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Abstract. People with visual impairments can face challenges with in-
dependent navigation and therefore may use traditional aids such as
guide dogs, white canes, or a travel companion for navigation assis-
tance. In recent years, researchers have been working on AI-based nav-
igation assistance systems. Obstacle detection and distance estimation
are two of the key challenges in such systems. In this paper, we describe
a LiDAR-based obstacle detection and distance estimation technique. A
lightweight deep learning-based model called EfficientDet-LiteV4 is used
for obstacle detection, and a depth map from the LiDAR is used to esti-
mate the distance to the obstacles. We have implemented and tested the
approach with the LiDAR integrated into a Raspberry Pi4 board. The
results show good accuracy in detecting the obstacles and in estimating
distance.
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1 Introduction

Navigation or wayfinding for people with visual impairments is a prevailing chal-
lenge in the scientific community. Independent navigation could increase the level
of independence [1]. However, travelling alone in unfamiliar envrionments can
be challenging.

People with visual impairments typically use aids such as guide dogs, white
canes, or depend on a travel companion. In addition to those conventional aids,
diverse assistance systems and solutions have been proposed in the literature to
address issues involved in the navigation of people with visual impairments [2].
Some of the main problems related to such systems are linked to portability and
providing real-time environmental information in the immediate vicinity during
navigation to avoid obstacles and prevent accidents [3].

In recent years, researchers have been actively exploiting artificial intelligence
and machine learning to develop universally accessible navigation solutions [4].
In addition, different technologies and hardware are explored in the development
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of navigation assistance systems. It might be inspired by the miniaturization of
electronics and the advancement in processing power and sensing capabilities of
various devices [1]. Among those, one prominent technology is LiDAR (Light
Detection and Ranging) cameras.

LiDAR is a remote sensing technology that uses one or multiple laser beams
to estimate distance measurements. LiDAR system sends a pulse of light and
estimate distance based on the time it takes for the emitted pulse to return
back. Some advantages of LiDAR sensors include high resolution and accuracy
in measurements, easy conversion to 3D maps to interpret the environment, per-
formance in low light conditions, and speed as it offers indirect distance measure-
ments that do not need to be decoded or interpreted1. Because of these reasons,
LiDAR technology has become a useful device for obstacle detection, avoidance,
and safe navigation through various environments. LiDAR is commonly used in
robotics and autonomous vehicles [5,6].

In this paper, we propose using a miniature LiDAR that can acquire visual
image and depth information for accurate obstacle detection and distance esti-
mation in a navigation assistance system for the visually impaired. A lightweight
deep learning-based model called EfficientDet-LiteV4 is used for obstacle detec-
tion, and a depth map from the LiDAR is used to estimate the distance to
the obstacles. We have assessed the performance and compared the results with
our previous works, which use smartphone-based object detection and distance
estimation methods for navigation assistance.

This paper is organized as follows. Section 2 discusses related works, and
section 3 describes our proposed LiDAR-based obstacle detection and depth es-
timation methods and their implementation. Section 4 describes the experiment
involved. Results and discussions are presented in section 5. The paper concludes
in section 6.

2 Related Works

Obstacle avoidance is vital during navigation for visually impaired users. Ob-
stacle or object detection involves identifying and locating obstacles in the en-
vironment, enabling a safe navigation. This section discusses related literature
and notable developments in three areas: obstacle detection, distance estimation,
and some literature reported on miniature hardware-based navigation systems
and RGBD-based obstacle detection systems.

2.1 Obstacle Detection

Typically, there are two machine learning-based approaches used for obstacle
detection in a navigation assistance system. In traditional machine learning (ML)
based methods, computer vision techniques are used to look at various features of
visual input data (typically image or video), such as the color histogram or edges,

1 www.leddartech.com/why − lidar/
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to detect and identify objects. On the other hand, modern deep learning-based
methods employ convolutional neural networks (CNNs) to perform end-to-end
object detection, in which features do not need to be defined explicitly but rather
extracted automatically [7]. Because of this and the availability of ever-increasing
computational capabilities required by deep learning models, researchers most
recently tend to use deep learning models over traditional ML models.

A deep learning-based object detection model typically has three major com-
ponents: a backbone network that extracts features from a given image; a feature
network that has the backbone as the input and a list of fused features that de-
notes salient characteristics of the image as the output; and the final class/box
network that uses the fused features to predict the object class and location of
each object in the image.

