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Abstract: We analyze the empirical series of malaria incidence, using the concepts of autocorrela-
tion, Hurst exponent and Shannon entropy with the aim of uncovering hidden variables in those
series. From the simulations of an agent model for malaria spreading, we first derive models of the
malaria incidence, the Hurst exponent and the entropy as functions of gametocytemia, measuring
the infectious power of a mosquito to a human host. Second, upon estimating the values of three
observables—incidence, Hurst exponent and entropy—from the data set of different malaria em-
pirical series we predict a value of the gametocytemia for each observable. Finally, we show that
the independent predictions show considerable consistency with only a few exceptions which are
discussed in further detail.

Keywords: malaria; Hurst exponent; Shannon entropy; long range dependence; autocorrelation
function; stochastic long memory; gametocytemia

1. Introduction

In Babylon, during the year 323 BC, Alexander the Great fell ill after returning from
Persia, and died shortly after at the age of 32. The reason of his death was most probably a
disease now known to be caused by an infection with the parasite Plasmodium falciparum [1].
Malaria cases have declined globally from 238 million cases, in 2000, to 229 million,
in 2019 [2]. Its mortality also decreased worldwide from around 736 thousand in 2000
to 409 thousand deaths in 2019 [2]. However, this reduction has stabilized since 2016,
and several challenges and risks remain, namely, as concerns children under 5 years old.
Due to their limited immune protection, they are a highly vulnerable group, accounting for
67% of global fatal malaria cases in 2019 [2].

Of particular importance in malaria transmission is the amount of gametocytes in
the blood circulation. Gametocytes are the parasite forms which mediate transmission
from humans to mosquitoes and, therefore, are also obvious targets in implementing
preventive actions such as vaccine immunization or anti-malarial drugs. Submicroscopic
gametocytemia detection is difficult and often not as precise as statistical data collection
from e.g., malaria incidence varying heterogeneously from one community to another [3,4].

In this paper we propose an approach to estimate effective Plasmodium transmissibility
levels, which reflect submicroscopic gametocytemia in individuals of a specific community,
based on collected time series of malaria incidence in that same community.
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Time series models have been used as important tools and metrics, not only in epi-
demiology, but also in economics, geophysics, biology and ecology [5]. One of them,
the so-called Hurst exponent, was introduced by Hurst in 1951 [6] in the context of hy-
drology planning, specifically, during the study of flooding levels in the river Nile. The
Hurst exponent is a measure of memory in a series of values. Applying it to the series of
Nile flooding levels, based upon Egyptian ancient hydrology data collected over 847 years,
Hurst was able to estimate the rate at which the autocorrelation of that series decreased as
the time interval between measurements increased. In this way, Hurst used the collected
data to model the flooding levels of the Nile, and, with that, assessed optimum dam sizes to
contain extreme rain events. Soon the applicability of the Hurst exponent extended to many
other fields, particularly in the study of financial theory [7] and complex phenomena with
evidence of fractal features [8–10]. However, while different time series models have been
implemented in epidemic infections in general [11–18], and in malaria incidence forecasting
in particular [19,20]—mostly auto-regressive and linear models—the application of the
Hurst exponent in malarial spreading is still lacking.

To relate gametocytemia levels with malaria incidence time series we introduce a
methodology based upon the use of Hurst exponents. To the best of our knowledge, this
is the first analysis of empirical data of malaria incidence series using Hurst exponent to
derive an estimate of a hidden variable, namely, the level of transmissibility or easiness of
spreading within the community from which the series of malaria incidence is collected.

We show that the Hurst exponent is able to grasp long-range dependencies close
to the phase transition between disease elimination and stable prevalence scenarios of
malaria. In a more general scope, complexity in time series may also be related to the level
of information entropy, which is commonly used to address emergence phenomena and
self-organization. In this paper, we analyze the effects of memory in time series of malaria
incidence. Two types of memory have been defined in random stochastic processes, long
and short memory, where the transition between these regimes may be represented as a
phase transition in the context of a stochastic random process. We focus on Hurst exponent
estimation and Shannon entropy at different levels of disease transmission intensity, applied
to malaria time series derived from simulations with a previously introduced agent-based
model [3] with different (parameterized) levels of gametocytemia, as well as to different
empirical malaria time series.

Our objective is to properly identify malaria transmission patterns, as well as to link
long-range dependence processes in malaria incidence time series to the occurrence of
phase transitions in close proximity to disease elimination. We also test the importance of
Hurst exponent estimation and Shannon entropy as sound predictors of the presence of
long-range dependence and long memory processes in malaria transmission. In particular,
we show that from simple models connecting gametocytemia levels and measures easily
extractable from empirical series of malaria incidence, such as incidence levels, a Hurst
exponent and entropy, we are able to predict an indicator of “effective” gametocytemia for
regions where malaria incidence is regularly monitored. Our study uses eight different
empirical series, shown in Figure 1.

We start in Section 2 by describing the different empirical data sets analyzed in this
study and the agent-model used to produce simulated scenarios of different transmissibility
levels, parameterized by the gametocytemia level. Moreover, we briefly describe the basic
tools—the Hurst exponent and Shannon entropy— explaining how they are computed
from series of malaria incidence. In Sections 3 and 4 we describe, qualitatively, the behavior
of Hurst exponent and entropy, and the form of the autocorrelation function decay, in eight
different malaria empirical time series examples. In Section 5 we derive models to fit the
values of the three observables: the malaria incidence, the Hurst exponent and the entropy
for different simulated scenarios, as a function of the gametocytemia level. Using this fitted
expressions we then measure the average malaria incidence, Hurst exponent and entropy
of the empirical data sets. Introducing these values in the fitted expressions we retrieve an
estimate of the associated “effective” gametocytemia level, i.e., the effective transmissibility
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level in each empirical case. Finally, in Section 6 we discuss the limitations of our approach,
as well as possible extensions to it.
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Figure 1. Eight different series of malaria incidence from different studies in the literature:
Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21], Appiah et al. (Ejisu-Juaben
municipality in Ghana, 2015) [16], Aregawi et al. (Ethiopia, 2014) [22], Bedane et al. (Kucha district
in Ethiopia, 2016) [23], Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24], Landoh et al. (Est Mono
district in Togo, 2012) [25], Muwanika et al. (Uganda, 2017) [26], Okech et al. (Kenya, 2008) [27]. All
data series are available from the respective original references from the authors.

2. Data, Modelling Methods and Analysis Tools
2.1. Empirical Series of Malaria Incidence

The empirical part of our investigation comprehends eight series of malaria inci-
dence as presented in Figure 1. These series are available from previous studies namely
Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21], Appiah et al. (Ejisu-
Juaben municipality in Ghana, 2017) [16], Aregawi et al. (Ethiopia, 2014) [22], Bedane et al.
(Kucha district in Ethiopia, 2016) [23], Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24],
Landoh et al. (Est Mono district in Togo, 2012) [25], Muwanika et al. (Uganda, 2017) [26],
Okech et al. (Kenya, 2008) [27]. The data sets were chosen as representative of regions with
malaria incidence diversity in Africa. They have a time duration ranging from 60 [16] to
132 months [22], while showing different trends and periodicity—see Figure 1 and Table 1.
Malaria incidence was measured at each month as the expected number of new malaria
cases per 100 inhabitants in a full year, if malaria incidence were to be kept constant. In this
way, to obtain the precise incidence at each month, the yearly presented graphical value
must be divided by 12 months.



Appl. Sci. 2022, 12, 496 4 of 27

Table 1. The empirical values of average malaria incidence I (malaria cases per 100 inhabitants, per
year), the Hurst exponent H and Shannon entropy S, concerning a 36-month time frame. Errord
indicate standard deviations from the series by using moving windows of 36 months.

