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Abstract

Predictions of time (e.g., work hours) are often based on the aggregation of estimates

of elements (e.g., activities and subtasks). The only types of estimates that can be

safely aggregated by summation are those reflecting predicted average outcomes

(expected values). The sums of other types of estimates, such as bounds of confi-

dence intervals or estimates of the mode, do not have the same interpretation as

their components (e.g., the sum of the 90% upper bounds is not the appropriate 90%

upper bound of the sum). The present research shows that this can be a potential

source of bias in predictions of time. In Studies 1 and 2, professionals with experi-

ence in estimation provided total estimates of time that were inconsistent with their

estimates of individual tasks. Study 3 shows that this inconsistency can be attributed

to improper aggregation of time estimates and demonstrates how this can produce

both overestimation and underestimation—and also confidence intervals that are far

too wide. Study 4 suggests that the results may reflect a more general fallacy in the

aggregation of probabilistic quantities. The inconsistencies and biases appear to be

largely driven by a tendency to naïvely sum (2 + 2 = 4) probabilistic (stochastic)

values. This summation fallacy may be consequential in contexts where informal

estimation methods (expert judgment) are used.

K E YWORD S

aggregation, bias, confidence, probability, time prediction

1 | INTRODUCTION

Team members A, B, and C are quite confident that their current work

tasks will require less than 50, 100 and 150 work hours, but can they

be equally confident that the total amount of work will be less than

300 work hours? Your most frequent commute time is 20 min, but is

your most frequent total commute time for a 5-day week 100 min?

The present article describes problems relating to the aggregation of

estimates and demonstrates inconsistencies and biases in people's

judgments of total time usage.

People often predict that they will complete tasks earlier than

they actually do (Buehler et al., 1994). When these predictions are

made in spite of knowledge about past completion time, this

overoptimism is referred to as “the planning fallacy” (Griffin &

Buehler, 2005). This type of overoptimism is typically found for

judgments of when a task will be completed, but not generally for

judgments of the time required for the work itself (Halkjelsvik &

Jørgensen, 2012). The former type of judgement has been referred to

as completion time prediction and the latter as performance time or

task duration prediction (i.e., time on task).
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On average, across a range of performance time predictions in

laboratory tasks in psychology, there is no general tendency of under-

or overestimation. However, the amount of work in larger real-life

projects is often underestimated (Halkjelsvik & Jørgensen, 2012).

Studies from psychology, engineering, and management science

have identified a range of factors that determine the direction of

bias in performance time estimates. For instance, smaller tasks are

relatively overestimated in comparison with larger tasks. This is a

well-known phenomenon in research on quantitative judgments

(e.g., Vierordt, 1868) and has, for example, been referred to as “the
central tendency of judgment” (Hollingworth, 1910). Another factor

that influences the bias is the extent of decomposition. Decomposing

larger tasks into smaller ones and aggregating these estimates have

been found to produce higher estimates than single estimates of the

totality (e.g., Forsyth & Burt, 2008). A similar effect of higher

estimates has been observed when tasks are unpacked into smaller

components that are identified and described, but not separately

estimated (e.g., Kruger & Evans, 2004).

There are many reasons why overall holistic predictions would

differ from decomposed or unpacked estimates. For example, the

abovementioned central tendency of judgments may produce over-

estimation (or less underestimation) as a function of the number and

size of the subtasks. According to people's judgments, small subtasks

are believed to require disproportionally more time than larger tasks

(Halkjelsvik et al., 2011). The amount of bias also depends on which

types of subtasks one is able to identify (Hadjichristidis et al., 2014).

For example, if important subtasks are missing, the estimated time will

be too short. In the present research, we will not compare overall

holistic approaches (no decomposition) to decomposed or unpacked

estimation. Instead, we will focus on the situation when estimates of

elements and a totality are required. This includes cases of decompo-

sition, but does not require that the starting point is a totality that

needs to be broken down before estimation. Combination of elements

into an estimate of the total can be meaningful without an explicit

decomposition process, for example when estimating the total costs

of a portfolio of projects.

1.1 | Probabilistic estimates

The same task may take 20 work hours in one case and 25 work hours

in another, depending on the skills of the persons assigned to the task,

their work disturbances, their choices regarding how to solve the task,

and other more or less random influences. This means that the poten-

tial time needed to complete a task can be considered as a probability

distribution. For example, there may be 60% chance that a task will

take less than 25 work hours and a 30% chance that it will require

between 20 to 25 h. Accordingly, the estimated uncertainty of a task

can be expressed as probabilities using percentiles, indicated as “pX,”
where the X represents a specific percentile or probability (p) of an

estimated outcome distribution. For example, if our p10 estimate for

a task is 15 work hours and the p90 estimate is 45 work hours, we

believe there is only a 10% chance of an outcome lower than 15 work

hours and a 10% chance of an outcome higher than 45 work hours.

We can also use these estimates to form an 80% confidence interval

from 15 to 45 work hours.

Judgments of confidence intervals that include values in the

farther tails of the distributions, such as estimates from p5 to p95 or

80% confidence intervals, are often too narrow (Connolly &

Dean, 1997; Jørgensen et al., 2004; Jørgensen & Moløkken, 2004).

When people provide too narrow confidence intervals, this is typically

referred to as overconfidence. Overconfidence appears to be a general

phenomenon that is observed across many domains (e.g., Glaser

et al., 2013; Soll & Klayman, 2004; but see Gigerenzer, 2018).

The pX format can also be used to express point estimates. For

example, the p50 (the prediction of the median) is commonly used as

a “best guess” estimate for budgeting and planning as it gives an equal

probability of overrun and underrun, and the p85 (25% chance of

overrun) can be used as input to form a conservative budget

(see Welde, 2017). We can also use other parameters of the probabil-

ity distribution as point estimates. Common types of estimates are the

“most likely” value (the outcome with the highest probability), which

is the mode of potential outcomes, and the average/mean outcome,

which is often referred to as the expected value or the expectation.