Most of the popular object detection models belong to the Region-Based
Convolutional Neural Network (R-CNN) family. This includes the models R-
CNN, Fast R-CNN, Faster-RCNN, Mask R-CNN, etc. Over the years, they have
become both more accurate and more computationally efficient [8]. One of the
limitations of such models is their larger size and need of high computational
power which limit their use in edge devices. Hence models belonging to the
single-shot family are being started to be explored by researchers. Examples in-
cludes MobileNet+SSD [9], You Only Look Once (YOLO) [10] in several variants,
SqueezeDet [11], etc. SSDs make great choices for models destined for mobile or
embedded devices [4,12]. In this work, we use a relatively new, lightweight, and
efficient object detection model, called EfficientDet-LiteV4 model [13]. Section
3.1 describes the model in more details.

2.2 Distance Estimation

In earlier times, most navigation assistance prototypes that provide distance in-
formation used ultrasonic sensors such as SR04 [1]. Ultrasonic sensors measure
the distance of a target object by emitting ultrasonic sound waves and con-
verting the reflected sound into an electrical signal. Typical disadvantages of
conventional ultrasonic sensors include limited range, inaccurate readings, and
inflexible scanning methods [14]. RGB-D cameras have started to be used in nav-
igation systems to acquire depth information along with the color image. Major
limitation in the RGBD depth-sensing technology is that it fails to capture depth
information in four critical contexts: (1) distant surfaces (>5m), (2) dark sur-
faces, (3) brightly lighted indoor scenes, and (4) outdoor scenes with sunlight
[15]. Furthermore, another limitation of currently existing RGB-D cameras is
their size factor, which is comparatively more extensive, making it inconvenient
to use in a portable navigation system. Still, researchers explored the option of
RGB-D cameras for depth estimation in their navigation assistant prototypes
[16,17]. Various smartphone-based distance estimation methods applied in navi-
gation systems for visual impairments can be found in the literature [18]. In this
work, we use an RGB-D camera that utilizes LiDAR technology to estimate the
distance to the obstacles.
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2.3 Miniature Hardware-based Navigation Systems

There are several navigation assistance systems reported in the literature which
use various modes to process information about the obstacles, their type and/or
distance. These systems use hardware such as Raspberry Pi, Arduino, Jetson,
smartphones, or even a laptop connected with necessary components such as a
camera for data processing and computation.

Rahman and Sadi [19] proposed a Single Shot Detector (SSD) model with
MobileNet to recognize indoor and outdoor objects. The system consisted of a
laser sensor that helps the user to identify directions. The system sends infor-
mation collected to a remote server for processing. However, the authors did not
explicitly mention the usage of such an arrangement and how they deal with pri-
vacy issues since the data might contain private and personal information such
as images of people. Moreover, the model used for the obstacle detection was
comparatively heavy-weighted, which could take a long execution time. Hence,
it would not work as a practical solution in a real-time navigation environment.
In a similar attempt, Joshi et al. [20] explored a Jetson nano-based system using
MobileNet-SSD. The system provides only an overview of identified obstacles to
the user without providing other relevant details such as distance to obstacles
that are helpful during navigation.

Afif et al. [21] used the RetinaNet model for object detection in their proposed
navigation system. Even though the model is claimed to provide high accuracy,
the experimental evaluation showed high inference time, rendering it unsuitable
for real-time operation. In another work [22], the authors used camera and time-
of-flight sensors as its primary system components. The system’s accuracy was
low, and it was not intended for outdoors.

The system reported in [23] consisted of an ATmega328 microcontroller em-
bedded with an Arduino Uno. An HC-SR04 ultrasonic sensor was used to identify
obstacles. The primary limitations associated with the system were its inability
to recognize types of obstacles and the use of ultrasonic sensors, which were not
accurate compared to other modern distance estimation sensors.

Anandan et al. [24] described an outdoor and indoor navigation system for
the visually impaired using Raspberry Pi. The system used SURF (Speeded Up
Robust Features) algorithm for obstacle identification and ultrasonic sensors for
distance estimation. The main limitation of the system was in the accuracy in
detecting the obstacles.