Empirical Series Year I 36 Months H 36 Months S 36 Months Duration
(I36) (H36) (S36) Months

Aregawi [22] 2014 0.208 ± 0.0495 0.7766 ± 0.1428 5.138 ± 0.0064 132

Alhassan [21] 2017 7.091 ± 2.808 1.014 ± 0.1425 4.792 ± 0.1717 72

Bedane [23] 2016 11.63 ± 1.355 1.077 ± 0.0925 5.161 ± 0.0036 120

Appiah [16] 2015 12.44 ± 0.1318 0.9229 ± 0.0570 5.121 ± 0.0026 60

Landoh [25] 2012 24.54 ± 4.312 0.7326 ± 0.0850 5.065 ± 0.0206 72

Muwanika [26] 2017 58.76 ± 1.112 0.8254 ± 0.1236 5.160 ± 0.0027 71

Elipe [24] 2007 101.0 ± 28.20 0.9367 ± 0.0993 4.710 ± 0.1733 84

Okech [27] 2008 203.4 ± 120.2 1.018 ± 0.1568 4.881 ± 0.2774 96

As can be seen from Figure 1, the eight cases differ in their level of malaria transmission
and epidemic behavior. All empirical series show some form of irregular periodicity as
a consequence of climate seasonality. Declining malaria incidence is clear in series from
Aregawi and Okech, as well as in Alhassan and Bedane, although with a final disease
outbreak in these last two cases. High levels of malaria transmission occur in Gomez-Elipe
(identified solely as Elipe time series in some of the figures, for clarity) for a brief period
of time. Malaria incidence remains quite stable in the Muwanika, Appiah and Landoh
empirical series, with a consistent upward trend in the last case.

2.2. Agent Model for Malarial Spreading

To combine results from empirical data with simulations from the agent model intro-
duced and developed in previous works [3,4], we conduct a series of simulations at different
levels of disease transmission efficiency. Human-to-mosquito (H-to-M) transmission was
defined in terms of the fraction of human disease days with the presence of gametocytemia
in blood circulation, henceforth represented as wh.

Six different scenarios were considered, corresponding to a wide range of different
levels of positive gametocytemia duration and disease transmission efficiency, specifically,
110 days of positive gametocytemia during 150 days of expected disease duration (i.e.,
wh = 110/150 = 0.733), 90 days (wh = 0.600), 75 days (wh = 0.500), 70 days (wh = 0.467),
68 days (wh = 0.453), and 63 days (wh = 0.420). For the simulations, we consider a system
of Nm = 4000 mosquitoes and Nh = 2000 human individuals, both including healthy
and infected individuals. We have modeled the number of mosquitoes as a small but
effective fraction of the overall mosquito mass that randomly feeds on a human individual,
twice daily on average. The simulation time lasts 30 years while evaluating each human
individual in terms of disease duration and human-to-mosquito transmission.

The algorithm keeps track of several attributes for each agent, whether human or
mosquito, at a particular age, such as the time spent since the first day of infection, and the
individual immunity status. Beyond 5 years of persistent human reinfections, the human
host will develop partial protective immunity at the maximum possible level, while losing
it after 2 years without infection. The computational cycle includes a realistic mosquito
daily mortality routine. Dead mosquitoes are to be replaced by uninfected mosquitoes.
Human disease duration reflects realistic human recovery from malaria.

Human-to-mosquito transmission efficiency (wh) is also stochastically defined and
directly dependent on the number of days with positive gametocytemia. Upon updating
the number of healthy humans individuals and mosquitoes, the algorithm generates one
episode of mosquito feeding in a human individual, with the possibility of protection from
long lasting insecticide-impregnated nets (LLIN), insecticide-impregnated nets (ITN) or
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indoor residual spraying (IRS). Our model is inspired by Mozambique’s seasonality [18,28],
considering 150 days for the duration of its high-transmission season—see Figure 2.

Relevant details as well as the flowchart describing the computer implementation of
the agent-based model are given in Ref. [3]. That model was also used as support for an
additional study concerning the presence of heterogeneity in malaria transmission along
with the use of ivermectin [4].

Using the present model we analyzed the behavior of the human–mosquito coupled
system, resulting from a complex interaction between the two compartments. Human-to-
mosquito transmission efficiency (wh) was used to define the probability of a sustained
presence of gametocytemia in human blood circulation, as well as the survival probability
of infected mosquitoes beyond latency. These aspects are considered critical in disease
transmission. Our model simulations use gametocytemia as an independent variable affect-
ing human-to-mosquito transmission. Different levels of gametocytemia define different
stages of disease transmission efficiency. Theoretical gametocytemia reduction is consid-
ered equivalent to an effective treatment with gametocidal agents, such as primaquine or
methylene blue, in a fraction of the human population.
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Figure 2. Six different simulations of malaria incidence using different scenarios of gametocytemia,
specifically, (a) 63 days (wh = 0.420), (b) 68 days (wh = 0.453), (c) 70 days (wh = 0.467), (d) 75 days
(wh = 0.500), (e) 90 days (wh = 0.600), and (f) 110 days of positive gametocytemia over 150 days of
expected disease duration (i.e., wh = 110/150 = 0.733).

2.3. Hurst Exponent and Entropy to Assess Memory Effects in Stochastic Series

We use two different metrics to assess memory in series of malaria incidence, empirical
and simulated, investigating whether long-range dependencies could occur close to phase
transition near disease elimination when compared to more stable epidemic scenarios. The
Hurst exponent is defined as

R
D

= kTH (1)

where the first member represents the rescaled range as a dimensionless ratio between R
(represents the maximal range of all observations) and D (represents the standard deviation
of all observations). An explicit mathematical definition is given below in Equation (4). T
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stands for the time index (number of observations in the time series), k is some constant to
be determined and H represents the Hurst exponent.

With the Hurst exponent estimation it became possible to distinguish among three
different regimes characterizing the time series: (i) the anti-persistent regime, characterized
by 0.0 < H < 0.5, where, if the series increases (resp. decreases) in one period, it is very
likely that it will decrease (resp. increase) in the next period; (ii) the persistent regime,
characterized by 0.5 < H < 1, where, if the series decreases (resp. increases) in one period it
is very likely that it will decrease (resp. increase) in the next period; and (iii) the memoryless
regime, characterized by H = 0.5 when the process is uncorrelated in time.

A Hurst exponent estimation close to 0.5 (random walk process) is found in empirical
time series with heavier disease transmission. In malaria time series from our model
simulations, transitions from prevalence to disease elimination are characterized by values
of the Hurst exponent larger than 0.5 and close to 1, a footprint of a persistence time series.

As for entropy, it is related with the complexity of the time series [29,30]. The com-
plexity of stochastic processes may be calculated with the use of entropy-based measures.
For that purpose, several functions may be employed. The significance of complexity,
emergence phenomena and self-organization may provide us with useful information
concerning continuous as well as discrete systems, in the form of time series results.

Information entropy is supported by the equation:

S = −
Nb

∑
i=1

P(xi) log P(xi) , (2)

where P(x) is the probability density function of the observable x, which, in its discretized
form, is estimated by a histogram with a finite set of values P(xi) for the set of bin-points xi.
The log function is base two. Information theory defines entropy in terms of information
uncertainty in the evolution of time series results. Other entropy-related terms, such as
mutual information, may be used as alternative methods for time series analysis in malaria.

2.4. Estimating the Hurst Exponent and Entropy in Series of Malaria Incidence

Both the Hurst exponent and Shannon entropy are influenced by the length of the time
series sample. Therefore, we introduced a standardization procedure, which is independent
of the length of the time series.

The procedure is illustrated in Figure 3 and is as follows. We define a 36-month
moving average malaria incidence, symbolized as I36(m), at month m, as the average
malaria incidence in the previous 36 months:

I36(m) =
1

36

m

∑
n=m−35

I(n) , (3)

where I(n) is the monthly malaria incidence measured or simulated, composing the series
of values.

