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Abstract
Future energy systems will be dominated by variable renewable power generation and
interconnected sectors, leading to rapidly growing complexity. Flexible elements are required to
balance the variability of renewable power sources, including backup generators and storage
devices, but also flexible consumers. Demand response (DR) aims to adapt the demand to the
variable generation, in particular by shifting the load in time. In this article, we provide a detailed
statistic analysis of the collective operation of many DR units. We establish and simulate a model
for load shifting in response to real-time electricity pricing using local storage systems. We show
that DR drives load shifting as desired but also induces strong collective effects that may threaten
system stability. The load of individual households synchronizes, leading to extreme demand peaks.
We provide a detailed statistical analysis of the grid load and quantify both the likelihood and
extent of extreme demand peaks.

1. Introduction

The mitigation of climate change requires a comprehensive transformation of our energy system towards
renewable sources [1]. Wind and solar power have enormous potential [2] and have become fully cost-
competitive in recent years [3]. However, system integration of renewable power sources remains a challenge
as generation fluctuate on multiple time scales [4–7]. Hence, methods of statistical physics and complexity
science are becoming essential to understand the dynamics and operation of future energy systems [8–10].

A variety of methods are being used and developed to balance the fluctuations of renewable power gener-
ation, including different storage techniques [11] and flexible balancing power plants [12]. Furthermore, the
electricity sector may be coupled to other sectors, e.g., heating and industry, providing additional flexibility
[13]. In addition, flexibility can be introduced on the demand side. Techniques to adapt to the fluctuating
generation are commonly referred to as demand response (DR) and are heavily discussed in the literature
(see [14, 15] for recent reviews). The adoption of DR requires incentives for the respective user, typically via
offering financial compensation [16]. For instance, users may adapt their demand to the current electricity
prices in almost real-time to reduce overall costs [17]. However, the adaption of DR at the household level is
lacking behind [18] as social and behavioral obstacles are not overcome.

In this article, we address the operation and implications of DR from a systemic statistical perspective. With-
out DR, the actions of single consumers, i.e., the switching of a single device, can be considered an independent
stochastic event [19]. In a large interconnected power system, demand fluctuations of individual households
average out, and the total grid load varies rather smoothly [20, 21]. In the spirit of the central limit theorem, we
can assume that the residual fluctuations of the total grid load around the smooth daily profile follow a normal
distribution. This assumption is no longer valid for real-time DR, where the customer demands are adapted
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Figure 1. Sketch of the household DR model analyzed in the present paper. The household demands the electric power D(t)
during time interval t. This demand can either be satisfied by drawing power from the grid or a local BESS with capacity SCap.
Whether power is drawn from the grid to meet the demand and charge the BESS is decided by a controller on the basis of the
real-time price p(t) and the state of charge of the BESS S(t). We consider an elementary control law where p(t) is compared to an
acceptable price pa , that is a monotonously decreasing function of S(t).

according to a common input signal, the electricity price, and thus are no longer independent. Collective effects
may then fundamentally alter the statistics of the electricity demand.

To study the potential impacts of DR, we simulate the operation of a household DR system based on real-
time pricing using a coarse-grained model and investigate the impact on the resulting electricity demand time
series. On average, demand is shifted to periods of low prices as desired, but we instead focus on the statistics
of the time series and collective effects emerging for many households all reacting to the same real-time price
signals. It has been shown in the statistical physics community that such common inputs can fundamentally
change the statistics [22, 23]. In fact, the behavior of different households can synchronize, which leads to
heavy-tailed distributions of the aggregated demand. Events with a strongly simultaneous demand may arise,
which may be adverse to power system stability.

It should be noted that we examine DR systems aiming to reduce electricity costs for the consumers and
their impacts from a systemic viewpoint. Generally DR can serve other beneficial purposes, e.g., improve grid
stability or manage congestion [15, 24]. In particular, dynamic DR and similar smart-grid approaches offer an
avenue to tackle fluctuations at the level of power-grid frequency [25–28].

