
Can depth data improve the accuracy when

classifying mops?

Stian Blomdal

Thesis submitted for the degree of

Master in Applied Computer and Information Technology (ACIT) -

Robotics and Control

30 credits

Department of Computer Science

Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2022





Can depth data improve the accuracy when

classifying mops?

Stian Blomdal



© 2022 Stian Blomdal

Can depth data improve the accuracy when classifying mops?

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/


Preface

This thesis is based on a collaboration project, and all the people who played a part deserves my

gratitude. First of I would like to express my gratitude to my main supervisor Henrik Lieng. Thank

you for the support and insight. I would also like to thank Dudor Morar from Inwatec for your

patience and willingness to always help. Thank you Bjørge Aguirre for your support and trust the

last couple of years.

i



ii



Abstract

Since the emergence of low cost RGB-D cameras, a new world of possibilities have opened up in

the field of Computer Vision. This projects focuses on both the practical and theoretical part of

how depth data can improve the accuracy when classifying objects in an industrial environment.

We have tested both classical machine learning methods and Google’s Residual Neural Network:

MobilNetV2. The goal was to achieve an accuracy that can match HF RFID-tag(95-97%). The

purpose of the research question was to find out more about RGB-D images and what methods

that can be used best for classification.
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Chapter 1

Introduction

1.1 Motivation

Nor Tekstil is a company providing industrial laundry services nation-wide in Norway. One

branch of their services is delivering clean floor mops to their customers. At the laundry in

Drammen, they make use of a machine for packaging mops - this is where Inwatec becomes

important. Inwatec is a Danish robotics company, developing advanced software and smart

machinery to automate workflows in the industrial laundry industry, and is also the manufacturer

of the packaging machine. After the mops are washed and dried, they’re packet into a plastic bags.

Today this machine is able to count the number of mops going through it, before ending up in a

bag. This is done by inserting a high frequency chip in each mop and installing a reader inside

the machine. It is not able to classify the type of mop. This can become an issue if the machine

is fed with a batch of mops different from the kind it’s set to pack. Worst case, the customer

is getting a different kind that they ordered. Nor Tekstil has several checkpoints today in their

production line where one can find similar challenges. Sorting and counting garments throughout

the production line can increase the amount of control variables, which again gives Nor Tekstil

the ability to increase the effectiveness of the laundry. Understanding how to automate the task of

depth perception is beneficial for all parts involved in this project.

1.2 Problem Statement

We want to capture and use RGB-D image data to classify and count mops while being packed

by a packaging machine. Is it possible to achieve the same or better accuracy as HF RFID-chip

classification (95-97%)? We need to mount a camera at a suitable position and angle. Then interface
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with the packaging machine, get a signal from a photo electric sensor when mops are within the

field of view of the camera, and capture the image data. Create a large enough dataset and label all

images correctly. Create a baseline model, then build models using the most suitable methods for

this project after doing extensive research of related work. Compare results and suggest further

work. One can think about this classification problems as a set of 2 main tasks. Find out what

type of object this is; a white, blue or green mop? When this is established, how many are there

in the image?. By design the machine is able to separate mops from a big pile. The exact amount

separated varies from one up to four. Lets call this a small pile. When the small pile is transported

on the conveyor belt, its not always easy to see for a human how many exactly is in this pile.

Imagine you take four mops and toss them on the floor, they will always land differently and

sometimes four mops looks like two, one looks like two, and so-on. Each picture below inhabits

two mops each - not easy to tell? How do one classify both the type and number of mops?

Figure 1.1: Two white Figure 1.2: Two blue Figure 1.3: Two green

Research question one: Can classification accuracy of RGB-D data be improved by breaking the

problem into two parts?

Research question two: Can classical machine learning methods help to improve classification

accuracy of depth images?

1.3 Constraints

Early on it became evident that there was going to be some constraints on how the topic should

and could be researched. Main constraints were:

• Time (four and a half moths)

• Access to code from related work

• Type of data the image sensor produce
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On the basis of these constraints a couple of important decisions were made along the way in order

to deliver a finished product on time. Use transfer learning for baseline model. This minimizes

the need for time spent on coding, and gives us a realistic scenario of what method would be used

in a real life image classification problem. Now time has been added to focus on testing other

methods that hopefully can improve accuracy. Only methods that easily could be tested with the

raw data produced was evaluated. This means that for example semantic segmentation was not

tested. For semantic segmentation one needs to have a mask for every training image. This is

done by manually drawing polygons around the objects to classify [37]. The main intuition when

starting this project was that if one wants to find the type and amount, methods that don’t use

of the volumetric features in an image, will be no better than the state of the art 2D-classification

methods. Occlusion of the same type of objects within an image makes it impossible at one point to

distinguish between number of objects by only analyzing the 2D properties. As many as possible

3D-classification methods must be evaluated, but, this is not a paper about testing the state-of-the-

art methods, it’s about testing the methods that is suitable given the before-mentioned constraints.
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Chapter 2

Background and Related Work

This chapter describes the practical and theoretical foundation of the project. The main focus is on

the research topic, and related work. This is a Computer Vision and pattern recognition project,

so when researching within a broad topic like this it is necessary to narrow it down to something

more specific. There are several sub-categories and what they are should be clear after the end

of this analysis. But it even in the beginning it’s necessary to narrow it down beyond Computer

Vision and pattern recognition. If one thinks of a picture as a two dimensional space, adding depth

creates a third dimension. This gives us 3D images as a basis for field to study. Combining this with

classification, and type of data produced by the camera, the following material has been created.

2.1 Background

2.1.1 Interpretability and Explainability

Ethical considerations related to this project is not that obvious. But in a general sense it should

be in the back of every researchers mind when creating models that may have the potential to

end up in an applications related to AI, or when using and modifying models and methods that

are currently being used in AI. According to [21], Interpretability is to what extent one is able to

predict the AI’s decision, feeding it with a known input. [13] defines it as the ability of a human

to understand the result a neural network outputs. Explainability or Explainable AI(XAI) is the

methods and processes that allows humans to understand and trust the decisions made by the AI.

A useful analogy is if you think about doing a science experiment. Interpretability is that you can

see the different parts of the experiment and know if you light a match near the gas nosel, the gas

will ignite. Explainability is digging into the chemistry behind it all. According to [13] theres been

a surge of work in XAI. We need to fully understand what the model is doing for us to trust it. We
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need to be able to do extensive debugging of the models we create in order to better understand

them and learn from them. There is a lot of work being done on this, ref [43],[6],[30],[5]

2.1.2 Machine learning

As shown in the figure below, there are generally four major types of ML methods. ML is a method

Figure 2.1: Machine Learning Methods

for automating the process of model building. The idea is that a system can learn from data, find

patterns, and make decisions with as little human interaction as possible[22]. An effective way to

differentiate between the different sub-fields of ML, is to look at it from a data labeling perspective

and how they gain insight from data. Supervised learning uses labeled data. Unsupervised uses

unlabeled data and Semi-Supervised is a combination of both. Reinforcement learning uses no

data, where the algorithm discovers through trial and error, and the goal is like a video game - get

the highest score [22].

2.1.3 SVM

A SVM in its most basic form is a linear binary classifier that can identifies a single boundary

between two classes. For multi-class classification one can use a polynomial kernal. According

to [7] do a polynomial kernel allow to map the input space into a higher dimensional space that

is a combination of products of polynomials. Despite its high computational load, this kernel is

frequently applied to data that has been normalized.
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2.1.4 KNN

K-nearest neighbors algorithm (KNN), is a non-parametric, supervised learning classifier [24],

which uses proximity to make classifications or predictions about the grouping of an individual

data point. For a classification problem, a class label is assigned on the basis of a vote. The label

that is most frequently represented around a given data point is used to determine what class the

new observation belongs to, defined by the tuning parameter k. The following paragraph is taken

from [34]: "One Vs Rest Classifier, also known as one-vs-all, this strategy consists in fitting one classifier

per class. For each classifier, the class is fitted against all the other classes. In addition to its computational

efficiency (only n classes classifiers are needed), one advantage of this approach is its interpretability. Since

each class is represented by one and one classifier only, it is possible to gain knowledge about the class by

inspecting its corresponding classifier. This is the most commonly used strategy for multiclass classification

and is a fair default choice.

2.1.5 Neural Networks

According to [10], Neural networks are based on algorithms that are present in our brain and

help in its functioning. A Neural network interprets Numerical patterns which may be present

in the form of Vectors. [24] noted that Artificial Intelligence consists of several subfields, and one

of them is ML. In ML, there is a subfield called Neural Network (NN). This is the backbone of

deep learning. One can think of a NN’s as a set of algorithms trying to replicate the human brain’s

abilities. When designing a network like this, it’s classically comprised of four components: inputs,

weights, a bias or threshold, and an output, the relationship between them is shown in the figure

below.

