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Abstract  

A broader knowledge on how cancer cells behave physically is important for understanding 

how they spread throughout the body. In order to understand how metastasis of cancer cells 

really works, it is necessary to know what happens with physical forces when cancer cells are 

awakened from quiescence. The project involved mapping of physical forces and dynamics in 

cancer cell lines, isolated from three patients with urinary bladder cancer (TCC).  

 

Cell migration patterns and intercellular physical forces (traction forces) of re-stimulated cancer 

cells, after serum deprivation, was monitored by live cell imaging. The cell lines SW780, 5637, 

and T24 were starved to establish a quiescent cell state, and then re-stimulated with FBS before 

image acquisition. The magnitude and directionality of cell migration were slightly different 

between the cell lines. It was observed that cells of the T24 cell line migrated as single cells. 

The SW780 showed a pattern of collective migration, and the 5637 cell line had a partial 

collective migration. The results further showed an increase in traction forces directly after 

serum-stimulation of quiescent cancer cells. This is similar to a previous study of keratinocytes. 

A flower-like structure in SW780 cell sheets appeared after serum re-stimulation, which were 

investigated for the presence of stem cell markers.  

 

The cancer cell lines showed common features when it comes to traction forces arising after 

exit from quiescence and activation of cell migration.  However, different migration patterns, 

in terms of single-cell and collective migration, as well as different migration velocities were 

observed.  
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1 Introduction 

1.1 Cell cycle 
 
There has been estimated that the human body consists of 30 trillion cells with different 

structures and functions. Many of these cells are continuously renewed as a consequence of 

the cell cycle and cell death (Gregers, 2020). Only a few cells in the body do not divide at all like 

neurons, gametes and fully developed heart cells (Frade & Ovejero-Benito, 2015).  

 
The cell cycle is divided into two phases, the interphase and the mitotic phase (M phase). The 

interphase is again divided into three phases (see figure 1). The first phase is called G1, and this 

is when the cells grow, the organelles are copied, and other molecular building blocks are made. 

Subsequently, cells enter the S phase, which is the phase of DNA synthesis. A complete copy of 

the DNA is built and centrosomes that will be used in the M phase are made. The third phase 

is called the G2 phase. At this point, the cell growth continues, and proteins are synthesized in 

preparation for mitosis. The end of the G2 phase is where the mitosis, and M phase starts, 

resulting in two daughter cells (Cooper, 2000). 

 

In mitosis, the cells go through five different phases. In prophase, the chromosomes are being 

condensed, the mitotic spindle is formed, and the centrosomes move away from each other. 

In prometaphase, the nuclear membrane breaks down, and the chromosomes attach to the 

mitotic spindle. In metaphase, the chromosomes are lined up in the middle of the mitotic 

spindle, called the metaphase plate. In anaphase, the sister chromatids are separated and 

pulled towards opposite ends of the cell. And finally, in telophase, the nuclear membrane is 

formed again, and the division of the cytoplasm starts. In cytokinesis, the cytoplasm splits into 

two new cells. The cytoplasm is divided by a contractile ring made of actin and myosin 

filaments. The ring pinches the cell into two identical daughter cells (McIntosh, 2016). The cell 

cycle usually takes around 24 hours, but this can vary between cell lines. The time used for 

completion of one cell cycle is 21, 23, and 38 hours (hrs) respectively for the T24, 5637, and 

SW780 cell lines used in this research project. 
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Figure 1: The cell cycle. Illustration of the cell cycle. The interphase includes the phases G1, S and G2 while the M phase includes 
mitosis and cytokinesis. Cells can exit the cell cycle and enter the G0 /resting phase (Lillebø, made in Biorender).  

 

1.1.1 Quiescence  

Quiescence is a state where cells are not dividing and is therefore not a part of the cell cycle. 

This happens due to changes in the microenvironment of the cell. When a cell exit the cell cycle 

in G1 phase it enters a resting state called G0 or quiescence.  However, the cell has the capacity 

to re-enter the cell cycle, when exposed to different compounds that stimulate mitosis 

(mitogens) (see Figure 2) (Marescal & Cheeseman, 2020).  

 

Many different cell types in our body are able to exit the cell cycle and enter quiescence, such 

as skin cells (keratinocytes), stem cells (blood, intestine), immune cells, and fibroblasts 

(connective tissue). Fibroblasts are for example activated during wound repair, resulting in cell 

migration and cell division at the wounded area (Grendler et al., 2019). Furthermore,  quiescent 

lymphocytes are activated as part of the acute adaptive immune response (Kan & Hodgkin, 

2014). In addition, quiescence is vital for cancer cells to gain further mutations that will help 

them survive in new surroundings and initiate metastasis. Further, cancer cells (cancer stem 

cells) do this to evade the effect of cancer therapy, which in general targets all dividing cells 

(Recasens & Munoz, 2019, Fiore et al., 2018).  
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Figure 2: Schematic representation of the cell cycle as a continuous process, and the quiescence compartment as a separate 
state. The circle to the left illustrates a cell cycle including the phases M, G1, S and G2. The circle to the right shows the cells that 
have exited the cell cycle and entered the quiescent state (Fiore et al., 2018).  

 
1.2 Cell migration 

Cell migration plays an essential role in numerous physiological and pathological processes, 

such as during development, tissue remodeling, immune response, wound healing, and cancer 

spreading (Scarpa & Mayor, 2016). The cells either move as an individual single cell or as a unit 

of collective cells. Single cells migrate without cell-to-cell interaction (Ridley et al., 2003), while 

cells moving in groups maintain their cell-to-cell interactions and migrate coordinately within 

the group (Friedl & Gilmour, 2009). 

 

The cytoskeleton is fundamental for cell movement. The cytoskeleton is built up of three basic 

filament structures; actin filaments, microtubules, and intermediate filaments. In addition, a 

variety of cytoskeletal accessory proteins, like motor proteins, are also required for proper cell 

migration (Alberts, et al., 2019). Cell polarization is essential for cell migration, since it helps the 

cell to determine the direction of its movements (Pandya et al., 2017). Cell migrations often 

occur in response to specific external stimuli, including chemical (Mak et al., 2016) and 

mechanical signals (Te Boekhorst et al., 2016). 

 
1.2.1 Collective migration (of keratinocytes) 

Collective cell migration is the process where a group of cells move together with the same 

speed and direction as a coordinated multicellular unit, over a period of time (Desai et al., 

2013). Exit from quiescence is often associated with cells starting to migrate and later on 

divide. Keratinocytes and fibroblasts are for example cells that start to migrate and divide in 

conjunction to wound healing (Pastar et al., 2014). Stig Ove Bøe’s research group has recently 
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shown that quiescent human keratinocyte monolayers show collective migration on a large 

scale after being activated by serum. This migration pattern appears to be linked to an 

increase in intercellular tension (stress in the cell sheet) directly after stimulation of cells with 

serum. The observed tension (forces) decreases at the same time as the start of cell migration 

(as shown in figure 3) (Lång, et al., 2021). The purpose of this project was to determine 

whether a similar mechanism can be found in other cell types.  

 

 
Figure 3: (A) The difference in forces between a quiescent cell and a cell that exits quiescence due to stimuli (FBS). (B) Results 
from migration and traction force microscopy experiment performed in a previous study (Lång, et al., 2021). The dark lines show 
the mean values, and the lighter areas around shows the standard deviation. The black arrow indicates the time of stimulation 
with FBS. 

 

1.3 Cancer  

There are several differences between normal cells and cancer cells. One important difference 

is cell signaling. While normal cells only grow after receiving signals telling them to grow, cancer 

cells might grow and divide in the absence of such signals. The cancer cells can also ignore 

signals telling them to stop growing or die (apoptosis) (Mohammad et al., 2015). Further, 

cancer cells have the ability to survive in blood vessels and spread to other tissues where the 
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cells normally do not grow (metastasis). All these features are a consequence of changes in 

genes that control how the cells function including growth, division, death, and cell signaling 

(Alberts, et al., 2019). Thus, anti-cancer therapy usually focuses on stopping cell division and/or 

cell migration. 

 

1.4 Urinary bladder anatomy 

Since the focus of this research project is on cancer cells originating from the urinary bladder, 

we will now briefly discuss this organ. The urinary bladder (figure 4) is a muscular pouch in the 

pelvis. The shape and size of the urinary bladder varies, depending on how full it is and pressure 

from the surroundings. When empty, the urinary bladder is roughly the size and shape of a 

pear. A normal bladder of an adult can store up to 400-600 mL of urine and makes it possible 

for urination to be infrequent and controlled (Holck, 2021). 

 

The urine enters the bladder through the ureters and exits through the urethra. The 

musculature of the bladder is essential when it comes to the storage and excretion of urine. 

The bladder wall contains a specialized smooth muscle to make it capable of contracting during 

urination. The muscle fibers are directed in different ways to maintain structural integrity when 

the bladder is being stretched (Shermadou et al., 2022).  

 

 
Figure 4: An overview of the female and male urinary tracts (Urology Care Foundation, n.d.). 
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1.5 Urinary bladder cancer 

There are different types of bladder cancers. However, the most common type of bladder 

cancer is urothelial carcinomas, also called transitional cell carcinomas (TCC). This type of 

cancer starts in the urothelium which is an epithelial tissue consisting of many layers of 

epithelial cells that line the inside of the bladder (Kang, 2018). Urinary bladder accounts for 

about 3% of the cancer diagnoses in the world. Around 90% of urinary bladder cancer diagnoses 

occur in patients that are 55 years or older. The disease is also four times more common in men 

than women (Saginala et al., 2020). 

 

Urinary bladder cancer is the unregulated growth of cancerous cells on the bladder wall's inner 

lining, which may cause different symptoms (Michaud et al., 1999). The most important sign of 

bladder cancer is hematuria, the presence of blood in the urine. This may also be caused by 

other diseases or health problems and should not be ignored. Other signs that might be caused 

by bladder cancer are having trouble urinating, pain during urination, or frequent, uncontrolled 

urination (Zhou et al., 2015).  

 

The main procedure for identifying bladder cancer is cystoscopy. A hollow tube equipped with 

a lens, a cystoscope, is used to inspect the inside of the bladder. If the process is done under 

anesthesia, a biopsy will be taken. Later, the tissue sample will be carefully examined under a 

microscope for eventual signs of cancer. If signs of cancer are detected, the tumor will be 

removed and analyzed to determine a diagnosis, and the stage of cancer will be detetermined 

(Sanli et al., 2017).  

 

1.5.1 Stages of urinary bladder cancer  

The American Joint Committee on Cancer (AJCC) created the TNM system to stage cancer 

(shown in table 1). The T explains how far the cancer has spread throughout the bladder and if 

it has spread to any adjacent tissue. The N describes if cancer has spread to lymph nodes nearby 

the bladder. Lastly, the M describes if the cancer has spread to organs or lymph nodes far away 

from the bladder (metastasized). For staging cancer, the determined letter will be followed by 

a number between a and IV (zero and four) that will describe how far cancer has spread. Figure 

5 shows the staging of cancer in the urinary bladder (DeGeorge et al., 2017).  
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Figure 5: Bladder cancer staging. Cancer has different stages, from Ta to T4, as illustrated. The T explains that the cancer is 
spread in the bladder, but not into the lymph nodes or other areas of the body, while the numbers describe how far the cancer 
has spread throughout the bladder. Created with BioRender.com  

 

Table 1:  TNM, the American Joint Committee staging system of cancer. Table inspired by DeGeorge et al. (2017).  