In the Alhassan malaria time series (Kasena Nankana municipality in Ghana, 2017) [21]
one can see a declining trend in malaria incidence in the form of a decreasing moving
average of 36 months (I36), from∼11 to∼4 cases per 100 inhabitants, per year [phy], despite
the small final outbreak in the last 6 months. Consistent this declining trend in I36, we may
also witness a decreasing trend in S36, as well as a rising trend in H36 after month 55. In this
case, the behavior of both the Hurst exponent and entropy in the preceding 36 months is
well correlated with the malaria incidence trend.
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Figure 3. (a) Illustration of how a 36-month moving average of malaria incidence, symbolized as I36,
is obtained from an original series of monthly malaria incidence values, either empirical or simulated.
Similar procedures are used to compute (b) H36 and (c) S36. See text for details. In this case, we used
an agent-based simulation with a low human-to-mosquito transmission efficiency of wh = 0.420.

The Gomez-Elipe time series (Karuzi in Burundi, 2007) [24] is quite different from the
remaining empirical examples. It shows a consistent stable pattern of malaria incidence
below 110 cases phy, until month 45, peaking at ∼500 cases phy, around month 48, with a
fast downward trend to ∼60 cases phy at month 56, and a slower decline thereafter to a
final value of ∼20 cases phy—see Figure 1. The 36-months malaria incidence (I36) reveals
a consistent upward trend peaking at month 64, with a downward pattern thereafter. In
this case, we find a persistent oscillatory behavior in the value of H36 during the entire
time series, usually above 0.9. Yet, in parallel with the outbreak in malaria incidence, we
see a sudden fall in H36 to values close to 0.6 (closer to random noise) at around month
48. Entropy in the form of a 36-months moving average (S36) reveals a similar behavior in
relation to I36 from month 48 onwards.

The Landoh malaria time series (Est Mono district in Togo, 2012) [25] reveals a con-
sistent upward trend in malaria incidence in the form of a mild increase in the 36-months
moving average (I36) during the whole time series, ranging from the initial ∼18 cases phy,
to a peak at ∼30 cases phy in month 72.

Consistent with the steady upward trend in I36 during the entire time series, we find
a declining trend in the 36-months moving average of the Hurst exponent (H36), from a
peak of ∼0.85 at month 47, to an all-time-low value of ∼0.55. Along with this downward
trend in H36 there is a consistent wave-like increase in entropy in the form of a 36-months
moving average (S36), during the entire time series. In the Landoh time series, the behavior
of H36 and S36 is reasonably well correlated with the behavior of I36 in time.

Of a similar form, but with an opposite trend to the Landoh time series, the Okech time
series (Kenya, 2008) [27] also reveals a steady decreasing trend. In the Okech time series,
malaria incidence consistently decreases from an initial peak of ∼400 cases phy, to a final
value of close to 50 cases phy. Consistent with the steady downward trend in I36 during the
entire time series, we find an upward trend in the 36-months moving average of the Hurst
exponent (H36) from an all-time-low of ∼0.6 at month 42, to a peak of ∼1.2 at month 82.
Along with this upward trend in H36, there is also a consistent decrease in entropy in the
form of a 36-months moving average (S36), during the whole time series. In the Okech time
series, the behavior of H36 and S36 is also quite correlated with the behavior of I36 in time.

As the Hurst exponent (H) and Shannon entropy (S) are influenced by the length of
the time-series sample, we also considered a 36-month moving window estimate. In the
case of the Hurst exponent, we compute the quantities R and D as

R(T) = max
t=1,...,T

(
t

∑
k=1

(I(k)− I36(T))

)
− min

t=1,...,T

(
t

∑
k=1

(I(k)− I36(T))

)
, (4a)

D(T) =

(
1
36

n

∑
k=T−35

(I(k)− I36(T))2

)1/2

. (4b)
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Having the series of 36 values R(T)/D(T) for each window, we then applied Equation (1)
to find fitting values for k and for the Hurst exponent H.

As for Shannon entropy, an estimate of the probability density was first computed
given by the set of values P(Ii) for an assumed set of bin values Ii, with i = 1, . . . , Nb,
of malaria incidence (I) and then Equation (2) was applied, running the sum only over the
36 incidence values observed within each time window.

In this way, we have computed the average of malaria incidence I, H and S for
36-month windows, independently of the size of the empirical series. In order to quantify
I, H and S for each empirical case, we then obtained the average of the corresponding time
series and computed its standard deviations. Table 1 shows the empirical values of the
three observables. Notice that, in these cases, higher moments seems to be not particularly
relevant, which can be seen comparing the average in Table 1 with the median and quartiles
in Table 2.

Table 2. Table with the empirical values of median, quartile 25 and 75 from the series of malaria
incidence, entropy and the Hurst exponent, using moving windows of 36 months.

Empirical Series (I36) (I36) (I36) (H36) (H36) (H36) (S36) (S36) (S36)
Median Q25 Q75 Median Q25 Q75 Median Q25 Q75

Aregawi, 2014 0.22 0.16 0.26 0.80 0.66 0.90 5.14 5.13 5.14

Alhassan, 2017 7.43 4.36 9.68 0.94 0.90 1.15 4.77 4.68 4.96

Bedane, 2016 11.2 10.4 12.4 1.10 1.00 1.15 5.16 5.16 5.16

Appiah, 2015 12.5 12.4 12.5 0.93 0.87 0.96 5.12 5.12 5.12

Landoh, 2012 24.0 21.0 28.4 0.76 0.70 0.80 5.06 5.05 5.08

Muwanika, 2017 59.0 58.2 59.7 0.81 0.77 0.90 5.16 5.16 5.16

Elipe, 2007 115 83.5 122 0.95 0.89 1.00 4.67 4.59 4.72

Okech, 2008 211 89.1 310 1.06 0.98 1.13 4.96 4.85 5.08

3. Qualitative Analysis and Robustness Assessment of the Hurst Exponent and
Entropy in Empirical Time Series Behavior

While the eight empirical cases show a broad range of values for malaria incidence
and the Hurst exponent, the entropy seems much more resistant to changes. The cases
of Alhassan, Elipe and Okech form a separated group from the other series which form
a second group. We will address these cases in more detail when building the model for
effective human-to-mosquito transmissibility (gametocytemia).

We have also looked at the way those indices behaved in a typical low-transmission
empirical time series, such as that obtained from Okech, 2008 [27]. In this empirical
time series, when the Hurst exponent was evaluated in 36-month partial intervals (H36),
it revealed a clear inverse correlation with malaria annual incidence. Futhermore, the
Shannon entropy consistently decreased with progressive lower values of malaria incidence.
This correlation pattern was similar to the one found in model simulations when comparing
high- and low-transmission scenarios.

By consistently searching for evidence of the presence of long-range dependence in
malaria time series we looked into the time evolution of information (Shannon) entropy in
scenarios with stronger disease transmission, and compared the results with those from
other time series of lower disease transmission. In our model simulations, at low levels of
disease burden near an eradication-prevalence transition, we consistently found malaria
time series with lower information entropy. In Appendix A we describe, in more detail, the
eight particular cases.

Table 3 shows the correlation between the three properties, I, H and S, for the eight
empirical data sets. One finds evidence of linear correlation between malaria incidence and
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the Hurst exponent or Shannon entropy in seven of the eight presented empirical malaria
time series. The case of Bedane is an exception.

Table 3. Pearson correlation coefficient r2, between pairs among the three metrics malaria incidence
I, the Hurst exponent H and Shannon entropy S. The three metrics were computed for three different
time-windows of 24, 36 and 48 months. See also Appendix B. Results with r2 > 0.600 are highlighted
in bold.

Average 24 Months 36 Months 48 Months

Pearson coeff. r2(I, H) r2(I, S) r2(I, H) r2(I, S) r2(I, H) r2(I, S)

Aregawi, 2014 [22] 0.048 0.216 0.323 0.223 0.727 0.012

Alhassan, 2017 [21] 0.528 0.657 0.638 0.879 0.530 0.746

Bedane, 2016 [23] 0.006 0.107 0.094 0.027 0.000 0.181

Appiah, 2015 [16] 0.336 0.620 0.222 0.353 0.299 0.534

Landoh, 2012 [25] 0.310 0.339 0.436 0.633 0.722 0.743

Muwanika, 2017 [26] 0.043 0.547 0.175 0.748 0.449 0.903

Elipe, 2007 [24] 0.074 0.886 0.012 0.655 0.590 0.683

Okech, 2008 [27] 0.068 0.603 0.414 0.069 0.013 0.949

The estimation of the Hurst exponent by R/S-analysis may be biased due to the
shorter length of 36 months [31–33]. To ascertain how robust the results with 36-month
windows are, we repeated our estimates for 24- and 48-month averages. The correlation
is also reasonably evident in the 48-months time frame. Entropy is clearly more linearly
correlated to malaria incidence than the Hurst exponent.