Figure 2.2: Adaptive Combiner.x = input, w = weight, b = bias, y = output

2.1.6 Deep Learning

According to [10], Deep learning is a subset of machine learning that gives the system the capability

to function like a human brain and imitate patterns that our brain does for making decisions
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2.1.7 Deep Neural Networks

Based on [24][18], Deep Neural Networks (DNN’s) are considered to be networks that are build by

3 or more layers, including input and output. One of the key benefits of deep learning algorithms

is that they minimized the need for human interaction. The task of finding features in a dataset

is automated. The downside of deep learning algorithms is that they need much more data in

order to perform compared to the more classical machine learning algorithms. A popular way to

visualize a DNN is shown below.

Figure 2.3: DNN [24]
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2.1.8 Convolution Neural Network

According to [4], before Convolution Neural Network’s (CNN’s), hand-crafted features were

created in order to perform classification. The breakthrough of CNN’s is that features are learned

automatically from training examples. CNN’s proved to be very effective in image classification as

the convolution operation captures the 2D nature of images. CNN’s has been around for over 20

years, but because of large available data-sets and implementation of CNN on massively parallel

GPU’S, its adoption has exploded the past 8-10 years(2016). CNN is based on the human visual

cortex and for image and video recognition it’s the most common one used [1]. The following

subsections will introduce the reader to the different tools and building blocks of a CNN. At

the end a precise description of how one can utilize their full potential by combining them, and

eventually resulting in something most commonly known as an architecture.

Neuron

Neurons in CNN’s can be seen as a combination of an adaptive combiner (shown in 2.3) and

activation function[32]. They are thought of as the building block of the CNN layers. This

representation will come in handy later in this section.

Biology and math

[29] and [33] noted that Convolutional Neural Networks (CNN) is inspired by the animal visual

cortex, more specifically, the discovery of the way neurons are connected with a certain pattern

in a cat’s brain [17] as cited in [27]. The neurons cover a part of the visual field, tiled together

by overlapping each other. Neurons respond to stimuli through simple and complex cells, and a

convolutional operation can mathematically replicate this [27, p.2] [33, p.4]. Figure 2.4 shows the

relationship between the visual system and base convolutional operations.

On the left, we can see that the simple cells have a preferred location in an image that causes

activation, and further the complex cells react to activation of the simple cells[27]. On the right, we

can see the filtering process that we up to now have called convolutional operation.

Convolutional layer

The core building blocks of a CNN is the convolutional layers. This is where the feature extraction

is happening. A filter also known as a kernel, with a specific size is applied to the input, and the

output is considered to be the feature represented as weights[42]. Lets define a feature we wanna

9



Figure 2.4: Visual vs convolutional hierarchy[27]

search for in an input, represented as a 3x3 matrix. This is applied throughout the input with a

set of predefined rules for movement. It slides a window over the inputs to find where the feature

matches and map this into another matrix. This is called the feature map. Figure 2.5 visualizes

both input and filter. Figure 2.6 shows how its mapped onto a feature map.

Figure 2.5: Input and Filter [9]

Figure 2.6: Input x filter —> Feature

Map[9]

This is done for as many filters that are applied in the network.

Figure 2.7: Colours represent different filters [9]
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2.1.9 Padding and Stride

How much the window slides is called stride. In figure 2.8 a stride of 2 is performed, with a pooling

window of 2x2 .

Pooling

[9] and [20] noted that pooling is performed by down-sampling each feature map. By reducing

the height and width, keeping the depth intact, training time is shortened. Maxpooling is the most

common type of pooling. This is yet another convolutional operation that slides a window over

the inputs and maps the max value into another matrix.

Figure 2.8: Maxpooling [9]

Batch Normalization

[23] as cited in [31, p.111-113] explains how Batch Normalization helps the network train faster

and achieve higher accuracy. This is done to every layer in a neural network. A vector is grabbed

before going through a layer, then each component of the vectors in the batch is normalized by

subtracting the mean and dividing by the standard deviation.

Activation Function

The purpose of applying the activation function is to increase the non-linearity in images[38], [20].

In image classification, one of the most effective functions is the rectified linear units (ReLU).

fRelu(hi,k) = max(0, hi,k).. This is a function that sets a all negative values as zero, and positive

values equals as the input. [20] explains that one of the keys to recent success in NN is the use

of ReLU and that it’s generally a better solution than the conventional Sigmoid-like units. This is

why we have used this activation function, as described in the Methods section later in this report.
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Dropout

Dropout is one of the most common method for preventing overfitting in DNN’s [9, section 4.1]

[31, p45]. As described in [9, section 4.1] [31, p45-46], dropout works by "dropping" or disabling

neurons. [9] noted that dropout is analogous to a company with an expert in finance being away

from work for a period of time each week. This forces the coworkers that were dependent on

this expert to learn something new and work with people they usually wouldn’t. This makes the

company more dynamic and raises the overall competency level of the employees. The parameter

for tuning the amount of dropout is called dropout-rate. If the dropout rate p = 0.2, 20 percent of

the neurons are being disabled. If a neuron is disabled, its input and output are inactive for the

rest of the training step but can be active the next.

Loss function and gradient decent

The loss function is used for gradient descent. In simple terms we need to know the error when

predicting an image - how far away from the desired output are we?. If y is the desired output and

xi is the input from the previously connected neuron, what is the rate of change in y with respect

to xi. We can check this by doing the equivalent to gradient descent by taking the derivative of

the output with respect to the input. In simple words, the loss is used to calculate the gradients.

And gradients are used to update the weights of the network. This is how a CNN is trained. In the

experiments done in this thesis, the loss is calculated using the "sparse categorical cross entropy"

function from Tensorflow.

J(w) = − 1
N

N

∑
i=1

[yi log (ŷi) + (1− yi) log (1− ŷi)] (2.1)

Where w are the model parameters - weights of the neural network. yi is the true label, and ŷi is

the predicted label.

2.1.10 Residual Networks

When searching for "Image classifiaction" on IEEE, the most cited publication, with over 50,000

citations, and used in over 180 patents, is the paper; "Deep Residual Learning for Image

Recognition" [19]. Clearly our solution space contains this paper and technology related to it.

In 2016 [19] proved the ResNet can go deep, 152 layers, 8x deeper than VGG nets but still having

lower complexity. With the ResNet model they achieved 3.57 percent error on the ImageNet test

set[19]. This result won 1st place on the ILSVRC 2015 classification task[19]. Moving forward the

popularity of ResNet’s grew. A ResNet is a CNN with residual blocks. In a CNN each layer feeds
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into the next, but in a network with residual blocks, each layer feds into the next layer and directly

into layers that are 2 to 3 blocks away. It’s skipping. See figure below. Given input x, F(x) is the

Figure 2.9: Residual block

result of x after it has been passed through two convolutional layers, with relu between them. The

identity of x is then added to F(x) given the output as F(x) + x. This means the next layer learns

new information and at the same time retain knowledge learned in previous layers[19].

2.1.11 Transfer Learning

The main idea is that one can transfer knowledge from one model to another. If a model has

learned a set of features by being trained on a large dataset, the intuition is that it could serve a

good model of the visual world. [25] as cited in [2], noted that by utilizing deep and complex CNNs

but freezing their layers, thereby decreasing the trainable parameters and allowing for knowledge

transfer from training on large image datasets. Specifically one can use a pre-trained model as is, or

perform transfer learning by only training the top layers of the pre-trained model, and the newly-

added classifier layers. By doing this, we’re allowing to "fine-tune" feature representations in the

pre-trained model in order to make them more relevant for the specific task [2]. The intuition

behind transfer learning for image classification [2] is that if a model is trained on a large and

general enough dataset, this model will effectively serve as a generic model of the visual world.

You can then take advantage of these learned feature maps without having to start from scratch by

training a large model on a large dataset.

2.1.12 Stereo Camera Sensing

One of the most recent published surveys on RGB-D datasets, [28] starts off by classifying different

sensors able to obtain depth information into the following categories: Structured Light, Time-of-

Flight (TOF), Light Detection and Ranging (LIDAR), and Stereo Camera Sensing (SCS). We will
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focus on the latter. To create a depth map, one can use two or more image sensors or lenses

[28]. A straightforward strategy to measure depth from two or more cameras is Triangulation. The

Triangulation idea is the same as applied in Structured Light sensors, but using a camera instead of

a projector. The idea is that finding the position of a pixel in the image plane of camera Aprojected

from a point P in the space, and the position of a pixel projected by the same point P in camera B,

it is possible to find the depth of that point in a scene with the intrinsic parameters of the camera.