 T (primary tumor) N (regional lymph nodes) M (distant metastasis) 
0 No evidence of primary 

tumor 
No lymph node metastasis No distant metastasis 

I Tumor invades 
subepithelial connective 

tissue 

Single regional lymph node 
metastasis in true pelvis 

Distant metastasis 

II Tumor invades muscularis 
propria 

Multiple regional lymph node 
metastasis in true pelvis 

 

III Tumor invades perivesical 
tissue 

Metastasis to common iliac lymph 
nodes 

 

IV Tumor invades any of the 
following: prostate, uterus, 

vagina, pelvic wall, 
abdominal wall 

  

 

1.6 Fluorescence in Biological Research 

Fluorescence labeling of cells is used to visualize structures of interest using different types of 

microscopes (fluorescence microscopy). When exposed to light fluorescent probes or 

fluorophores absorb photons, resulting in electrons entering an excited state. As the 

fluorophores lose energy during vibrational relaxation, their electrons return to their ground 

state and a less energetic photon is emitted (fluorescence) (figure 6). Depending on the 

wavelength of the emitted light, it is either visible to the human eye, with a wavelength 

between 380 and 700 nanometers (nm), or detectable only by infrared cameras with 
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wavelengths above 700 nm (Schouw et al., 2021). Fluorescence is used to study molecular 

processes and is involved in nearly all forms of microscopy.  

 

 
Figure 6: Fluorescent imaging and the concept of fluorescence. On the left is the light source of a microscope and the illustration 
shows how the direction of the light changes before it reaches the sample (blue line) and then is directed towards the 
detector/camera (green light). The right part of the image illustrates the different energy states the molecule (fluorophore) goes 
through. The blue arrows show the excitation, whereas the green lines show the emission. Created with BioRender.com, inspired 
by Schouw et al. (2021). 

 
1.7 Microscopy and cell imaging 

Microscopy refers to the methods used to obtain images of objects so small that they are not 

visible to the human eye. Microscopes can use either light or electron beams to visualize objects 

(light and electron microscopy respectively) (Meisslitzer-Ruppitsch et al., 2009). Today, many 

light microscopes use light-emitting diodes (LED) as the light source. This is because of the high 

efficiency and brightness that LED has reached, and also the LEDs capability of operating at low 

temperatures. Another advantage of LED illumination in fluorescence microscopy is that all 

variations of the semiconductor-based devices have a similar energy conversion efficiency with 

emission limited to a narrow range of wavelengths (Wessels et al., 2012).  

 

Different types of microscopy techniques can be used in order to detect a variety of 

characteristics in tissues and cells. Among these are widefield and confocal microscopy most 
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commonly used for producing 2D images (Sanderson et al., 2014). Furthermore, 3D views of a 

sample can be achieved by acquiring Z-stack images. A conventional light microscope 

(widefield) illuminates a small area of sample at a time, but the reflected, fluorescent light can 

lead to "noise," which may compromise the image quality. By adding a small pinhole in the light 

path, confocal microscopy is able to eliminate this problem by passing only the light that emits 

from the desired focus point through the pinhole and to the detector/camera. The pinhole 

blocks any light outside the focus of attention. During confocal microscopy, light is focused onto 

a tissue sample, producing a virtual slice or plane that makes it possible to get images from a 

plane some micrometers into the sample. (Molecular Devices, n.d.). Images are of high-

resolution quality with fine detail and more contrast than conventional widefield microscopy. 

When multiple sections are combined, the imaging technique allows the reconstruction of 

virtual three-dimensional images of the tissue (Nwaneshiudu et al., 2012). 

 

The overview below shows a high-content imaging microscope. High-content imaging means 

that a large amount of data can be collected over time (Joshi & Lee, 2015). The ImageXpress 

Micro Confocal High-Content Imaging System (shown in figure 7) is an example of this kind of 

imaging. It is an automated microscope that can shift between confocal and widefield imaging 

of both fixed and live cells. This microscope can be used for tracking cell migration since it can 

acquire images of many samples (relatively fast) over time and collect a large amount of data 

(Molecular Devices, n.d.).  
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Figure 7: High-Content imaging microscopy. Illustration showing where the 96-well plate goes into the microscope, what 
happens inside of the microscope and what an acquired phase contrast image (transmitted light) can look like (Lillebø, made 
in Biorender).   

 

1.7.1 Traction force microscopy 

Traction force microscopy (TFM) is at method used to study mechanical forces in different 

experimental systems. For example, measure the forces a migrating cell exerts on its substrate 

(Lekka et al., 2021). The principle of TFM (shown in figure 8) is that cells are seeded on an elastic 

substrate, like a polyacrylamide gel, with fluorescent beads embedded in it. Forces on the 

substrate, caused by the migrating cells, result in deformation of the gel and displacement of 

the beads. The bead displacements can be recorded in a microscope, followed by calculation 

of traction forces using extensive computer algorithms (Bauer et al., 2021). 

 

 
Figure 8: Overview of Traction Force Microscopy (TFM). This method is for example used to measure the forces a migrating cell 
exerts on its substrate. Cell migration creates bead displacements in polyacrylamide gel, allowing calculations of traction forces 
in substate. Illustration with the courtesy of Anna Lång, inspired by Ulrich S. Schwarz (2015). 
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1.8 Aims of the thesis 

The aim of this research project was to understand how changes in physical forces are coupled 

to molecular mechanisms that drive mechanical processes like cell migration and tissue 

remodeling. It has been shown that monolayers of quiescent human keratinocytes show 

collective migration after stimulation with serum. Prior to cell migration, an amplification of 

traction forces appears in the cell sheet (Lång et al., 2018). Our aim was to discover if the same 

pattern could be found in other cell types, and if this is a general mechanism of cells that exit 

quiescence. To do so, we performed microscopy-based methodologies for mapping 

physiological forces and dynamics in living cells originating from urinary bladder cancer 

patients. 

 

2 Materials and methods 

2.1 Cell culture 

2.1.1 Cell lines and culture conditions  

Three different urinary bladder cancer cell lines were used in this project. The cell lines are 

SW780 (CRL-2169™; ATCC), 5637 (HBT-9™; ATCC), and T24 (HBT-4™; ATCC), and they all 

originate from human urothelial carcinomas.  

 

The optimal incubation growth conditions for these cell lines are 37 °C and 5% CO2. The SW780 

cell line was cultured in Dulbecco's Modified Eagle Medium (DMEM; Gibco™), 5637 in RPMI 

1640 with L-glutamine (L0500-500; Biowest), and T24 in McCoy´s 5A (modified) medium 

(12330031; Gibco™). Each medium was supplemented with 10% fetal bovine serum (FBS; 

Sigma-Aldrich) as nutrition, and 1% penicillin/streptomycin (PenStrep; Gibco™) to prevent 

bacterial growth. 

 

2.1.2 Cell cultivation and passaging 

The cultivation of the cancer cells was done in T75 cell culture flasks (156499; Thermo Fisher 

Scientific) with the preferred growth medium (see section 2.1.1). Cell cultivation was done by 

regularly passaging of cells and daily monitoring them to ensure an optimal growth rate and 

high cell viability. The cells were monitored daily by observing the color and the clearness of 
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the growth medium to ensure that the culture was not contaminated. As well as ensure that 

there were mitotic cells and few dead cells in the culture flasks. 

 

The cancer cell lines were passaged when the culture reached 70 – 90% confluence. Firstly, the 

growth medium in the T75 flasks was removed and cells washed twice with 6 mL of pre-warmed 

PBS (PBS, Appendix A). Washing with PBS contributed to the removal of dead cells and FBS 

(which would otherwise inhibit the effect of trypsin on the cells). Secondly, the cells were 

trypsinized using 2 mL of trypsin (0,05% Trypsin-EDTA (1X); Gibco™) in order to detach the cells 

from the plastic surface. The cells were then placed in the incubator until detached from the 

surface. This process was monitored under the microscope, and when the cells were rounded 

up and floating around by tapping or tilting on the flask, 8 mL of pre-warmed growth medium 

with 10% FBS was added to neutralize the trypsin. Medium and trypsin were resuspended with 

a pipette to separate the cell clumps into single cells. Finally, the cells were splitted in a ratio of 

1:5 in a total volume of 15 mL. However, when the culture does not reach the desired 

confluence, the range for splitting cells was 1:2 and to 1:5. 

 
2.2 Live cell imaging of migration pattern 

Several migration assays were performed. These experiments aimed to inspect the migration 

pattern of the cell lines before and after starvation, and re-stimulation. The cell lines were 

either exposed to serum deprivation and then re-stimulated with growth mediums containing 

15% FBS, or seeded in 96 well plate with normal growth medium (no starvation). These live cell 

migration experiments were performed in the following steps (see figure 9); collagen IV coating 

of multiwell plates, cell counting, diluting cell solutions, cell seeding in plates, cell starvation, 

re-stimulation with serum, and finally live cell microscopy. Live cell imaging was performed 

using the ImageXpress® Micro Confocal high-content Imaging System (Molecular Devices). 

 

2.2.1 Collagen IV coating  

Prior to live cell imaging experiments, the 96-well Greiner Sensoplates with glass bottom 

(M4187-16EA, Merck Life Science (#655892, Greiner Bio-One)) were coated with collagen IV to 

ensure attachment of the cells to the glass surface. A solution of collagen IV was prepared by 

diluting the stock (1 mg/mL collagen IV, C7521, Merck) 1:50 in sterile PBS. The final 

concentration of collagen in each well was 20 µg/mL. 100 µL of the collagen IV solution was 
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transferred into each well and the plate sealed with parafilm to prevent evaporation of the 

solution. The plate was stored in the fridge overnight at 4°C, to ensure the collagen attach to 

the surface, and later cells have a layer of collagen to attach to. Before seeding of cells in the 

96-well plates, described in section 2.2.3, each well was washed twice with 100 µL pre-warmed 

PBS to remove excess collagen IV.  

 

2.2.2 Cell count estimation 

Before seeding cells in the wells of a multiwell plate, or 6 cm dish, the number of cells had to 

be counted. The counting was done by the use of a Countess 3 Automated Cell Counter 

(AMQAX2000; Invitrogen, Thermo Fisher Scientific) and Trypan Blue Stain (0.4%, Invitrogen™). 

The primary purpose of the staining dye was to color dead cells, which provides accurate cell 

count and cell viability.  

 

Prior to cell counting, the cells were treated with trypsin and resuspended in the respective 

growth medium as described in section 2.1.2. The cell suspension was resuspended to ensure 

a suspension of single cells before preparing the stained cell suspension mix. 20 µl of the cell 

suspension and 20 µl of Trypan Blue Stain were added into an Eppendorf tube, and the mixture 

was homogenized. 10 µl of the mix was transferred to each of the chambers of a disposable 

slide (Countess Cell Counting Chamber Slides, Invitrogen, Thermo Fisher Scientific).  The 

disposable slide was placed in the cell counter, and the number of cells per mL was 

automatically estimated. 

 

2.2.3 Cell seeding in 96-well plate 

To execute seeding into a 96-well plate, the cells were washed and treated with trypsin, as 

described in section 2.1.2. Subsequently, the cells were counted to calculate the cell suspension 

and growth medium needed to have the desired number of cells in suspension. The intention 

was for the suspension to contain 600.000 cells in a volume of 900 µL, as shown in figure 9. To 

calculate the amount of cell suspension needed in the solution used for seeding, equation 1 

was used. 

