :: mutex:: scoped_lock lock (mux_data);

//data to be returned
ImageData_struct returndata;

returndata. picturelD = -1; //-1 means ID not founs

//look through queue
for (int i=0; i<data.size ();i++)
if (data[i].picturelD=id)
//if the id matches the one we aare looking for

43

returndata = data[i]; //copy data
break; //exit loop

int lastPoppedID=-1;
while (data.size()>0 && lastPoppedID!=returndata.picturelD)
//pop stuff from queue until we pop the element
//we were looking for; if element not found,
//picutrelD=lastPopppedID so we do not eneter loop
{

lastPoppedID = data[0]. picturelD;

//copy the last removed id

data.pop_front ();

//remove element from queue

//return element

return (returndata);

void dataQueue ::addData(ImageData_struct dataln)

{
//Get lock to block other thread from accessing

boost :: mutex:: scoped_lock lock (mux_data);
//add data to end of queue
data.push_back(dataln);

Data sharing header

#define DATA SHARING H

#include <atomic>

#include <deque>

//#include <librealsense2 /rs.hpp> // Include RealSense if we add
//realsense objects to the ImageData struct
//#include <opencv2/opencv.hpp> // Include OpenCV if we add OpenCV
//objects to the ImageData struct

44

#include <boost/thread/mutex.hpp>

//shared variables

extern std::atomic_int g_sensorID ,g RFID_ID,g numberOfChips, g_currentProgram;

extern std::atomic_bool g_sensorTriggered;

//structure that holds data we send betheween threads
struct ImageData_struct
{

//picture ID

int picturelD;

//plus whatever data to be saved

//class implementing a data queue bethween threads
class dataQueue/{
private:
boost :: mutex mux_data;
std :: deque<ImageData_struct> data;
public:
ImageData_struct getData(int id); //get data with ID, and delete

//elements from the queue up to that ID
void addData(ImageData_struct dataln); //add data to end of queu

#endif

Image capture source file

#include "Image_Capture.h"

#include <iostream>

#include <boost/thread .hpp>

void runlmageCapture(dataQueue * output)
{

int prev_sensorTriggered = -1;
while (true)

{

//Connect to camera, start grabbing pictures

45

while (true)

{

//get frame from camera

//check for rising edge of signal
if (prev_sensorTriggered == 0 && g_sensorTriggered == 1)
{

std :: cout<<"Capture_new_picture_with_ID: "<<g_sensorID<<std :: endl;
//maybe process frames

// Object to add to queue

ImageData_struct newData;

//put data in object

newData. picturelD = g_sensorlD;

//add object to queue
output—>addData (newData);
}

//save previous value

prev_sensorTriggered=g_sensorTriggered ;

//Sleep

boost :: this_thread :: sleep (boost :: posix_time :: milliseconds (3));

Image capture header

#ifndef PLCCOMS H
#define PLCCOMS H

#include "../ Data_Sharing/Data_Sharing.h"
class plcCommunication {
private:

//PLC data types to C++

46

//SINT —> char
//USINT —> unsigned char
//INT —> short
//UINT —> unsigned short
//DINT —> int
//UDINT —> umnsigned int
//BOOL —> bool
//REAL —> float
//STRING[n] —> char[n+1]
//All strings in
//Automation studio reserve
//an extra character
// for the null character
//The order in the send/receive
//structures must
//match that on the PLC
struct PLCDataln
{
unsigned int sensorID=0;
bool sensorTriggered=false;
unsigned int RFID_ID=0;
short numberOfChips=0;
bool heartbeat=false;

short currentProgram = 0;

struct PLCDataOut
{

bool heartbeat=false;

void readMessage (PLCDataln pin);

public:
void RunUdpCom () ;

plcCommunication () ;

#endif // PLCCOMS_H

Image saving source file

#include "Image_Saving.h"

#include <boost/thread .hpp>

#include <iostream>

void runlmageSaving(dataQueue * input)

{
int previD=-1;

while (true)

{
//wait here for mnew ID
while (prevID == g _RFID_ID)

boost :: this_thread :: sleep (boost :: posix_time :: milliseconds (3));

//save previous ID

previD = g RFID_ID;

//get image from queue
ImageData_struct dataToSave = input->getData(g_RFID_ID);

if (dataToSave.picturelD >=0)
//1f data found in queue, save it
{
std :: cout<<"Save_picture_with_ID:
s <<g_RFID_ID<<"_Number, of chips:
"<<g_numberOfChips<<" _Current_program:

[T T TR TR T T T TR TR T

T T T M T T

"<<g_currentProgram<<std :: endl;

//Save dataToSave based on g_numberOfChips and g_currentProgram

Image saving header

#ifndef IMAGE_SAVING_H
#define IMAGE_SAVING H

48

#include "../Data_Sharing/Data_Sharing.h"

void runlmageSaving(dataQueue * input);

#endif

PLC com source file

#include "PLC_Communication.h"