After finding both lines projected in both cameras from point P, it is only necessary to know the

distance between the two cameras (baseline distance) and internal parameters of the cameras to

know the depth of the point P. A limitation of this strategy occurs when the point of interest

has no texture. For instance, it is practically impossible to determine which point of a smooth

painted wall observed in the image projected by camera A is equivalent to the image projected by

camera B. Therefore, it is difficult to determine a point’s depth with acceptable accuracy without

the correspondence of the pixels in both image planes. Recently, Deep Learning based methods

have tried to address this limitation, increasing the accuracy of the estimation [27]. Examples of

such types of sensors include light field cameras and ZED cameras.

2.2 Related Work

Can I make the case that something is missing in the current literature? I have different vague

ideas about how to solve the problem with a quite elementary overarching algorithm, comprising

of one model for determining the type, and then depending of the type chose 1 out of three models

determining the amount. The most work using depth information has been focused on semantic

segmentation and object recognition.

2.2.1 RGB-D

After the emergence of low cost sensors like Microsoft’s Kinect and Intel’s Reals Sense, the number

of RGB-D datasets has grown, and as a consequence so has the number of methods for classifying

the data. Early methods for classifying RGB-D combines CNN and Recurrent Neural Network

(RNN) [36] as cited in [15]. The methods is to learn low level translation invariant features

with the CNN for both RGB and depth images, but do it separately. Then the learnt features

is fed into multiple RNNs to map out more high level features. This method proved to reduce

computation time. A similar approach is done by[11], who are training two CNNs on RGB and

detph, and then fuse them together creating one fusion stream, and leaving one stream from each
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network untouched. By doing this, one can learn the weights of the fusion and the independent

features from the input. In [16], Gupta explores the idea of stacking the depth channel onto a

CNN architecture, but with modifications. They represent each pixel using horisontal disparity,

pixel height above ground ,and angle bewteen normals and gravity, known as HHA. Theese

three features can be represented as a 3 channel image and therefor make use of the feature

extracting skills of a CNN. [41] assumes that pixels on the same 3D-plane tend to share the same

class. They have developed a generic model, Z-ACN can be applied to all applications such

as classifcation,segmentation,and object detection. [14] shows that by applying a 5x5 and 3x3

encoding filters to the depth image and normalizing the original data, one can create a 3-channel

input for an CNN, which performs better than just replicating the original depth channel into 3

identical ones. An advantage of this encoding method is that the pre-processing filters can be easily

incorporated as part of the CNN. This can be achieved by adding a new convolutional layer to the

depth path of the RGB-D CNN. Others have tried to take the volumetric approach by modifying

the kernel to instead of having the size of w, h, l as input, has a k, k, d and outputs w, h,m. Each

stride traverses the grid similar to a 2D convolution operator and increases depth by a given stride

once each 2D plane has been convolved [15].

2.2.2 Semantic Segmentation

Depth provides additional geometric information that can benefit an RGB semantic segmentation

model [26] as cited in [3]. We define the semantic segmentation task as follows: given an input

RGB image I ∈ RH×W×3, the objective is to produce an output semantic segmentation map

S ∈ RH×W×C, where C is the number of semantic classes. In other words, for each of the H×W

pixels of an RGBimage, the semantic segmentation task produces a probability distribution over C

categories. In an RGB-D context, a depth map D ∈ RH×W is available in addition to the RGB input

so as to enhance the accuracy of the predicted segmentation map.

2.3 Tools

2.3.1 Realsense software development kit

Realsense software development kit (Realsense SDK 2.0) from Intel, supports a wide range of

programming languages and development platforms[8]. With one of the supported languages

we can apply settings on the camera. It’s also possible to perform a variety of useful post and

pre-processing operations, on both color and depth-image. Examples of settings and processing
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are; framerate, resolution, filtering, shutter speed, exposure etc.

2.3.2 Realsense D435

The Intel RealSense depth camera D435 [8] is a stereo camera, offering depth in addition to regualr

RGB. It’s wide field of view is perfect for applications such as robotics or augmented and virtual

reality, where seeing as much of the scene as possible is vitally important. With a range up to 10m,

this small form factor camera can be integrated into any solution with ease, and comes complete

with our Intel RealSense SDK 2.0 and cross-platform support.

Figure 2.10: Illustration of camera

Here are some specs from [8]

• Range .3 m to 3 m

• Depth Field of View (FOV) 87° × 58° (±3°)

• Depth Accuracy <2 percent at 2 m

• Depth Stream Output Resolution Up to 1280 × 720

• Depth Stream Output Frame Rate Up to 90 fps

• RGB Frame Resolution 1920 × 1080

• RGB Sensor FOV 69° × 42°

Note that the FOV are different for the RGB and depth sensors. This will be useful to remember

later in this report.
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2.3.3 C++ and Python

Inwatec has explained that they use C++ because of the speed. When having to do computationally

demanding task in matter of milliseconds, C++ is outperforming other languages like Python.

So when Inwatec allready had developed a software for image capturing, the choice was easy.

Python was used for all other tasks in this project. It allows for the use of popular machine

learning libraries like Tensorflow and Keras to tune the pre-trained model, scikit to create the

SVM and KNN, and other useful tools like Matplotlib, Numpy and OpenCV for data processing

and visualisation. All code used in this project can be found in A.1.
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Chapter 3

Methodology

This chapter presents the chosen methodologies for investigating the research question. A

taxonomy was created in order to map out key features in the field of RGB-D as early as possible.

We investigated features like number of citations, methods used, dataset used, Due to the limited

size of the dataset, a set of good strategies for optimisation had to be considered. In situations

similar to this, where the datatset is not large enough to feed the network and achieve satisfying

results, three methods are commonly proposed.

• Transfer learning [2],[39],[44], [12].

• Preprocessing [40], [35].

• Select a less complex architecture, with less trainable parameters [2].

All these methods will be considered and the next subsections describe them.

3.1 Transfer learning

To create a baseline model with transfer learning is a strategy that assumes that the pre-trained

model gives a good indication of what accuracy a state of the art model can achieve on the custom

RGB-D dataset. MobilNetV2’s https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4

feature extractor was loaded with keras to create a model without the dense layer, enabling us to

add and train the top layers. The model needs 3 channels (RGB), 224x224 pixels as input to work.

We train on RBG and depth separately. When training on depth data we need to create 3 instances

of the depth image, one for each channel.
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3.2 Preprocessing

How can we make the pretrained model improve accuracy by introducing depth data? We will

test of a number of preprocessing methods (PPM), marked as bold text. PPM1: swap one of the

color channels with the depth channel, with the following combinations: RGD,RDB,DGB,DDD.

PPM2: select Depth-ROI based on measurements on maximum and minimum height of all object

in the dataset. Set a threshold for accepted values, and change all values outside to a value within

Depth-ROI. All three figures shows the same three depth images. Top has one mop, middle has

two mops, and lowest has three mops. Figure 3.2 and 3.3 uses different preprosessing methods.

Figure 3.1: Normalized

depth

Figure 3.2: Normalized

depth with ROI

Figure 3.3: Double Normal-

ized depth with ROI
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3.3 SVM and kNN

The use of a less complex model could be beneficial considering our small dataset, and there is

hope. Especially considering the use of SVM and KNN for classification of depth image. By

calculating the sum of all depth values in an depth image, the hypothesis is that there will be a

significant difference in distribution depending on how many mops that are located inside the FOI

of the camera. Either the models finds this feature themselves, or we compute the sum of points,

add it as a feature and let the models do the rest. Both methods will be tried. The figure below

shows the average value of a pixel per class.

Figure 3.4: White mops avg

3.4 Experiments

All experiments will follow a structure based upon a test procedure, designed by combining all

of the previously proposed methods Visualizing the data after applying a method is useful for

gaining a deeper understanding of the results.
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3.5 Data collection

After each test, all metrics data are stored in an Excel sheet in A.3.

3.6 Data analysis

First we need to inspect the dataset. Different tools are used to visualize all RGB and depth

images in order to gain insight into any key takeaways from each class. Smaller pre-tests with

visualisation of each step of preprocessing must be done in order to find mistakes before running

through thousands of images. When all test is finished, most common key metrics can be analysed

with scatter plot, bar plot, confusion matrix, and basic sorting functions in Excel.
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Chapter 4

Implementation

This is where I describe what I actually did in my research, like field studies, experiments,

implementations, media productions, interviews, etc.