 

 𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑐𝑒𝑙𝑙	𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = !"#$%&	()	*%+,&%*	-%..+	
/(01.	-%..	-("20

                                          (1) 
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By subtracting the volume of cell suspension from the total desired volume, 900 µL, the amount 

of growth medium needed is also revealed. The determined volume of cell suspension and 

growth medium was added to an Eppendorf tube to make the dilution series. The dilution series 

was created by adding 450 µL of growth medium to another eleven Eppendorf tubes and then 

transferring 450 µL of cell suspension from the first tube to the second, then mixing the cell 

suspension and growth medium by pipetting the solution repeatedly up and down. 

Subsequently, 450 µL of cell suspension in the second tube was transferred into the third tube 

and so on. When the dilution series was prepared, the PBS was removed from the wells, and 

150 µL of each dilution series added to the respective wells, see figure 9. 

 

 
Figure 9: Illustration of the experimental setup of live cell migration experiments. The cultured cells were counted, then diluted 
to a desired number of cells. Cells were then seeded into a 96-well plate and incubated overnight to produce a confluent cell 
sheet. Moreover, the cells were starved to replicate quiescent cells before stimulation. The different shades of red in the figure 
demonstrate the dilution of cell numbers in each well. After stimulation, live cell imaging was performed to monitor cell 
movement. Created with BioRender.com 

 

2.2.4 Cell starvation and re-stimulation of cells 

Cell starvation by serum deprivation induces a cell state called quiescence, where the cells are 

non-dividing. Firstly, the cells were washed twice with pre-warmed serum-free medium, and 

then serum-free medium was added to each well. After changing to serum-free medium, the 
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starved cells in wells were placed in the incubator and cultured at 37 °C and 5% CO2 for one 

week. Changing the growth medium was performed by using a multichannel pipette. This was 

done carefully, especially to avoid touching the bottom of the wells, because it could cause 

scratches in the cell sheet and affect the migration during live cell imaging.  

 

Before performing live cell imaging, the starved cells in the 96-well plate were re-stimulated 

with serum-containing medium. The cells were washed with serum-containing medium using a 

multichannel pipette.  

 

2.2.5 Live cell imaging microscopy 

Live cell imaging was performed using the ImageXpress Micro Confocal high-content imaging 

microscope, controlled by the MetaXpress software (Molecular Devices). The system was 

equipped with a 20x Ph1 S Plan Fluor ELWD ADM 0.45 NA Nikon air objective with a phase 

contrast ring and transmitted light, and an environmental control gasket that maintains 37°C, 

proper humidity and 5% CO2. Image acquisition was carried out in widefield mode, with a 

camera binning of 2 (pixel size of 3.367 μm x 3.367 μm). 4 sites per well were acquired during 

a period of 30 hrs and a time interval of 4 minutes was used. Acquired time lapse movies were 

analyzed using the TrackMate plugin in the Fiji Image J software (section 2.2.6).  

 

The 96-well plate containing serum-stimulated cells was placed on the microscope stage and 

adopted to the microscope environment for 30 min prior to image acquisition. The plate must 

have the same temperature as the microscope to ensure optimized focusing during acquisition.  

Temperature changes in the plate and/or instrument will affect the focusing on the samples 

and the quality of the data and data analysis.  

 

2.2.6 Image processing  

The acquired images for each well, generated from the ImageXpress Micro Confocal 

Microscope, were organized in time points. Images were sorted by placing all time points from 

one well in the same folder by using the Python-based script, file_sorting.py (Appendix B.1). 

Moreover, the data could be transported to Fiji ImageJ software (Tinevez, 2017) for further 

analysis. Fiji ImageJ offers different features for image adjustment; performing manual tracking 

of cell movements, visualizing cell migration patterns, generating combined movie files, and 
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more. Cell migration patterns were further analyzed using manual tracking with the TrackMate 

plugin in Fiji ImageJ (Fazeli, 2020). Graphs showing average cell migration speed over time were 

generated using an in-house Python-based script (Appendix B.2). 

 

2.2.7 PIV analysis 

PIV (Particle image velocimetry) analysis was performed in order to describe the magnitude 

and directionality of cell migration. The cells were observed in ImageXpress Micro Confocal 

high-content imaging microscope (Molecular Devices) as mentioned in section 2.2.5. The data 

obtained were analyzed with in-house Python-based scripts using PyCharm. The scripts used 

for the analysis were file_sorting.py and PIV_batch.py, all of the scripts can be found in 

appendix B.  

 

The single images acquired from MetaXpress software were sorted as mentioned in section 

2.2.6 above. Analyses were performed within a selected rectangular area of each single image. 

Within this area, vectors were generated to visualize the velocity fields at a given time point 

after stimulation, as well as the migrating direction and speed of the cells in the cell sheet.  

 

2.3 Traction forces in cell monolayers 

The Traction force microscopy experiment was performed corresponding to the protocol 

modified by Lång, 2021. 

 

2.3.1 Preparation of collagen IV-coated polyacrylamide gels 

Collagen IV-coated polyacrylamide (PAA) gels were prepared in a 12-well glass bottom 

multiwell plate (P12G-1.5-14-F, MatTek Corporation). A mixture of Bind-Silane (GE17-1330-01, 

Merck) : ethanol : acetic acid at a 1:12:1 ratio was mixed and transferred to the 12-well MatTEK 

plate, and activated the glass bottom for 4 min, then washed twice with absolute ethanol. 4.069 

kPa polyacrylamide gels were prepared by mixing 93.75 µl 40% (7.5%) acrylamide solution (161-

0140, BioRad), 37.5 µl 2% (0.15%) Bis-solution (161-0142, BioRad), 2 μL (0.4%) Carboxylate-

modified fluorescent latex beads (FluoSpheresTM Carboxylate-Modified, 0.2 μm, 580/605; 

F8810, Molecular Probes), 2.5 μL 10% Ammonium Persulfate (APS, 0.05%, BioRad), 0.25 μL 

100% tetramethylenediamine (TEMED, 0.05%, T-9281, Sigma) and 364 μlLMQ-H2O. 15 µl gel 
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solution was transferred to each well and then covered with a 12 mm in diameter, circled 

GelBond film (801129833, Cytiva), with the hydrophobic side facing down.  

 

The gels in the 12-well MatTek plate were polymerized for 40 min upside down. 2 mL 10x PBS 

was added to each well, then rested for 40 min before removing the GelBond films. Gels were 

then washed twice with 1x PBS in 4 min each time, and then treated with 40 µl 4% Sulfo-

SANPAH ((sulfosuccinimidyl 6-(4'-azido-2'- nitrophenylamino) hexanoate (22589; Thermo 

Fisher Scientific™) for 4 min under UV light. The used Sulfo-SANPAH was replaced with fresh 

Sulfo-SANPAH, and again treated with UV-light for 6 min. Subsequently, the Sulfo-SANPAH was 

removed and the gels were washed twice with 1x PBS in 4 min each time, and then coated with 

0.1 mg/mL collagen IV (C7521, Merck), and stored at 4 °C overnight. Prior to Traction force 

microscopy (TFM) experiment, the gels were washed twice in 1x PBS and then stored at 4 °C in 

1x PBS.  

 

2.3.2 Cell seeding on polyacrylamide gels 

Cell seeding in 12-well MatTEK plate was performed as described in section 2.2.2. However, the 

desired number of cells in the first well was 400.000 cells in a volume of 2 mL, and the cell 

suspension was transferred directly into the well and filled with pre-warmed serum-containing 

medium. The number of cells was halved for each well it was transferred to. The number of 

cells in the respective wells were 200.000, 100.000 and 50.000. The day after seeding, cells 

were put on serum-free medium and kept in the incubator at 37 °C and 5% CO2 for a week, 

prior to TFM. 

 

2.3.3 Traction force microscopy (TFM) 

The TFM experiment was performed using the Zeiss AxioObserver.Z1 microscope (Zeiss), 

controlled by the Zeiss Zen software. The microscope was equipped with a CO2 incubation 

chamber, a Colibri 7 LED light source, and a 10x 0.5 NA FLUAR air objective. The 12-well MatTEK 

plate containing starved cells was placed on the microscope stage and adopted to the 

microscope environment for 1 h. We acquired z-stacks on the samples over time, using a 

fluorescence channel for detection of the beads (580/605 nm) and a phase contrast 

(transmitted light) channel for the cells. Moreover, to obtain a “before stimulation” reference, 
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3-4 consecutive frames, 16 min intervals between frames were captured. The imaging was then 

paused and 1 mL 30% FBS containing medium was added to each well in order to activate the 

cell sheets. After a 30h of imaging, we stopped the time lapse and trypsinized the cells to make 

them detach from the gel. We then acquire another round of z-stack images on the relaxed gel. 

These are then called reference images. For each time point, 4 sites per well were captured. 

The 10x objective generated a field of view of 1331×1331 μm and for each site a stack of 6 z-

planes was collected with a z-step size of 2.2 μm. For each z-stack, the middle z-plane was 

focused at the center of the gel surface.  

 

Calculation of traction forces for each site was done by a maximal intensity projection (MIP) 

algorithm. The bead displacement traction forces and tension maps were predicted using 

pyTFM (Bauer et al., 2021). Acquired time lapse images were subjected to image registration 

using the descriptor-based series registration plugin, macro_concatenate.ijm (Appendix B.3.1)  

and macro_TFM.ijm (Appendix B.3.2) in the Fiji Image J software. The registration plugin,  

macro_concatenate.ijm was used to combine “starved, activate 1, activate 2 and trypsin” files 

from respective sites into one time lapse per site. Additionally, macro_TMF.ijm removes the 

"trypsin" image from the rest of the respective time lapse. The bead displacement, traction 

forces and tension maps were predicted using open source codes from pyTFM (Appendix 

B.3.3). 

 

2.4 Visualization of cancer cells by immunofluorescence (IF) staining 

Visualization of actin networks, cell nucleus, and the detection of stem cell markers was done 

by immunofluorescence (IF) staining and confocal microscopy using the Leica TCS SP8 

microscope (Leica Microsystems). The SW780 and T24 cell lines were fixed and then stained 

with different antibodies. 

 

2.4.1 Preparation and fixation of cells for IF staining 

Cells were grown, fixed, and stained with different antibodies on 12 mm round glass coverslips 

(VWR). Cell seeding and serum starvation in 6 cm Petri dishes (Falcon® Cell Culture Dish) were 

performed as described in section 2.2.3 and 2.2.4. However, cells were seeded in dishes with 

coverslips attached to the bottom of the dishes at 2.5 million cells in a total volume of 4 mL 
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medium per dish. Prior to the cell fixation, it was prepared starved cells and 24 h serum-

stimulated cells of both cell lines. 

 

The cell sheets on coverslips were fixed with 2 mL of 4% paraformaldehyde (PFA; 158127, 

Merck Life Science) for 10 min on ice. After fixation, cells were permeabilized in 2 mL of 0.25% 

Triton X-100 (T8787, Merck Life Science) for 4 min on ice, to open pores in the cell membrane. 

PBS (Appendix A) was the dilution medium for both reagents and was also used in the multiple 

washing steps required.  

 

2.4.2 Protocol for IF staining 

Before IF staining, fixed cells were treated with 0.5% Bovine serum albumin (BSA; Cohn fraction 

V, B2000, Saveen Werner AB) in PBS. BSA works as a guide, where it prevents antibodies from 

unspecific binding. 