In summary, the data shown in Table 3 suggests the presence of significant linear
correlation between malaria incidence, and the Hurst exponent or Shannon entropy.
In Appendix B we present a more detailed comparison between 36-month averages with
24- and 48-month averages.

4. Autocorrelation Function and Stochastic Memory in Malaria Empirical Series

The autocorrelation function (ρk) behavior has been used with reasonable success
in different research fields, from finance to hydrology, and climate data time series. It
measures the linear relationship between two sequential values of a time series with a
specific time lag k. The autocorrelation function (ρk) expresses the magnitude of that
correlation between k lagged values:

ρk =
∑N−k

t=1 (xt − x)(xt+k − x)

∑N
t=1(xt − x)2

(5)

Figure 4 shows the autocorrelation function for each empirical case.
The algebraic decay of the empirical autocorrelation function ρk is strongly connected

to the memory of stochastic processes, such as long memory in the form of Long-Range
Dependence (LRD). The existence of LRD assumes the presence of stationarity in the time
series. A memory parameter d is defined in relation to the slope of the autocorrelation
function (ρ) decay. When d > 0 the term persistent defines the time series, with progressively
larger values in time. In the opposite case, we have d < 0 with the presence of anti-
persistence, where positive values will tend to alternate with negative values and vice versa.
Here, we borrow the concept as defined in Ref. [34]: For d < 0 we have anti-persistence;
i.e., positive values tend to be followed by negative values and vice versa. In the special case of
d = 0, the process will correspond to the presence of white noise, without evidence of
autocorrelation and corresponding to a pure Markovian process [34].
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Figure 4. Malaria empirical series: Autocorrelation function from (a) Alhassan et al. (Kasena Nankana
municipality in Ghana, 2017) [21]. (b) Appiah et al. (Ejisu-Juaben municipality in Ghana, 2015) [16],
(c) Bedane et al. (Kucha district in Ethiopia, 2016) [23], (d) Aregawi et al. (Ethiopia, 2014) [22],
(e) Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24], (f) Muwanika et al. (Uganda, 2017) [26],
(g) Landoh et al. (Est Mono district in Togo, 2012) [25], (h) Okech et al. (Kenya, 2008) [27].

The algebraic decay of the empirical autocorrelation function ρk is strongly connected
to the memory of stochastic processes such as long memory in the form of Long Range
Dependence (LRD). The existence of LRD assumes the presence of stationarity in the time
series. A memory parameter d is defined in relation to the slope of the autocorrelation
function (ρ) decay. When d > 0 the term persistent defines the time series, with progressively
larger values in time. In the opposite case we have d < 0 with the presence of anti-
persistence, where positive values will tend to alternate with negative values and vice versa.
Here, we borrow the concept as defined in Ref. [34]: For d < 0 we have anti-persistence;
i.e., positive values tend to be followed by negative values and vice versa. In the special case of
d = 0, the process will correspond to the presence of white noise, without evidence of
autocorrelation, and corresponding to a pure Markovian process [34].

The decay in time of the autocorrelation function ρk in a stochastic process correlates
with the presence of memory persistence of past events in the present state of the system.
In the case of fast ρk exponential decay the system memory will be short. With slower ρk
decays (corresponding to power law processes) memory will be longer in relation to the
presence of LRD.

For the present eight empirical time series the autocorrelation function ρk did reveal
similar decay patterns. The ρk decay seems to deviate from exponential decay in most of
the cases, what would have been expected in the case of a pure white noise Markovian
process, thus suggesting the presence of memory persistence in all empirical series shown.
The slow ρk decay is usually related to the presence of time series non-stationarity. In
more than half of the presented examples, a persistent and ondulatory expression of ρk
values as a result of seasonality and periodicity in disease transmission overlaps with the
background decaying trend.

5. Towards a More Quantitative Malaria Model for Predicting
Effective Gametocytemia

Figure 5 shows the result obtained for the I, H and S in the six different scenarios
of gametocytemia levels. From Figure 5a we observe that the six simulations cover all
different incidence regimes, ranging from low incidence (I ∼ 0) to high incidence (I ∼ 1).
For the same simulations, the Hurst exponent shown in Figure 5b, shows a clear decrease
of memory patterns with the increase of the gametocytemia level wh.

Figure 4. Malaria empirical series: Autocorrelation function from Alhassan et al. (Kasena
Nankana municipality in Ghana, 2017) [21]; Appiah et al. (Ejisu-Juaben municipality in Ghana,
2015) [16]; Bedane et al. (Kucha district in Ethiopia, 2016) [23]; Aregawi et al. (Ethiopia, 2014) [22];
Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24]; Muwanika et al. (Uganda, 2017) [26]; Landoh et al.
(Est Mono district in Togo, 2012) [25]; Okech et al. (Kenya, 2008) [27].

The decay in time of the autocorrelation function ρk in a stochastic process correlates
with the presence of memory persistence of past events in the present state of the system.
In the case of fast ρk the exponential decay the system memory will be short. With slower
ρk decays (corresponding to power law processes) memory will be longer in relation to the
presence of LRD.

For the present eight empirical time series the autocorrelation function ρk revealed
similar decay patterns. The ρk decay seems to have deviated from exponential decay in most
of the cases, which would have been expected in the case of a pure-white-noise Markovian
process, thus suggesting the presence of memory persistence in all the empirical series
shown. The slow ρk decay is usually related to the presence of time series’ non-stationarity.
In more than half of the presented examples, a persistent and ondulatory expression of ρk
values as a result of seasonality and periodicity in disease transmission overlaps with the
background decaying trend.

5. Towards a More Quantitative Malaria Model for Predicting Effective Gametocytemia

Figure 5 shows the result obtained for I, H and S in the six different scenarios of
gametocytemia levels. From Figure 5a we observe that the six simulations cover all different
incidence regimes, ranging from low incidence (I∼0) to high incidence (I∼1). For the same
simulations, the Hurst exponent shown in Figure 5b, shows a clear decrease of memory
patterns with the increase of the gametocytemia level wh.

As for the dependence of the entropy S, shown in Figure 5c, we also observe a
transition to large entropy values as wh increases, though the transition seems much more
abrupt. At the phase transition near disease extinction we have consistently found lower
values of information entropy, clearly defining a stochastic process with long memory. At
higher disease transmission rates (higher wh) entropy becomes higher and more stable,
evolving towards a short memory stochastic process. This dichotomy defines the nature of
transmission stability and may be useful in defining how distant a malaria time series is
from a situation of disease extinction.
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Figure 5. (a) Evaluation of the Malaria incidence in time series from model simulations at different
settings of human-to-mosquito transmission efficiency (0.420 < wh < 0.733). The Hurst exponent is
consistently close to 1.0 at the phase transition (when wh ∼ 0.420), and decreasing to values of ∼0.5
(close to a random walk stochastic state) with higher values of wh ∼ 0.700 in higher disease transmis-
sion epidemic stage. For the same series (b) evaluation of the Hurst exponent and (c) evaluation of
Shannon entropy. In each case we simulated the agent model 10 times.

5.1. Models for the Three Observables as Function of Parameter Gametocytemia

Having described the values of the incidence, the Hurst exponent and entropy obtained
in six simulations with an agent model for malaria spreading, we now derive models for
each one of these observables as a function of the central parameter in our approach,
the gametocytemia level wh.

Notice that, being a parameter that cannot be measured directly from empirical series
of malaria incidence, a model from simulations relating the observables with this parameter
will enable predicting the “effective” gametocytemia level (i.e., the transmissibility) in
empirical cases.