The mean outcome can be expressed as the sum of outcomes divided

by the number of outcomes if we repeated the task infinitely without

learning.

The estimate type is not always clearly defined. For example, one

could be interested in a cautious estimate of the total costs of reno-

vating an apartment, a safe estimate of the time needed to run several

errands (to set the parking meter), or an optimistic target to increase

motivation and productivity (cf. Nan & Harter, 2009). Such verbal

expressions imply that outcomes are not fully under our control and

implicitly acknowledge that the final outcome is a realization of an

underlying distribution of potential outcomes.

1.2 | The sum of probabilistic estimates

When aggregating estimates of multiple tasks, the mean estimates of

the elements are the most useful, because the sum of the expected

values of each element is equal to the expected value of the sum of

the elements. This is referred to as the linearity of expectation; adding

the means of random variables gives the mean (expected value E) of

the total, E[X + Y] = E[X] + E[Y] (see, e.g., Fristedt & Gray, 1997).

Non-mean estimates do not have this property. For example, we

cannot simply sum the p80 estimates for multiple elements and obtain

the p80 of the total time (except when the p80s are perfectly

correlated or when they happen to be equal to the mean values). To

illustrate, we provide two examples. In the first example, the sum of

p80 estimates does not give a 20% chance of overrun, but a less than

1% chance.

Example 1. Assume that we have perfectly calibrated

p80 estimates of the time needed for 8 identical,

uncorrelated tasks. For simplicity, also assume that the
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outcomes are drawn from symmetric normal

distributions. Using the linearity properties of the

variance, Var
P

Xið Þ¼P
Var Xið Þ, and of the mean,

E
P

Xið Þ¼P
E Xið Þ, the correctly summed distribution

has a mean of 8*E(X) and a variance of 8*Var(X). Given a

standard normal distribution with μ=0 and σ=1, the

naïve sum of p80-estimates is n* F�1(0.8)≈8*

(μ+0.8416*σ)=6.7328, where the value 0.8416 comes

from the inverse normal cumulative distribution

function. If we look up the value 6.7328 in the cumula-

tive distribution of the sum of the 8 distributions (which

has the mean 8*μ=0 and a standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffi
8σ2ð Þ

p
=2.8284), we find that this value gives a

probability of 99.14%. That is, when we estimate the

p80 for our eight tasks above, the sum of the eight

estimates is not the p80 for the total time, but approxi-

mately the p99.

A perhaps more intuitive illustration relating to Example 1 has

been provided by Savage (2009, p. 70). With a wheel-of-(mis)fortune

spinner, taking values from 0.0 to 0.9 (in increments of 0.1), he

demonstrated how a 20% risk of financial ruin (a spin below 0.2) was

greatly reduced from one spin to the average of two spins (8% risk of

financial ruin). According to Savage, approximately half of his graduate

students failed to see how the original uniform distribution changes to

distributions with thinner tails and more observations in the middle of

the scale (i.e., probabilities of high and low outcomes are reduced)

when going from one to the average of multiple spins.

Example 1 suggests that naïve summation of bounds of uncer-

tainty intervals, such as p10 and p90 estimates, respectively, can

produce highly biased total estimates. Although it is possible to use

estimates such as the p85 as conservative point estimates

(see Welde, 2017), the most typical point estimates are those

corresponding to the estimated p50 and the estimated mode. In the

case of symmetric and normally distributed outcomes, as in our

Example 1, using the mode and the p50 would not be a problem as

they both coincide with the mean (the expected value). However, if

project tasks have outcome distributions that are skewed in such a

way that the mode values are lower than the mean values, the naïve

sum of the mode values of project tasks is no longer the mode value

in terms of the total (the project).1 This is illustrated in the following

example.

Example 2. A gamma distribution with shape parameter

k and scale parameter θ, with both parameters being

positive real numbers, has skewness 2=
ffiffiffi
k

p
, which is

positive and implies a right-skewed distribution. The

naïve sum of the mode values of n identically distributed

and independent gamma distributions would give

n*(k�1)*θ. The shape and scale parameters of the

correctly calculated sum of the distributions are n*k and

θ, respectively. The correct mode value of the sum

distribution is (n*k�1)*θ= n*k*θ� θ, which is higher

than the naïve sum n*(k�1)*θ= n*k*θ� n*θ for all n>1.

The underestimation of the mode is in this case

(n*k*θ� θ)� (n*k*θ� n*θ)= (n�1)*θ.

As explained and illustrated in Examples 1 and 2 above, the

summation of confidence bounds or optimistic/conservative

estimates is problematic in general, whereas the summation of point

estimates of the central tendency (the mode and the median) is prob-

lematic only in the case of skewed outcome distributions. There are

very few publications on the shapes of performance time distribu-

tions, but the available data suggests that the distributions are

typically right-skewed, with mean values higher than the medians and

modes. This is illustrated in Figure 1a, which presents the distribution

F IGURE 1 Outcome distributions of (a) seconds spent on a computer typing task and (b) work effort for five software development tasks
(standardized with M = 0 and SD = 1 for each task)
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of time spent on a typing task by 78 student participants in a

controlled psychology experiment (Halkjelsvik, Rognaldsen, et al.,

2012), and in Figure 1b, which presents the time spent on the same

five development tasks by 20 experienced software developers

(Jørgensen & Grusche, 2009).

There are some operations that can have normal or even left-

skewed outcome distributions (e.g., Abourizk & Halpin, 1992), but in

computer programming (e.g., Figure 1b), office tasks (e.g., Roy &

Christenfeld, 2007, original data), or any decision time (e.g., Smith &

Ratcliff, 2004) or response latency paradigm (e.g., Fazio, 1990), the

outcome distributions of human operations are found to be right-

skewed. Accordingly, in perhaps most estimation contexts involving

time, one should not aggregate point estimates that reflect the mode

outcome or the p50 (median) by simple summation, because the

resulting estimate will be biased downwards.