2. Models and methods

We consider a coarse-grained model of real-time DR. A set of N households try to minimize their electricity
costs by adapting their power supply, as shown in figure 1. Each household j = 1, . . . , N is characterized by
its residual power demand time series Dj(t), which equals the final demand minus local renewable generation,
e.g., by a photovoltaic source.

The DR is realized via a small battery electric storage system (BESS) with capacity SCap, which allows for a
shifting of electricity consumption. That is, we consider only DR actions that do not require any active partici-
pation or behavioral changes by the consumer, i.e., fully automated by a controller. The residual power demand
Dj(t) of each household j can be covered either by electricity stored in the battery or by buying electricity from
the market by paying the price p(t) per unit of energy. Market prices are typically updated in hourly or quarter-
hourly steps. Hence, we simulate system operation in discrete time steps of length Δt = 1 h. In the following,
energy is always given in units of kWh, and the power demand is given in units of kW.

The basic operation of the BESS system is determined by a controller that consider the current price and
the state of the BESS. In each time interval t, the controller at household j determines the amount of energy
Ej(t) purchased from the grid. Neglecting losses, the energy stored in the BESS increases by a portion of the
purchased energy and decreases by the residual energy due to demand Dj(t) ·Δt. The state of charge of the
BESS Sj(t), defined relative to the capacity SCap, thus evolves as

Sj(t +Δt) = Sj(t) +
Ej(t) − Dj(t) ×Δt

SCap
. (1)

The characteristics of the demand time series Dj(t) and the operation of the controller that determines Ej(t)
are discussed below.
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2.1. Demand patterns
This paper deals with the statistical properties of electricity consumption and collective effects emerging in
the system compromised of many users, such that a large amount of input data is required. We use a recently
developed statistical model for the demand time series Dj(t), which captures essential features of real-world
demand fluctuation patterns [29].

In the model, the demand time series of a household is given by a stochastic process

Dj(t) =

√√√√ L∑
k=1

x2
k(t) + μMB, (2)

where xk(t) is an Ornstein–Uhlenbeck process with zero mean, diffusion constant σOU and mean-reversion
strength γD [30]. The demand time series Dj(t) is a composition of L Ornstein–Uhlenbeck processes. We
choose L = 3 following [29]. This model leads to a stationary distribution of the demand Dj being described
by the shifted Maxwell–Boltzmann distribution (equivalently known as the shifted χ2 distribution with three
degrees of freedom)

P(Dj) =
1

σ3
MB

√
2

π
(Dj − μMB)2 · exp

[
− (Dj − μMB)2

2σ2
MB

]
, (3)

for Ornstein–Uhlenbeck processes with a stationary distribution with identical scale parameter σOU, where
subsequently the scale of the Maxwell–Boltzmann distribution σMB equals σOU. The distribution of the
demand time series P(Dj) takes values in the interval [−μMB,∞]. Hence, distributions with different vari-
ability can be readily generated by tuning the diffusion parameter σOU in the individual Ornstein–Uhlenbeck
processes xk(t). Hence, distributions with different variability can be readily generated by tuning either the
diffusion parameter σOU or the mean-reversion strength γD of an individual Ornstein–Uhlenbeck processes
xk(t).

In the numerical simulation, we generate the individual Ornstein–Uhlenbeck processes using a Markov
chain Monte Carlo method. The transition probability from state x0 at time t0 to state x1 at time t0 +Δt is
given by

P(x1, t0 +Δt|x0, t0) =

√
γD

πσ2(1 − e−2γDΔt)
exp

[
−γD(x1 − x0 e−γDΔt − μD(1 − e−γDΔt))2

σ2(1 − e−2γDΔt)

]
. (4)

While the authors in reference [29] used the offset μMB to fit different measured load time series, our analysis
only necessitates the correct stochastic behavior of the resulting load time series, and thus we set μMB = 0 for
the analysis. Furthermore, we choose the scale parameter to give an average demand of 〈Dj〉 = 0.5 kW, resulting
in about 12 kWh consumption per household and day. The choice of the mean reversion rate γD determines the
timescale of the stochastic demand series. We choose this to be set to γD = 1 h−1. An exemplary distribution
of the demand P(D) can be seen in figure 2.