4.1 Hardware

As mentioned in 1.2 hardware needed to be installed in order to begin image capturing. The

picture below shows the machine, where the blue marked box is a custom made steel bracket for

attaching the camera. The conveyor belt transporting the mops is tilted at an angle, meaning that

the bracket needed to match the same angle in order to get useful depth data. After attaching the

camera to the bracket, the camera is connected to the AI-pc, which is connected directly to the PLC

running the machine.

Figure 4.1: Caption
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4.2 Image capturing

After installation of necessary hardware, learning how to use the software and camera for image

capturing, several attempts were made to start building a RGB-D dataset. This part of the project

was most time consuming. Little to no prior knowledge about RGB-D data, how to use the

equipment, what data to capture, and making sure the quality was good made this a long process

split into two major parts.

4.2.1 Auto-labeling

Initially an attempt to perform auto-labeling was done. The PLC receives a signal when mops is

within the field of view of the camera, this signal is then registered by the image capturing software

running on the AI-PC, and triggers the software to capture data. Since its a constant stream of data,

one has the option to manually calibrate which frame to save. Either exactly at the time the sensor

was triggered or x amount of frames before. When the HF antenna then reads the chips within

the reading range, the PLC recvies the tag numbers of the present mops. The idea is that one can

know exactly how many mops that where within the camera’s field of view at the time of capturing

- given that the calibration is done correctly, and the HF-reader gives the correct data. After several

tests it proved to be a solution that was to imprecise, and manual labeling was the better option.

At the end of this process we learned that the data being captured was not of such a quality that

one could make use of both RGB and depth images together. The field of view of the depth image

is greater than the RGB image. If we want to be able to use the proposed methods, both the depth

and RBG images needs to be aligned, so that the field of view after image capturing is the same

for both images. Lets say you wanna merge RGB and depth features for a region in a 224x224

pixel image. Depending on what image one is observing, the same region in the images does not

represent the same regions in the real world. This makes the problem much more difficult and was

avoided.

4.2.2 Manual labeling

By bypassing the first separation stage of the machine, one can feed the mops manually, providing

full control of how many mops that are captured by the camera. Watching live what the image

that was captured look like, is a extra step for making sure the quality of the dataset is as good as

possible. Image 4.2,4.3 ,and 4.4 illustrates where the machine is fed manually, how it looks after

they’re placed on the conveyor belt, and finally a screenshot of the image taken when the mops
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reaches the cameras field of view.

Figure 4.2: Marked door

Figure 4.3: Manual feeding Figure 4.4: Final RGB

Started with configuring the image capture software to store the following images in a specified

folder on the AI-pc, then started the software, and fed the machine with the amount and type

correspondning to the configuration. When this step is done, the same procedure is repeated until

all types (Blue, Green, White), and amount of each type(1,2,3) was stored inside 9 different folders.

It took about 30 hours to capture around 2300 images, feeding the machine 4500 mops. Adding a
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new class of 4 mops to each type could enable us to simulate a classification scenario that’s similar

to live classification, but it would require feeding the machine with 3000 new mops, and there was

simply no more time.

4.3 Model development

Since Inwatec provided a good framework for capturing images, the main focus was on

development of software for testing the different machine learning methods. Originally the plan

was to run all testing on the AI-PC. But after a couple of weeks with struggling to get all libraries

to work, versions to match, and other challenges related to the latter, the decision was made to

switch to Google Colab. Benefits like access from everywhere, scalable data recources, all libraries

work imiteatly, no need to install GPU software on local machine - the list goes on.
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Chapter 5

Results

In this chapter the results from all test performed will be presented. The use of tables and confusion

matrices will be used to present the data.

5.1 MobilenetV2

5.1.1 Baseline

We tested on both RGB and depth images separately. Figure 5.1 and 5.2 display the results in form

of two confusion matrices, one for each data type. We attempt to classify all 9 classes. There’s are

a total of 2347 images, test size is set to 20 percent with the train test split from [34]. Random state

is set to 42, so the test is reproducible. The baseline tests produce the best results after 30 epoch,

after testing 10,20, and 30 epochs.

27



Figure 5.1: Baseline RGB

Figure 5.2: Baseline Depth
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5.1.2 Number of MNV2

After creating a baseline model, an attempt to split the problem into two domains, type and

number classification. We tried classifying only the type of mop (color), total of 3 classes, Blue,

green and white. Test size is 20 percent with randomm state set to 42. After 7 epochs the model

classified with 100 percent accuracy and a loss of 0.007. So the focus from her it to classifying

only the number of mops, total of 3 classes, 1,2 and 3 mops. Test size is 20 percent with random

state set to 42. Table 5.1 shows the results from only classifying number of white mops with

PPM1: swap one of the color channels with the depth channel, with the following combinations:

RGD,RDB,DGB,DDD. The same procedure was done for both green 5.2 and blue 5.3 mops.

Table 5.1: Top results White Mobilnet with PPM1:

Type of test Acc Model Pretrained dtype Epochs Gaus filter DEPTH ROI

White_RGB 80.3 Mobilnet True float 30 False False

White_RGD 79.6 Mobilnet True float 10 False False

White_RGD 79.6 Mobilnet True float 30 False False

White_DGB 78.4 Mobilnet True float 30 False False

White_RGB 77.7 Mobilnet True float 10 False False

White_DDD 74.5 Mobilnet True float 30 False False

White_RDB 73.9 Mobilnet True float 10 False False

White_RGG 73.3 Mobilnet True float 10 False False

White_RDB 70.1 Mobilnet True float 30 False False

White_DDD 69.4 Mobilnet True float 10 False False

29



Table 5.2: Top results Green Mobilnet with PPM1:

Type of test Acc Model Pretrained dtype Epochs Gaus filter DEPTH ROI

Green_RGB 71.8 Mobilnet True float 10 False False

Green_RGB 71.8 Mobilnet True float 30 False False

Green_DDD 70.5 Mobilnet True float 30 False False

Green_RDB 69.2 Mobilnet True float 10 False False

Green_RDB 68.6 Mobilnet True float 30 False False

Green_RGD 66.1 Mobilnet True float 10 False False

Green_DGB 63.5 Mobilnet True float 10 False False

Green_DDD 63.5 Mobilnet True float 10 False False

Table 5.3: Top results Blue Mobilnet with PPM1:

Type of test Acc Model Pretrained dtype Epochs Gaus filter DEPTH ROI

Blue_RGD 75.6 Mobilnet True float 10 False False

Blue_RGB 73.9 Mobilnet True float 30 False False

Blue_RGB 70.7 Mobilnet True float 10 False False

Blue_RDB 70 Mobilnet True float 10 False False

Blue_DGB 69.4 Mobilnet True float 10 False False

Blue_DDD 64.9 Mobilnet True float 10 False False
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5.2 SVM KNN

In this section the results from using SVM and KNN with PPM2: is presented. For the SVM a

polynomial kernal is used. For the KNN, a One Vs rest classifier is used and tested from 0-20 k.

5.2.1 Number of SVMKNN

Table 5.4: Top results from SVM and KNN with PPM2:

Type of test Acc Model dtype DEPTH ROI ROI VALUE NORM Val k-value

D_White 90.4% SVM int True 400-550 0-10

D_White 86.6% KNN int True 400-550 0-20 2

D_Green 87.8% SVM int True 400-550 0-10

D_Green 80.1% KNN int True 400-550 0-10 4

D_Blue 85.3% SVM int False 400-550 0-5

D_Blue 72.0% KNN int True 400-550 0-20 16

Following is the confusion matrix and metrics report from the best results from each color type,

marked with bold in table 5.4. Numbers from 0-2 indicate number of mops-1. Meaning 0 is actually

the class with 1 mop.

Figure 5.3: Best white test Figure 5.4: Best white test metrics
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Figure 5.5: Best green test Figure 5.6: Best green test metrics

Figure 5.7: Best blue test Figure 5.8: Best blue test metrics
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Chapter 6

Discussion

First of all, it became evident quite early on in the testing process that the pretrained model would

perform excellent when classifying only the colour type, and that’s when we decided to make it a

2 step classification problem. If one can predict the colour 100% of the time for all color images,

then we had to focus on determining the best method for classifying the number. Intuitively an

engineering approach to it seemed most promising. By using the depth images could possibly

yield the best results if one could capture the volumetric feature in each depth image. We compare

the average of the top results from the pretrained model and the top results from the SVM &

KNN test in figure 6 SVM shows a significant increase in accuracy compared to both KNN and

Average Acc Model

87.9% SVM

79.6% KNN

75.9% MobilNetV2

Table 6.1: Average results

MobilNetV2. In this scenario where we used MobilenNetV2 as a baseline model, we managed to

answer both the research questions. Lets revisit them. Research question one: Can classification

accuracy of RGB-D data be improved by breaking the problem into two parts? It looks like it, we

have shown a significant boost of accuracy, compared to solving the problem as one task.