1.3 | The present research

In Study 1, we investigated whether software professionals' estimates

of the mode (most likely value) of the total time required for a set of

coding tasks were too low, as inferred from estimates for the individ-

ual tasks. Study 2 is similar to Study 1 but also include assessments of

confidence intervals. In Study 3, we gave participants a distribution of

commute time and asked for predictions of the total time required for

10 drives. This allowed us to calculate the normatively correct

predictions based on the distribution of past driving time and to test

whether the participants gave biased predictions and confidence

intervals. Study 4 did not concern prediction of time but instead

judgments in a different quantitative domain (prediction of benefits/

saved costs).

2 | STUDY 1

As described in the introduction, the outcome distributions of perfor-

mance time are typically right skewed in such a way that the mode is

lower than the mean value. Therefore, when requiring predictions of

the mode values for a set of tasks, the estimate of the mode of the

totality should be higher than the sum of the estimates of the individ-

ual tasks (see Example 2). In the present study, we calculate the sum

of mode predictions for three individual tasks and compare this sum

with an estimate of the total time required for all tasks. If the total

estimate is equal to the sum of the estimates for individual tasks, the

total estimate is too low (given that we can rely on the estimates of

the individual tasks). The total estimate is also too low if it is even

lower than the sum of the individual estimates.

Estimates that are higher than the sum of individual predictions

can still be too low, but in the absence of data on actual performance

time, we cannot know for sure. Thus, the definite threshold of a “too
low” total estimate in the current context is the sum of component

estimates.

2.1 | Method

2.1.1 | Sample

We recruited 57 software professionals from a software development

consulting company in Poland (median years of experience = 6,

range = 1 to 22). All the participants had at least half a year's experi-

ence in Java programming. Fifty-six percent had estimated software

development work more than 50 times, and only 12% had estimated

work less than three times.

2.1.2 | Procedure and materials

The study was carried out in the context of validating an assessment

tool for programming skills and was introduced before the skills test.

Participants received specifications of a Java programming task and

were instructed to estimate the most likely effort (mode effort) they

would need to complete the task. Note that in the domain of Software

Development, “work effort” refers to the amount of work (i.e., “time

on task”/“performance time”). Responses were entered into two

boxes, one for hours and one for minutes, presented after the heading

“Estimated most likely use of effort on Subtask [A/B/C]” and the text

“I think I most likely will use...” This was done for three different

programming tasks. Subsequently, the participants estimated the total

time required for the tasks after the heading “Estimated most likely

TOTAL use of effort (total most likely effort to complete Subtasks A,

B and C)” and the phrase “I think I most likely will use,” followed by

the same response boxes as above (hours and minutes).

The software specifications and instructions were given

on-screen, using the web-based survey software Qualtrics. The three

programming tasks involved correcting an error in a software system

TABLE 1 Percentages (frequencies) of the samples who provided inconsistent total and component estimates and who naively added the
component estimates, Studies 2 and 3

N

Inconsistent Naïve summation

Mode
(total ≤ sum)

Lower bound
(total ≤ sum)

Upper bound
(total ≥ sum)

Mode
(total = sum)

Lower bound
(total ≤ sum)

Upper bound
(total ≥ sum)

Study 1 57 79% (45) NA NA 63% (36) NA NA

Study 2 52 62% (32) 56% (29) 44% (23) 37% (19) 33% (17) 27% (14)
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managing lab orders, extending the lab ordering process to include a

commenting field, and adding a new command for delivering lab

orders. The full task specifications are provided in Materials S1.

2.2 | Results and discussion

Approximately 79%, 95% CI [67, 88], of the participants provided

mode estimates of the total time that were too low according to our

criteria (see Table 1). The majority of these inconsistent responses

reflected total estimates that were equal to the sum of the elements.

Our claim that the total estimates of the participants tended to

be too low rests on the assumption that the outcome distributions of

software development tasks are right-skewed, as argued in the intro-

duction. However, it could be the case that the participants implicitly

assume that outcome distributions are symmetric, which means that

the mode equals the mean. This would justify a naïve summation of

the elements' according to the linearity of expectation principle. To

rule out this interpretation, Study 2 included questions about 90%

confidence intervals.

3 | STUDY 2

Estimates that reflect the central tendency, such as the mode and the

median, may be aggregated by simple summation when distributions

are symmetric and unimodal, because the measures of central

tendency equal the mean value. In contrast, the simple summation of

other types of estimates is not meaningful even when the outcome

distributions are symmetric (see, e.g., Otley & Berry, 1979). This

means that the naïve addition of minimum estimates and of maximum

estimates such as the p5 and p95, respectively, is problematic. As

multiple extreme values are less likely than a single extreme value, the

sum of lower bounds will tend to be too low to represent the true

lower bound of the total, and the sum of the upper bounds will tend

to be too high to represent the true upper bound of the total. Com-

bined, this could lead to overly conservative (too wide) confidence

interval for the total time.

A belief that outcome distributions of performance time are

symmetric may be a valid excuse for summing point estimates such as

the mode and the median, but it is not a valid excuse for naively

summing elements' minimum or maximum values. Thus, in Study 2,

we required confidence intervals for the set of tasks used in Study 1.

By comparing the difference between the mode and the two confi-

dence bounds, we could also assess whether the participants assumed

that the distributions were symmetric.

3.1 | Methods

Fifty-two participants were recruited from the Ukrainian branch of a

multi-national company (median years of experience = 6, range = 1

to 26). All the participants had at least half a year's experience in Java

programming, and all the participants had experience in estimating

software development work; 80% had estimated the time required for

development tasks more than 50 times.