To model the malaria incidence I we consider a continuous step function, varying
from I = 0 for wh to I = 1 for wh = 1:

I =
1

1 +
(

A
wh

)α . (6)

The dashed line in Figure 5a shows a function given by Equation (6) for A = 0.562 and
α = 8.3. Here, parameter A gives the gametocytemia level, which brings the malaria
incidence to the level of 50%, while the value of parameter α indicates how abrupt the
transition from eradication to prevalence occurs when increasing the gametocytemia level.

Through inspection of Figure 5b, we choose to model the Hurst exponent H by a
power law

H = Bwβ
h , (7)

for which the best fit yields B = 0.56 and β = 0.58. Here, parameters have no direct
interpretation.
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Finally, to address the abrupt transition observed for the entropy when the gameto-
cytemia level varies, we choose a step function tuned by an exponential of wh:

S =
1

1 + C exp (−γwh)
, (8)

with the best fit yielding C = 10,136 and γ = 32. The parameter C tunes how low the
entropy is for the extreme case of wh = 0, while, similarly to parameter α, the γ controls
how abrupt the transition from that minimum level to S = 1 occurs.

5.2. Prediction of Effective Gametocytemia for Empirical Cases

In relation to the prediction of “effective” gametocytemia in the empirical cases we
first invert the functions defined in Equations (6)–(8) with respect to the gametocytemia
level. We call to the values obtained estimates of gametocytemia, which, in general, do
not coincide:

w(I)
h = A

(
1
I
− 1
)−1/α

, (9a)

w(H)
h =

(
H
B

)−1/β

, (9b)

w(S)
h = − 1

γ
log
(

1
C

(
1
S
− 1
))

. (9c)

In the case that all three models, in predicting wh, retrieve the same value, we can assume
almost zero error (maximum consistency of the models). In general, there will be deviations
between the three predictions for gametocytemia level. Therefore we take, as an estimate
ŵh for the gametocytemia level, the average of the three independent predictions, and, as
the corresponding error σŵh , the largest deviation of the independent predictions from
that estimate:

ŵh = 1
3

(
w(I)

h + w(H)
h + w(S)

h

)
, (10a)

σŵh = max
(
|ŵh − w(I)

h |, |ŵh − w(H)
h |, |ŵh − w(S)

h |
)

. (10b)

Figure 6 repeats the models drawn for the simulations of the agent-based model,
together with the estimate for the eight empirical series. While malaria incidence and the
Hurst exponent retrieve reasonably acceptable predictions, the entropy seems to be very
sensitive. The reason for this may be related with the fact that the values of the entropy are
all very similar, making difficult to derive a numerical model that distinguishes between
the different values. Moreover, the errors are typically large, showing a broad range of
different predictions depending on which models are used (cf. Equation (9)).

In Figure 6 we plot the curves in Figure 5 together with estimates for the eight empirical
cases. To predict the gametocytemia in empirical datasets, we assume that the range of
values of I, H and S observed for the collection of empirical series covers the range of
admissible values between a minimum and a maximum. The same occurs for the collection
of our simulations, but, since there is no guarantee of proper calibration, the minimum
and maximum values may be different. Still, assuming that those values obtained from
simulations should cover the same range of possibilities as those in empirical cases, we
normalize the range of observed values in the empirical cases to the range observed for the
simulations. This is a necessary step to predict effective gametocytemia, as explained below.
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Figure 6. Repeating Figure 5 with the effective gametocytemia for each empirical series (see text).

6. Discussion and Conclusions

The utility of time series models is still a long way from becoming standard practice in
malaria prevention. Differences in climate and geographic factors between world regions
act as confounding factors in the strictly mathematical time series approach, lowering
malaria forecast precision. In recent years the Box–Jenkins theory has become a consistent
development in malaria forecasting [5,18,35,36]. However, little attention has been devoted
to the Hurst theory, information entropy, short- and long-memory stochastic processes or
long-range dependence. It is remarkable that the Hurst theory was initially implemented
in the field of hydrology, as malaria surges are clearly correlated with rainfall, temperature
and climate seasonality [6].

Malaria epidemic time series consistently present different memory patterns, depend-
ing on disease transmission intensity. By comparing time series from our model simulations
to real-data malaria time series from different parts of the world, it was possible to ob-
tain a better definition of epidemic stability, according to disease transmission efficiency,
from field data time series results. In stationary time series, long-memory processes have
been related to the presence of the long-range dependence (LRD) between present and past
results [37].

At low H-to-M disease transmission intensity, time series patterns were consistent with
the presence of LRD. However, at high disease transmission intensity, this pattern reverted
to a low-memory process. By looking at the present model time series with changing wh,
one could witness significant differences in stochastic memory patterns. Additionally, in the
presented empirical time series, the Hurst exponent and entropy correlated reasonably
well with different epidemic growth rates. A similar pattern was evident when looking
at malaria incidence correlation with the Hurst exponent and Shannon entropy. As these
parameters may be affected by the time series length, their use in a normalized setting
should be considered as a reliable option.

By using the standardized forms of the Hurst exponent (H36) and entropy measure-
ment (S36) it was possible to define the type of memory of stochastic malaria incidence time
series with greater precision. This fact may be of significant relevance as both parameters
may become additional and useful tools in malaria forecasting.
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In this paper we used the 36-month standard time length for a specific analysis. We
considered it a compromise between a shorter time length (24 months) with less infor-
mation available to the Hurst exponent estimation, and a longer time length (48 months)
with less data available for analysis in shorter empirical time series, such as the series of
Appiah et al. [16] (60 months). Other alternative methods, such as the generalized Hurst
exponent and adaptive fractal analysis [38,39], could be applied, but, in our case, the results
did not show significant improvements. See Appendix B.

Being a standard approach in time series analysis, we also performed SARIMA models
for the simulation and empirical cases. Figures 7 and 8 show two illustrative cases of
each. Details of the SARIMA model are given in Appendix C. In the case of the seasonal
component, the regressive component of the SARIMA term vanishes in the Okech model
such that we have (P, D, Q) = (0, 1, 1). On the contrary, the seasonal SARIMA model of
Landoh is purely a regressive model with one-time differencing, where we have (P, D, Q) =
(1, 1, 0). The SARIMA forecast of both empirical series is presented in Figure 8, while its
equations and coefficients are available in Table A4.
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Figure 7. Model simulation (black) and SARIMA model forecasting (blue) of model simulation
at phase transition: (a) Low human-to-mosquito transmission efficiency (wh = 0.420); (b) High
human-to-mosquito transmission efficiency (wh = 0.733).

Figure 7. Model simulation (black) and SARIMA model forecasting (blue) of the model simulation
at the phase transition: (a) low human-to-mosquito transmission efficiency (wh = 0.420); (b) high
human-to-mosquito transmission efficiency (wh = 0.733).
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Figure 8. (Left) Empirical time series (black) and SARIMA model forecasting (blue) from Okech,
2008 [27] empirical time series along with declining malaria incidence. SARIMA forecast predicts
rapid disease elimination evolving towards negative values. (Right) Empirical time series (black) and
SARIMA model forecasting (blue) from Landoh, 2012 [25] empirical time series along with a steady
increase in malaria incidence. SARIMA forecast predicts a trend of progressive disease spreading.