2.4 RGBD-based Obstacle Detection Systems

Researchers also explored the potential of RGB-D-based cameras in navigation
assistant systems for people with visual impairments. The Navigation assistance
for visually impaired (NAVI) system proposed by Aladren et al. [16] used a
consumer RGB-D camera to acquire both depth and visual information. The
system uses RGB-D system to fuse range information and color information to
detect obstacle-free paths. But it does not give much information such as the
type of obstacle.
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The authors in [25] put forwarded an indoor navigation system that uses
a wearable RGBD camera mounted on head to construct a 2D map for the
surrounding environment. An optimal path is generated fro the 2D map. The
system also used an ultrasonic sensor to detect obstacles along the path. A
Raspberry Pi 3 B+ board was used as the central processing unit. Even though
the work mentioned path planning in detail, it did not explain how the RGB
images captured from the camera were used for obstacle identification.

Lee and Medioni [17] also investigated the potential of an RGB-D camera in
a navigation system. The RGB-D camera was placed in the user’s eye position to
capture scenes. A laptop was used for data processing. The major limitation of
the system is the portability and inconvenience associated with the system due
to the carriage weight of all the hardware [1]. The system creates indoor maps
which guide the users to navigate. Like in [16], the system was also incapable of
giving information about obstacles such as its type.

3 LiDAR-based Obstacle Detection and Distance
Estimation

With the development of technologies, more and more miniature LiDAR cameras
that can acquire both high-resolution color image and depth information simul-
taneously are available in the market. In this work, we use such a high-resolution
miniature Intel RealSense LiDAR Camera L5152 (see Fig. 1) for accurate obsta-
cle detection and distance estimation. The camera can detect obstacles up to 9
meters and weighs only 100 grams. The low weight and small form factor make
it suitable for specific applications such as navigation.

The Intel RealSense SDK 2.03 and other tools such as Intel RealSense API
enable configuration, control, and access to the streaming data. It’s extensive
language support including Python makes it easy to implement the proposed
solution.

The RGB image acquired with the LiDAR camera is sent to an object detec-
tion model to detect objects there in and their bounding boxes. The model and
the methods we used for obstacle detection and distance estimation is described
in the following subsections. After that, the preceding subsection describes the
implementation done for testing and evaluation of the proposed methods.

3.1 Obstacle Detection

Our previous works explored the pre-trained MobileNet+SSD [12] and YOLOv5m
[4] as obstacle detectors. Even though these models provided reasonably good
accuracy, we look for a better alternative as new models are introduced to the
scientific community to achieve more accurate detection results at the same time
with minimum inference time.

2 www.intelrealsense.com/lidar − camera− l515/
3 www.intelrealsense.com/sdk − 2/
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In this work, we used an EfficientDet object detection model [13], which
proved to be efficient and it can produce a reasonably good accuracy for detecting
objects from an image/video. EfficientDet uses EfficientNet [26] as its backbone
network for improved efficiency. EfficientNet is based on a CNN architecture
and scaling method that uniformly scales all depth/width/resolution dimensions
using a compound coefficient. Combining the new backbone and BiFPN (Bi-
directional feature pyramid network), the small-sized EfficientDet-D0 base-line
was developed, and then a compound scaling was applied to obtain EfficientDet-
D1 to D7. Each consecutive model has a higher compute cost but provides higher
accuracy.

EfficientDet-Lite is a derivative of EfficientDet trained on the MS COCO
dataset [27], optimized for TensorFlow Lite and designed for mobile CPU, GPU,
and EdgeTPU. The accuracy of lite models is comparatively less than conven-
tional object detection models, which require high-end GPUs and processors.
However, as a tradeoff, the computation time of conventional models is signifi-
cantly higher than lite models. Moreover, while designing a real-time navigation
solution, factors such as low inference time, small model size to deploy in a
portable device, comparatively good accuracy should be considered [28]. Con-
sidering these, we have used the most recent version of the EfficientDet-Lite
model, EfficientDet-LiteV4, to transfer learn and train with our custom dataset.
The reason for choosing this version is the model’s accuracy and size compared
to other lightweight object detection models without compromising inference
time4.

Dataset: We have created a custom dataset for testing and evaluating the pro-
posed obstacle detection model. The dataset consists of 15 object classes relevant
to indoor and outdoor navigation scenarios, namely, bed, bench, billboard, cab-
inetry, chair, door, fire hydrant, kitchen appliance, person, stairs, table, traffic
light, tree, vehicle, and waste container. Each of these classes has around 5000
images. The images were collected from various sources, which are publicly avail-
able such as Google Open Images [29], ImageNet [30], and images acquired by
ourselves. After examining the extracted images, we found that many images
require some preprocessing, such as labeling. Those images were labeled using
the LabelImg5 annotation tool. We used the PASCAL VOC data format to save
the annotations from the images.