2.2. Price time series
The real-time electricity price p(t) is the essential variable driving the operation of the BESS controller. To
enable more detailed stochastic investigations, we use synthetic time series which are designed to reproduce
essential statistic features of real-world time series. In particular, we model p(t) as a one-dimensional Orn-
stein–Uhlenbeck process with parameters μp, σp, and γp. The mean and the standard deviation are set to
μp = 39.46 ct kWh−1 and σp = 20.69 ct kWh−1, respectively, corresponding to the value observed in the Ger-
man–Austrian intra-day spot market in the years 2014–2020. The mean reversion rate γp is kept as a tunable
parameter to analyze the impact of correlations on the DR effect. We mostly use γp = 0.2 h−1 for illustrative
purposes, but present the final results for different values of γp. The transition probabilities are given by an
analogous expression to equation (4).

We note that consumer prices are generally much higher than wholesale market prices. However, any con-
stant shift or scaling of the prices does not affect the results of our simulations. In fact, such a rescaling will
only lead to an equivalent rescaling of the acceptable prices pa,j.

2.3. Controller model
The BESS control system must determine how much electrical energy Ej(t) is purchased from the grid in the
time interval t. The development of optimal control algorithms for DR is a wide research field, and important
progress has been made (see [31, 32] for recent reviews). The scope of this study is a very different one, focusing
on collective effects and emergent statistical properties. Hence, we keep the controller model as concise as
possible.
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Figure 2. Sample simulation for a single household showing the dynamics. The parameters defining the household were set to a
battery size of SCap = 10 kWh and a charging rate of cr = 0.2 h−1, while the control parameters were chosen as q = 20 ct kWh−1

and k = 40 ct kWh−1. From top left clockwise: demand D, acceptable price pa, price p(t), and state of charge S.

First, we do not include any forecasting in the control law. Decisions are made on the basis of the current
state of charge of the BESS Sj(t) and the electricity price p(t). In addition, the controller must take into account
the variable Dj(t) to ensure that the demand is always met and the battery limits are obeyed.

Second, we assume that the controller has only two basic options: either it chooses to cover the demand
completely from the battery such that Ej(t) = 0 kWh, or it chooses to draw power from the grid to recharge
and satisfy the demand. Recharging is always done at a maximum charging rate crSCap, where cr ∈ [0, 1] h−1 is
a tunable parameter. In this case, the household will draw the energy

Ej(t) = (Dj(t) + cr SCap)Δt (5)

from the grid. Small adjustments must be made to ensure the demand is always met and the battery is never
overloaded, i.e., Sj(t + 1) ∈ [0, 1] is always satisfied. Revisiting equation (1), we find the following constraints:
if the state of charge is too low to cover the demand in the current time interval, Ej(t) = 0 is impossible, and
the BESS has to draw the energy Ej(t) = Dj(t)Δt − Sj(t)SCap from the grid. If the BESS is almost full such that
equation (5) would lead to overloading, the BESS can only draw the energy Dj(t) Δt + SCap(1 − Sj(t)) from
the grid.

Finally, we assume that the decision of whether to draw energy from the grid or not is reached by comparing
the market price p(t) to an acceptable price pa,j(t). Hence, the control law can be formulated as

Ej(t) =

{
min

[
SCap(1 − Sj(t)) + Dj(t) ·Δt, (cr · SCap + Dj(t)) ·Δt

]
if p(t) < pa,j(Sj(t)),

max
[
0, Dj(t) ·Δt − Sj(t) · SCap

]
p(t) � pa,j(Sj(t)).