The procedure was the same as in Study 1, except for the

addition of questions about 90% confidence intervals for each task

and for the total. Participants received the following phrase: “I think
it is about 90% likely (almost sure) that my actual use of effort

on Subtask A [B/C] will be between...” and responded in hours

and minutes in separate boxes for the “minimum effort” and

the “maximum effort.” In the same format, the participants

responded to the phrase “I think it is about 90% likely (almost sure)

that my total use of effort on Subtasks A, B and C (total effort) will be

between...”

3.2 | Results and discussion

If we first look at the mode predictions, we observe that approxi-

mately 62%, 95% CI [48, 74], provided total estimates that were too

low (see Table 1), given that our assumption of right-skewed outcome

distributions hold. The majority of these represented cases where the

total estimate was equal to the sum of elements.

We explored whether the participants assumed that the outcome

distributions were symmetric and whether this determined the

tendency to naïvely sum the estimates. Over the three estimation

tasks, 44–46% of the participants provided estimates that reflected

positively skewed distributions (absolute difference from the most

likely estimate to the maximum was higher than to the minimum),

27–35% reflected symmetric outcome distributions, and 19–29%

reflected negatively skewed distributions. Naïve summation was not

related to a belief in a symmetric distribution. Among those who

assumed symmetric outcome distributions, 29–33% naively summed

estimates of the most likely outcome, and among those who assumed

skewed distributions, this number was 38–41% (chi-squared tests,

ps > .5 for all three tasks).

The estimates of confidence bounds revealed a substantial pro-

portion of total estimates that were inconsistent with the component

estimates. Approximately 56%, 95% CI [42, 68], of the lower bounds

of the totality were too low, and 44%, 95% CI [32, 58], of the upper

bounds were too high. In the majority of these cases, the inconsis-

tency between total and component estimates was due to the

naïve summation of probabilistic quantities, as inferred from the

observation that the total estimate was equal to the sum of elements

(see Table 1).

These result cannot be explained by a belief in symmetric and

normally distributed outcomes. A belief in symmetric outcome distri-

butions could justify the naïve summation of measures of central

tendency (e.g., mode), but not summation of confidence bounds

(see Example 1). A remaining interpretational issue is whether the

inconsistency is due to the aggregation, the elements, or both. In

principle, the aggregate estimate could be accurate and the elements

biased. Records of actual performance time on the software develop-

ment tasks could be useful in this respect. However, if the total

HALKJELSVIK AND JØRGENSEN 5 of 13



estimates turned out to be more accurate than the component esti-

mates, this could be related to characteristics of the specific tasks,

rather than the aggregation process (we know from past research that

these particular tasks are typically overestimated). A better way to

assess if there is a bias relating to the aggregation is to provide

information about the actual performance time required for the

components and then assess the potential bias in the total estimate.

This was the idea in the next study.

4 | STUDY 3

Studies 1 and 2 demonstrated that for a substantial proportion of the

participants, estimates of the totality were inconsistent with estimates

of elements. However, we were not able to determine whether

the aggregation actually produced bias in the total estimates.

Smaller tasks are often overestimated (e.g., Hollingworth, 1910;

Vierordt, 1868), and confidence intervals are often too narrow

(Connolly & Dean, 1997; Soll & Klayman, 2004). It could be the case

that people's aggregation strategies compensate for their own

tendency to overestimate smaller tasks. To investigate whether the

aggregation process produce bias, we gave the participants in Study 3

a record of historical time usage data. Assuming that future time

usage is similar to the historical record, we can compare people's

predictions with sums of values drawn from the historical data to

assess the level of bias.

4.1 | Method

We asked attendees at a seminar on digitalization and data manage-

ment to participate in the study. Their professional work involved

software architecture, large database management, application devel-

opment and maintenance, user adoption, and project administration

and management. Participation was voluntary and was not a required

part of the seminar. Eighty-five (of approximately 90) attendees

started the online survey, and 76 answered at least one of the

questions pertaining to the study.

The participants used their own cell phones, tablets, or computers

to complete the online survey. On the first page they were shown a

histogram with the distribution of commute time from home to

work for a fictitious person called “Sivert” (see Figure 2). The 10th

percentile (21 min), the 90th percentile (51 min), and the most

frequent values (20–22 min) of the distribution were provided in text.

The participants were first asked control questions regarding the

prediction of a single drive from home to work. This allowed us to

exclude inattentive participants and participants who failed to

understand the concept of probabilistic estimates, together with those

who failed the transition from historical data to predictions. The

participants were subsequently given brief vignettes explaining that

Sivert needed estimates for the most likely total time, the p10, and

the p90, of the next 10 days' commute time from home to work. As

an example, the request for the p90 read:

Sivert would also like a high and conservative estimate

for the sum of his driving time over the next 10 days.

This estimate should be so high that he can be 90%

sure that he will not spend more time than this

(although there is still a 10% possibility that he will use

more time than this estimate). Provide, in number of

minutes, a high and conservative estimate of the SUM

of his driving time to work over the next 10 workdays.

Sivert can be 90% sure that the SUM of his driving

time to work over the next 10 days will be lower than:

[response in minutes]

The full record of vignettes and questions can be found in

Materials S2. All responses were made in an open-ended format

(free text, no pre-defined options).

On the last page, the participants were asked to assess the mean

of the distribution shown in Figure 2 (i.e., a parameter of the observed

distribution, not a prediction). The methods and the analysis plan were

registered in advance of the data collection (see https://osf.io/vrq94).

4.2 | Results and discussion

In accordance with the exclusion criteria in the preregistration, we

excluded data from 15 participants who failed at least one of the

three control questions and from eight participants who provided

answers that probably reflected predictions of single elements instead

of the sum of the 10 elements (the estimates were below 100).

Three single responses were omitted because they were above

1000 or below 100 min. For results on all data (no exclusions),

see Materials S3.
F IGURE 2 Histogram of past commute time shown to the
participants in Study 3
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Of the 53 participants remaining after the exclusions, 28 provided

predictions of the mode that were equal to, or below, the mode values

of a single drive multiplied by 10. This means that 53%, 95% CI

[40, 66], provided total estimates that were too low. Of these 28

participants, 26 were defined as having naïvely summed/multiplied

the mode of the historical record of single drives.