Research question two: Can classical machine learning methods help to improve classification

accuracy of depth images? The results from both KNN and SVM shows a better result than with

the pretrained model. In the literature it seems like the volumetric approaches perform better

when trying to classify RGB-D data, and so do our methods.
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Chapter 7

Conclusions

This report has shown the implementation of how to capture image data in a industrial

environment, then build a dataset with a total of 9 classes. The quality of the images varies, and

the size of the dataset is not more than about 260 images per class. So when reading the results it

should not be interpreted as evidence with solid confidence, but more as a proof of concept. We

answered both of the research question and visualized the results in the form of the most common

way in the literature; Confusion matrix and tables with precision, recall, f1-score support, accuracy,

macro average and weighted average. For further work it would be interesting to try and build

a larger dataset with higher quality of images. Testing semantic segmentation for RGB-D data,

depth aware CNN and other volumetric methods could help improve the accuracy.
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Appendix A

Listings

A.1 Code

A.1.1 Image capture

Data sharing source file

# include " Data_Sharing . h"

/ / i n i t i a l i s e a t o m i c v a r i a b l e s

std : : a tomic_ int g_sensorID ( 0 ) ;

s td : : a tomic_ int g_RFID_ID ( 0 ) ;

s td : : a tomic_ int g_numberOfChips ( 0 ) ;

s td : : a tomic_ int g_currentProgram ( 0 ) ;

s td : : atomic_bool g_sensorTriggered ( f a l s e ) ;

ImageData_struct dataQueue : : getData ( i n t id )

{

/ / Get l o c k t o b l o c k o t h e r t h r e a d from a c c e s s i n g

boost : : mutex : : scoped_lock lock ( mux_data ) ;

/ / d a t a t o be r e t u r n e d

ImageData_struct re turndata ;

re turndata . pic tureID = −1; / / −1 means ID not f o u n s

/ / l o o k through queue

for ( i n t i =0 ; i <data . s i z e ( ) ; i ++)

i f ( data [ i ] . p ic tureID=id )

/ / i f t h e i d matches t h e one we a a r e l o o k i n g f o r
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{

re turndata = data [ i ] ; / / copy d a t a

break ; / / e x i t l o o p

}

i n t lastPoppedID = −1;

while ( data . s i z e () >0 && lastPoppedID != returndata . pic tureID )

/ / pop s t u f f from queue u n t i l we pop t h e e l e m e n t

/ / we were l o o k i n g f o r ; i f e l e m e n t not found ,

/ / p i c u t r e I D = l a s t P o p p p e d I D so we do not e n e t e r l o o p

{

lastPoppedID = data [ 0 ] . p ic tureID ;

/ / copy t h e l a s t removed i d

data . pop_front ( ) ;

/ / remove e l e m e n t from queue

}

/ / r e t u r n e l e m e n t

return ( re turndata ) ;

}

void dataQueue : : addData ( ImageData_struct dataIn )

{

/ / Get l o c k t o b l o c k o t h e r t h r e a d from a c c e s s i n g

boost : : mutex : : scoped_lock lock ( mux_data ) ;

/ / add d a t a t o end o f queue

data . push_back ( dataIn ) ;

}

Data sharing header

# define DATA_SHARING_H

# include <atomic >

# include <deque>

/ / # i n c l u d e < l i b r e a l s e n s e 2 / r s . hpp> / / I n c l u d e R e a l S e n s e i f we add

/ / r e a l s e n s e o b j e c t s t o t h e ImageData s t r u c t

/ / # i n c l u d e <opencv2 / opencv . hpp> / / I n c l u d e OpenCV i f we add OpenCV

/ / o b j e c t s t o t h e ImageData s t r u c t
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# include <boost/thread/mutex . hpp>

/ / s h a r e d v a r i a b l e s

extern std : : a tomic_ int g_sensorID , g_RFID_ID , g_numberOfChips , g_currentProgram ;

extern std : : atomic_bool g_sensorTriggered ;

/ / s t r u c t u r e t h a t h o l d s d a t a we send b e t h e w e e n t h r e a d s

s t r u c t ImageData_struct

{

/ / p i c t u r e ID

i n t pictureID ;

/ / p l u s w h a t e v e r d a t a t o be s a v e d

} ;

/ / c l a s s imp l ement ing a d a t a queue be thween t h r e a d s

c l a s s dataQueue {

private :

boost : : mutex mux_data ;

s td : : deque<ImageData_struct > data ;

public :

ImageData_struct getData ( i n t id ) ; / / g e t d a t a wi th ID , and d e l e t e

/ / e l e m e n t s from t h e queue up t o t h a t ID

void addData ( ImageData_struct dataIn ) ; / / add d a t a t o end o f queu

} ;

# endif

Image capture source file

# include " Image_Capture . h"

# include <iostream >

# include <boost/thread . hpp>

void runImageCapture ( dataQueue * output )

{

i n t prev_sensorTriggered = −1;

while ( t rue )

{

/ / Connect t o camera , s t a r t g r a b b i n g p i c t u r e s
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while ( t rue )

{

/ / g e t f r ame from camera

/ / c h e c k f o r r i s i n g edge o f s i g n a l

i f ( prev_sensorTriggered == 0 && g_sensorTriggered == 1)

{

s td : : cout <<" Capture new p i c t u r e with ID : "<<g_sensorID <<std : : endl ;

/ / maybe p r o c e s s f r a m e s

/ / O b j e c t t o add t o queue

ImageData_struct newData ;

/ / put d a t a in o b j e c t

newData . pic tureID = g_sensorID ;

/ / add o b j e c t t o queue

output −>addData ( newData ) ;

}

/ / s a v e p r e v i o u s v a l u e

prev_sensorTriggered=g_sensorTriggered ;

/ / S l e e p

boost : : t h i s _ t h r e a d : : s leep ( boost : : posix_t ime : : m i l l i s e c o n d s ( 3 ) ) ;

}

}

}

Image capture header

# ifndef PLCCOMS_H

# define PLCCOMS_H

# include " . . / Data_Sharing/Data_Sharing . h"

c l a s s plcCommunication {

private :

/ / PLC d a t a t y p e s t o C++
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/ / SINT −> c h a r

/ / USINT −> uns igned c h a r

/ / INT −> s h o r t

/ / UINT −> uns igned s h o r t

/ / DINT −> i n t

/ / UDINT −> uns igned i n t

/ / BOOL −> b o o l

/ / REAL −> f l o a t

/ / STRING[ n ] −> c h a r [ n+1]

/ / A l l s t r i n g s in

/ / Automation s t u d i o r e s e r v e

/ / an e x t r a c h a r a c t e r

/ / f o r t h e n u l l c h a r a c t e r

/ / The o r d e r in t h e send / r e c e i v e

/ / s t r u c t u r e s must

/ / match t h a t on t h e PLC

s t r u c t PLCDataIn

{

unsigned i n t sensorID =0;

bool sensorTriggered= f a l s e ;

unsigned i n t RFID_ID =0;

short numberOfChips =0;

bool h e a r t b e a t= f a l s e ;

short currentProgram = 0 ;

} ;

s t r u c t PLCDataOut

{

bool h e a r t b e a t= f a l s e ;

} ;

void readMessage ( PLCDataIn pin ) ;

public :

void RunUdpCom ( ) ;

plcCommunication ( ) ;

} ;

# endif / / PLCCOMS_H

Image saving source file
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# include " Image_Saving . h"

# include <boost/thread . hpp>

# include <iostream >

void runImageSaving ( dataQueue * input )

{

i n t prevID = −1;

while ( t rue )

{

/ / wa i t h e r e f o r new ID

while ( prevID == g_RFID_ID )

boost : : t h i s _ t h r e a d : : s leep ( boost : : posix_t ime : : m i l l i s e c o n d s ( 3 ) ) ;

/ / s a v e p r e v i o u s ID

prevID = g_RFID_ID ;

/ / g e t image from queue

ImageData_struct dataToSave = input −>getData ( g_RFID_ID ) ;

i f ( dataToSave . pictureID >=0)

/ / I f d a t a found in queue , s a v e i t

{

s td : : cout <<" Save p i c t u r e with ID :

"<<g_RFID_ID<<" Number of chips :

"<<g_numberOfChips<<" Current program :