All in all, our results seem to indicate that in malaria incidence time series, long range
dependence may occur close to phase transition between epidemic stability and disease
elimination. The presence of these long-memory stochastic processes in malaria incidence
time series could become an additional and useful tool in the early detection of epidemic
resurgence, as well as a potential improvement in malaria prevention strategy.
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Figure 8. (Left) Empirical time series (black) and SARIMA model forecasting (blue) from Okech,
2008 [27] empirical time series, along with declining malaria incidence. The SARIMA forecast predicts
rapid disease elimination evolving towards negative values. (Right) Empirical time series (black)
and SARIMA model forecasting (blue) from the Landoh, 2012 [25] empirical time series, along
with a steady increase in malaria incidence. The SARIMA forecast predicts a trend of progressive
diseasespreading.
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All together, our results seem to indicate that, in malaria incidence time series, long-
range dependence may occur close to the phase transition between epidemic stability and
disease elimination. The presence of these long-memory stochastic processes in malaria
incidence time series could become an additional and useful tool in the early detection of
epidemic resurgence, as well as a potential improvement in malarial prevention strategies.
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Appendix A. Qualitative Analysis of Hurst Exponent and Entropy:
Case-by-Case Description

Appendix A.1. Alhassan (2017)

In the Alhassan malaria time series (Kasena Nankana municipality in Ghana, 2017) [21]
one can see a declining trend in malaria incidence in the form of a decreasing moving
average of 36 months (I36), from∼11 to∼4 cases per 100 inhabitants, per year [phy], despite
the small final outbreak in the last 6 months. Consistent with the declining trend in I36, we
may also witness a decreasing trend in S36, as well as a rising trend in H36 after month 55.
In this case, the behavior of both the Hurst exponent and entropy in the preceding 36 months
is well correlated with the malaria incidence trend—see Figures A1–A3.

Appendix A.2. Appiah (2015)

By looking at the Appiah malaria time series (Ejisu-Juaben municipality in Ghana,
2015) [16] an irregular oscillation of malaria incidence is detectable, superimposed on a
stable trend in malaria incidence ∼12.4 cases phy, with a range between a peak incidence of
∼20 cases phy at 32 months and an all-time-low of∼5 cases phy at 18 months—see Figure 1.
Consistent with the initial declining trend in I36 until month 53, we may also witness a
declining trend in S36 as well as a rising trend in H36. In the present case, the behaviors of
both the Hurst exponent and entropy in the initial 53 months are well correlated with the
malaria incidence trend—see Figures A1–A3.
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Appendix A. Qualitative Analysis of Hurst Exponent and Entropy:
Case-by-Case Description

Figure A1. Illustration of how 36-month moving average malaria incidence in the x-axis, symbol-
ized as I36 relates to 36-months Hurst exponent H36 in th y-axis in malaria empirical time series:
(a) Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21]. (b) Appiah et al. (Ejisu-
Juaben municipality in Ghana, 2015) [16], (c) Bedane et al. (Kucha district in Ethiopia, 2016) [23],
(d) Aregawi et al. (Ethiopia, 2014) [22], (e) Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24],
(f) Muwanika et al. (Uganda, 2017) [26], (g)Landoh et al. (Est Mono district in Togo, 2012) [25],
(h) Okech et al. (Kenya, 2008) [27].

Figure A2. Illustration of how 36-month moving average malaria incidence in the x-axis, symbolized
as I36 relates to 36-months entropy S36 in th y-axis in malaria empirical time series: (a) Alhassan et al.
(Kasena Nankana municipality in Ghana, 2017) [21]. (b) Appiah et al. (Ejisu-Juaben municipality in
Ghana, 2015) [16], (c) Bedane et al. (Kucha district in Ethiopia, 2016) [23], (d) Aregawi et al. (Ethiopia,
2014) [22], (e) Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24], (f) Muwanika et al. (Uganda,
2017) [26], (g) Landoh et al. (Est Mono district in Togo, 2012) [25], (h) Okech et al. (Kenya, 2008) [27].

Alhassan (2017)

In the Alhassan malaria time series (Kasena Nankana municipality in Ghana, 2017) [21]
one can see a declining trend in malaria incidence in the form of a decreasing moving
average of 36 months (I36), from∼11 to∼4 cases per 100 inhabitants, per year [phy], despite
the small final outbreak in the last 6 months. Consistent with the declining trend in I36 we
may also witness a decreasing trend in S36 as well as a rising trend in H36 after month 55.

Figure A1. Illustration of how a 36-month moving average malaria incidence in the x-axis, sym-
bolized as I36, relates to the 36-month Hurst exponent H36 in th y-axis in malaria empirical time
series: (a) Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21]. (b) Appiah et al. (Ejisu-
Juaben municipality in Ghana, 2015) [16], (c) Bedane et al. (Kucha district in Ethiopia, 2016) [23],
(d) Aregawi et al. (Ethiopia, 2014) [22], (e) Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24],
(f) Muwanika et al. (Uganda, 2017) [26], (g) Landoh et al. (Est Mono district in Togo, 2012) [25],
(h) Okech et al. (Kenya, 2008) [27].
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Alhassan (2017)

In the Alhassan malaria time series (Kasena Nankana municipality in Ghana, 2017) [21]
one can see a declining trend in malaria incidence in the form of a decreasing moving
average of 36 months (I36), from∼11 to∼4 cases per 100 inhabitants, per year [phy], despite
the small final outbreak in the last 6 months. Consistent with the declining trend in I36 we
may also witness a decreasing trend in S36 as well as a rising trend in H36 after month 55.

Figure A2. Illustration of how a 36-month moving average malaria incidence in the x-axis, sym-
bolized as I36, relates to the 36-month entropy S36 in th y-axis in malaria empirical time series:
(a) Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21]. (b) Appiah et al. (Ejisu-
Juaben municipality in Ghana, 2015) [16], (c) Bedane et al. (Kucha district in Ethiopia, 2016) [23],
(d) Aregawi et al. (Ethiopia, 2014) [22], (e) Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24],
(f) Muwanika et al. (Uganda, 2017) [26], (g) Landoh et al. (Est Mono district in Togo, 2012) [25],
(h) Okech et al. (Kenya, 2008) [27].
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Appendix A.3. Bedane (2016)

In relation to the Bedane malaria time series (Kucha district in Ethiopia, 2016) [23]
we can witness an initial declining trend in malaria incidence in the form of a decreasing
moving average of 36 months (I36), lasting until month 98, from∼15 cases phy, to∼10 cases
phy, followed by a small final upsurge in I36 to ∼11.5 cases phy. Consistent with the initial
declining trend in I36 until month 98, we may also witness a delayed declining trend in S36
from months∼70 to∼115, as well as a rising trend in H36 from months∼60 to∼80, despite
the presence of a superimposed irregular oscillatory noise pattern. In this case, the behavior
of both the Hurst exponent and entropy in the initial ∼98 months partially shows some
degree of correlation with the global malaria incidence trend—see Figures A1–A3.

Appendix A.4. Aregawi (2014)

In the Aregawi malaria time series (Ethiopia, 2014) [22] we can witness an initial small
upper trend in malaria incidence in the form of an increasing moving average of 36 months
(I36) in the initial ∼62 months, with ∼0.26 cases per 100 inhabitants, per year, declining
thereafter to less than ∼0.12 cases per 100 inhabitants, per year.

Consistent with the initial small upper trend in I36, we also witness a declining trend
in H36 after month 62. In this case, entropy revealed an atypical behavior, peaking a littler
later, at month ∼72. Along with a declining trend in I36 after month 62, one can witness a
consistent rise in H36, lasting to the end of the time series despite a transitory fall at month
∼105, with a rapid recovery at month ∼114. In the Aregawi time series, the behavior of S36
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was more unpredictable, with a more delayed response. This fact may be somehow related
to the low malaria incidence in the time series.

However, in the present case, the behavior of the Hurst exponent in the form of a 36-
month moving average (H36) in the initial 65 months still reveals some degree of correlation
with the global malaria incidence trend—see Figure A3. At such low levels of malaria
incidence (∼0.2 phy) this behavior could be interpreted as a possible outlier result—see
Figures A1–A3.

Appendix A.5. Gomez-Elipe (2007)

The Gomez-Elipe time series (Karuzi in Burundi, 2007) [24] is quite different from the
remaining empirical examples. It shows a consistent stable pattern of malaria incidence
below 110 cases phy, until month 45, peaking to ∼500 cases phy, around month 48, with a
rapid fall to ∼60 cases phy at month 56, and with a slower decline thereafter to a final value
of ∼20 cases phy—see Figure 1. The 36-months malaria incidence (I36) reveals a consistent
upward trend peaking at month 64, with a downward pattern thereafter.