For the p10 prediction, 47 of 50 total estimates were equal to, or

lower than, the naïve sum of the p10 of the elements. This means that

as many as 94%, 95% CI [84, 98], provided total estimates that were

too low. The majority (44 participants) were defined as having naively

summed/multiplied the p10 of a single drive. For the p90 estimates,

40 of 50 predictions were equal to, or higher than, the naïve sum of

the p90 of the elements. This means that 80%, 95% CI [67, 89],

provided too high p90 estimates. Thirty-seven of the predictions were

defined as the naïve sum of the p90 of the elements.

These were the proportions of participants giving total estimates

that, without further calculations, can be defined as incompatible with

the elements in the distribution in Figure 2—in a similar manner as the

estimates in Studies 1 and 2. As the mode of a single drive was

provided by the historical data, the empirical distribution of Figure 2

also allows us to quantify the bias.

Table 2 shows the average and the median of the judgments, in

addition to tests of average bias when compared against the

distribution of 100,000 simulated sums of 10 values drawn from the

distribution in Figure 2. The estimates of the mode commute time for

10 days were only 13 min below the mode of the simulated sums,

which was not statistically significant according to a t test. However,

the median of these predictions was 71 min lower than the simulated

true value. A Wilcoxon signed ranks test, which approximates a test

of median bias, gave a p value of .007 (a Sign test gave p = .001). The

large difference in the inferential statistics between the two tests was

due to a few high estimates (maximum estimate = 800). When log-

transforming the estimates, the t test of differences in means gave a

p value of .001.

The p10 and p90 estimates showed substantial underestimation

and overestimation, respectively, and gave 80% confidence intervals

(the p90 estimates minus the p10 estimates) that on average

corresponded to about two and a half times the correct width

(i.e., 150% too wide confidence intervals). Wilcoxon and Sign tests of

the median biases for the p10, the p90, and the 80% confidence

interval gave p values below 10�6. Thus, Study 3 demonstrated that

the participants' aggregation strategies can produce under- and over-

estimation and give confidence intervals that are far too wide. The

bias was stronger in the confidence bounds than in the point estimate.

This is to be expected because the point estimate represents a type of

estimate that in most cases is closer in value to the mean than the

confidence bounds are. Extreme outcomes are not likely to happen

10 times in a row and outcomes from opposite tails of the distribution

cancel each other out. Therefore, the sum of multiple tasks converges

to multiples of the mean, and the bias from naïve summation will

typically be stronger for estimates representing extreme outcomes

(e.g., p90) than for values representing outcomes close to the mean

(e.g., the mode).

The actual mean of the distribution in Figure 2 is 30.1. When

asked to assess this value directly from the empirical distribution

(i.e., not for prediction), the participants did reasonably well, with a

mean estimate of 28.6 (SD = 7.7). Nevertheless, more than half of the

participants provided judgments below the actual mean, which may

justify some of the underestimations of the mode and the p10. That

is, if the mean of the distribution had been lower, the normatively

correct predictions should be lower than the true values reported in

Table 2, which in turn would mean that the reported bias of the p10

and mode predictions should be lower. However, in that hypothetical

case, the predictions of the p90 would be even more severely

biased than reported in Table 2. Inaccurate perception of the mean

of the distribution can therefore not explain the bias reported in

Study 3.

As an aid to understanding the histogram of the commute times,

the instructions included the p10, the p90, and the mode (these

values can also be read directly from the figure). Furthermore, the

participants provided the p10, p90, and mode for one drive before

giving estimates for multiple drives. One may therefore argue that the

participants simply used the numbers given to them by the

experimenter. This is a valid point, but the situation also resembles

informal estimation contexts. If you have set yourself a number of

cautious estimates for different parts of your renovation project, or if

a project manager has received optimistic targets from employees,

there is rarely information about a supplemental “mean” estimate that

one can use to adjust the total estimates. Typically, people first

produce or gain access to point estimates of elements (and perhaps

TABLE 2 Participants' judgments (in minutes), simulated true values, and tests of differences, Study 3

Judgment

True value Mean bias t p Mdn bias Signed ranks pN M (SD) Mdn

Mode 53 278 (123) 220 291 �13 0.79 .22 �71 .007

p10 50 215 (41) 210 250 �35 6.00 <.001 �40 <.001

p90 50 488 (113) 510 358 +130 8.15 <.001 +152 <.001

80% P.I. 50 280 (127) 300 108 +172 9.00 <.001 +192 <.001

distr.mean 50 29 (8) 27 30 �1.5 1.38 .17a �3.6 .004a

Abbreviations: distr.mean, judgment of the historical distribution's mean value; Mdn, median; P.I., prediction interval (confidence interval).
aTwo-tailed (all other p values are one-tailed).
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confidence intervals), then they must rely on this information to

provide aggregate estimates.

5 | STUDY 4

Estimates of time and work are influenced by many of the same

phenomena as documented in research on judgments of other types

of quantities, such as anchoring effects and the central tendency of

judgment (see, e.g., Halkjelsvik & Jørgensen, 2012). It is therefore rea-

sonable to assume that a tendency to inappropriately add probabilistic

quantities is a general phenomenon that would also appear in other

types of judgments. Instead of providing estimates of performance

time, the participants in Study 4 assessed the potential benefits of

developing common core functionality of a hypothetical system used

to administer a public service.

In this study, we also included an experimental condition aimed at

debiasing the aggregation of elements. In the debiasing condition, we

stripped the task for contextual information and illustrated how the

aggregation of benefits could be considered as a random draw of balls.

For a range of probabilistic reasoning problems, the conversion of

probabilities to frequencies can help people make better judgments

(e.g., Gigerenzer & Hoffrage, 1995). In the debiasing condition, the

probabilities of different outcomes were represented by the frequen-

cies of different types of balls in a bucket of 100 balls.