#include <boost/asio.hpp>
#include <boost/array.hpp>
#include <boost/thread.hpp>

#include <iostream>

using boost::asio::ip::udp;

plcCommunication : : plcCommunication ()

{

//initilize communication

void plcCommunication : : RunUdpCom ()
{

PLCDataln pin;

PLCDataOut pout;

while (true)
try
{
//Open socket listening on port 9869
boost::asio::io_service io_service;
udp::socket socket(io_service, udp::endpoint(udp::v4(), 9869));
while (true)
{
//When something connects
udp :: endpoint remote_endpoint;
boost ::array<char, 512> recv_buf;
boost ::system:: error_code error;

// get data

49

int bytes_transferred = socket.receive_from(boost::asio::buffer(recv_buf),
remote_endpoint, 0, error);
//copy data in input structure
if (sizeof(pin) >= bytes_transferred)
memcpy(&pin , recv_buf.data() ,bytes_transferred);
//exit in case of error
if (error)
break;
//read message in input structure

readMessage (pin);

//prepre outoyt message
pout.heartbeat = pin.heartbeat;

//send it back
boost::array<char, sizeof(pout)> send_buf;
memcpy (send_buf.data(),&pout,sizeof (pout));
boost::system :: error_code ignored_error;
socket.send_to(boost::asio:: buffer(send_buf),
remote_endpoint, 0, ignored_error);
}
socket.cancel ();
socket.close ();
}
catch (std::exception& e)
{ //in case of error, show it , sleep 10 ms and try again
std :: cout << e.what() << std::endl;

boost :: this_thread :: sleep (boost:: posix_time :: milliseconds (10));

void plcCommunication :: readMessage (PLCDataln pin)
{
//Copy over wvariables to shared data points
g_sensorlD = pin.sensorlD;
g_numberOfChips = pin.numberOfChips;
g_RFID_ID = pin.RFID_ID;
g_currentProgram = pin.currentProgram;

g_sensorTriggered = pin.sensorTriggered;

PLC com header

50

#ifndef PLCCOMS_H
#define PLCCOMS H

#include "../Data_Sharing/Data_Sharing.h"

class plcCommunication {

private:

//PLC data types to C++
//SINT —> char
//USINT —> unsigned char
//INT —> short
//UINT —> unsigned short
//DINT —> int
//UDINT —> umnsigned int
//BOOL —> bool
//REAL —> float
//STRING[n] —> char[n+1] //AIll strings in
//Automation studio reserve an extra character
//for the null character
//The order in the send/receive structures must
//match that on the PLC
struct PLCDataln
{
unsigned int sensorID=0;
bool sensorTriggered=false;
unsigned int RFID_ID=0;
short numberOfChips=0;
bool heartbeat=false;

short currentProgram = 0;

struct PLCDataOut

{
bool heartbeat=false;

void readMessage (PLCDataln pin);

public:

51

void RunUdpCom () ;

plcCommunication () ;

#endif // PLCCOMS_H

CMakelists

project (ImageCapture)

cmake_minimum_required (VERSION 2.8)

SET (CMAKE_BUILD_TYPE Debug)

Save the command line compile commands in the build output

set (CMAKE_EXPORT_COMPILE_COMMANDS 1)

include (CheckCXXCompilerFlag)
CHECK_CXX_COMPILER FLAG("-std=c++14" COMPILER _SUPPORTS_CXX14)
CHECK_CXX_COMPILER FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
CHECK_CXX_COMPILER FLAG("-std=c++0x" COMPILER_SUPPORTS_CXX0X)
if (COMPILER_SUPPORTS_CXX14)

set (CMAKE CXX STANDARD 14)
elseif (COMPILER_SUPPORTS_CXX11)

set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c11")

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} —std=c++11")
elseif (COMPILER_SUPPORTS_CXX0X)

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ,—std=c++0x")
endif ()

find_package (OpenCV REQUIRED)

find_package (Boost COMPONENIS system filesystem regex date_time thread chrono REQUIRED)
include_directories (${Boost_ INCLUDE_DIRS})

SET (SOURCES main.cpp Data_Sharing/Data_Sharing.cpp
Image_Capture/Image_Capture.cpp
Image_Saving/Image_Saving.cpp
PLC_Communication/PLC_Communication. cpp)

SET (HEADERS Data_Sharing/Data_Sharing.h
Image_Capture/Image_Capture.h

52

Image_Saving/Image_Saving.h

PLC_Communication/PLC_Communication.h)

add_executable (ImageCapture main. cpp
$ {SOURCES}
$ {HEADERS}
)

TARGET_LINK_LIBRARIES ($ { PROJECT_NAME}
${Boost_LIBRARIES}
${OpenCV_LIBS}
realsense?2

—lboost_thread
)