"<<g_currentProgram <<std : : endl ;

/ / Save da taToSave b a s e d on g_numberOfChips and g_currentProgram

}

}

}

Image saving header

# ifndef IMAGE_SAVING_H

# define IMAGE_SAVING_H
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# include " . . / Data_Sharing/Data_Sharing . h"

void runImageSaving ( dataQueue * input ) ;

# endif

PLC com source file

# include " PLC_Communication . h"

# include <boost/a s i o . hpp>

# include <boost/array . hpp>

# include <boost/thread . hpp>

# include <iostream >

using boost : : a s i o : : ip : : udp ;

plcCommunication : : plcCommunication ( )

{

/ / i n i t i l i z e communicat ion

}

void plcCommunication : : RunUdpCom( )

{

PLCDataIn pin ;

PLCDataOut pout ;

while ( t rue )

t r y

{

/ / Open s o c k e t l i s t e n i n g on p o r t 9869

boost : : a s i o : : i o _ s e r v i c e i o _ s e r v i c e ;

udp : : socket socket ( i o _ s e r v i c e , udp : : endpoint ( udp : : v4 ( ) , 9 8 6 9 ) ) ;

while ( t rue )

{

/ / When someth ing c o n n e c t s

udp : : endpoint remote_endpoint ;

boost : : array <char , 512> recv_buf ;

boost : : system : : error_code e r r o r ;

/ / g e t d a t a
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i n t b y t e s _ t r a n s f e r r e d = socket . receive_from ( boost : : a s i o : : b u f f e r ( recv_buf ) ,

remote_endpoint , 0 , e r r o r ) ;

/ / copy d a t a in i n p u t s t r u c t u r e

i f ( s i ze of ( pin ) >= b y t e s _ t r a n s f e r r e d )

memcpy(&pin , recv_buf . data ( ) , b y t e s _ t r a n s f e r r e d ) ;

/ / e x i t in c a s e o f e r r o r

i f ( e r r o r )

break ;

/ / r e a d message in i n p u t s t r u c t u r e

readMessage ( pin ) ;

/ / p r e p r e o u t o y t message

pout . h e a r t b e a t = pin . h e a r t b e a t ;

/ / s end i t b a c k

boost : : array <char , s i ze of ( pout ) > send_buf ;

memcpy( send_buf . data ( ) ,& pout , s i ze of ( pout ) ) ;

boost : : system : : error_code ignored_error ;

socket . send_to ( boost : : a s i o : : b u f f e r ( send_buf ) ,

remote_endpoint , 0 , ignored_error ) ;

}

socket . cance l ( ) ;

socket . c l o s e ( ) ;

}

catch ( s td : : except ion& e )

{ / / in c a s e o f e r r o r , show i t , s l e e p 10 ms and t r y a g a i n

std : : cout << e . what ( ) << std : : endl ;

boost : : t h i s _ t h r e a d : : s leep ( boost : : posix_t ime : : m i l l i s e c o n d s ( 1 0 ) ) ;

}

}

void plcCommunication : : readMessage ( PLCDataIn pin )

{

/ / Copy o v e r v a r i a b l e s t o s h a r e d d a t a p o i n t s

g_sensorID = pin . sensorID ;

g_numberOfChips = pin . numberOfChips ;

g_RFID_ID = pin . RFID_ID ;

g_currentProgram = pin . currentProgram ;

g_sensorTriggered = pin . sensorTriggered ;

}

PLC com header
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# ifndef PLCCOMS_H

# define PLCCOMS_H

# include " . . / Data_Sharing/Data_Sharing . h"

c l a s s plcCommunication {

private :

/ / PLC d a t a t y p e s t o C++

/ / SINT −> c h a r

/ / USINT −> uns igned c h a r

/ / INT −> s h o r t

/ / UINT −> uns igned s h o r t

/ / DINT −> i n t

/ / UDINT −> uns igned i n t

/ / BOOL −> b o o l

/ / REAL −> f l o a t

/ / STRING[ n ] −> c h a r [ n+1] / / A l l s t r i n g s in

/ / Automation s t u d i o r e s e r v e an e x t r a c h a r a c t e r

/ / f o r t h e n u l l c h a r a c t e r

/ / The o r d e r in t h e send / r e c e i v e s t r u c t u r e s must

/ / match t h a t on t h e PLC

s t r u c t PLCDataIn

{

unsigned i n t sensorID =0;

bool sensorTriggered= f a l s e ;

unsigned i n t RFID_ID =0;

short numberOfChips =0;

bool h e a r t b e a t= f a l s e ;

short currentProgram = 0 ;

} ;

s t r u c t PLCDataOut

{

bool h e a r t b e a t= f a l s e ;

} ;

void readMessage ( PLCDataIn pin ) ;

public :
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void RunUdpCom ( ) ;

plcCommunication ( ) ;

} ;

# endif / / PLCCOMS_H

CMakeLists

p r o j e c t ( ImageCapture )

cmake_minimum_required (VERSION 2 . 8 )

SET (CMAKE_BUILD_TYPE Debug )

# Save the command l ine compile commands in the bui ld output

s e t (CMAKE_EXPORT_COMPILE_COMMANDS 1)

include ( CheckCXXCompilerFlag )

CHECK_CXX_COMPILER_FLAG( "−std=c++14 " COMPILER_SUPPORTS_CXX14)

CHECK_CXX_COMPILER_FLAG( "−std=c++11 " COMPILER_SUPPORTS_CXX11)

CHECK_CXX_COMPILER_FLAG( "−std=c++0x " COMPILER_SUPPORTS_CXX0X)

i f (COMPILER_SUPPORTS_CXX14)

s e t (CMAKE_CXX_STANDARD 14)

e l s e i f (COMPILER_SUPPORTS_CXX11)

s e t (CMAKE_C_FLAGS " $ {CMAKE_C_FLAGS} −std=c11 " )

s e t (CMAKE_CXX_FLAGS " $ {CMAKE_CXX_FLAGS} −std=c++11 " )

e l s e i f (COMPILER_SUPPORTS_CXX0X)

s e t (CMAKE_CXX_FLAGS " $ {CMAKE_CXX_FLAGS} −std=c++0x " )

endi f ( )

f ind_package (OpenCV REQUIRED)

find_package ( Boost COMPONENTS system f i l e s y s t e m regex date_time thread chrono REQUIRED)

i n c l u d e _ d i r e c t o r i e s ( $ { Boost_INCLUDE_DIRS } )

SET ( SOURCES main . cpp Data_Sharing/Data_Sharing . cpp

Image_Capture/Image_Capture . cpp

Image_Saving/Image_Saving . cpp

PLC_Communication/PLC_Communication . cpp )

SET ( HEADERS Data_Sharing/Data_Sharing . h

Image_Capture/Image_Capture . h
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Image_Saving/Image_Saving . h

PLC_Communication/PLC_Communication . h )

add_executable ( ImageCapture main . cpp

$ {SOURCES}

$ {HEADERS}

)

TARGET_LINK_LIBRARIES ( $ {PROJECT_NAME}

$ { Boost_LIBRARIES }

$ { OpenCV_LIBS }

r e a l s e n s e 2

−lboos t_ thread

)

A.1.2 Pretrained MobileNetV2

A.1.3 SVM

A.1.4 KNN

A.2 Project management

After a topic where chosen, a tentative project plan was created. See table A.1 for visualisation

of the first version created. Further development of this plan was heavy influenced by a method

taught at Electronics Engineering at OsloMet, called "Work Breakdown Structure" (WBS). The goal

when using this method is to break down a project into the smallest possible activities. The idea is

that a project as a single thing is not solvable, but a single activity is. So by mapping each possible

activity related to this type of project, one should be able to deliver a solution. A WBS serves as a

great framework when creating project plan. This project plan and agreement contract was signed

by all involved parties in late 2021. It ensures that everybody had an idea of how the outline of this

project looked and got an idea of the time frame and schedule. Primary supervisor and master-

student agreed on weekly meetings in early January. They met with Nor Tekstil and Inwatec in

early February to discuss expectations and other relevant topics to ensure that they had the same

understanding of what the following month would look like, and what to expect when the thesis

is finished. As figure A.1 implies, it was a strategy to do a month of theoretical preparations before

starting any practical activities. This is not meant as a way to become an expert in the related fields,

but this being a short thesis, time is not a luxury. The idea is that time can be saved by doing some
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Table A.1: Tentative Project plan

Practical activities Week number

Sign agreement 43

Install camera at site in Drammen 6

Capture 2D/3D data at site 7-10

Labeling of dataset 10

Visit Inwatec in Denmark 11

Create models 11-14

Test model on dataset 14-15

Model tuning 16-17

Test model on site 16-17

Theoretical activities

Map strength and weaknesses 2-3

Finish WBS/detailed project plan 3-4

Risk analysis 3-4

Create structure for thesis 3-4

Litterature review and taxonomy 4-6

Write Introduction and background 6-15

Write remaining part of thesis 16-19

Revision 17

well taught out preparations in order to crystallize the idea of what one should focus on by the

time image capturing, and model development is on the agenda.