(6)

The acceptable price depends on the state of change Sj(t) of the BESS. If the BESS is almost fully charged,
there is no need to purchase electricity such that pa,j will be large. If the BESS is almost empty, recharging is
urgent, and pa,j will be small. In the following, we assume a simple affine linear law

pa,j(t) = k + (q − k) Sj(t). (7)

Note the parameters for q and k in equation (7) give the acceptable price for a full and empty BESS, respectively.
The actual value of the parameters q and k are determined to optimize the total costs of a single household and
depend on the properties of the demand, price statistics, and the BESS itself. We will discuss this aspect in the
following section.

3. Demand response effect at the household level

The DR system shifts the electricity demand of the households in time. Without DR, a household consumes
the demand Dj(t) directly from the grid; with DR, the purchases are instead given by the time series Ej(t). By
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Figure 3. Example of the DR for a single household with battery size SC = 10 kWh and a charging rate cr = 0.2 h−1, while the
control parameters were chosen as q = 20 ct kWh−1 and k = 40 ct kWh−1. At times where the acceptable price pa is large then the
price p (green shaded regions), the storage is charged by cr · SCap if it is not full already. This way, the saved up energy can be used
to avoid the high price regions in the middle thus lowering the money that would have to be paid.

shifting to time intervals of lower prices, DR can thus reduce the total electricity cost of a household. We first
analyze this effect from the perspective of a single household before we turn to systemic effects and statistical
properties in the next section. A sample simulation can be seen in figure 2. As the price is modeled as an Orn-
stein–Uhlenbeck process, its stationary distribution P(p) follows a Gaussian distribution, while the demand
distribution follows a Maxwell–Boltzmann distribution (center column of figure 2). Using the control function
described in section 2.3, the state of charge S and acceptable price pa interact to drive the system dynamics.

To understand the underlying dynamics, we need a closer look at the time evolution of the price p, accept-
able price pa, and the state of charge S. In figure 3, a short time window of the same simulation as presented in
figure 2. The time windows where the acceptable price pa is above the market price p(t), i.e., where the battery
is charged if the limits are not exceeded, are indicated by the green shaded regions. At times when the price
is too large, the battery can be used to cover the demand. Thus, the demand has been shifted away from the
times of high prices to the green shaded time regions. To quantify the impact of the DR system for a single
household, we consider the average cost that a household j has to pay for the energy drawn from the grid in Nt

time steps,

μC,j = N−1
t

Nt∑
i=1

p(ti)Ej(ti), (8)

as well as its volatility expressed by the standard deviation σC. We assume that all customers individually min-
imize their average costs μC and design the controller accordingly. Furthermore, we consider the mean μ and
the standard deviation σ of the time series S(t) and E(t) to characterize the operation of the DR system. Obvi-
ously, all characteristics depend on the properties of the BESS system and the controller as well as the properties
of the stochastic processes Dj(t) and p(t). In the following, we fix the parameters of the stochastic processes to
the values given in the previous section and focus on the BESS and control system.

To begin with, we consider an even simpler control law with a constant acceptable price pa,j = k, see figure 4.
This simplified treatment provides some fundamental insights into the operation of the BESS, which is helpful
for the analysis of the full system provided below. We find that even in this simple case, a substantial reduction
of the electricity costs is possible. For a large BESS with capacity SCap = 40, we find a reduction of the cost by
more than 50%.

In all cases, we find that there is an optimum value of the acceptable price k∗ for which the average electricity
priceμC assumes a minimum. Notably, this optimum value is considerably lower than the average market price.
For pa,j = k∗, the system makes use of the battery in an optimal way. It is heavily charged and discharged such
that the standard deviation σS assumes a maximum. States with high and low charges are equally probable
such that the purchases Ej(t) are also most volatile at the optimum point.