A.1.2 Pretrained MobileNetV2
Al13 SVM

A14 KNN

A.2 Project management

After a topic where chosen, a tentative project plan was created. See table A.1 for visualisation
of the first version created. Further development of this plan was heavy influenced by a method
taught at Electronics Engineering at OsloMet, called "Work Breakdown Structure" (WBS). The goal
when using this method is to break down a project into the smallest possible activities. The idea is
that a project as a single thing is not solvable, but a single activity is. So by mapping each possible
activity related to this type of project, one should be able to deliver a solution. A WBS serves as a
great framework when creating project plan. This project plan and agreement contract was signed
by all involved parties in late 2021. It ensures that everybody had an idea of how the outline of this
project looked and got an idea of the time frame and schedule. Primary supervisor and master-
student agreed on weekly meetings in early January. They met with Nor Tekstil and Inwatec in
early February to discuss expectations and other relevant topics to ensure that they had the same
understanding of what the following month would look like, and what to expect when the thesis
is finished. As figure A.1 implies, it was a strategy to do a month of theoretical preparations before
starting any practical activities. This is not meant as a way to become an expert in the related fields,

but this being a short thesis, time is not a luxury. The idea is that time can be saved by doing some

53

Table A.1: Tentative Project plan

Practical activities Week number
Sign agreement 43
Install camera at site in Drammen 6
Capture 2D /3D data at site 7-10
Labeling of dataset 10
Visit Inwatec in Denmark 11
Create models 11-14
Test model on dataset 14-15
Model tuning 16-17
Test model on site 16-17

Theoretical activities

Map strength and weaknesses 2-3

Finish WBS/detailed project plan 3-4

Risk analysis 3-4

Create structure for thesis 3-4

Litterature review and taxonomy 4-6
Write Introduction and background 6-15
Write remaining part of thesis 16-19

Revision 17

well taught out preparations in order to crystallize the idea of what one should focus on by the

time image capturing, and model development is on the agenda.

A.3 Test results

54

as[eq as[e] 0¢ yeoyy aniy, | JPUNIqON 81 usaI) gy
asteq as[e] 01 yeopy aniy, | JPUNIqON 81 usaI) gy
asfeq as[eq 0¢ 1e0(y oNIL, | JBUIIGOIN vz | sed&yivTany
asyeq as[e] 01 yeoyy aniy, | JPUNIqON eeL AYM ™ ODA
asyeq as[e] 01 yeopy aniy, | JPUNIqON 6°€L AMYM ™A
as[eq os[e] 0¢ yeoyy oniy, | JPUIqON 6°¢L onig gy
as[eq as[e] 0¢ yeoyy aniy, | JPUNIqON S¥L AMYM-dad
asfeq asyeq 01 yeoyy oniy, | JPUIqON 96/ anig~ Aoy
as[eq os[e] 01 yeoyy oniy, | JPUIqON LLL AMYM ™GO
asteq as[e] 0¢ yeoyy aniy, | JPUNIqON 78 AMYM~gDd
asfeq asye] 0¢ yeoyy oniy, | JPUIqON 96 AMYM™ADA
asyeq os[e] 01 yeoyy aniy, | JPUIqON 96 AMYM~ADA
asyeq as[e] 0¢ yeoyy aniy, | JPUNIqON €08 AYM ™
as[eq asreq
asyeq os[e] 01 yeoyy ase] | 1BUTIqOIN €19 | sd&v gy
as[eq asreq
asfeq asye] 01 ur oniy, | JPUIqON 6’1 anig~god
asyeq os[e] 01 jur oniy, | JPUIqON 8'99 onig gy
asteq as[e] 01 ur aniy, | JPUNIqON €9 onig-any
asyeq as[e] 01 ur oniy, | JPUIqON 9 anig-aada
asyeq os[e] 01 ur oniy, | JPUIqON 9 | seSewn [Iv-add
YON HNTVA IOY | IOY HLJAd | 9y sned syoody adfjp | paurenaig | [9pON Y 1593 yo adA],

55

asyeq as[e] 01 yeoyy aniy, | JPUNIqON G'¢9 usa1 god
asteq as[e] 01 yeopy aniy, | JPUNIqON G'€9 w1 add
as[eq as[e] 01 1e0[J oniy, | JPUIqON 619 onig-aad
asyeq as[e] 01 yeoyy aniy, | JPUNIqON 199 U1 09y
asyeq as[e] 01 yeopy aniy, | PBUNIqON 899 | sad&y v aqy
as[eq as[e] 0¢ yeoyy oniy, | JPUIqON qevoveesv0 | sed&iv-aad
as[e as[eq 01 yeoyy oniy, | JRU[IqON €89 | sed&yIV god
asfeq asyeq 0z 1e0(y NI, | JBUIIGOIN ££9/95¢9%0 | sed&yTIV-aada
as[eq os[e] 0¢ yeoyy oniy, | JPUIqON 9'89 usaID gy
asteq as[e] 0¢ yeoyy aniy, | JPUNIqON £'89 | sd&yv goy
asfeq asyeq 01 1e0(y ONIL, | JBUIIqOIN ££9/95¢5%°0 | sed&yTIV-aada
as[eq as[e] 01 yeoyy aniy, | JPUIqON 769 usdID gy
asyeq as[eq 01 yeoyy aniy, | JPUNIqON 7’69 AMYM-Adad
asfeq asye] 01 yeoyy oniy, | JPUIqON 7’69 anig-god
as[eq os[e] 0¢ 1eoyy oniy, | JPUIqON t'69 | sod&Tv god
asyeq as[e] 0¢ yeoyy aniy, | JPUNIqON 969 | sed&y IV aqQy
asfeq asye] 01 yeoyy oniy, | JPUIqON 0Z onig- gy
as[eq os[e] 0¢ 1e0)y aniy, | JPUNIqON 0% AMYM ™ aad
asyeq as[eq 0¢ yeoyy aniy, | JPUNIqON S0 w1 add
as[eq asye] 01 yeoyy oniy, | JPUIqON L0L onig~ gy
as[e] as[eq 01 yeoyy oNlIL, | IPUTION 'l | sed&ivgoa
asyeq as[e] 01 yeoyy aniy, | JUNIqON 14| sed&TvTgoa