 

The primary antibodies used were Rabbit anti-Human SOX2 (ab97959; Abcam, 1:500) and Rat 

anti-Human Ki67 (14-5698-82; Thermo Fisher Scientific, 1:500). The secondary antibodies 

used were Goat anti-Rabbit Alexa Fluor 594 (A11037, Invitrogen, 1:200) and Goat anti-Rat 

Alexa Fluor 555 (A21434, Invitrogen, 1:200). All antibodies were diluted in 0.5% BSA. Initially, 

primary antibodies were added to the starved and re-stimulated cells. SOX2 was added to the 

first half of the samples, and Ki67 was added to the second half of the samples. Accordingly, 

the samples were placed in a refrigerator, at 4°C overnight. Subsequently, a repetitive 

process was done with the respective secondary antibodies and then incubated for 1 h at 

37°C. The cells were then incubated with Phalloidin-iFluor 488 (ab176753, Abcam, 1:1000) at 

room temperature in the dark for 45 min. The fluorescent reagent contains Phalloidin 

conjugates that bind to actin filaments in the cells. Finally, the glass coverslips were attached 

to the microscope slide (Thermo Fisher Scientific) by using Vectashield® Antifade mounting 

medium with DAPI (4’,6- diamidino-2-phenylindole; H-1200-10, Vector Laboratories). The 

medium sticks the cell sheets on the coverslips against the microscope slide. DAPI is a 

fluorescent DNA stain that colors the cell nuclei by binding to A-T regions of DNA. The 

coverslips were washed 2-4 times with PBS between each step from staining with antibodies 

and incubation with Phalloidin to assembling of coverslips to microscope slides. 
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2.4.3 Confocal microscopy  

The Leica TCS SP8 microscope was equipped with a 40x 1.3 NA oil immersion objective, a white 

light continuous laser (WLL) and a 405 nm UV laser. The Phalloidin signal was detected with the 

488 nm laser line using the WLL, and DAPI signal was detected with the 405 nm UV laser. The 

594 and 555 nm WLL laser lines were used to detect SOX2 and Ki67 signals respectively. Image 

acquisition was performed sequentially for each channel using the 40x 1.3 NA oil immersion 

objective and hybrid detectors. Laser intensities were set for the FBS stimulated sample that 

showed the strongest fluorescence intensity in the 488 nm channel (Phalloidin). The instrument 

settings of Phalloidin and DAPI were kept constant throughout the experiment, while settings 

for the secondary antibody signals were switched, depending on the sample analyzed. 

3 Results 

To study if the mechanism seen in the monolayers of quiescent human keratinocytes is similar 

in other types of cells, urinary bladder cancer cell lines were starved for a week before they 

were re-stimulated. Experiments were performed with different concentrations of the cell 

lines 5637, T24, and SW780, seeded in collagen-coated wells and wells with polyacrylamide 

gels to examine cell migration and traction forces respectively.  

 

3.1 Cell migration pattern 

In order to observe the cell migration pattern, live cell imaging with widefield microscopy was 

used. The cells were stimulated after the quiescent cell state was established, and the cell 

movements were captured in the microscope for 24-30 hrs. The cell migration pattern was also 

visualized using PIV analysis of time lapse videos.  

 
3.1.1 Cell migration patterns of asynchronously growing cancer cells 

For the purpose of observing the difference between cell migration of cells growing in culture 

(asynchronous) and that of cells that had been starved and then re-stimulated, experiments 

were conducted in which cells were seeded in 96-well plates without starvation and then 

subjected to live cell imaging for 24 hrs. The graph in figure 10 shows the average speed of the 

cells over the course of 10 hrs. As can be seen in the graph, cell line 5637 migrates far more 

rapidly than the other cell lines in the experiment. The migration speed, however, was rather 

constant in cell cultures that have not been starved. This applies to all the three cell lines, which 
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is why they were analyzed for a shorter period of time compared to starved and re-stimulated 

cells. 

 
Figure 10:. The average migration speed of the cell lines SW780 (blue), 5637 (orange), and T24 (green) over a ten-hour period. 
The mean values are shown as the dark lines, while the area of a lighter color is the standard deviation. 

 

3.1.2 Cell migration patterns of quiescent and re-stimulated cancer cells  

In order to observe the effect of quiescence on cell migration, experiments were conducted in 

which different concentrations of cells were starved for one week before being re-stimulated 

with FBS. This would induce quiescence in cells, that subsequently re-enter the cell cycle upon 

stimulation. To observe the migration of quiescent cells, images were acquired every fourth 

minute over a one-hour period. After that, the cells were stimulated with 15% FBS, and 

another round of time-lapse images was acquired for a period of 30 hrs so that the migration 

and initiation of cell division could be observed. Cell migration patterns were analyzed using 

manual tracking with the TrackMate plugin in Fiji ImageJ (Tinevez, 2017).  

 

The results presented in figure 11, indicate that there is a velocity difference between 

quiescent cells and stimulated cells. The starved cells (figure 11A) have a relatively constant 

speed, similar to the cells that are growing asynchronously (figure 10). However, the 

migration speed was significantly lower and the difference between the cell lines is notably 
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smaller for the starved cells (compare figure 10 and 11A). The graph for the re-stimulated 

cells (figure 11B) shows a quick response in migration for the SW780 cell line. The response in 

the SW780 cell line was much faster than for the other two cell lines, however, both of the 

other cell lines show an increase in migration after stimulation. This response is similar to the 

one seen in keratinocytes, but not identical.  

 

 
Figure 11: Starved and stimulated cell migration in quiescent cell sheets. The average speed (measured in µm/h) of the cell 
lines SW780 (blue), 5637 (orange), and T24 (green) over a 30 hrs period, in a density of 12.500 cells/well. The mean values are 
shown as the dark lines, while the area of a lighter color is the standard deviation. 

 

After live cell imaging, the python-script in Appendix B.1 was used to sort the data. All the 

images from the same site of the same well were put together to make videos. The videos of 

the cells make it possible to see the migration pattern and direction. Representative time 

lapse videos were selected and PIV analysis performed using the in house python script 

Quiver.py (Appendix B.4). It was observed that cells of the T24 cell line migrated as single 

cells. The SW780 showed a pattern of collective migration, and lastly, the 5637 cell line had a 

partial collective migration, yet the cells did not move in a clear defined direction for longer 

periods of time. The movement of the cells is visualized in the graphs of figures 12, 13 and 14.  
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Figure 12: PIV graph showing cell migration of SW780. The migration pattern of the cells is illustrated as arrows, to show the 
direction and speed of cell movement at a given time point after stimulation. This plot is based on PIV analysis, where the 
vector components in the vector field are interpreted as cells in the cell sheet. The order of the graphs A to D is the order the 
images were taken in. The SW780 cells are clearly moving with collective migration throughout the hours of analysis.  

 

 
Figure 13: PIV graph showing cell migration of 5637. The migration pattern of the cells is illustrated as arrows, to show the 
direction and speed of cell movement at a given time point after stimulation. This plot is based on PIV analysis, where the 
vector components in the vector field are interpreted as cells in the cell sheet. The order of the graphs A to D is the order the 
images were taken in. The 5637 cells migrate in a mix of single cell- and collective migration. All the graphs, A-D, shows 
tendencies of both collective migration and single cell migration, as well as both fast and slow-moving migration. 
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Figure 14: PIV graph of cell sheet migration of T24. The migration pattern of the cells is illustrated as arrows, to show the 
direction of cell movement at a given time point after stimulation. This plot is based on PIV analysis, where the vector 
components in the vector field are interpreted as cells in the cell sheet. The order of the graphs A to D is the order the images 
were taken in. The T24 cell line migrated as single cells as shown in A, single cells do not maintain cell-to-cell interaction, and 
migrate alone, in a disordinate pattern.  

 

3.2 Traction forces impact on cell migration 

Cancer cells were seeded onto collagen IV-coated polyacrylamide gels to detect traction 

forces on the gels, caused by the migrating cells, using a widefield microscope. We acquired z-

stacks on the samples over time, using a fluorescence channel for detection of the fluorescent 

beads within the gels and a phase contrast channel for visualizing the cells. The cells were 

starved for a week to initiate the quiescent state. Before re-stimulation, images of starved 

cells were acquired, since previous studies in keratinocytes had shown that amplification of 

traction forces grew exponentially after adding serum. After the serum-containing medium 

was added to the cells, images were acquired over a period of 30 hrs to detect forces on the 

gels.  

 

Figure 15 shows the variety in amplification of traction forces for the three cell lines. The 

traction magnitude, measured in pascal (Pa), from zero to 30 hrs after stimulation is shown. 

There is an immediate amplification of forces shown for all cell lines studied, and the traction 
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magnitude subsequently decreases and become stabilized, similar to observations in 

keratinocytes done by Lång, 2021. The 5637 and T24 cell lines show a higher amplification 

compared to SW780. However, T24 has the highest intensity of traction magnitude overall. 

After approximately 7-8 hrs of image acquisition, the forces instantly decrease and become 

stabilized. Similar to T24, 5637 had an intense amplification and a gradual decrease in traction 

magnitude. Finally, the SW780 cell line was the least intense, but same as T24 the forces 

decrease quickly and even out. Furthermore, on the bases of what was described in section 

1.2.1, the cancer cells behaved similarly to keratinocytes, when the cells start migrating and 

dividing, the forces on substrates decline. 

 

 

 
3.3 Immunofluorescence (IF) staining  

During the TFM experiment, a flower-like structure appeared in the SW780 cell line 

approximately 10 hrs after re-stimulation with FBS (figure 16). An IF experiment was 

performed to examine if the cells in these structures contained stem cell and/or mitotic 

markers. The antibodies used were raised against human SOX2 and Ki67. SOX2 is an 

important transcription factor for stem cells, and Ki67 is a marker for cell division 

Figure 15: Measurements of the traction forces in the cell lines SW780 (blue), 5637 (orange), and T24 (green) over a 30 hrs 
period. The mean values are shown as the dark lines, while the areas of a lighter colors are the standard deviations. The 
traction forces are measured in Pascal.  
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(proliferating cells). It was also added reagents to visualize the actin networks (Phalloidin 488) 

and cell nuclei (DAPI). The experiment was performed on the SW780 and T24 cell lines, where 

the cells were seeded into two Petri dishes for each cell line (four Petri dishes in total) and 

then starved for a week. One petri dish for each cell line was then stimulated 24 hrs before 

fixation and IF staining. Cells in the other two dishes were not stimulated before fixation and 

staining. IF staining was then analyzed using confocal microscopy. The experiment was run 

twice. The first time most of the cells detached from the coverslips, which had not been 

coated with collagen IV. The second time, coverslips were coated to avoid the cells from 

detaching, however, this was not successful and most of the cells detached once more. 

Hence, there was no result from this experiment.  

 

 
Figure 16: f lower-like structure appearance in the SW780 cell line with density of 25.000 cells/well. The structure appeared 
after approximately 10 hrs of imaging and disappear after approximately 21 hrs. The structure appears in the left corner of 
the images, however, there were several structures like this one seen in different places of the well. The images are listed in 
chronological order, where the image to the left is taken right before the structure started appearing, and the image to the 
right shows when the image had vanished.  

 

4 Discussion 

This study aimed to investigate the migration pattern and physical forces in cancer cell lines 

originating from urinary bladder cancer patients. Further, we wanted to see if the same 

migration pattern found in monolayers of quiescent human keratinocytes was detectable in 

other types of cells. Our results show that after re-stimulating quiescent bladder cancer cells, 

all three cell lines appear to have an increase in migration speed. They also showed an 

immediate amplification of traction forces after re-stimulation.  
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4.1 Behavior of urinary bladder cancer cell lines  

Live cell imaging was the method used to analyze cell migration in this study. Tracking of both 

not starved cells and starved cells, followed by re-stimulation provided us with an 

understanding of the migration pattern in these cancer cell lines. The study shows that the 

cancer cells behave in a similar way as keratinocytes, considering the immediate burst of 

traction forces after re-stimulation, followed by a decrease of traction forces once the cells 

start to migrate. Data shows that the migration and traction forces follow the same pattern, 

however, the cancer cells do not have as strong of a reaction as the keratinocytes, as well as 

the results are not as long-lasting. In addition, the cancer cells start to migrate shortly after 

re-stimulation, whereas keratinocytes take longer time to exit quiescence and start migrating.  