3.2 Distance Estimation

The bounding boxes of the objects on an RGB image detected by the object
detection model are projected onto its corresponding depth image acquired by
the LiDAR camera. The estimated distance of an obstacle from the camera/user
is then calculated by median averaging the depth data within its bounding box.

4 www.github.com/google/automl/tree/master/efficientdet
5 www.github.com/tzutalin/labelImg
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3.3 Implementation

TensorFlow Lite Model Maker6 library was used to train the proposed object de-
tection model using the custom dataset. The Model Maker uses transfer learning
to reduce the amount of training data required and shorten the training time.

A Raspberry Pi4 board is used for implementing and testing the proposed
methods. Intel RealSense LiDAR Camera is connected to the Raspberry Pi4,
and power is supplied from a portable power bank, as shown in Fig. 1. Since
a Raspberry Pi4 board is smaller and easier to carry than a heavier hardware
device such as a laptop, we considered it a portable and practicable solution for
navigation assistance. Only essential components such as the LiDAR camera,
which is essentially needed for our application, are included in the experiments.

Fig. 1. A photo illustrating Intel RealSense LiDAR L515 depth camera connected to
a Raspberry Pi4 board along with a portable power bank.

4 Experiments

This section elucidates how the experiments were conducted for obstacle detec-
tion and distance estimation.

4.1 Obstacle Detection

The object detection model was trained on an HP G4 Workstation with an Intel
Xeon processor with 32GB RAM and NVIDIA GeForce GTX 1070 GPU. The
platform settings of the experiment are TensorFlow-GPU 2.4, NVIDIA CUDA
toolkit 11.0, and CUDNN 8.1. The model was trained, validated, and tested by

6 www.tensorflow.org/lite/guide/model maker
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randomly shuffling and splitting the dataset in the ratio of 80:10:10, respectively.
The default epochs in the Model Maker library7 were 50. However, we run 100
epochs. The number was found to achieve better accuracy as determined through
hyperparameter optimization using the validation dataset. The default batch size
64 was used. The training model was exported to tflite format. The Model Maker
library applies a default post-training quantization technique when exporting
the model to tflite format. This technique can help reduce the model size and
inference latency while improving the CPU and hardware accelerator inference
speed8.

4.2 Distance Estimation

To evaluate the performance of the distance estimation, we tested distance mea-
surements on five different types of obstacles, billboard, chair, waste container,
door, and table. The obstacles were placed at different distances, and the actual
distance of an obstacle from the camera/user was measured using a measuring
tape. The measurement was done to the nearest edge point of the objects. The
obstacles with varied sizes were chosen intentionally to check whether the size
of the obstacles affects distance estimation. The waste container obstacle we
considered in this experiment was smaller. We also tried to check if the sunlight
affects the distance estimation by placing a chair outdoor under direct sunlight.

5 Results and Discussions

Fig. 2 illustrated object detection and depth estimation results where RGB im-
ages and depth map images are given with the bounding boxes around the
detected objects are marked. The elaborated results from obstacle detection
and distance estimation methods are given and discussed in the following sub-
sections.

5.1 Obstacle Detection

Table 1 shows the results from the object detection model in terms of prediction
accuracy of the 15 object classes in the custom dataset. The prediction results
were reasonably good, with an average accuracy of around 88%. The results
show that cabinetry and stairs are the only two object classes where accuracy
is below 80%. The quality of images and annotations could be reasons for the
low accuracy in those two classes. We observed that in some cases, the model
failed to detect objects correctly because of similarities in some object classes.
For example, there were false detections between white doors, walls, and long
billboard. This was probably because of the pattern similarity in those objects.

Even though the class categories in the dataset for obstacle detection are lim-
ited (15), we tried to include object classes relevant to the navigation scenario.

7 www.tensorflow.org/lite/guide/model maker
8 www.tensorflow.org/lite/performance/post training quantization
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Fig. 2. (a) (Left column) Three different obstacles/objects (billboard, chair, and door)
on the RGB images as detected and marked with bounding boxes by the object detec-
tion model. (b) (Right column) Depth map images with the marked bounding boxes
around the obstacles after mapping with corresponding RGB images.