56

anfea-) | [eA WMON | HNTVA IOY | I0¥ HLJAd odf1p | 1PPOIN NV 1593 Jo ad4],

z G-0 | 005°005°05S-00% anuf, ur NN %¥'€8 AMYM ™A

z 01-0 | 00S'00S"0SS-00% anuy, ur NN %¥'S8 MM~ A

z 05-0 | 00S'00S"0SS-00% oniy, ur NN %998 MM~ A

z 0%-0 | 00S°00S"0SS-00% anif, ur NN %998 AMYM ™A

z 0£-0 | 00S'00S"0SS-00% anuy, ur NN %998 MM~ A

z 02-0 | 005°00S'0SS-00% oniy, ur NNDI %998 AMYM A

S-0 | 005°005°0SS-00% anuy, ur INAS %G"88 AMYM A

06-0 | 00S°00S"09S-00% anuy, ur INAS %863 MM~ A

0%-0 | 005°005'0SS-00% oni, ur INAS %863 AMYM A

0€-0 | 00S°00S"0SS-00% anuy, ur INAS %V 06 AMYM A

02-0 | 00S'00S"0SS-00% anuy, ur INAS %¥"06 MYM™A

01-0 | 005°00S'0SS-00% oniL, ur INAS %V 06 ATYM A

anfea-y | [eA WMON ANTVA IOY | IO¥ HLdAd adfyp | PPOIN Y 1591 3o adA],

GGT-0 | 0S5°00%'0SS-00% anuy, as[eq 0 Jur aniL | 3PUTIqOIN %S L MM~ aad
02-0 | 0S5°00%'0SS-00% anuL, as[e] 0¢ ur oniL, | JBUIIGOIN %l LL AMYM-add
02-0 | 0SS"00%'09S-00% anuL, as[eq 01 ur oniL | IPUTIqON %S"€L AMYM-add
€-0 | 005"005°055-00% anu, as[eq 0¢ ur N[, | IPUTION %L 0L MM -aad
€-0 | 005"005°05S-00% anuL, as[eq 0¢ ur onIL, | JBUIIGOIN %6'L9 uRIH” add
€-0 | 005°005°055-00% onuL, asfeq 0¢ ur oniL | JPUTIqON %C'89 anig-aada

57

qa¢-0 045-007 oniT, jut WAS %V €8 anig d

0s-0 04S-007 on, jut WAS %V'€8 anig d

0¥-0 095-007 onJiy, jut INAS %¥'€8 onig d

0¢-0 045-007 oni], jut WAS %V'€8 anig d

0¢-0 045-007 on], jut WAS %178 onig d

¢-0 095-007 Ny, jut INAS %¥'98 anig d

onfeA-3y | TPA WION 4NTVA 1I0Y | IO H1d4dd adfyp [PPON NV 159} Jo adAL
4 ¢-0 095-007 onJiy, jut NN %692 w1
i 0s-0 045-00v OTLIT, jut NN %882 w1
74 qa¢-0 045-007 OTLIT, jut NN %S'6L w1 g
4 0€-0 095-007 onJi, jut NN %S6L w1
4 07-0 045-00v OTLIT, jut NN %108 w1
i 0¢-0 0s5-007 OTLIT, jut NN %1°08 w1 g
4 01-0 095-007 onJiy, jut NN %1°08 w1
<0 045-00v onJi], jut WAS Y%L'T8 w1