One reason why the cancer cells have a less distinct, and shorter-lasting reaction, might be 

because these cells do not bind as firmly to each other and the substrate as keratinocytes. 

Another possible cause could be that cancer cell lines might be more heterogenic than the 

keratinocytes.  

 

Both the graphs (Appendix C) and time-lapse videos of the cell migration show that in the wells 

with a higher density of cells, the cells showed a vibrating migration pattern rather than moving 

far, which could be due to limited space to move. Also, the cells seem to easily establish cell-

to-cell interaction with neighboring cells and initiate collective migration, coordinately within 

the group. In addition, the cells migrating collectively were mostly circulating around the same 

area rather than migrating at longer distances. While in wells where there are fewer cells, the 

single cells migrated much faster and easier than groups of cells. Furthermore, we observed 

that single cells could move between groups of cells (changing neighbors), this was observed 

mostly in the cell lines T24 and 5637 with asynchronously growing cells. The complementary 

data (graphs) showing migration of starved and re-stimulated cells are shown in Appendix D. 

 

The time lapse videos show different patterns when it comes to collective- and single-cell 

migration. We observed that all the cell lines had different patterns; T24 showed migration as 

single cells, SW780 showed a pattern of collective migration and 5637 had a partially collective 

migration, as the cells moved together but not in one particular direction and showed 

movements reminding of contractions. In figure 11 B, the graph of the re-stimulated cells shows 

that the cell lines T24 and 5637 have a slow and steady increase in migration. The cell line 
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SW780, however, shows a rapid increase before it slows down. There is a possibility that this is 

due to the SW780 being the only cell line with a distinct collective migration.  

 

4.2 Measured traction forces  

TFM was performed in order to map the physical forces of cancer cells that contribute to cell 

motility. The results show a similar reaction in all the cell lines, they all exhibit an evident boost 

of forces immediately after stimulation, in the same way as for keratinocytes. The quantity of 

forces, however, is distinct for the different cell lines. The cell line with the greatest 

amplification of forces is T24. On the other hand, the SW780 had a significantly lower increase 

of traction forces. Finally, 5637 had an increase in forces that was intermediate compared to 

the other two cell lines. There is a possibility that this boost of forces can be related to the 

migration pattern, as the cell line with single-cell migration (T24) has the highest peak and the 

cell line with the distinct collective migration (SW780) has the least evident peak. However, this 

should be studied further, and the experiment should be repeated. The keratinocytes show a 

huge amplification of forces and start migrating collectively many hours after stimulation. 

 

Graphs of cell migration (see figure 11B) and traction forces (see figure 15) indicate that these 

features may be connected. As mentioned, T24 has the highest amplification of traction force 

overall but is also the one with the least migration average speed over time. The same pattern 

of connection applies to 5637 and SW780. SW780 had the least intensity of traction forces, but 

the most rapid increase of migration average speed in the early stage after re-stimulation. This 

may indicate that the traction forces have an impact on the migration speed.  

 

4.3 Comparison of physical forces in cell sheets of urinary bladder cancer cells and 

keratinocytes 

As stated in section 4.1, we can see from the results that the bladder cancer cells are showing 

a pattern of physical forces much like the one seen in keratinocytes. Having said that, there 

are still some differences causing the cancer cells to have a reaction of a smaller magnitude 

and not as long-lasting. One factor may be that keratinocytes have a better attachment to 

both the substrate and neighboring cells. The cancer cells seemed to be more independent 

leading to fewer interactions with the surrounding cells and substrate.  
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An epithelial-mesenchymal transition (EMT) may also be a factor affecting these cells. This 

process may lead to the epithelial cells (of the urinary bladder) expressing a mesenchymal cell 

phenotype, which can include increased migration capacity (Kalluri, 2009). The transition to a 

mesenchymal cell phenotype also participates in making the cancer cells more independent 

of surrounding cells. As the T24 cell line is the only cell line with clear single cell migration, 

and also the cell line that is the most invasive (Appendix E), these cells may be affected by a 

transition like the EMT.  

 
4.4 Using immunofluorescence to investigate possible stem cell markers  

A flower-like structure was observed in SW780 cell sheets during the TFM experiment, and 

confocal microscopy was performed to investigate the content of these structures. It was 

performed two repetitive experiments of IF staining and analysis by confocal microscopy, since 

the first experiment was unsuccessful due to not enough cells remaining in the samples. Hence, 

the results became unsatisfactory. Unfortunately, the second experiment was debilitated, all 

cells were also washed away from the coverslips during fixation or washing with PBS between 

steps (section 2.4.2).  

 

In comparison to keratinocytes, it seems like urinary bladder cancer cells do not effortlessly 

bind to either substrate or neighboring cells. Hence it is a possible reason for an unsuccessful 

experiment with the thought that urinary bladder cancer cells are no longer behaving as 

epidermal cells. This may indicate the experiment was not suitable for these types of cells. 

Other possible sources of error can be that cell lines, in general, might change their 

characteristics if they are kept in culture and passaged over an extended period of time. 

Additionally, cells were cultured in much larger growth area for IF experiments, compared to 

cell migration experiments. This could affect the quality of the cells and even the cell´s ability 

of attach to the surface. 

 

5 Conclusion  

The purpose of this study was to map the physical forces and dynamics of cancer cells isolated 

from urinary bladder cancers. Serum deprivation of cells and subsequent re-stimulation with 

serum-containing medium led to activation of increased cell motility. We cannot conclude that 
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all the cell lines have the exact same patterns of forces, but we do see both similar patterns 

among the different cancer cell lines, as well as patterns close to what has been discovered in 

keratinocytes. This common pattern shows a rapid increase of traction forces immediately after 

re-stimulation, in addition to a visible increase in migration following the amplification of forces. 

In conclusion, we see that starving and re-stimulating cells give a reaction of increased traction 

forces and migration. In addition, we cannot conclude with a common pattern when it comes 

to collective and single-cell migration, as all the cell lines exhibited different patterns.  

 

6 Future perspectives 

To further investigate and obtain a deeper understanding of the physical forces of cancer cells, 

and other cell types as well, we should perform multiple experiments. To begin with, we would 

like to repeat the traction force microscopy and live-cell imaging experiments on the urinary 

bladder cancer cell lines. These were only executed once, so it would be good to see if the 

results shown in this thesis could be verified. Further, the cells had been in culture for a while 

when some of the experiments were done, including the IF experiments. This may have an 

impact on the results; hence, we should try to do the experiments shortly after thawing the 

cells.  

  

This project was executed to determine whether a similar mechanism as the one found in 

keratinocytes also was present in the urinary bladder cell lines. It would also be interesting to 

perform live cell imaging and traction force microscopy experiments on other cell types, 

including both other types of cancer cell lines and completely different cell types, like 

leukocytes (white blood cells). Not to mention, we could do an examination of the IF staining 

experiment with other types of cells. We should compare our cell lines with other cell types 

and investigate if our experiment was unsuccessful due to the practical execution or suitability 

of the cells in this experiment. Additionally, further research concerning the flower-like 

structures in the SW780 cell line would be interesting to investigate. As the fixation and IF 

staining was unsuccessful, expressing fluorescently labeled proteins in the cells (stable cell 

lines) to study live cells can be a potential future experiment.  
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Appendix A: Recipe for PBS buffer 

PBS (Phosphate-buffered Saline) 

NaCl: 137 mM  

KCl: 2.7 mM  

Na2HPO4: 10 mM  

KH2PO4: 1.8 mM  
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Appendix B: Python-based scripts 

B.1: Script for sorting data – file_sorting.py 
import os 
import shutil 
import sys 
 
''' 
This program sorts files from ImageXpress 96-well time laps experiments intoto folders where each folder represents all timepoints from one 
well. To use the program, place all TimePoint folders into the folder called "test". The "Wells"-folder containing all of the 96-well subfolders 
will be generated automatically. 
 
''' 
 
Wells = "C:\\Users\\huygens\\Emma_Linda\\Exp2_stimulated_edge\\Wells\\" #Dont change \\Wells\\ 
 

os.makedirs(Wells) 
 
#make new folder names 
folder_name = ["A01", "A02", "A03", "A04", "A05", "A06", "A07", "A08", "A09", "A10", "A11", "A12", "B01", "B02", "B03", "B04", "B05", "B06", 
"B07", "B08", "B09", "B10", "B11", "B12", "C01", "C02", "C03", "C04", "C05", "C06", "C07", "C08", "C09", "C10", "C11", "C12", "D01", "D02", 
"D03", "D04", "D05", "D06", "D07", "D08", "D09", "D10", "D11", "D12", "E01", "E02", "E03", "E04", "E05", "E06", "E07", "E08", "E09", "E10", 
"E11", "E12", "F01", "F02", "F03", "F04", "F05", "F06", "F07", "F08", "F09", "F10", "F11", "F12", "G01", "G02", "G03", "G04", "G05", "G06", 
"G07", "G08", "G09", "G10", "G11", "G12", "H01", "H02", "H03", "H04", "H05", "H06", "H07", "H08", "H09", "H10", "H11", "H12"] 
 
#Iterate through the files in your directory 
for x in range(0,len(folder_name)): 
    if not os.path.exists(Wells+folder_name[x]): 
        os.makedirs(Wells+folder_name[x]) 

 
for Timepoints in range(0, 101): #number of timepoints (must be exact) 
    path = "C:\\ Users\\huygens\\Emma_Linda\\Exp2_stimulated_edge\\TimePoint_"+str(Timepoints+1)+"\\" #Dont change 
\\TimePoint_"+str(Timepoints+1)+"\\ 
    time = "Timepoint_"+"%.3d" % (Timepoints + 1) 
 
 
#make a list of all the flies in a directory and stors it in the variable names 
#Note that the command os.listdi dose not work since the items wil not be iterable 
    names = [] 
    for subdir, dirs, files in os.walk(path): 
        for file in files: 
           names.append(os.path.join(file)) 
 
 
    for files in names: 
        if "A01" in files and not os.path.exists(Wells+"A01/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A01/"+time+"_"+files) 
        if "A02" in files and not os.path.exists(Wells+"A02/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A02/"+time+"_"+files) 
        if "A03" in files and not os.path.exists(Wells+"A03/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A03/"+time+"_"+files) 
        if "A04" in files and not os.path.exists(Wells+"A04/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A04/"+time+"_"+files) 
        if "A05" in files and not os.path.exists(Wells+"A05/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A05/"+time+"_"+files) 
        if "A06" in files and not os.path.exists(Wells+"A06/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A06/"+time+"_"+files) 
        if "A07" in files and not os.path.exists(Wells+"A07/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A07/"+time+"_"+files) 
        if "A08" in files and not os.path.exists(Wells+"A08/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A08/"+time+"_"+files) 
        if "A09" in files and not os.path.exists(Wells+"A09/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A09/"+time+"_"+files) 
        if "A10" in files and not os.path.exists(Wells+"A10/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A10/"+time+"_"+files) 
        if "A11" in files and not os.path.exists(Wells+"A11/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A11/"+time+"_"+files) 
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        if "A12" in files and not os.path.exists(Wells+"A12/"+time+"_"+files): 
            shutil.move(path+files, Wells+"A12/"+time+"_"+files) 
 