5.1 | Method

5.1.1 | Sample

We recruited participants from a seminar in Oslo, Norway, on the

management of software projects. Of the about 100 participants at

the seminar, 66 completed the study. The participants were software

managers from the public sector (about 60% of the participants) and

software managers and developers from the private sector (about

40% of the participants).

5.1.2 | Procedure

We introduced the study as an estimation challenge with two prizes

(approximately €100) for the two best estimators. The study was

administered as a Qualtrics survey, and participants used their own

computers, tablets, or phones to complete the study. Participants

were introduced to the background for developing a common system

to administer a “Youth Card” for subsidizing leisure activities. The

vignette stated that the Norwegian Directorate for Children, Youth

and Family Affairs considered developing a common core functionality

to administer this card, and that this had the potential to save costs in

comparison with individual administration systems within the munici-

palities. The potential benefits had been assessed, and the participants

received a list on the following format that stated the probabilities of

costs saved in NOK million (NOKm) for the average municipality: “X%
likely that Y million will be saved.” The following probabilities were

listed: 10% for 0 cost saved; 20% for 1 million; 15% for 2 million; 10%

for 3, 4, and 5 million, respectively; 5% for 6, 7, 8, 9, and 10 million,

respectively. See Materials S4 for more details.

Participants were informed that, as part of a cost–benefit

analysis, they were asked to estimate the most likely cost saved for a

few pessimistic scenarios regarding the number of municipalities that

would use the core functionality. Specifically, they were asked to

provide the most likely sum of saved costs if 1, 2, and 10 municipalities

were to adopt the system. They were asked to assume no learning

between municipalities and that the list of probabilities applied to all

municipalities. This was the Saved Costs condition.

As an attempt to debias the addition of probabilistic quantities,

we provided another version of the experiment to half of the partici-

pants (random allocation), where almost all contextual information

was removed. This constituted the Random Draw condition. The

instructions stated: “Assume that we have multiple IT-projects that all

have the same probabilities of benefits (saved costs in NOKm).” They
were shown the same list as above and explained that this could be

considered as a bucket of 100 balls, with the number of balls

determined by the probability of the given outcome, such that there

would be 10 balls with the number 0, since it is 10% likely that saved

costs are 0, and 20 balls with the number 1, since it is 20% likely that

1 million is saved. The participants received an explanation of a proce-

dure where a random ball is drawn, its number is recorded, the ball is

replaced in the bucket, and another ball is drawn, etc. A list with the

number of balls per outcome, instead of probabilities, was presented

next to a picture of a transparent bag of numbered balls. Participants

were asked: “What is the most likely benefit (in millions) for one

project (most likely number obtained by a random draw of 1 ball)?”
and “What is the most likely benefit (in millions) for two projects

(most likely sum of the numbers obtained by a random draw of two

balls, with replacement for each draw)?” An identical question to the

latter was also asked for the outcome of the sum of 10 balls. All

answers in both conditions were given in a free response (textbox)

format.

5.2 | Results and discussion

One participant provided answers in percentages, which could not

be used for analyses. Two participant provided answers in both

percentages and NOKm, where we used the latter for analyses

(results were not affected by excluding these two participants). This

gave 65 participants, 36 in the Save Costs condition and 29 in the

Random Draw condition.

Across the two conditions, 27 of 65 participants naively summed

the most likely value for two projects (answered 2 NOKm), and

24 naively summed 10 projects (answered 10 NOKm). If we also

count the participants who provided total estimates below the naive

sum of elements, 32 (49%, 95% CI [37, 62]) and 37 (57%, CI [44, 69])

participants provided total estimates that were too low. As observed
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in Table 3, this resulted in severe underestimation of total costs, even

for the sum of two projects. For 10 projects, the total estimate was

less than half the true value.

As to the debiasing condition, Table 3 shows that there was no

increase in accuracy when the process was described as random

draws from a bucket of balls. A test of differences between conditions

gave t(57.6) = �0.6, p = .53, for the summation of two projects and t

(61.4) = 0.2, p = .84 for the summation of 10 projects.

On the question about the mode value of one project,

34 answered the correct answer “1,” and 19 gave an answer between

2 and 4, which was in the middle of the distribution (the answers “0”
and “2” were given by four participants each; “4” and “5” were given

by two participants). This could indicate that a large proportion of the

participants perceived the median, mean, or the middle of the scale as

the most likely outcome of a single project. Among the 19 participants

who answered a middle value (between 2 and 4) on the question

about the “most likely” outcome of a single project, the bias was

reversed for the sum of two projects, mean bias = 1.1, t(18) = 3.9,

p = .001, and attenuated but still negative for 10 projects, mean

bias = �5.6, t(18) = �2.3, p = .03. Ironically, these participants gave

less biased responses on the summation of 10 projects because they

failed the task (they were unable to identify the mode value of the

elements), which suggests that the bias can be even stronger than

reported in Table 3 when the mode/most likely value is correctly

identified.

6 | GENERAL DISCUSSION

An estimate of the time required for a piece of work can take very

different interpretations. For example, it can represent an optimistic

target, a cautious guess, or the average if we were to repeat the task.

We can consider an estimate as a reference to a point or a parameter

of a distribution of potential outcomes. When estimating the totality

(project/portfolio) of a set of component tasks, it is important to

consider which point or parameter the estimates are intended to

represent. Only estimates of the mean of the outcome distribution

can be aggregated by simple summation while retaining its interpreta-

tion as a mean estimate. The sum of non-mean estimates does not

have the same interpretation as its components. In the present article,

we showed that this statistical property can produce bias in people's

predictions. The lower bounds of participants' confidence intervals for

the total time usage of a set of tasks were too low and their upper

bounds were too high. Due to the right-skewness of potential out-

comes, total estimates of the mode were too low. The bias appeared

to be largely due to the naïve summation of estimates. This summa-

tion fallacy is likely not restricted to the domain of time prediction, as

the participants in Study 4 made similar errors when predicting the

benefits of a project.