In this case, we find a persistent oscillatory behavior in the value of H36 during the
entire time series, usually ranging above 0.9. Yet, coinciding with the outbreak in malaria
incidence at month 48, it is possible to see a sudden fall in H36 to values close to 0.6 (closer
to random noise). Entropy in the form of a 36-month moving average (S36) reveals a parallel
correlated behavior to I36 from month 48 onwards. Despite the presence of a superimposed
oscillatory noise pattern, the behaviors of the Hurst exponent and entropy also show some
degree of correlation with the malaria incidence trend, globally—see Figures A1, A2 and A4.
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Appendix A.6. Muwanika (2017)

In the Muwanika malaria time series (Uganda, 2017) [26] we may witness an initial
small upper trend in malaria incidence in the form of a mild increase in the 36-month
moving average ( I36) during the initial∼47 months, with a peak at∼60 cases phy, declining
thereafter to ∼56 cases phy.

Consistent with the initial small upper trend in I36 until month 47, we may also witness
a declining trend in H36 from an initial value ∼0.9 to ∼0.5 close to month 45. From month
47 onwards, H36 consistently increases to values close to 1.0 (long memory process) in
parallel with the steady decline in I36. In the present case, entropy, in the form of a 36-month
moving average (S36), reveals a consistent decreasing trend, shadowing the decline in I36
beginning at ∼month 47. In the Muwanika time series, the behaviors of H36 and S36 are
globally correlated with the behavior of I36 in time—see Figures A1, A2 and A4.

Appendix A.7. Landoh (2012)

The Landoh malaria time series (Est Mono district in Togo, 2012) [25] reveals a con-
sistent upper trend in malaria incidence in the form of a mild increase in the 36-month
moving average (I36) over the whole time series, ranging from the initial ∼18 cases phy,
to a peak at ∼30 cases phy in month 72.

Consistent with the steady upper trend in I36 during the entire time series, we find a
declining trend in the 36-month moving average of the Hurst exponent (H36) from a peak
of ∼0.85 at month 47, to an all-time-low value of ∼0.55. Along with this downward trend
in H36, there is a consistent increase in entropy in the form of a 36-month moving average
(S36), during the entire time series, despite its undulatory behavior. In the Landoh time
series, the behaviors of H36 and S36 are reasonably well correlated with the behavior of I36
in time—see Figure A4.

Appendix A.8. Okech (2008)

In a similar form, but with an opposite trend to the Landoh time series, the Okech
time series (Kenya, 2008) [27] also reveals a steady decreasing trend. In the Okech time
series, malaria incidence consistently decreases from an initial peak of ∼400 cases phy, to a
final value close to 50 cases phy.

Consistent with the steady downward trend in I36 during the entire time series, we
find an upper trend in the 36-month moving average of Hurst exponent (H36), from an
all-time-low of ∼0.6 at month 42, to a peak of ∼1.2 at month 82. Along with this upper
trend in H36, there is a consistent decrease in entropy in the form of a 36-month moving
average (S36) over the whole time series. In the Okech time series, the behaviors of H36 and
S36 are also quite correlated with the behavior of I36 in time—see Figures A1, A2 and A4.

Appendix B. Inspecting the Robustness of 36-Month Averages

The results in the previous appendix have been derived using average values in
windows of 36 months, i.e., three years. While the number of points is small, it covers two
annual cycles. As it is known—and as shown in Appendix C—malaria spreading shows
periodic behavior following annual seasonality.

To evaluate the robustness of the estimated values for malaria incidence, the Hurst
exponent and entropy, shown in the previous appendix and discussed in the main text, we
present, next, the results for estimates done from two and four annual cycles, i.e., 24 and
48 months, respectively. The results are shown in Figures A5–A8.
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Figure A5. Comparative depiction of I24 (top), H24 (middle), S24 (bottom) for (from left to right):
Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21], Appiah et al. (Ejisu-Juaben
municipality in Ghana, 2015) [16], Bedane et al. (Kucha district in Ethiopia, 2016) [23], and Aregawi
et al. (Ethiopia, 2014) [22].

Figure A5. Comparative depiction of I24 (top), H24 (middle), S24 (bottom) for (from left to
right): Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21], Appiah et al. (Ejisu-
Juaben municipality in Ghana, 2015) [16], Bedane et al. (Kucha district in Ethiopia, 2016) [23],
and Aregawi et al. (Ethiopia, 2014) [22].
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Figure A6. (Cont. Figure A5): Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24], Muwanika et al.
(Uganda, 2017) [26], Landoh et al. (Est Mono district in Togo, 2012) [25], and Okech et al. (Kenya,
2008) [27].

Figure A7. Comparative depiction of I48 (top), H48 (middle), S48 (bottom) for (from left to right):
Alhassan et al. (Kasena Nankana municipality in Ghana, 2017) [21], Appiah et al. (Ejisu-Juaben
municipality in Ghana, 2015) [16], Bedane et al. (Kucha district in Ethiopia, 2016) [23], and Aregawi
et al. (Ethiopia, 2014) [22].
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(Uganda, 2017) [26], Landoh et al. (Est Mono district in Togo, 2012) [25], and Okech et al. (Kenya,
2008) [27].
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et al. (Ethiopia, 2014) [22].
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Figure A8. (Cont. Figure A7): Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24], Muwanika et al.
(Uganda, 2017) [26], Landoh et al. (Est Mono district in Togo, 2012) [25], and Okech et al. (Kenya,
2008) [27].

Table A1. Table with the general Hurst exponent (GHE) computed, using Equation (A2), for the
entire time series and for q = 1 and q = 2 of the 8 empirical time series.

Empirical series GHE for q = 1 GHE for q = 2

Aregawi [22] 0.48 0.49

Alhassan [21] 0.48 0.56

Bedane [23] 0.73 0.48

Appiah [16] 0.21 0.09

Landoh [25] 0.65 0.62

Muwanika [26] 0.41 0.37

Elipe [24] 0.73 0.60

Okech [27] 0.26 0.42

We choose to use the standard method to estimate Hurst exponent, based in the
quotient R/S [34,35,38–41]. An alternative method could be the so-called generalized
Hurst exponent (GHE), defined from the function

Kq(τ) =
〈|I(t + τ)− I(t)|q〉

〈I(t)q〉 , (A1)

where 〈·〉 is the average over time t. The GHE HG depends in general on q as [53]

Kq(τ) ∼ τqHG(q) . (A2)

A general Hurst exponent which varies with the moment q flags the presence of multifrac-
tality in the series.

Figure A8. (Cont. Figure A7): Gomez-Elipe et al. (Karuzi in Burundi, 2007) [24], Muwanika et al.
(Uganda, 2017) [26], Landoh et al. (Est Mono district in Togo, 2012) [25], and Okech et al. (Kenya,
2008) [27].

We choose to use the standard method to estimate the Hurst exponent, based on the
quotient R/S [34,37,40–43]. An alternative method could be the so-called generalized Hurst
exponent (GHE), defined from the function

Kq(τ) =
〈|I(t + τ)− I(t)|q〉

〈I(t)q〉 , (A1)

where 〈·〉 is the average over time t. The GHE HG depends in general on q as [44]

Kq(τ) ∼ τqHG(q) . (A2)

A general Hurst exponent varies with the moment q flags the presence of multifractality in
the series.

GHE is a modern approach to Hurst analysis with some specific advantages applied
in the analysis of complex and imhomogeneous time series in electrocardiography (ECG)
signals, and it has been shown to be a promising tool for the study of atrial fibrillation (AF)
organization from surface ECG [45]. It is usually recommended in the presence of short
time series, where it has been shown to be slightly more efficient. It has been used mainly
in the assessment of the stability of financial firms as applied to the stock market. However,
GHE does not solve the problem of small time series, such as the ones analysed in this
paper. Moreover, deriving the exponent from the scaling relation in Equation (A2) imposes
a linear relation between log Kq and log τ that usually occurs only for the smallest values
of τ. Consequently, it may overestimate more recent events, reducing the significance of
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past events. This is indeed the case for the GHE derived for Okech (see Figure 1), where,
as malaria is eradicated towards the end of the data record, it can wrongly show an anti-
persistence value (Hg < 0.5). See Table A1. For this reason we choose the R/S analysis to
estimate the Hurst exponent.