 
 
        if "B01" in files and not os.path.exists(Wells + "B01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B01/" + time + "_" + files) 
        if "B02" in files and not os.path.exists(Wells + "B02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B02/" + time + "_" + files) 
        if "B03" in files and not os.path.exists(Wells + "B03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B03/" + time + "_" + files) 
        if "B04" in files and not os.path.exists(Wells + "B04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B04/" + time + "_" + files) 
        if "B05" in files and not os.path.exists(Wells + "B05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B05/" + time + "_" + files) 
        if "B06" in files and not os.path.exists(Wells + "B06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B06/" + time + "_" + files) 
        if "B07" in files and not os.path.exists(Wells + "B07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B07/" + time + "_" + files) 
        if "B08" in files and not os.path.exists(Wells + "B08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B08/" + time + "_" + files) 
        if "B09" in files and not os.path.exists(Wells + "B09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B09/" + time + "_" + files) 
        if "B10" in files and not os.path.exists(Wells + "B10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B10/" + time + "_" + files) 
        if "B11" in files and not os.path.exists(Wells + "B11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B11/" + time + "_" + files) 
        if "B12" in files and not os.path.exists(Wells + "B12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "B12/" + time + "_" + files) 
 
        if "C01" in files and not os.path.exists(Wells + "C01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C01/" + time + "_" + files) 
        if "C02" in files and not os.path.exists(Wells + "C02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C02/" + time + "_" + files) 
        if "C03" in files and not os.path.exists(Wells + "C03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C03/" + time + "_" + files) 
        if "C04" in files and not os.path.exists(Wells + "C04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C04/" + time + "_" + files) 
        if "C05" in files and not os.path.exists(Wells + "C05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C05/" + time + "_" + files) 
        if "C06" in files and not os.path.exists(Wells + "C06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C06/" + time + "_" + files) 
        if "C07" in files and not os.path.exists(Wells + "C07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C07/" + time + "_" + files) 
        if "C08" in files and not os.path.exists(Wells + "C08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C08/" + time + "_" + files) 
        if "C09" in files and not os.path.exists(Wells + "C09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C09/" + time + "_" + files) 
        if "C10" in files and not os.path.exists(Wells + "C10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C10/" + time + "_" + files) 
        if "C11" in files and not os.path.exists(Wells + "C11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C11/" + time + "_" + files) 
        if "C12" in files and not os.path.exists(Wells + "C12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "C12/" + time + "_" + files) 
 
        if "D01" in files and not os.path.exists(Wells + "D01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D01/" + time + "_" + files) 
        if "D02" in files and not os.path.exists(Wells + "D02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D02/" + time + "_" + files) 
        if "D03" in files and not os.path.exists(Wells + "D03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D03/" + time + "_" + files) 
        if "D04" in files and not os.path.exists(Wells + "D04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D04/" + time + "_" + files) 
        if "D05" in files and not os.path.exists(Wells + "D05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D05/" + time + "_" + files) 
        if "D06" in files and not os.path.exists(Wells + "D06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D06/" + time + "_" + files) 
        if "D07" in files and not os.path.exists(Wells + "D07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D07/" + time + "_" + files) 
        if "D08" in files and not os.path.exists(Wells + "D08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D08/" + time + "_" + files) 



 42 

        if "D09" in files and not os.path.exists(Wells + "D09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D09/" + time + "_" + files) 
        if "D10" in files and not os.path.exists(Wells + "D10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D10/" + time + "_" + files) 
        if "D11" in files and not os.path.exists(Wells + "D11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D11/" + time + "_" + files) 
        if "D12" in files and not os.path.exists(Wells + "D12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "D12/" + time + "_" + files) 
 
        if "E01" in files and not os.path.exists(Wells + "E01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E01/" + time + "_" + files) 
        if "E02" in files and not os.path.exists(Wells + "E02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E02/" + time + "_" + files) 
        if "E03" in files and not os.path.exists(Wells + "E03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E03/" + time + "_" + files) 
        if "E04" in files and not os.path.exists(Wells + "E04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E04/" + time + "_" + files) 
        if "E05" in files and not os.path.exists(Wells + "E05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E05/" + time + "_" + files) 
        if "E06" in files and not os.path.exists(Wells + "E06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E06/" + time + "_" + files) 
        if "E07" in files and not os.path.exists(Wells + "E07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E07/" + time + "_" + files) 
        if "E08" in files and not os.path.exists(Wells + "E08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E08/" + time + "_" + files) 
        if "E09" in files and not os.path.exists(Wells + "E09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E09/" + time + "_" + files) 
        if "E10" in files and not os.path.exists(Wells + "E10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E10/" + time + "_" + files) 
        if "E11" in files and not os.path.exists(Wells + "E11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E11/" + time + "_" + files) 
        if "E12" in files and not os.path.exists(Wells + "E12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "E12/" + time + "_" + files) 
 
        if "F01" in files and not os.path.exists(Wells + "F01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F01/" + time + "_" + files) 
        if "F02" in files and not os.path.exists(Wells + "F02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F02/" + time + "_" + files) 
        if "F03" in files and not os.path.exists(Wells + "F03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F03/" + time + "_" + files) 
        if "F04" in files and not os.path.exists(Wells + "F04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F04/" + time + "_" + files) 
        if "F05" in files and not os.path.exists(Wells + "F05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F05/" + time + "_" + files) 
        if "F06" in files and not os.path.exists(Wells + "F06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F06/" + time + "_" + files) 
        if "F07" in files and not os.path.exists(Wells + "F07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F07/" + time + "_" + files) 
        if "F08" in files and not os.path.exists(Wells + "F08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F08/" + time + "_" + files) 
        if "F09" in files and not os.path.exists(Wells + "F09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F09/" + time + "_" + files) 
        if "F10" in files and not os.path.exists(Wells + "F10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F10/" + time + "_" + files) 
        if "F11" in files and not os.path.exists(Wells + "F11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F11/" + time + "_" + files) 
        if "F12" in files and not os.path.exists(Wells + "F12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "F12/" + time + "_" + files) 
 
        if "G01" in files and not os.path.exists(Wells + "G01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G01/" + time + "_" + files) 
        if "G02" in files and not os.path.exists(Wells + "G02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G02/" + time + "_" + files) 
        if "G03" in files and not os.path.exists(Wells + "G03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G03/" + time + "_" + files) 
        if "G04" in files and not os.path.exists(Wells + "G04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G04/" + time + "_" + files) 
        if "G05" in files and not os.path.exists(Wells + "G05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G05/" + time + "_" + files) 
        if "G06" in files and not os.path.exists(Wells + "G06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G06/" + time + "_" + files) 
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        if "G07" in files and not os.path.exists(Wells + "G07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G07/" + time + "_" + files) 
        if "G08" in files and not os.path.exists(Wells + "G08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G08/" + time + "_" + files) 
        if "G09" in files and not os.path.exists(Wells + "G09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G09/" + time + "_" + files) 
        if "G10" in files and not os.path.exists(Wells + "G10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G10/" + time + "_" + files) 
        if "G11" in files and not os.path.exists(Wells + "G11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G11/" + time + "_" + files) 
        if "G12" in files and not os.path.exists(Wells + "G12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "G12/" + time + "_" + files) 
 
        if "H01" in files and not os.path.exists(Wells + "H01/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H01/" + time + "_" + files) 
        if "H02" in files and not os.path.exists(Wells + "H02/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H02/" + time + "_" + files) 
        if "H03" in files and not os.path.exists(Wells + "H03/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H03/" + time + "_" + files) 
        if "H04" in files and not os.path.exists(Wells + "H04/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H04/" + time + "_" + files) 
        if "H05" in files and not os.path.exists(Wells + "H05/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H05/" + time + "_" + files) 
        if "H06" in files and not os.path.exists(Wells + "H06/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H06/" + time + "_" + files) 
        if "H07" in files and not os.path.exists(Wells + "H07/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H07/" + time + "_" + files) 
        if "H08" in files and not os.path.exists(Wells + "H08/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H08/" + time + "_" + files) 
        if "H09" in files and not os.path.exists(Wells + "H09/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H09/" + time + "_" + files) 
        if "H10" in files and not os.path.exists(Wells + "H10/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H10/" + time + "_" + files) 
        if "H11" in files and not os.path.exists(Wells + "H11/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H11/" + time + "_" + files) 
        if "H12" in files and not os.path.exists(Wells + "H12/" + time + "_" + files): 
            shutil.move(path + files, Wells + "H12/" + time + "_" + files) 
 
        print("...done with " + files) 
 
    #os.rmdir(path) 

 

 
B.2: Script for plotting TrackMate data 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import os 
import openpyxl as openpyxl 
 
 
def extract_file_names_from_directory(directory): 
    file_names = [] 
    for subdir, dirs, files in os.walk(directory): 
        for file in files: 
            file_names.append(os.path.join(file)) 
    return file_names 
 
 
def average_single_site(file): 
    df = pd.read_csv(path + file, usecols=["SPEED", "EDGE_TIME"], low_memory=False) 
    column = df["EDGE_TIME"] 
    column = column[3:].to_numpy(dtype=float) 
    range = np.arange(0.5, column.max() + 1, 1) 
    average_list = [] 
    for i in range: 
        time_point = df.loc[df['EDGE_TIME'] == str(i)] 
        speed = time_point["SPEED"] 
        speed = speed[3:].to_numpy(dtype=float) 
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        average = np.average(speed) 
        average_list.append(average) 
    return average_list 
 
def get_column_list(list, ark): 
    column_list = [] 
    for name in list: 
        for i in range(0, ark.max_column): 
            if name in str(ark.cell(row = 1, column = i + 1).value): 
                column_list.append(i+1) 
    return(column_list) 
 
def get_colun(column_number, ark): 
    column=np.zeros(ark.max_row) 
    for i in range(0, ark.max_row-2): 
        column[i] = ark.cell(column = column_number, row = i +2).value 
    return(column) 
 
def get_row_average(column_list, ark, row_number): 
    row_numbers  = [] 
    for i in column_list: 
        row_numbers.append(ark.cell(column = i, row = row_number).value) 
    average = np.average((row_numbers)) 
    return(average) 
 
def X_axis(interval, ark): 
    X = np.zeros(ark.max_row) 
    for i in range(0, ark.max_row): 
        X[i] = (i*interval)/60 
    return(X) 
 
#Define the path where the files are stored. Note the use of double back_slash 
path = "E:\\Linda_Emma\\Combine_Exp2_Exp4\\Stimulated\\" 
 
# Get the file names 
file_names = extract_file_names_from_directory(directory = path) 
 
print(file_names) 
 
List_of_data = [] 
header = [] 
 
for file in file_names: 
    data=average_single_site(file) 
    List_of_data.append(data) 
    name = file[:-9] 
    header.append(name) 
 
 
#Create a dataframe with all the data 
df = pd.DataFrame(data=List_of_data, index=header).T 
 
 
# Save to Excel 
df.to_excel('Data.xlsx', index=False, header=header) 
 
#Plot data from excel file 
wb = openpyxl.load_workbook("Data.xlsx", data_only=True) 
ark = wb.active 
 
# Put names of columns to be plotted here 
# It is sufficient to use only part of the column index name (example well name "A01s1"), but it has to be specific for that column 
plot_list = [["A04_s1", "A04_s3",  "A04_s4", "B04_s1", "B04_s3", "B04_s4"],["E04_s1", "E04_s2", "E04_s3","E04_s4", 
"F04_s1","F04_s2","F04_s3", "F04_s4"], 
             ["C04_s1", "C04_s3", "C04_s4", "D04_s1",  "D04_s3", "D04_s4"]] 
 