We now turn back to the original control law given in equation (7), where the controller takes into account
the state of charge of the battery. The control law is characterized by two parameters, k and q, which are chosen
to minimize the average costs μC. In particular, we carry out a parameter scan for any given BESS system to
find the optimum values q∗ and k∗, as shown in figure 5. We find that a household can reduce its electricity
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Figure 4. Operation of the DR/BESS system of a single household for simplified control law. The panels show the mean μ and the
standard deviation σ of the state of charge Sj(t) and the purchases Ej(t), as well as the average electricity price paid by the
household (8) together with the volatility. The respective quantities are plotted as a function of the acceptable price pa,j = k,
which is assumed to be constant here. We observe a minimum in the average price μC that gets more pronounced with increasing
storage capacity SCap. At the this optimum point, σE and σS assume a maximum.

Figure 5. Reduction of the electricity costs of a single household by a DR/BESS system. We plot the average electricity costs μC as
a function of the control system parameters q and k for two values of the BESS capacity: SCap = 10 kWh (left) and SCap = 40 kWh
(right) and a charging rate of cr = 0.5 h−1. For the larger storage sizes SCap = 40 kWh, a reduction in μC by a factor of
approximately 3 is possible compared to a storage size of SCap = 10 kWh. The red cross denotes the optimal choice of the
parameters q∗ and k∗ for which μC assumes its minimum, while the red dashed lines indicate the line for the constant strategy as
explored in figure 4.

costs considerably by the DR system depending on the size of the BESS. For a BESS capacity of SCap = 40 kWh,
we find a reduction of μC by more than a factor of 4 at optimum parameters. In the following simulations, we
will always assume that all households set the control parameters to the optimum values k∗ and q∗.

A systematic study of the impact of the technical parameters of the BESS on the DR effect is provided in
figure 6. We find that the average electricity cost μC at optimum parameter choices decreases monotonically
with the available storage capacity SCap. That is, the larger the BESS, the more it can contribute to load shifting
and hence to a reduction of household electricity cost. The slope decreases slightly with the capacity SCap, but
we see no pronounced saturation effect for values up to SCap = 40 kWh considered in our simulations. For
a fixed storage capacity SCap, the average price drops rapidly with the maximum charging rate cr SCap until it
saturates at cr ≈ 0.2 h−1.

4. Systemic effects and statistics of DR

The result of the previous section confirms that DR can lead to a substantial reduction of a household’s electric-
ity costs by shifting electricity purchases to time intervals with lower prices. As low prices typically correspond
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Figure 6. Reduction of average electricity costs μC for a single household as a function of the capacity SCap and charging rate cr of
the BESS. In all cases, the respective optimal control parameters k∗ and q∗ were used. The minimal cost decrease monotonically
with both SCap and the charging rate cr, where the latter shows a pronounced saturation for cr � 0.2 h−1.

to periods of high renewable power generation, this is considered beneficial for the operation and stability of
the entire power system. We will now demonstrate an important limitation to this general conclusion due to
the collective effects induced by real-time DR.

To quantify the collective effects and the impact on the system, we simulate the operation of many house-
holds. All households j = 1, . . . , N have different demand patterns Dj(t) but react to the same price signal p(t).
For the sake of simplicity, we furthermore assume that the parameters of the BESS are identical and that each
household chooses the same optimal control parameters p∗ and k∗. The impact on the electricity system is ana-
lyzed in terms of (i) the statistics of the total grid load Etot(t) =

∑N
j=1 Ej(t) and (ii) the fraction of electricity

purchased at a certain price p. The latter quantity is estimated from the simulation results as

Z(p) = N−1
∑

t:p(t)∈[p,p+Δp]

N∑
j=1

Ej(t). (9)

Here, the sum over the variable t is restricted to time steps where the price satisfies p(t) ∈ [p, p +Δp], i.e.,
where it falls in a small interval around the given price p. The variable N denotes a normalization constant
which ensures that the integral over Z(p) equals one such that we can interpret Z(p) as the density of purchases
at a certain price.