According to Griffin and Buehler (2005), the planning fallacy

refers to a particular type of underestimation wherein a person is

overly optimistic for a specific task while holding a more realistic

belief in general (e.g., based on past experience or observations of

others). In other words, the planning fallacy is an example of a situa-

tion characterized by the tendency to underweigh or ignore distribu-

tional information (the outside view) and overweight case-based,

singular information (the inside view; cf. Kahneman & Lovallo, 1993),

such as the steps involved in performing the task. Like the planning

fallacy, the present summation fallacy can also give rise to underesti-

mation. However, it is interesting to note that the fallacies are nearly

opposites in terms of the underlying mechanism. Instead of ignoring

distributional information, as in the planning fallacy, the participants

relied excessively on the distributional information in the present

studies. At least in Study 3, it is highly unlikely that the participants

considered aspects of how the process of driving would unfold. That

is, they did not rely on a singular, inside view, instead, they directly

used the probabilities and quantities provided in the experiment.

When the participants reported the sum of p90 estimates as an

p90 estimate of the totality, they did not take into account that the

probabilities change from single events to the total. This is reminiscent

of behavior in studies on multi-event probabilities. For example,

Bar-Hillel (1973) found that people overestimate the likelihood of

conjunctive events (e.g., chance that one would draw a colored

marble three times when each draw had a probability of 0.5) and

TABLE 3 Participants' judgments (in NOKm), simulated true values, and tests of differences between judgments and true values, Study 4

Condition

Judgment

True value Mean bias t test (p) Mdn bias Signed ranks pN M (SD) Mdn

Save costs

One project 36 1.9 (1.3) 1 1 +0.9 4.13 (<.001) 0 <.001a

Two projects 36 3.9 (2.2) 3 5 �1.1 �3.06 (.004) �2 .002

Ten projects 36 19.8 (13.8) 20 36 �16.2 �7.02 (<.001) �16 <.001

Random draw

One project 29 1.8 (1.3) 1 1 +0.8 3.38 (.002) 0 .005a

Two projects 29 3.6 (2.5) 2 5 �1.4 �3.10 (.004) �3 .008

Ten projects 29 16.0 (12.8) 10 36 �20.0 �8.43 (<.001) �26 <.001

Abbreviation: Mdn, median.
aDue to a high number of ties, this does not approximate a test of median bias, but instead tests the asymmetry for all ≠ 0 values.
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underestimate the likelihood of disjunctive events (e.g., chance of

drawing at least one colored marble). She concluded that the probabil-

ities of the individual elements had a greater influence on the

judgments than the number of events.

A similar conclusion may be drawn for the present results as well.

People rely on the probabilities of the elements and fail to acknowl-

edge that the probability of the sum changes as a function of the

number of elements. However, the combination of probabilities and

quantitative outcomes (e.g., work hours) constitute an even more

complex problem than typical cases of compound probabilities. For

example, if the p80 estimate of three similar tasks is 60 work hours

each, the p80 for the total cannot be calculated as the probability that

all three events will be below 60 (which would be 0.8*0.8*0.8 = 51%).

One way to view this complexity is to say that outcomes that exceed

the estimate (e.g., 70 work hours, a 10-h overrun) can be compen-

sated for by values lower than the estimate (e.g., two tasks of 55 work

hours each). It is highly unlikely that people are able to intuitively

calculate probabilistic information of this kind. The fact that the

authors resorted to Monte Carlo simulations to obtain the norma-

tively correct estimates in Studies 3 and 4 is illustrative of the

demands placed on the participants. Thus, it is likely that participants

reduce the problem to a much simpler one, such as by relying on the

probabilities of the elements (see also Gneezy, 1996), believing that a

probability of 80% also applies to the aggregate level.

Although one can frame the summation fallacy as a bias in proba-

bility judgments, one can also consider the problem as ignorance of

the probabilistic nature of certain types of quantities. If one car costs

€40,000, we know that two cars of the same type will cost €80,000. It
is not easy to realize that the sum of a quantity can be different from

the simple sum of its elements.

6.1 | Debiasing

In some statistical reasoning tasks, people understand frequencies

better than probabilities (e.g., Gigerenzer & Hoffrage, 1995). Study

4 included an experimental condition in which participants received

distributional information as both probabilities and frequencies. As a

visual aid to underline the randomness in multiple draws, we showed

a bucket of numbered balls, which represented the outcomes. The

estimates of the mode of the total outcome in this experimental con-

dition were equally biased as the estimates in the group that received

no such information. Thinking in terms of frequencies may be just as

difficult as thinking in terms of probabilities in the present context. It

is somewhat counterintuitive that two times the value on the most

frequent ball in a bucket is not the most likely (nor the most frequent)

sum when drawing two balls from the bucket.

It should be noted that the participants in all our studies provided

judgements without any feedback on accuracy. In the context of

performance time predictions, training has not been very successful in

improving estimation (e.g., Abrahamsson & Kautz, 2002; Prechelt &

Unger, 2001), but for confidence assessments, training in the form of

feedback may increase realism (Jørgensen & Teigen, 2002). It is

reasonable to expect that a person with a task like the one given in

Study 3 would update his/her assessment of the mode of 10 days'

commute time after repeatedly experiencing the total outcome. It is

however questionable whether this would lead to improvements in

other contexts that involve aggregation of stochastic variables.

Furthermore, in professional and everyday time predictions contexts,

feedback is typically infrequent and delayed (typically after the work

is completed). This means that the context is far from optimal in terms

of developing intuitive judgment (cf. Kahneman & Klein, 2009).