 
# For each line in the graph put a label here 
label_list = ["SW780", "5637", "T24"] 
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average_list = [] 
std_list = [] 
 
for group in plot_list: 
    column_list=get_column_list(list=group, ark=ark) 
    columns=[] 
    for i in column_list: 
        column=get_colun(column_number=i, ark=ark) 
        columns.append(column) 
    average=(np.average(columns, axis=0))*0.7018        #Multiply with pixelsize (µm/pixel) 
    Average=(average/4)*60                              #Divide with time interval and multiply with 60 to get values in µm/h 
    std=(np.std(columns, axis=0))*0.7018                #Multiply with pixelsize (µm/pixel) 
    STD=(std/4)*60                                       #Divide with time interval and multiply with 60 to get values in µm/h 
    average_list.append(Average) 
    std_list.append(STD) 
 
x = X_axis(interval = 4, ark = ark) 
 
fig, ax = plt.subplots(ncols=1, nrows=1, figsize = (8, 5)) 
 
for average, std, label in zip(average_list, std_list, label_list): 
    plt.plot(x[1:-2], average[1:-2], alpha = 1, label=label) 
    plt.fill_between(x[1:-2], average[1:-2]-std[1:-2], average[1:-2]+std[1:-2], alpha=0.4) 
 
plt.legend(loc='upper left', bbox_to_anchor=(0.85, 1.00), prop={'size': 8}) 
plt.ylim(0, 80) 
plt.xlabel("Time (h)", fontsize=14) 
plt.ylabel("Average speed (µm/h)", fontsize=14) 
#plt.title("Urinary bladder cells", fontsize=14) 
plt.savefig("Combine_Exp2_Exp4_12500cells_stimulated_std.png", format='png', dpi=300) 
 
plt.show() 
 

 
B.3: Script for plotting Traction Forces 
 
B.3.1 Macro_concatenate.ijm  
– merging images of TFM from respective site, allegedly “starved, activate 1, activate 2 and 
trypsin” files become one time lapse per site.  
 
n = 1 
 
run("Bio-Formats Importer", "open=[F:/080322_MRC5/Reference(" + n + ").czi] color_mode=Composite open_files rois_import=[ROI 
manager] view=Hyperstack stack_order=XYCZT use_virtual_stack"); 
rename("s1"); 
roiManager("Select", 0); 
run("Duplicate...", "duplicate"); 
run("Z Project...", "projection=[Max Intensity]"); 
selectWindow("s1-1"); 
close(); 
selectWindow("s1"); 
close(); 
 
run("Bio-Formats Importer", "open=[F:/080322_MRC5/Starved(" + n + ").czi] color_mode=Composite open_files rois_import=[ROI manager] 
view=Hyperstack stack_order=XYCZT use_virtual_stack"); 
rename("s2"); 
roiManager("Select", 0); 
run("Duplicate...", "duplicate"); 
run("Z Project...", "projection=[Max Intensity] all"); 
selectWindow("s2-1"); 
close(); 
selectWindow("s2"); 
close(); 
 
 
run("Bio-Formats Importer", "open=[F:/080322_MRC5/Activated1(" + n + ").czi] color_mode=Composite open_files rois_import=[ROI 
manager] view=Hyperstack stack_order=XYCZT use_virtual_stack"); 
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rename("s3"); 
roiManager("Select", 0); 
run("Duplicate...", "duplicate"); 
run("Z Project...", "projection=[Max Intensity] all"); 
selectWindow("s3-1"); 
close(); 
selectWindow("s3"); 
close(); 
 
run("Bio-Formats Importer", "open=[F:/080322_MRC5/Activated2(" + n + ").czi] color_mode=Composite open_files rois_import=[ROI 
manager] view=Hyperstack stack_order=XYCZT use_virtual_stack"); 
rename("s4"); 
roiManager("Select", 0); 
run("Duplicate...", "duplicate"); 
run("Z Project...", "projection=[Max Intensity] all"); 
selectWindow("s4-1"); 
close(); 
selectWindow("s4"); 
close(); 
 
 
run("Bio-Formats Importer", "open=[F:/080322_MRC5/Activated3(" + n + ").czi] color_mode=Composite open_files rois_import=[ROI 
manager] view=Hyperstack stack_order=XYCZT use_virtual_stack"); 
rename("s5"); 
roiManager("Select", 0); 
run("Duplicate...", "duplicate"); 
run("Z Project...", "projection=[Max Intensity] all"); 
selectWindow("s5-1"); 
close(); 
selectWindow("s5"); 
close(); 
 
run("Concatenate...", "  title=concat open image1=MAX_s1-1 image2=MAX_s2-1 image3=MAX_s3-1 image4=MAX_s4-1 image4=MAX_s5-1"); 
makeRectangle(0, 0, 1318, 1248); 
run("Descriptor-based series registration (2d/3d + t)", "series_of_images=concat brightness_of=[Interactive ...] 
approximate_size=[Interactive ...] type_of_detections=[Interactive ...] subpixel_localization=[3-dimensional quadratic fit] 
transformation_model=[Rigid (2d)] number_of_neighbors=3 redundancy=1 significance=3 allowed_error_for_ransac=5 
global_optimization=[All against first image (no global optimization)] range=5 choose_registration_channel=1 image=[Fuse and display] 
interpolation=[Linear Interpolation]"); 
selectWindow("concat"); 
close(); 
selectWindow("registered concat"); 
saveAs("Tiff", "F:/080322_MRC5/Samples/Sample" + n + ".tif"); 
close(); 
 
 
B.3.2 Macro_TFM.ijm 
- removes the "trypsin" image from the rest of the respective time lapse. 
 
x=newArray(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,4
5,46,48) 
 
for ( i=0 ; i < x.length; i++) { 
 
 open("F:/080322_MRC5/Samples/Sample" + x[i] + ".tif"); 
  
 rename("image"); 
 run("Duplicate...", "duplicate channels=1"); 
 run("Duplicate...", "use"); 
  
 saveAs("Tiff", "F:/080322_MRC5/Data/Ref" + x[i] + ".tif"); 
  
 close(); 
 run("Duplicate...", "duplicate range=2-121 use"); 
 
  
 run("Image Sequence... ", "select=[F:/080322_MRC5/Data/AFM_Sample" + x[i] + "/] dir=[F:/080322_MRC5/Data/AFM_Sample" + 
x[i] + "/] format=TIFF"); 
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 close(); 
 close(); 
 selectWindow("image"); 
 run("Duplicate...", "duplicate channels=2 frames=2-121"); 
  
 run("Image Sequence... ", "select=[F:/080322_MRC5/PIV/Raw" + x[i] + "/] dir=[F:/080322_MRC5/PIV/Raw" + x[i] + "/] 
format=TIFF"); 
  
 close(); 
 selectWindow("image"); 
 close(); 
 } 
 
 

B.3.3 Tractions3_Batch 
- calculates the traction forces components. Bead displacements in time lapse are compared 
with the "trypsin / reference" image. 
 
from pyTFM.TFM_functions import calculate_deformation, TFM_tractions, strain_energy_points, contractillity 
from pyTFM.plotting import show_quiver, plot_continuous_boundary_stresses 
from pyTFM.stress_functions import lineTension 
from pyTFM.grid_setup_solids_py import interpolation, prepare_forces, grid_setup, FEM_simulation, find_borders 
from pyTFM.utilities_TFM import round_flexible 
import numpy as np0 
import matplotlib.pyplot as plt 
from scipy.ndimage.morphology import binary_fill_holes 
import os 
import pandas as pd 
import scipy.ndimage 
import numpy as np 
 
def edges(m, edge): 
    return m[edge:-edge, edge:-edge] 
 
def extract_file_names_from_directory(directory): 
    """This function takes in a directory and extract the file_names contained in it""" 
    file_names = [] 
    for subdir, dirs, files in os.walk(directory): 
        for file in files: 
            file_names.append(os.path.join(file)) 
    return file_names 
 
 
def get_data(n): 
    path = "E:\\02052022_TFM_inhibitors\\Data\\AFM_Sample" + str(n) + "\\" # Get the raw beads time series 
    path_out_im = "E:\\02052022_TFM_inhibitors\\Data\\Movie" + str(n) + "\\" # Store the output TFM map 
    path_out_data = "E:\\02052022_TFM_inhibitors\\Data\\Data_Sample" + str(n) + "\\" # Store the calculated data 
    ref_image = "E:\\02052022_TFM_inhibitors\\Data\\Ref" + str(n) + ".tif" # Get the reference image 
 
    names = extract_file_names_from_directory(path) 
 
    tM_average_list = [] 
    tM_average_points = [] 
 
    ty_average_list = [] 
    ty_average_points = [] 
 
    u_average_list = [] 
    u_average_points = [] 
 
    k = 0 
    for name in names: 
        im_path1 = path + name 
        im_path2 = ref_image 
 
        u, v, mask_val, mask_std = calculate_deformation(im_path1, im_path2, window_size =13, overlap = 8) 
        # The unit of window size and overlap is pixels, so you need to adapt them according 
        # to your pixel size 
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        # plotting the deformation field 
        # fig1, ax = show_quiver(u, v, cbar_str="deformations\n[pixels]")# plotting 
 
        ## calculating a traction forces 
 
        # important parameters: 
        ps1 = 0.65 # pixel size of the image of the beads 
        im1_shape = (1258, 1358) # dimensions of the image of the beads 
        ps2 = ps1 * np.mean(np.array(im1_shape) / np.array(u.shape)) # pixel size of of the deformation field 
        young = 4000 # Young's modulus of the substrate 
        sigma = 0.46 # Poisson's ratio of the substrate 
        h = 60 # height of the substrate in µm, "infinite" is also accepted 
 
        tx, ty = TFM_tractions(u, v, pixelsize1=ps1, pixelsize2=ps2, h=h, young=young, sigma=sigma) 
        tM = np.hypot(tx, ty) 
 
        tx = edges(tx, 10) 
        #resized_tx = scipy.ndimage.zoom(tx, 100. / 225) 
 
        ty = edges(ty, 10) 
        #resized_ty = scipy.ndimage.zoom(ty, 100. / 225) 
 
        tM = edges(tM, 10) 
        #resized_tM = scipy.ndimage.zoom(tM, 100. / 225) 
 
 
        im = plt.imshow(tM, vmin = 0, vmax=50, cmap = "jet", extent=[0, 866, 0, 814]) 
     
        print("Min and max:") 
        print(tM.min(), tM.max()) 
 
         
        bar = plt.colorbar(im) 
        bar.set_label("Tractions Tx (Pa)") 
        plt.xlabel("X (µm)") 
        plt.ylabel("Y (µm)") 
        plt.gca().set_aspect('equal', adjustable='box') 
        plt.savefig(path_out_im + "image_ty" + str(k)) 
        plt.close() 
 
 
        k = k + 1 
        print("Done with image " + str(k) + " from Sample " + str(n)) 
 
 
        tM_average = np.average(tM, axis=0) 
        tM_average_list.append(tM_average) 
 
        tM_average_point = np.average(Sanderson et al.) 
        tM_average_points.append(tM_average_point) 
 
        ty_average = np.average(ty, axis=0) 
        ty_average_list.append(ty_average) 
 
        ty_average_point = np.average(ty) 
        ty_average_points.append(ty_average_point) 
 
        u_average = np.average(u, axis=0) 
        u_average_list.append(u_average) 
 
        u_average_point = np.average(u) 
        u_average_points.append(u_average_point) 
 
    pd.DataFrame(tM_average_list).to_csv(path_out_data + "tM_list.csv", header=None, index=None) 
    pd.DataFrame(tM_average_points).to_csv(path_out_data + "tM_points.csv", header=None, index=None) 
 
    pd.DataFrame(ty_average_list).to_csv(path_out_data + "ty_list.csv", header=None, index=None) 
    pd.DataFrame(ty_average_points).to_csv(path_out_data + "ty_points.csv", header=None, index=None) 
 
    pd.DataFrame(u_average_list).to_csv(path_out_data + "u_list.csv", header=None, index=None) 
    pd.DataFrame(u_average_points).to_csv(path_out_data + "u_points.csv", header=None, index=None) 
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#sample_list = [3] 
sample_list = 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] 
#sample_list = [25,26,27,28,29,30,31,32] 
 
for n in sample_list: 
    get_data(n) 
 