Consider first the case of no DR, which is recovered in the above model by setting SCap = 0 kWh. Electric
energy is drawn from the grid whenever demanded, Ej(t) = Dj(t), independent of the actual price p(t). Hence,
the likelihood of buying at a certain price, Z(p), equals the PDF of the market price p(t), see figure 7. The
individual purchases Ej(t) fluctuate strongly, but the total system load Etot(t) does not. In fact, the individual
fluctuations average out such that the total grid load is almost constant at a level of

Etot ≈ N
〈

Dj(t)
〉

j,t
, (10)

where the brackets denote averaging over time steps and households. The residual small fluctuations around
this value are well described by a narrow Gaussian PDF, see figure 8. According to the central limit theorem,
the relative width of the Gaussian decreases as 1/

√
N.

This picture is completely altered in the presence of real-time DR. Customers shift their load to periods
with lower prices to reduce their costs. Hence, the density function Z(p) of purchases in a certain price interval
is strongly shifted to lower values of p, as shown in figure 7. Purchases during high-price time intervals are
suppressed. The larger the size of the battery SCap is, the less likely purchases at times with high price become,
but they still occur occasionally.

In principle, load shifting is the desired effect of DR. However, the effects at different households are not
independent but synchronized due to the coupling to the common price signal p(t). Consequently, the fluc-
tuations at different households no longer average out, and the central limit theorem no longer applies. The
impact on the statistics of the total grid Etot(t) is dramatic, as shown in figure 8. Instead of a narrow normal
distribution, we now find a wide bathtub-shaped distribution. Events where all customers synchronously draw
the maximum amount of power are quite likely. In particular, such events take place after a longer period of
high prices, where all BESS are empty, the acceptable prices pa,j are high, and all households start charging

7



J.Phys.Complex. 3 (2022) 025002 (11pp) C Han et al

Figure 7. The likelihood of prices p paid by the households. The figure shows the density function defined in equation (9) for DR
systems with different storage capacities SCap. In the absence of DR (SCap = 0 kWh, dashed line), the density Z(p) equals the
density of the price time series p(t). In the presence of DR (SCap > 0 kWh, solid lines), customers can shift the purchases to
periods with lower prices. Hence, the density function Z(p) is strongly shifted to lower values of p. In all cases, we use optimized
parameters k∗ and q∗ for the controller. The charging flow to the batteries cr · SCap was chosen as 2 kW and 6 kW for the results
presented on the left and right sides, respectively.

Figure 8. Distribution of total grid load Etot for different mean reversion rates γp of the Ornstein–Uhlenbeck process giving the
price. The storage size of SCap = 10 kWh and SCap = 40 kWh are compared on the left and right, respectively. In both cases, the
total charging cr · SCap is chosen as 2 kWh per hour. Black dashed line gives the distribution if no storage device would be used,
which is equivalent to the distribution of the demand D. When the time spent in either high or low price regimes is short enough
to allow the battery device to be used effectively, the distribution of the total purchased energy Etot, i.e., the stress to the grid, is
broad, and situations with large total demand become very likely. As the price dynamics gets slower, the distribution changes from
an almost horizontal shape by narrowing considerably.

when the price finally drops [23]. These crucial events result in a peak of the distribution at the right edge at

Etot ≈ N
(

crSCap +
〈

Dj(t)
〉

j,t

)
Δt, (11)

increasing linearly with the system size N. Such periods with large purchases induce stress to the electric power
grid on various scales and may even prove critical for system stability. On the distribution grid level, large
demand peaks may lead to problems of voltage quality and have been intensively discussed in the context of
e-vehicle charging [33, 34]. On the transmission grid level, a sudden increase of the demand leads to a drop of
the grid frequency which has previously been observed due to societal events [35, 36].