Since this is a proof-of-concept, it is possible to extend this with more classes
in the future. The average accuracy of around 88% is not the best compared
to other heavy-weight object detection models, and it is anticipated from the
lightweight model used. Nevertheless, considering the various aspects required
for a real-time navigation application (see section 3.1), the proposed obstacle
detection model’s performance could be considered reasonably good, as low com-
putation time enables real-time environmental information without much delay
than conventional models. The results from the model also show it has fewer
parameters (29M) and model size (49MB), which makes it possible to deploy in
a less-powerful portable device such as Raspberry Pi.
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Table 1. Performance of the proposed obstacle/object detection model in terms of
percentage accuracy.

Obstacle Accuracy(%)

Bed 95.4
Bench 93.7
Billboard 84.6
Cabinetry 78.4
Chair 94.7
Door 83.2
Fire Hydrant 88.9
Kitchen Appliance 92.7
Person 84.7
Stairs 79.5
Table 90.9
Traffic Light 83.7
Tree 81.5
Vehicle 94.1
Waste Container 94.6

Average 87.6

5.2 Distance Estimation

Table 2 shows the actual and estimated distance of the four obstacles from our
experiment from the proposed method. It also provides estimated distance from
the best method, the Rule of 57, from among the various smartphone-based
distance estimation methods from our previous work [18]. The results show that
the proposed method can estimate distance more accurately compared to the
Rule of 57 method.

Table 2. Observations of distance estimation from various obstacles (all in centime-
ters).

Obstacle
Actual
Distance

Estimated Distance
(Proposed method)

Estimated Distance
(Rule of 57 [17])

Billboard 100 100.0 74.8
Chair 200 200.0 209.6
Waste Container 300 299.5 312.4
Door 500 500.1 485.0
Table 900 898.9 Unable to estimate

Another advantage of using LiDAR cameras for distance estimation com-
pared to smartphones is that LiDARs can detect obstacles at longer distances
(900cm in the case of the LiDAR camera used in this work). The smartphone-
based method had a distance limit of 500cm. Moreover, the results were not
consistent at a 500cm distance. Therefore, the estimated distance in the case of
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door at 500cm from the smartphone-based method was recorded by averaging
five readings due to its fluctuating nature. Smartphone-based also failed to report
any result when the obstacle was placed at less than 100cm. One disadvantage
with the LiDAR camera-based method is that it needs to be connected to a
computer (e.g., Raspberry Pi). This could raise portability concerns and cause
inconvenience to the user. On the other hand, the portability factor is positive
for the smartphone-based method. Therefore, one could note this tradeoff while
designing a navigation assistant system while making a design choice.

When the smallest obstacle from the test set, the waste container, was placed
at 50cm, the smartphone-based method could not detect any result. However,
the proposed solution using LiDAR gave the result as 49.5cm. When we experi-
mented with the chair obstacle placed outdoor under the sunlight, the obstacle
detection model was able to detect the obstacle as a chair. However, the distance
estimation method failed to estimate the distance well. It estimated a distance
of 281.7cm against the actual distance of 300cm. Surprisingly, the smartphone-
based method also showed similar results, with an estimated distance of 280.4cm.
The performance degradation with the LiDAR method could be because of in-
terference to its depth estimation system from the infrared light from the sun.
This issue is cross-checked with the manufacturer’s website and found that this
LiDAR camera is recommended for indoor environments2. However, in other
applications such as autonomous vehicles, LiDARs are used together with other
devices such as laser reflectors, radars, and stereo cameras to address the influ-
ence of sunlight9. 3D LiDARs, which are very expensive compared to 2D LI-
DARs, can also solve the issue to a certain extent9. Nevertheless, in application
scenarios such as navigation assistance, where portability is also a significant
concern, installing additional reflectors or devices only to use outdoors may not
be a preferred design choice.

6 Conclusion

The proposed LiDAR-based method, which used an EfficientDet-LiteV4 model,
shows reasonably good performance in terms of obstacle detection and distance
estimation indicating its potential to be used in a navigation assistance system
for individuals with visual impairments. Using a LiDAR camera connected with a
Raspberry Pi and a power bank asks for proper camera placement and needs for
carrying the hardware, which might raise portability concerns. And the perfor-
mance degradation of the LiDAR cameras when it is used under bright sunlight
could limit their use in outdoor navigation. We believe this research could bring
valuable insights to the use of LiDARs in portable navigation assistance solutions
for the visually impaired.

2 www.intelrealsense.com/lidar − camera− l515/
9 www.sevensense.ai/blog/localization
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