The present work concerned the everyday and more intuitive

types of predictions. In more formal estimation contexts, there are

tools and models that can be used to derive estimates of the mean

value and the estimated probability distribution. As input in the calcu-

lation of means and distributions, these methods can take estimates

of the minimum, mode, and maximum outcome values; estimates of

two or three percentiles of a chosen distribution; or past estimation

error (e.g., Abourizkm et al., 1991; Halkjelsvik & Jørgensen, 2018,

pp. 27–28; Keefer & Verdini, 1993; Mohan et al., 2007; Morris

et al., 2014). In situations that typically involves aggregation by

subjective judgment or simple spreadsheet calculations, the use of the

tools cited above may increase the realism of total estimates, while

also allowing people to provide non-mean estimates such as challeng-

ing optimistic targets that can motivate performance. The methods

above are not without flaws. Most important, they require accurate

assessments of uncertainty, whereas people tend to provide intervals

that are too narrow in comparison with actual outcome distributions

(i.e., overconfidence; Budescu, 2007; Connolly & Dean, 1997; Soll &

Klayman, 2004).

Past studies' finding that people often provide too narrow

confidence intervals prompts the question of whether the summation

fallacy can reduce overconfidence. One reason for providing too

narrow confidence intervals is that they appear more informative

(Yaniv & Foster, 1995). For example, in one study, managers believed

that developers who provide narrow intervals are more skilled and

have more knowledge about the task than developers who provide

wider (and likely more realistic) intervals (Jørgensen et al., 2004). In

the present context, the desire to be accurate and informative would

need to compete with the tendency to rely on the estimates of

elements. One may therefore expect that incorrect aggregation of

confidence intervals will reduce bias in some contexts. The problem is

that accurate input at the level of elements, such as when one relies

on records of past work, can produce severely biased estimates in

the opposite direction (i.e., underconfidence), as demonstrated in

Study 3. Naïve summation, therefore, appears as a highly unreliable

remedy for overconfidence.

6.2 | The summation fallacy as a more general
problem

The findings in Study 4, where participants were requested to sum

potential benefits of a project, conceptually replicate those of the

three preceding studies and suggest that the summation fallacy is not
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limited to judgments of time. In addition, we have found several anec-

dotal examples of the neglect of the probabilistic nature of predictions

in other domains. Both the Norwegian government and the Norwe-

gian Public Roads Administration announced as an achievement that

the total costs of their respective project portfolios were below the

sum of p85 estimates (Norwegian Government, 2019; Sandvin, 2016).

Like many of the participants in the present studies, they simply

summed the p85 predictions, and considered this sum as a reasonable

cost control goal. However, the meaning of this goal changes as a

function of the number of projects in the portfolio. A sufficiently large

portfolio will make the sum of p85 estimates extremely difficult to

overrun, even if the p85 estimates were severely biased.

The allocation letter from the Norwegian government to the

Directorate of Public Construction and Property states that the total

cost of the portfolio of completed projects the last 5 years should not

exceed the sum of the p50 estimates (Ministry of Local Government

and Modernization, 2018). Again, this is an example of how non-mean

estimates are simply summed. If the outcome distributions of the

construction projects are positively skewed, this is a requirement to

provide p50 estimates that are not really p50 estimates. Similarly,

Emhjellen et al. (2002) give the example of a large (€300 mill+) North

Sea oil project where estimates of capital expenditures are given as

p50 and simply summed to obtain total capital expenditures.

The above anecdotes indicate that misunderstandings relating to

sums of probabilistic values can be relevant in other contexts than

time. Future studies may discover new contexts where the summation

fallacy can be of applied relevance (e.g., sports results, medical

decision making, and household economy).

6.3 | Limitations

The present study used convenience samples, mainly of software

developers, which may limit the generalizability of our findings. How-

ever, the samples in Studies 3 and 4 included a range of professionals

in various roles, including managers and other administrative person-

nel. Furthermore, the findings were consistent across samples from

low-cost (Studies 1 and 2) and high-cost countries (Studies 3 and 4),

and across very different types of outcomes (software development

effort, commute time, and benefits).

One important limitation is that the present studies assumed

independence of tasks. In many projects the costs of the different

elements are positively correlated. The naïve summation of estimates

may produce less bias when there are strong positive correlations

between the elements. For example, in the case of perfect correlation

between the outcomes of multiple tasks, the sum of p90 estimates

should be the same as the p90 estimate for the total (see Otley &

Berry, 1979). Also weaker dependencies between elements can

greatly reduce the bias when aggregating non-mean estimates, partic-

ularly when the type of estimate represents a value close to the mean

(see Skerratt, 1982). In theory, participants may have believed that

there were dependencies between tasks in Studies 1 and 2, but in

Study 3, this would not be a reasonable assumption (one drive would

typically not affect the next). In Study 4, we explicitly asked the partic-

ipants to assume independence between outcomes.

7 | CONCLUSIONS

A substantial proportion of people with experience in estimation and

project management provided total estimates that were statistically

inconsistent with their estimates of individual tasks. This inconsis-

tency was also found in estimates of the sum of elements from

records of past performance time, suggesting a problem in the process

of aggregation of time estimates. Inappropriate aggregation strategies

can produce severe underestimation or overestimation, as well as

underconfidence (i.e., confidence intervals that are too wide). The bias

in aggregate estimates is largely attributable to naïve summation

(2 + 2 = 4). By naively summing stochastic quantities as if they were

deterministic, people commit what we refer to as the summation

fallacy. When the estimates of elements represent values that are

typically higher than the mean (e.g., p90 estimates), the total estimate

based on the sum of these elements is biased upwards (over-

estimation), and when estimates of elements represent values that are

typically lower than the mean (e.g., the mode value in right-skewed

distributions), the total estimate based on the sum of elements is

biased downwards (underestimation). The fallacy can be consequential

in everyday estimation contexts (e.g., the sum of optimistic

predictions for three different tasks is far more optimistic than the

predictions of each of the tasks), in industries that rely on informal

estimation methods, and as suggested by anecdotal evidence, in politi-

cians' and other stakeholders' evaluations of portfolios of projects.
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