Remarkably, events with excessive demand can not even be considered rare, as the probability density shows
pronounced peaks at high values. We note that similar distributions with peaks at the right edge have been
intensively studied in reliability theory [37]. In figure 8, it is also shown how this effect changes for different
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Figure 9. Stress to the grid for different battery sizes. The probability P(Etot > f · 〈Dtot〉 ·Δt) of the total purchases energy is
larger than f-times the average total demand Dtot at the optimal strategy parameters q∗ and k∗. Using larger batteries by increasing
their capacity SCap generally decreases the stress to the grid but for one important effect. There is a sharp increase in the likelihood
of very high stress situations for different f values if one increases the capacity of the batteries.

mean reversion rates of the price γp. If smaller and smaller γp are used to generate the price time series p(t),
high stress situations become more and more unlikely since the battery storage device cannot sustain the long
periods of high prices and the DR effect is diminished. Although one might consider these situations as prefer-
able due to the absence of high stress situations, they are not beneficial to the individual households since they
are not able to escape high prices with the help of the BESS, the average cost of a household is considerably
higher than in case with faster price dynamics, which is not desirable to individual households.

To further quantify the likelihood of situations that strongly affect the grid, we evaluate the probability
P(Etot > f · 〈D〉 ·Δt) that the purchased energy exceeds the average demanded energy 〈D〉 ·Δt by a factor of f.
Results are shown as a function of the capacity SCap of the BESS in figure 9. Without DR, extreme events with
f > 2 are never observed in our simulations. This is a direct consequence of the central limit theorem, which
states that large deviations from the mean are exponentially unlikely. DR now makes these events possible as
the demand is accumulated during time periods with low prices. In particular, we find that extreme events
become possible if the capacity SCap exceeds a threshold value. If the capacity increases further, the likelihood
decreases again because purchases are further concentrated to fewer and fewer points in time. That is, extreme
events become less likely but more pronounced in their magnitude.

5. Discussion

DR summarizes a variety of approaches to adapt the demand for electric power to better match the supply.
This can be achieved by load shifting—consumers shift their demand in time and may receive financial com-
pensation for the utility company in return. DR can be a meaningful source of flexibility in future renewable
power systems, where the generation is volatile and cannot be easily adapted to the demand.

In this article, we have analyzed a model DR system from a statistical viewpoint. Load shifting is realized by
the optimized charging of a household BESS in response to real-time electricity pricing. Such storage systems
are often installed together with a rooftop photovoltaic system and it becomes increasingly important to take
their role in the operation of the entire system into account.

On average, the model DR systems provide the desired load shifting effect. However, the statistics of the
grid loads change dramatically, which may have unwanted or even harmful effects. These effects manifest the
collective behavior of many DR systems driven by the same price signals. Without DR, the electricity load
of single households is largely uncorrelated besides the common daily profile. Hence, individual fluctuations
average out, and the total grid load is smoothed. With DR, the electricity load can get synchronized. The
smoothing effect is lost, and we observe pronounced peaks instead. The distribution of the grid load then
assumes a bathtub shape with pronounced peaks at zero and peak load.

Importantly, the demand peaks do not necessarily occur during the periods of the lowest prices. Instead,
they may also occur if the price drops after a long period of high values. In such a case, DR operation may be
counter-productive for system stability, introducing demand peaks at times of limited generation.
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In conclusion, we have demonstrated that DR may induce load shifting patterns with intricate statistical
properties. While load shifting itself is the desired effect of DR, a comprehensive roll-out of such systems may
lead to undesired excessive effects. Whether beneficial or adversarial effects dominate in terms of system stabil-
ity depends on a variety of parameters. For instance, the layout of the respective distribution grid determines
which demand peaks can be safely handled. Furthermore, the market penetration of DR systems will be deci-
sive. Critical impacts on system stability are expected only if the number of DR units is fairly large. Moreover,
the choice of a different algorithm may ameliorate the synchronization problem, but the synchronisation effect
will be present.

A comprehensive assessment of DR should take into account both collective effects and details of the tech-
nical realization, including the implementation of the controllers and heterogeneity of the DR units. On large
scales, it might be even necessary to include the feedback on the electricity market prices. On small scales, the
limitations of the local distribution grids must be taken into account. Such comprehensive modeling efforts
can then show whether counter measures are necessary and how they can be realized effectively.
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