A.3 Test results
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A.3.1 MobilnetV2 code
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pip install opendatasets

import numpy as np
import cv2
import pathlib
import PIL.Image as Image
import os
import opendatasets as od
import seaborn as sn
import matplotlib.pylab as plt
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
from google.colab.patches import cv2_imshow
from scipy.ndimage.filters import gaussian_filter

physical_devices = tf.config.list_physical_devices('GPU')
print("Num GPUs:", len(physical_devices))

Num GPUs: 0 

from google.colab import drive
drive.mount('/content/gdrive')
data_dir ='gdrive/MyDrive/Masterprosjekt/Color_tester_all'

os.listdir(data_dir)
data_dir = pathlib.Path(data_dir)
classes = os.listdir(data_dir)
classes.sort()
number_of_cl = len(os.listdir(data_dir))

print(number_of_cl)
print(classes)

#Depending on what folders to use for, comment out the one you dont need 
my_images_dict = { 
     
    ##'MOP1': list(data_dir.glob(classes[0]+'/*')), 
    ##'MOP2': list(data_dir.glob(classes[1]+'/*')), 
    ##'MOP3': list(data_dir.glob(classes[2]+'/*')), 
    'MOP4': list(data_dir.glob(classes[3]+'/*')), 
    'MOP5': list(data_dir.glob(classes[4]+'/*')), 
    'MOP6': list(data_dir.glob(classes[5]+'/*')), 
    ##'MOP7': list(data_dir.glob(classes[6]+'/*')), 
    ##'MOP8': list(data_dir.glob(classes[7]+'/*')), 

Code Text
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    ##'MOP9': list(data_dir.glob(classes[8]+'/*')), 
     
     
} 

#This is where you indicate the true label 
my_labels_dict = { 
     
    ##'MOP1': 0, 
    ##'MOP2': 1, 
    ##'MOP3': 2, 
    'MOP4': 0, 
    'MOP5': 1, 
    'MOP6': 2, 
    ##'MOP7': 0, 
    ##'MOP8': 1, 
    ##'MOP9': 2, 
     
     
} 

IMAGE_SHAPE = (224,224) #Set the image size to fit th model 
X, y = [], [] 
#Create arrays for images and labels 
#read images with cv2 and run through all folders 
#Save images as floats for optimal results 
for my_name, images in my_images_dict.items(): 
    for image in images: 
        img = cv2.imread(str(image),cv2.IMREAD_UNCHANGED) 
        resized_img = cv2.resize(img,IMAGE_SHAPE) 
        X.append(resized_img) 
        y.append(my_labels_dict[my_name]) 

X = np.array(X,dtype='float32') 
y = np.array(y,dtype=np.int32) 

X.shape 

(785, 224, 224, 3)

##Run this if depth data is to be loaded 
data_dir ='gdrive/MyDrive/Masterprosjekt/Depth_tester_all' 

os.listdir(data_dir) 
data_dir = pathlib.Path(data_dir)
classes = os.listdir(data_dir) 
classes.sort() 
number_of_cl = len(os.listdir(data_dir)) 
print(number_of_cl) 
print(classes) 

#Indetical to color loader above 
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my_images_dict = { 
     
    ##'MOP1': list(data_dir.glob(classes[0]+'/*')), 
    ##'MOP2': list(data_dir.glob(classes[1]+'/*')), 
    ##'MOP3': list(data_dir.glob(classes[2]+'/*')), 
    'MOP4': list(data_dir.glob(classes[3]+'/*')), 
    'MOP5': list(data_dir.glob(classes[4]+'/*')), 
    'MOP6': list(data_dir.glob(classes[5]+'/*')), 
    ##'MOP7': list(data_dir.glob(classes[6]+'/*')), 
    ##'MOP8': list(data_dir.glob(classes[7]+'/*')), 
    ##'MOP9': list(data_dir.glob(classes[8]+'/*')), 
     
     
} 

my_labels_dict = { 
     
    ##'MOP1': 0, 
    ##'MOP2': 1, 
    ##'MOP3': 2, 
    'MOP4': 0, 
    'MOP5': 1, 
    'MOP6': 2, 
    ##'MOP7': 2, 
    ##'MOP8': 2, 
    ##'MOP9': 2, 
     
     
} 

X_d, y_d = [], [] 
IMAGE_SHAPE = (224,224) 
for my_name, images in my_images_dict.items(): 
    for image in images: 
         
        img = cv2.imread(str(image), cv2.IMREAD_UNCHANGED) #Read data                      
        resize_img = cv2.resize(img,IMAGE_SHAPE) #Resize to fit model 
        resize_img[np.where(resize_img>550)]=550 #Tuning parameter 
        resize_img[np.where(resize_img<400)]=400 #Tuning parameter 
        resize_img = cv2.normalize(resize_img,resize_img,0,20,cv2.NORM_MINMAX) 
        #tuning paramter 
        resize_img = cv2.normalize(resize_img,resize_img,0,255,cv2.NORM_MINMAX) 
        #This always needs to be done in order to have RGB values between 0-255 
         
        img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)#Make 3 channels 
        img = cv2.resize(img[:,:,:],IMAGE_SHAPE) #resize to fit model 
        img[:,:,2]=resize_img #Copy depth image to r channel 
        img[:,:,1]=resize_img #Copy depth image to g channel 
        img[:,:,0]=resize_img #Copy depth image to b channel 
        X_d.append(img) 
         

X_d = np.array(X_d,dtype='int16') 
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#Inspect image folder 
print(X.shape) 
print(X_d.shape) 
print(np.max(X_d)) 
print(np.unique(X_d)) 

#compare depth and color images 
cv2_imshow(X_d[600]) 
cv2_imshow(X[600]) 

#This is only used if one wanna merge depth and color channels 
#X[:,:,:,0]=X_d[:,:,:,0] b 
#X[:,:,:,1]=X_d[:,:,:,1] g  
#X[:,:,:,2]=X_d[:,:,:,2] r 

#Remenber tuning parameters test_size, number of classes and nr of epochs

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=None

X_train_scaled = X_train / 255  #Scaling values to tensor size
X_test_scaled = X_test / 255    #Scaling values to tensor size

feature_extractor_model = "https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vecto
pretrained_model_without_top_layer = hub.KerasLayer(
    feature_extractor_model, input_shape=(224,224,3), trainable=False)

my_num_of_classes = 3

model = tf.keras.Sequential([
    pretrained_model_without_top_layer,
    tf.keras.layers.Dense(my_num_of_classes)
])
model.summary()

model.compile(
    optimizer="adam",
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['acc'])

model.fit(X_train_scaled, y_train, epochs=10)

print("Evaluate on test data")
results = model.evaluate(X_test_scaled,y_test)
print("test loss, test acc:", results)

predicted = model.predict(X_test_scaled)
predicted = np.argmax(predicted, axis=1)

print(predicted.shape)
print(y_test.shape)
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print("test loss, test acc:", results) 

test loss, test acc: [0.5251584649085999, 0.7707006335258484] 

nr_of_cl = np.unique(y_test) 

column_names = np.unique(y_test) 
row_names =np.unique(y_test) 
dim_mat = len(np.unique(y_test)) 

matrix = np.zeros((dim_mat,dim_mat), dtype=np.int32 ) 
df = pd.DataFrame(matrix, columns=column_names, index=row_names) 
df 

#run through predictions and compare 
for x in range(len(predicted)): 
    pred = predicted[x] 

    valid = y_test[x] 
  
    df.loc[pred,valid] = df.loc[pred,valid]+1 

df 

#print out colorized confusion matrix 
fig, ax = plt.subplots(figsize=(15,10)) 
ax=sn.heatmap(df/np.sum(df), annot=True, linewidths=.5, fmt='.0%', cmap='Reds')
plt.title('Test loss, Test acc: {0}'.format(results), fontsize = 15) 
plt.xlabel('Predicted label', fontsize=20) 
plt.ylabel('True label', fontsize=20) 
plt.show(ax) 
figure = ax.get_figure()     
figure.savefig('Confusion_results_Merged_mobilnet_3.png', dpi=400) 
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 0s completed at 7:22 AM