0¢-0 045-007 OTLIT, jut INAS %S98 ueRI)

qac-0 095-007 onJiy, jut INAS %C L8 w1

07-0 045-007 on], jut WAS %C L8 w1 g

0s-0 095-007 onJiy, jut INAS %8°L8 w1 g

0¢-0 095-007 onJ, jut INAS %8L8 w1

01-0 045-007 o], jut WAS %8°L8 w1

58

L £00°0 | %0°001 odAy3eym CAPNIGON

sypodyg SSO NV 359} Jo ad AT, [PPOIN

0¢ ¥99°0 %9°TL | € Iqunu’ Jeyp CAPNIIGON

syoodyg sso] 0y 389} Jo odAT, [PPOIN

0¢ LOY'T %< LY pdagaurjeseg CAIPNIIGON

0€ 1220 %0°0L goy dureseq CAPNIIGON

syoody SS07 NV 159 yo adAJ, [PPOIN

€ ggz-0 09S-00% NI, jur NN %1°0L onig d
L 01-0 095-00% onI, jur NN %L 0L ang d
4! G0 055-00% oniy, jur NN %L 0L onig d
01 0S-0 095-00% NI, jur NN %E 1L onig d
0t 0€-0 09S-00% oniy, jur NN %E TL anig d
0t 0%-0 095-00¥ oniy, jur NN %0°CL onig d
91 0¢-0 095-00% NI, jur NN %0°CL onig d
01-0 095-00% oniy, jur INAS %C'C8 anig d

59

A.3.1 MobilnetV2 code

60

16.05.2022, 11:18 Final_tester_for_dep_color_mobilnet.ipynb - Colaboratory

pip install opendatasets
+ Code -+ Text -

import numpy as np

import cv2

import pathlib

import PIL.Image as Image
import os

import opendatasets as od
import seaborn as sn

import matplotlib.pylab as plt
import pandas as pd

import tensorflow as tf
import tensorflow_hub as hub

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.models import Sequential

from sklearn.model selection import train_test_split
from google.colab.patches import cv2_imshow

from scipy.ndimage.filters import gaussian_filter

physical_devices = tf.config.list_physical devices('GPU")
print("Num GPUs:", len(physical devices))

Num GPUs: ©
from google.colab import drive

drive.mount('/content/gdrive")
data_dir ='gdrive/MyDrive/Masterprosjekt/Color_tester_all’

os.listdir(data_dir)

data_dir = pathlib.Path(data_dir)
classes = os.listdir(data_dir)
classes.sort()

number_of cl = len(os.listdir(data_dir))

print(number_of_cl)
print(classes)

#Depending on what folders to use for, comment out the one you dont need
my_images_dict = {

##'MOP1': list(data_dir.glob(classes[@]+'/*")),
##'MOP2': list(data_dir.glob(classes[1]+'/*")),
##'MOP3': list(data_dir.glob(classes[2]+'/*")),
'MOP4': list(data_dir.glob(classes[3]+'/*")),
'MOP5': list(data_dir.glob(classes[4]+'/*")),
'MOP6': list(data_dir.glob(classes[5]+'/*")),
##'MOP7': list(data_dir.glob(classes[6]+'/*')),
##'MOP8': list(data_dir.glob(classes[7]+'/*')),
https://colab.research.google.com/drive/1ALY-YbhgTEDcXGmjWVIJGEI_JBdVerCp#scrollTo=7ef536b3 1/6

16.05.2022, 11:18 Final_tester_for_dep_color_mobilnet.ipynb - Colaboratory
##'MOP9': list(data_dir.glob(classes[8]+'/*")),

#This is where you indicate the true label
my_ labels dict = {

##'MOP1': O,
##'MOP2": 1,
##'MOP3": 2,
'MOP4': o,
'MOP5': 1,
'MOP6': 2,
##'MOP7"': O,
##'MOPS" : 1,
##'MOP9 " : 2,

IMAGE_SHAPE = (224,224) #Set the image size to fit th model

X,y = [1, []

#Create arrays for images and labels

#read images with cv2 and run through all folders

#Save images as floats for optimal results

for my_name, images in my_images_dict.items():

for image in images:

img = cv2.imread(str(image),cv2.IMREAD_UNCHANGED)
resized_img = cv2.resize(img, IMAGE_SHAPE)
X.append(resized_img)
y.append(my_labels dict[my_name])

X = np.array(X,dtype="'float32")
y = np.array(y,dtype=np.int32)
X.shape

(785, 224, 224, 3)

##Run this if depth data is to be loaded
data_dir ='gdrive/MyDrive/Masterprosjekt/Depth_tester_all’

os.listdir(data_dir)

data_dir = pathlib.Path(data_dir)
classes = os.listdir(data_dir)
classes.sort()

number_of cl = len(os.listdir(data_dir))
print(number_of_cl)

print(classes)

#Indetical to color loader above

https://colab.research.google.com/drive/1ALY-YbhgTEDcXGmjWVIJGEI_JBdVerCp#scrollTo=7ef536b3 2/6