Table A1. Table with the general Hurst exponent (GHE) computed, using Equation (A2), for the
entire time series and for q = 1 and q = 2 of the eight empirical time series.

Empirical Series GHE for q = 1 GHE for q = 2

Aregawi [22] 0.48 0.49

Alhassan [21] 0.48 0.56

Bedane [23] 0.73 0.48

Appiah [16] 0.21 0.09

Landoh [25] 0.65 0.62

Muwanika [26] 0.41 0.37

Elipe [24] 0.73 0.60

Okech [27] 0.26 0.42

Appendix C. Arima Models of the Incidence of Malaria

Models for single time series in epidemiology and infectious disease research have
been widely used [11,15–18,35,46–53]. In this section, malaria time series will be analysed
from a different perspective, involving simulations in two different human-to-mosquito
transmission efficiency wh settings (wh = 0.420 and wh = 0.733), based upon our malaria
transmission agent-based stochastic model [3].

Those results will be compared with two empirical time series with different trans-
mission patterns from separate world regions where malaria is still endemic, “Okech” and
“Landoh” [25,27]. The Okech time series reveals a pattern consistent with an unstable
epidemic state, with a decreasing trend from high levels of malaria incidence, evolving to
imminent disease elimination. The other empirical time series reveal an unstable epidemic
behavior, but, with a non-stationary increasing trend and an average level of malaria in-
cidence by African standards of between 10 and 50 malaria cases per 100 inhabitants per
year. See Table A2.

Table A2. (Top) Human-to-mosquito disease transmission efficiency (low, with wh = 0.420, and high,
with wh = 0.733), and average malaria incidence (±SE) of ten simulations in all settings. (Bottom) Em-
pirical time series with average malaria incidence (±SD) in different settings of malaria transmission.

Level wh
Malaria Transmission Intensity Malaria Incidence

(±SE)

Low 0.420 Phase transition 7.7 (±0.89)
High 0.733 Epidemic stability 169.7 (±0.64)

Series Follow-Up Region Trend Malaria incidence
(months) (±SD)

Okech, 2008 96 Kenya decreasing 205.1 (±169.8)
Landoh, 2012 72 Togo increasing 24.4 (±11.5)

As our model shows annual seasonality approximately, we choose a SARIMA model
with a period of 12 months:

ΦP(Bs)φp(B)∇D
s ∇dXt = ΘQ(Bs)θq(B)Zt , (A3)
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where Zt represents a Gaussian white noise time series (i.e., Zt = N(0, σ2)) and the ordinary
∇ operator represents the one-difference operator, ∇Xt = Xt − Xt−1, ∇dXt = (1− B)dXt
is the ordinary differencing level ∇d and ∇D

s Xt = (1− Bs)DXt is the differencing level of
the seasonal ∇D with periodicity s. Operator φp(B) is the ordinary autoregressive operator
φp(B) = 1− φ1B− φ2B2 − φ3B3 − ...− φpBp, θq(B) the ordinary moving average operator
θq(B) = 1 + θ1B + θ2B2 + θ3B3 + ... + θqBq, ΦP(Bs) is the seasonal autoregressive operator
ΦP(Bs) = 1−Φ1Bs−Φ2B2s−Φ3B3s− ...−ΦPBPs, ΘQ(Bs) is the seasonal moving average
operator ΘQ(Bs) = 1 + Θ1Bs + Θ2B2s + Θ3B3 + ... + ΘQBQs. Here Bs(Xt) = Xt−s is the
seasonal - or s-order - backshift operator. In particular B(Xt) = Xt−1.

Table A3 shows all parameters of the SARIMA model for the two simulations, while
Table A4 shows all parameters of the SARIMA model for the two simulations.

Table A3. (Top) H-to-M transmission efficiency (wh) levels from model simulations and in relation to
the SARIMA models (α = drift). (Bottom) Different H-to-M transmission efficiency levels (wh = 0.420
and wh = 0.733), and coefficients of the SARIMA models.

wh SARIMA Model
(p, d, q)× (P, D, Q)s ΦP(Bs)φp(B)∇D

s ∇dXt = α + ΘQ(Bs)θq(B)Zt

0.420 (2, 1, 2)× (2, 1, 2)12 Φ2(B12)φ2(B)∇1
12∇1Xt = α + Θ2(B12)θ2(B)Zt

0.733 (2, 1, 1)× (2, 1, 1)12 Φ2(B12)φ2(B)∇1
12∇1Xt = α + Θ1(B12)θ1(B)Zt

wh 0.420 0.733

(p, d, q)× (P, D, Q)s (2, 1, 2)× (2, 1, 2)12 (2, 1, 1)× (2, 1, 1)12

φ1 −0.3635 −0.3495
φ2 0.3415 −0.2344
θ1 −0.3455 −0.2997
θ2 −0.5422 −0.2221
Φ1 0.6564 −0.2273
Φ2 −0.1574 −0.7408
Θ1 −1.4685 –
Θ2 0.7626 –

α (drift) – –
σ2 10.89 1037

AICc 1849.32 3426.29

Table A4. (Top) SARIMA models of empirical time series from Okech [27] and Landoh [25]. (Bottom)
Coefficients of SARIMA models of empirical time series from both examples.

Empirical Series SARIMA
(p, d, q)× (P, D, Q)s ΦP(Bs)φp(B)∇D

s ∇dXt = ΘQ(Bs)θq(B)Zt

Okech, 2008 (1, 1, 1)× (0, 1, 1)12 Φ0(B12)φ1(B)∇1
12∇1Xt = Θ1(B12)θ1(B)Zt

Landoh, 2012 (1, 1, 1)× (1, 1, 0)12 Φ1(B12)φ1(B)∇1
12∇1Xt = Θ0(B12)θ1(B)Zt

Okech, 2008 Landoh, 2012

(p, d, q)× (P, D, Q)s (1, 1, 1)× (0, 1, 1)12 (1, 1, 1)× (1, 1, 0)12

φ1 0.6357 0.5306
θ1 −0.8778 −1.000
Φ1 – −0.4894
Θ1 −0.6522 –
σ2 2518 17.49

AICc 900.8 351.15

From the present model simulations, the SARIMA linear models have been defined
according to the level of gametocytemia and disease transmission efficiency. There are
small differences in the type of the best SARIMA model between stochastic simulations at
the same level of disease transmission intensity. The presented results have been obtained
from the first-tested simulation at every transmission level.
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Close to the phase transition at the lower transmission level (63 days gametocytemia
duration; wh = 0.420) the most reliable SARIMA model has been defined as (2, 1, 2)×
(2, 1, 2)12, corresponding to a combination of auto-regressive(p = 2 and P = 2), and moving
average (q = 2 and Q = 2) procedures, with the need of time series differencing (once,
d = 1 and D = 1), both in the non-seasonal and the 12-month seasonal model fractions.

At the higher transmission level (110 days gametocytemia duration; wh = 0.733)
the best SARIMA model has been defined as (2, 1, 1)× (2, 1, 1)12, with a predominantly
auto-regressive component (p = 2 and P = 2) and a lower-order moving average (q = 1
and Q = 1), with the need for time series differencing (once, d = 1 and D = 1), both in the
non-seasonal and in the 12-month seasonal model fractions. In both cases, the best model
has been defined according to Akaike information criterion optimization.

The two presented model scenario simulations of extreme human-to-mosquito trans-
mission conditions (wh = 0.420 and wh = 0.733) have been compared to two typical
empirical time series of malaria incidence in different geographical regions, from West and
East Africa, with opposite disease transmission trends. They represent western and eastern
Africa regions according to their apparent epidemic stability, seasonality and trends: West
Africa (Togo) and East Africa (Kenya).
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