A.3.2 SVM and KNN code

67
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pip install opendatasets 

import numpy as np 
import cv2 
import pathlib 
import PIL.Image as Image 
import os 
import opendatasets as od 
import seaborn as sn 
import matplotlib.pylab as plt 

import tensorflow as tf
import tensorflow_hub as hub 
import pandas as pd 
from tensorflow import keras 
from tensorflow.keras import layers 
from tensorflow.keras.models import Sequential 
from sklearn.model_selection import train_test_split 
from google.colab.patches import cv2_imshow 
from sklearn.svm import SVC 
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.multiclass import OneVsRestClassifier 
from sklearn.model_selection import train_test_split 

from google.colab import drive
drive.mount('/content/gdrive')
data_dir ='gdrive/MyDrive/Masterprosjekt/Depth_tester_all'

os.listdir(data_dir)
data_dir = pathlib.Path(data_dir)
classes = os.listdir(data_dir)
classes.sort()
number_of_cl = len(os.listdir(data_dir))
print(number_of_cl)
print(classes)

#Depending on what folders to use for, comment out the one you dont need 
my_images_dict = { 
     
    'MOP1': list(data_dir.glob(classes[0]+'/*')), 
    'MOP2': list(data_dir.glob(classes[1]+'/*')), 
    'MOP3': list(data_dir.glob(classes[2]+'/*')), 
    ##'MOP4': list(data_dir.glob(classes[3]+'/*')), 
    ##'MOP5': list(data_dir.glob(classes[4]+'/*')), 
    ##'MOP6': list(data_dir.glob(classes[5]+'/*')), 
    ##'MOP7': list(data_dir.glob(classes[6]+'/*')), 
    ##'MOP8': list(data_dir.glob(classes[7]+'/*')), 
    ##'MOP9': list(data_dir.glob(classes[8]+'/*')), 
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} 
    
#This is where you indicate the true label 
my_labels_dict = { 
     
    'MOP1': 0, 
    'MOP2': 1, 
    'MOP3': 2, 
    ##'MOP4': 1, 
    ##'MOP5': 2, 
    ##'MOP6': 3, 
    ##'MOP7': 6, 
    ##'MOP8': 7, 
    ##'MOP9': 8, 

} 

X, y = [], [] 
IMAGE_SHAPE = (224,224) 
for my_name, images in my_images_dict.items(): 
    for image in images: 
        img = cv2.imread(str(image), cv2.IMREAD_UNCHANGED) 
        img = cv2.resize(img,IMAGE_SHAPE) 
        img[np.where(img>550)]=550 #tuning parameter 
        img[np.where(img<400)]=400 #tuning parameter 
        img = cv2.normalize(img,img,0,5,cv2.NORM_MINMAX)
        #tuning parameter 
        img = cv2.normalize(img,img,0,255,cv2.NORM_MINMAX) 
        #tuning parameter 
        resized_img = img 
        resized_img = resized_img.flatten()  
        X.append(resized_img) 
        y.append(my_labels_dict[my_name]) 
         

#KNN MODEL 
# Split into training and test set 
X_train, X_test, y_train, y_test = train_test_split( 
            X, y, test_size = 0.2, random_state=42) 
#Settings and fit training data to SVM 
svc = SVC(kernel='poly',gamma='auto') 
svc.fit(X_train, y_train) 

SVC(gamma='auto', kernel='poly')

predictions = svc.predict(X_test)

print("Accuracy on data is",accuracy_score(y_test,predictions)) 



16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

https://colab.research.google.com/drive/1l4hbqzPNsWBswtu2m3UKGIec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 3/6

0 1 2

0 0 0 0

1 0 0 0

2 0 0 0

nr_of_cl = np.unique(y_test) 

column_names = np.unique(y_test) 
row_names = np.unique(y_test) 
dim_mat = len(np.unique(y_test)) 

matrix = np.zeros((dim_mat,dim_mat), dtype=np.int32 ) 
df = pd.DataFrame(matrix, columns=column_names, index=row_names) 
df 

0 1 2

0 45 4 0

1 5 43 6

2 0 8 46

for x in range(len(predictions)): 
    pred = predictions[x] 
     
    valid = y_test[x] 
     
    df.loc[pred,valid] = df.loc[pred,valid]+1 

df 

#Confusion matrix for SVM results
fig, ax = plt.subplots(figsize=(15,10)) 
ax=sn.heatmap(df/np.sum(df), annot=True, linewidths=.5, fmt='.0%', cmap='Reds')
plt.title('Test acc: {0}'.format(accuracy_score(y_test,predictions)), fontsize = 15) 
plt.xlabel('Predicted label', fontsize=20) 
plt.ylabel('True label', fontsize=20) 
plt.show(ax) 

#Metrics from SVM 
print(classification_report(y_test,predictions)) 

              precision    recall  f1-score   support 

           0       0.92      0.90      0.91        50 
           1       0.80      0.78      0.79        55 
           2       0.85      0.88      0.87        52 

    accuracy                           0.85       157 



16.05.2022, 11:19 New_transfer_tester_April22_all_color_kNN_Tester_with grayscale_test.ipynb - Colaboratory

https://colab.research.google.com/drive/1l4hbqzPNsWBswtu2m3UKGIec8CnX4Q-f#scrollTo=_Sm-2NS4nGo3&uniqifier=2 4/6

   macro avg       0.86      0.86      0.86       157 
weighted avg       0.85      0.85      0.85       157 

[0.78980892 0.78343949 0.85987261 0.86624204 0.86624204 0.84713376 
 0.87261146 0.85987261 0.87261146 0.84713376 0.85350318 0.85350318 
 0.8343949  0.85350318 0.84076433 0.84713376 0.84076433 0.84076433 
 0.84076433] 

#Knn model 
neighbors = np.arange(1, 20) 
train_accuracy = np.empty(len(neighbors)) 
test_accuracy = np.empty(len(neighbors)) 

# Loop over K values 
for i, k in enumerate(neighbors): 
   
  knn = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=k)) 
  knn.fit(X_train, y_train) 
  train_accuracy[i] = knn.score(X_train,y_train) 
  test_accuracy[i] = knn.score(X_test,y_test) 

# Generate plot 
plt.plot(neighbors, test_accuracy, label = 'Testing dataset Accuracy') 
plt.plot(neighbors, train_accuracy, label = 'Training dataset Accuracy') 

plt.legend() 
plt.xlabel('n_neighbors') 
plt.ylabel('Accuracy') 
plt.show() 
print(test_accuracy) 

print("Best Accuracy : ",test_accuracy[np.argmax(test_accuracy)]) 
print("k-value : ", np.argmax(test_accuracy)+1) 

knn = OneVsRestClassifier(KNeighborsClassifier(n_neighbors=np.argmax(test_accuracy)+1)) 
knn.fit(X_train, y_train) 

predictions_KNN = knn.predict(X_test) 
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#Metrics from KNN 
print(classification_report(y_test,predictions_KNN)) 

              precision    recall  f1-score   support 

           0       0.85      0.96      0.90        49 
           1       0.81      0.81      0.81        53 
           2       0.96      0.85      0.90        55 

    accuracy                           0.87       157 
   macro avg       0.88      0.88      0.87       157 
weighted avg       0.88      0.87      0.87       157 

0 1 2

0 0 0 0

1 0 0 0

2 0 0 0

nr_of_cl = np.unique(y_test)

column_names = np.unique(y_test)
row_names = np.unique(y_test)
dim_mat = len(np.unique(y_test))

matrix = np.zeros((dim_mat,dim_mat), dtype=np.int32 )
df = pd.DataFrame(matrix, columns=column_names, index=row_names)
df

0 1 2

0 47 8 0

1 2 43 8

2 0 2 47

for x in range(len(predictions)):
    pred = predictions_KNN[x]
    
    valid = y_test[x]
    
    df.loc[pred,valid] = df.loc[pred,valid]+1

df

#Confusion matrix fOR KNN

ax=sn.heatmap(df/np.sum(df), annot=True, linewidths=.5, fmt='.0%', cmap='Reds')
lt titl (' t {0}' f t( ( t t di ti )) f t i )

fig, ax = plt.subplots(figsize=(15,10))
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plt.title('Test acc: {0}'.format(accuracy_score(y_test,predictions_KNN)), fontsize = 15)
plt.xlabel('Predicted label', fontsize=20)
plt.ylabel('True label', fontsize=20)
plt.show(ax)
#figure = ax.get_figure()    
#figure.savefig('Confusion_results_Merged_mobilnet_3.png', dpi=400)
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