16.05.2022, 11:18 Final_tester_for_dep_color_mobilnet.ipynb - Colaboratory

my_images_dict = {

##'MOP1': list(data_dir.glob(classes[@]+'/*')),
##'MOP2': list(data_dir.glob(classes[1]+'/*')),
##'MOP3': list(data_dir.glob(classes[2]+'/*")),
'MOP4': list(data_dir.glob(classes[3]+'/*")),
'MOP5': list(data_dir.glob(classes[4]+'/*")),
'MOP6': list(data_dir.glob(classes[5]+'/*")),
##'MOP7': list(data_dir.glob(classes[6]+'/*"')),
##'MOP8': list(data_dir.glob(classes[7]+'/*"')),
##'MOP9': list(data_dir.glob(classes[8]+'/*')),

my_labels_dict = {

##'MOP1': O,
##'MOP2": 1,
##'MOP3": 2,
'MOP4': @,
'MOP5': 1,
"MOP6': 2,
##'MOP7"': 2,
##'MOPS " : 2,
##'MOP9 " : 2,

Xd, yd=1[], []

IMAGE_SHAPE = (224,224)

for my_name, images in my_images_dict.items():
for image in images:

img = cv2.imread(str(image), cv2.IMREAD_UNCHANGED) #Read data
resize_img = cv2.resize(img,IMAGE_SHAPE) #Resize to fit model
resize_img[np.where(resize_img>550)]=550 #Tuning parameter
resize_img[np.where(resize_img<400)]=400 #Tuning parameter

resize_img = cv2.normalize(resize_img,resize_img,0,20,cv2.NORM_MINMAX)
#tuning paramter

resize _img = cv2.normalize(resize_img,resize_img,0,255,cv2.NORM_MINMAX)
#This always needs to be done in order to have RGB values between 0-255

img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)#Make 3 channels
img = cv2.resize(img[:,:,:],IMAGE_SHAPE) #resize to fit model
img[:,:,2]=resize_img #Copy depth image to r channel
img[:,:,1]=resize_img #Copy depth image to g channel
img[:,:,0]=resize_img #Copy depth image to b channel
X_d.append(img)

X_d = np.array(X_d,dtype="int16")

https://colab.research.google.com/drive/1ALY-YbhgTEDcXGmjWVIJGEI_JBdVerCp#scrollTo=7ef536b3 3/6

16.05.2022, 11:18 Final_tester_for_dep_color_mobilnet.ipynb - Colaboratory

#Inspect image folder
print(X.shape)
print(X_d.shape)
print(np.max(X_d))
print(np.unique(X_d))

#compare depth and color images
cv2_imshow(X_d[600])
cv2_imshow(X[600])

#This is only used if one wanna merge depth and color channels
#X[:,:,:,0]=X_d[:,:,:,0] b
#X[:,:,:,1]=Xd[:,:,:,1] g
#X[:,:,:,2]=X_d[:,:,:,2] r

#Remenber tuning parameters test_size, number of classes and nr of epochs
X_train, X_test, y_train, y test = train_test split(X, y, test_size=0.2, random_state=None

X_train_scaled = X_train / 255 #Scaling values to tensor size
X_test_scaled = X_test / 255 #Scaling values to tensor size

feature_extractor_model = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vecto
pretrained_model_without_top_layer = hub.KerasLayer(
feature_extractor_model, input_shape=(224,224,3), trainable=False)

my_num_of_classes = 3

model = tf.keras.Sequential([
pretrained_model_without_top_layer,
tf.keras.layers.Dense(my_num_of_classes)

D

model.summary ()

model.compile(
optimizer="adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['acc'])

model.fit(X_train_scaled, y_train, epochs=10)
print("Evaluate on test data")

results = model.evaluate(X test_scaled,y test)
print("test loss, test acc:", results)

predicted
predicted

model.predict(X_test_scaled)
np.argmax(predicted, axis=1)

print(predicted.shape)
print(y_test.shape)

https://colab.research.google.com/drive/1ALY-YbhgTEDcXGmjWVIJGEI_JBdVerCp#scrollTo=7ef536b3 4/6

16.05.2022, 11:18 Final_tester_for_dep_color_mobilnet.ipynb - Colaboratory

print("test loss, test acc:", results)

test loss, test acc: [0.5251584649085999, 0.7707006335258484]

nr_of_cl = np.unique(y_test)
column_names = np.unique(y_test)
row_names =np.unique(y_test)

dim_mat = len(np.unique(y_test))

matrix = np.zeros((dim_mat,dim_mat), dtype=np.int32)

df = pd.DataFrame(matrix, columns=column_names, index=row_names)

df

#run through predictions and compare
for x in range(len(predicted)):

pred = predicted[x]

valid = y_test[x]

df.loc[pred,valid] = df.loc[pred,valid]+1

df

#print out colorized confusion matrix
fig, ax = plt.subplots(figsize=(15,10))

ax=sn.heatmap(df/np.sum(df), annot=True, linewidths=.5, fmt='.0%', cmap='Reds')

plt.title('Test loss, Test acc: {0}'.format(results), fontsize
plt.xlabel('Predicted label', fontsize=20)

plt.ylabel('True label', fontsize=20)

plt.show(ax)

figure = ax.get_figure()

figure.savefig('Confusion_results_Merged_mobilnet_3.png', dpi=400)

https://colab.research.google.com/drive/1ALY-YbhgTEDcXGmjWVIJGEI_JBdVerCp#scrollTo=7ef536b3