 

B.3.4 Graph2 
-Graph2 shows graphs for all data. If you enter data from several sites, the mean and standard 
deviation are calculated. 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
 
 
def moving_average(a, n=3): 
    ret = np.cumsum(a, dtype=float) 
    ret[n:] = ret[n:] - ret[:-n] 
    return ret[n - 1:] / n 
 
def plot(sample_list, data_type, label, color): 
 
    sample_list = sample_list 
    data_list= [] 
    for i in sample_list: 
        data = pd.read_csv("F:\\25042022_TFM_Inhibitors\\Data\\Data_Sample" + str(i) + "\\" + data_type + ".csv", header=None) 
        #data = data.drop([4]) 
        #data = data.drop([251]) 
        data_list.append(data) 
        print(data) 
        print(str(i) + ": " + str(len(data))) 
 
 
    average = np.average(data_list, axis=0) 
    std = np.std(data_list, axis=0) 
 
    average = np.ndarray.flatten(average) 
    std = np.ndarray.flatten(std) 
 
    x = np.arange(0, len(average)) 
    x = np.multiply(x, 16) 
    x = np.divide(x, 60) 
 
    a = plt.plot(x[:-7], average[:-7], "-", mfc = "None", lw=2, label = label, alpha=1, c = color) 
    s = plt.fill_between(x[:-7], average[:-7] + std[:-7], average[:-7] - std[:-7], alpha = 0.1, color = color) 
    return a, s 
 
 
fig, ax = plt.subplots(figsize = (5, 4)) 
a0, s0 = plot([1, 5], "tM_points", "FBS", "C0") 
#a1, s1 = plot([9, 10, 11, 12, 13, 14, 15, 16], "tM_points", "RO-3306 5µM", "C1") 
#a2, s2 = plot([19, 20, 21,22,23,24], "tM_points", "RO-3306 10µM", "C2") 
#a3, s3 = plot([33, 35, 37, 38, 39, 40], "tM_points", "SMIFH2", "C3") 
a4, s4 = plot([41, 42, 43, 44, 45, 46, 47, 48], "tM_points", "EHT 1864", "C4") 
 
#a1, s1 = plot([17, 18, 19, 20], "tM_points", "RO-3306 10µM well 1", "C1") 
#a2, s2 = plot([21,22,23,24], "tM_points", "RO-3306 10µM well 2", "C2")#a, s = plot([21, 22, 23, 24], "tM_points", "8h", "C3") 
#a3, s3 = plot([13, 14, 15, 16], "tM_points", "22h", "C4") 
#a4, s4 = plot([25, 26, 27, 28, 29, 30, 31, 32], "tM_points", "29h", "C5") 
#a5, s5 = plot([37, 38, 39, 40], "tM_points", "5h", "C6") 
#a6, s6 = plot([41, 42, 43, 44], "tM_points", "2h", "C7") 
#a7, a8 = plot([45, 46, 47, 48], "tM_points", "0h", "C8") 
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#plt.ylim(0, 80) 
#plt.xlim(0, 30) 
plt.legend() 
plt.ylabel("Traction magnitude, Pa", fontsize=14) 
plt.xlabel("Time (h)", fontsize=14) 
 
 
#plt.savefig("F:\\25042022_TFM_Inhibitors\\Graphs\\Fig 10 FBS + RO-3306 10µM well 2.png", dpi = 300) 
#plt.savefig(save + "LPA", dpi = 300) 
 
 
plt.show() 
 
 

B.4: Script for PIV-analysis of migration speed and direction – Quiver.py 
import numpy as np 
from openpiv import tools, validation, process, filters, scaling, pyprocess 
from scipy.ndimage import rotate 
import os 
import openpyxl 
import time 
import matplotlib.pyplot as plt 
import scipy.ndimage 
 
 
def extract_file_names_from_directory(directory): 
    """This function takes in a directory and extract the file_names contained in it""" 
    file_names = [] 
    for subdir, dirs, files in os.walk(directory): 
        for file in files: 
            file_names.append(os.path.join(file)) 
    return file_names 
 
def scale2(u, v, M, factor): 
    u2 = np.multiply(u, factor) 
    v2 = np.multiply(v, factor) 
    M2 = np.multiply(M, factor) 
    return u2, v2, M2 
 
def PIV(frame_a, frame_b, window_size, overlap, search_area_size): 
    frame_a = tools.imread(frame_a) 
    frame_b = tools.imread(frame_b) 
    u, v, sig2noise = process.extended_search_area_piv(frame_a.astype(np.int32), frame_b.astype(np.int32), 
        window_size=window_size, overlap=overlap, search_area_size=search_area_size, sig2noise_method='peak2peak' ) 
    x, y = process.get_coordinates( image_size=frame_a.shape, window_size=window_size, overlap=overlap) 
    u, v, mask = validation.sig2noise_val( u, v, sig2noise, threshold = 1.5) 
    u, v, mask = validation.global_val( u, v, (-10, 10), (-10, 10) ) 
    u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=4) 
    # tools.save(x, y, u, v, mask, 'exp1_001.txt') 
    # display_vector_field('exp1_001.txt', scale=1000, width=0.0025) 
    M = np.hypot(u, v) 
    print(M.min(), M.max()) 
    return x, y, u, v, M 
 
 
path = "C:\\Users\\huygens\\PycharmProjects\\Migration\\Linda_Emma_20.05\\T24\\Exp2_T24_24000_C03\\Raw_data\\" 
path_out = "C:\\Users\\huygens\\PycharmProjects\\Migration\\Linda_Emma_20.05\\T24\\out_T24\\" 
 
names = extract_file_names_from_directory(path) 
print(names) 
 
k= 0 
for frame_a, frame_b in zip(names, names[1:]): 
    x, y, u, v, M = PIV(path + frame_a, path + frame_b, 
                        window_size=50, 
                        overlap=30, 
                        search_area_size=100) 
 
    # Scaling: 
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    # By default, all values are given in pixels/dt 
    # if pixel size is 3.367 and time interval (dt) is 16 min per frame, 
    # then factor = 3.367 x (60/16) = 3.367 x 3.75 = 12.63 
    u, v, M =  scale2(u = u, v = v, M = M, factor = 10.527) 
    x = np.multiply(x, 0.7018) 
    y = np.multiply(y, 0.7018) 
 
    # Flipping v-components 180 degrees is required to obtain the correct vector orientation: 
    v = np.flipud(v) 
 
    # These operations reduce the number of arrows in the plot through averaging: 
    resized_x = scipy.ndimage.zoom(x, 0.6) 
    resized_y = scipy.ndimage.zoom(y, 0.6) 
    resized_u = scipy.ndimage.zoom(u, 0.6) 
    resized_v = scipy.ndimage.zoom(v, 0.6) 
    resized_M = scipy.ndimage.zoom(M, 0.6) 
 
    # Make the quiver plot: 
    fig, ax = plt.subplots(ncols=1, nrows=1) 
    im = plt.quiver(resized_x, resized_y, resized_u, resized_v, resized_M, clim=(0, 40), cmap="jet") 
    cb = fig.colorbar(im, label="Eyy (µm/h)") 
    cb.set_label("Speed (µm/h)") 
    ax.set_xlabel("X (µm)") 
    ax.set_ylabel("Y (µm)") 
    #plt.gca().set_aspect('equal', adjustable='box') 
    plt.savefig(path_out + "image" + str(k), dpi = 300) 
    print("Done with Image " + str(k)) 
    k = k + 1 
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Appendix C: Complementary result of cell migration pattern of 

asynchronously growing cancer cells 

Figure 17.D is cited in section 3.1.1 since the graph is most representative of the project. The 

cell lines used in this project was SW780, 5637 and T24. The figures are used as a reference for 

asynchronously (not starved) growing cancer cells. The graphs are showing average speed with 

standard deviation.  

 
Figure 17: Cell movement in cell sheet of asynchronously growing cancer cells in various densities. The average migration 
speed of the cell lines SW780 (blue), 5637 (orange), and T24 (green) were monitored over a 10 hrs period on a high-content 
imaging ImageXpress Micro Confocal microscope. The darker color lines represent the mean velocity, while the lighter colored 
area is the standard deviation. The missing data point are due to irregular movements in the xy-stage of the microscope. Live 
cell imaging of cell sheets in wells with A 100.000 cells/well, B 50.000 cells/well, C 25.000 cells/well, D 12.500 cells/well, E 
6.250 cells/well, and F 3.125 cells/well 
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Appendix D: Complementary result of cell migration pattern of 

quiescent and re-stimulated cancer cells 

Figure 18.D and figure 19.D are cited in section 3.1.2 since the graphs gave the most 

representative results of the project. The cell lines used in this project was SW780, 5637 and 

T24. The cell sheet in figure 18 were exposed to serum deprivation to establish quiescent cell 

state, and in figure 19 the cells were re-stimulated with FBS after starvation. The graphs are 

showing average speed with standard deviation. 

 

 
Figure 18: Cell movement in cell sheet of starved cancer cells in various densities. The average migration speed of the cell lines 
SW780 (blue), 5637 (orange), and T24 (green) were monitored a 1 h period on a high-content imaging ImageXpress Micro 
Confocal microscope. The darker color lines represent the mean velocity, while the lighter colored area is the standard 
deviation. Live cell imaging of cell sheets in wells with A 100.000 cells/well, B 50.000 cells/well, C 25.000 cells/well, and D 
12.500 cells/well. 
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Figure 19: Cell movement in cell sheet of re-stimulated cancer cells in various densities. The average migration speed of the 
cell lines SW780 (blue), 5637 (orange), and T24 (green) were monitored a 30 hrs period on a high-content imaging 
ImageXpress Micro Confocal microscope. The darker color lines represent the mean velocity, while the lighter colored area is 
the standard deviation. Live cell imaging of cell sheets in wells with A 100.000 cells/well, B 50.000 cells/well, C 25.000 
cells/well, and D 12.500 cells/well. 
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Appendix E: Information about the cell lines used in this project 
 
Table 2: Information about the different cancer cell lines.  

NAME  GENDER AGE ETHNICITY DISEASE SUBCULTIV. 
RATIO/MED. RENEW. 

GROWTH MED.  

T24 Female 81 Caucasian TCC, high grade 
invasive (grade III) 

1:3-1:8/2-3 times per 
week 

McCoy’s 5a M M + 
10% FBS 

SW780 Female 80 Caucasian TCC, grade I 1:4-1:8/2-3 times per 
week 

DMEM + 10% FBS 

5637 Male 68 Caucasian TCC, grade 2 1:4-1:8/2-3 times per 
week 

RPMI-1640 + 10% 
FBS 

 
T24: Doubling time: 19 hours (PubMed=4133950 (Bubenik, 1973)); 21 hours 
(PubMed=3708594 (Masters, 1986)); ˜48 hours(DSMZ); ˜1 day (lot 02052018) (JCRB).  
 
SW780: Doubling time: 38 hours. 
 
5637: Doubling time: 23 hours (PubMed=26055179 (Vallo, 2015)); ˜24 hours (DSMZ).  
 
 