5/6

16.05.2022, 11:18 Final_tester_for_dep_color_mobilnet.ipynb - Colaboratory

v 0s completed at 7:22 AM ® X

https://colab.research.google.com/drive/1ALY-YbhgTEDcXGmjWVIJGEI_JBdVerCp#scrollTo=7ef536b3 6/6

A.3.2 SVM and KNN code

67

16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

pip install opendatasets

import numpy as np

import cv2

import pathlib

import PIL.Image as Image
import os

import opendatasets as od
import seaborn as sn

import matplotlib.pylab as plt

import tensorflow as tf

import tensorflow_hub as hub

import pandas as pd

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.models import Sequential

from sklearn.model selection import train_test_split
from google.colab.patches import cv2_imshow

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.multiclass import OneVsRestClassifier
from sklearn.model _selection import train_test_split

from google.colab import drive
drive.mount('/content/gdrive")
data_dir ='gdrive/MyDrive/Masterprosjekt/Depth_tester_all’

os.listdir(data_dir)

data_dir = pathlib.Path(data_dir)
classes = os.listdir(data_dir)
classes.sort()

number_of cl = len(os.listdir(data_dir))
print(number_of_cl)

print(classes)

#Depending on what folders to use for, comment out the one you dont need
my_images_dict = {

'MOP1': list(data_dir.glob(classes[@]+'/*")),
'MOP2': list(data_dir.glob(classes[1]+'/*")),
'MOP3': list(data_dir.glob(classes[2]+'/*")),
##'MOP4': list(data_dir.glob(classes[3]+'/*')),
##'MOP5': list(data_dir.glob(classes[4]+'/*")),
##'MOP6': list(data_dir.glob(classes[5]+'/*')),
##'MOP7': list(data_dir.glob(classes[6]+'/*")),
##'MOP8': list(data_dir.glob(classes[7]+'/*")),
##'MOP9': list(data_dir.glob(classes[8]+'/*")),

https://colab.research.google.com/drive/114hbgqzPNsWBswtu2m3UKGlec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 1/6

16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

}

#This is where you indicate the true label
my_labels dict = {

'MOP1': O,
'MOP2': 1,
'MOP3': 2,
##'MOP4"': 1
##'MOP5': 2
##'MOP6': 3
##'MOP7"': 6,
##'MOP8"': 7
##'MOP9': 8

X,y =[1, []
IMAGE_SHAPE = (224,224)

for my_name, images in my_images_dict.items():
for image in images:

img = cv2.imread(str(image), cv2.IMREAD_UNCHANGED)
img = cv2.resize(img, IMAGE_SHAPE)
img[np.where(img>550) =550 #tuning parameter
img[np.where(img<400)]=400 #tuning parameter
img = cv2.normalize(img,img,0,5,cv2.NORM_MINMAX)
#tuning parameter
img = cv2.normalize(img,img, 0,255, cv2.NORM_MINMAX)
#tuning parameter
resized_img = img
resized_img = resized_img.flatten()
X.append(resized_img)
y.append(my_labels dict[my_name])

#KNN MODEL

Split into training and test set

X_train, X_test, y_train, y_test = train_test_split(
X, y, test _size = 0.2, random_state=42)

#Settings and fit training data to SVM

svc = SVC(kernel="poly',gamma="auto"')

svc.fit(X_train, y_train)

SVC(gamma="auto', kernel='poly"')

predictions = svc.predict(X_test)
print("Accuracy on data is",accuracy_score(y_test,predictions))

https://colab.research.google.com/drive/114hbgqzPNsWBswtu2m3UKGlec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 2/6

16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

nr_of_cl = np.unique(y_test)

column_names = np.unique(y_test)
row_names = np.unique(y_test)
dim_mat = len(np.unique(y_test))

matrix = np.zeros((dim_mat,dim mat), dtype=np.int32)
df = pd.DataFrame(matrix, columns=column_names, index=row_names)
df

e 12 2
0000
100 0
2 000

for x in range(len(predictions)):
pred = predictions[x]

valid = y_test[x]

df.loc[pred,valid] = df.loc[pred,valid]+1

df
e 1 2 2
0 45 4 0
1 5 43 6
2 0 8 46

#Confusion matrix for SVM results

fig, ax = plt.subplots(figsize=(15,10))

ax=sn.heatmap(df/np.sum(df), annot=True, linewidths=.5, fmt='.0%"', cmap='Reds')
plt.title('Test acc: {@}'.format(accuracy_score(y_test,predictions)), fontsize = 15)
plt.xlabel('Predicted label', fontsize=20)

plt.ylabel('True label', fontsize=20)

plt.show(ax)

#Metrics from SVM
print(classification_report(y_test,predictions))

precision recall fl-score support

0 0.92 0.90 0.91 50

1 0.80 0.78 0.79 55

2 0.85 0.88 0.87 52
accuracy 0.85 157

https://colab.research.google.com/drive/114hbgqzPNsWBswtu2m3UKGlec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 3/6

16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

macro avg 0.86 0.86 0.86 157
weighted avg 0.85 0.85 0.85 157
#Knn model

neighbors = np.arange(1l, 20)
train_accuracy = np.empty(len(neighbors))
test_accuracy = np.empty(len(neighbors))

Loop over K values
for i, k in enumerate(neighbors):

knn = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=k))
knn.fit(X_train, y_train)

train_accuracy[i] = knn.score(X_train,y_train)
test_accuracy[i] = knn.score(X_test,y_test)

Generate plot
plt.plot(neighbors, test_accuracy, label = 'Testing dataset Accuracy')
plt.plot(neighbors, train_accuracy, label = 'Training dataset Accuracy')

plt.legend()
plt.xlabel('n_neighbors")
plt.ylabel('Accuracy')
plt.show()
print(test_accuracy)

100 1 \ — Testing dataset Accuracy
\ Training dataset Accuracy
0954 |
. I-I.»‘, S —
A 090 4 — _
5 R —_—
(=)
éd
(.85 1
080

T
25 5.0 15 woe 125 150 175
n_neighbors

[0.78980892 0.78343949 0.85987261 0.86624204 0.86624204 0.84713376
0.87261146 0.85987261 0.87261146 ©.84713376 0.85350318 0.85350318
0.8343949 0.85350318 0.84076433 0.84713376 0.84076433 0.84076433
0.84076433]

print("Best Accuracy : ",test_accuracy[np.argmax(test_accuracy)])
print("k-value : ", np.argmax(test_accuracy)+1)

knn = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=np.argmax(test_accuracy)+1))
knn.fit(X_train, y_train)

predictions KNN = knn.predict(X_test)
https://colab.research.google.com/drive/114hbgqzPNsWBswtu2m3UKGlec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 4/6

16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

#Metrics from KNN
print(classification_report(y_test,predictions_KNN))

precision recall fl-score support

0 0.85 0.96 0.90 49

1 0.81 0.81 0.81 53

2 0.96 0.85 0.90 55

accuracy 0.87 157
macro avg 0.88 0.88 0.87 157
weighted avg 0.88 0.87 0.87 157

nr_of_cl = np.unique(y_test)

column_names = np.unique(y_test)
row_names = np.unique(y_test)
dim_mat = len(np.unique(y_test))

matrix = np.zeros((dim_mat,dim mat), dtype=np.int32)
df = pd.DataFrame(matrix, columns=column_names, index=row_names)
df

e 12 2
0000
100 0
2 000

for x in range(len(predictions)):
pred = predictions_KNN[x]

valid = y_test[x]

df.loc[pred,valid] = df.loc[pred,valid]+1

df
e 1 2 2
0 47 8 0
1 2 43 8
2 0 2 47

#Confusion matrix fOR KNN
fig, ax = plt.subplots(figsize=(15,10))
ax=sn.heatmap(df/np.sum(df), annot=True, linewidths=.5, fmt='.0%', cmap='Reds")

https://colab.research.google.com/drive/114hbgqzPNsWBswtu2m3UKGlec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 5/6

16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory
plt.title('Test acc: {0}'.format(accuracy_score(y_test,predictions_KNN)), fontsize = 15)
plt.xlabel('Predicted label', fontsize=20)
plt.ylabel('True label', fontsize=20)
plt.show(ax)

#figure = ax.get_figure()
#figure.savefig('Confusion_results_Merged_mobilnet_3.png', dpi=400)

v 0s completed at 10:05 AM ® X

https://colab.research.google.com/drive/114hbgqzPNsWBswtu2m3UKGlec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 6/6

	Preface
	Abstract
	Introduction
	Motivation
	Problem Statement
	Constraints

	Background and Related Work
	Background
	Interpretability and Explainability
	Machine learning
	SVM
	KNN
	Neural Networks
	Deep Learning
	Deep Neural Networks
	Convolution Neural Network
	Padding and Stride
	Residual Networks
	Transfer Learning
	Stereo Camera Sensing

	Related Work
	RGB-D
	Semantic Segmentation

	Tools
	Realsense software development kit
	Realsense D435
	C++ and Python

	Methodology
	Transfer learning
	Preprocessing
	SVM and kNN
	Experiments
	Data collection
	Data analysis

	Implementation
	Hardware
	Image capturing
	Auto-labeling
	Manual labeling

	Model development

	Results
	MobilenetV2
	Baseline
	Number of MNV2

	SVM KNN
	Number of SVMKNN

	Discussion
	Conclusions
	Listings
	Code
	Image capture
	Pretrained MobileNetV2
	SVM
	KNN

	Project management
	Test results
	MobilnetV2 code
	SVM and KNN code

