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Abstract: In this paper we developed a modified Hidden Markov Model (HMM) to analyze the raw 

nanopore experimental data. Traditionally, prior to further analysis the measured nanopore data must be 

pre-filtered, but the filtering usually distorts the waveform of the blockage current, especially for rapid 

translocations and bumping blockages. The HMM is known to be robust with respect to strong noise and 

thus suitable for processing the raw nanopore data, but its performance is susceptible to the setting of 

initial parameters. To overcome this problem, we use the Fuzzy c-Means (FCM) algorithm to initialize 

the HMM parameters in this work. Then we use the Viterbi training algorithm to optimize the HMM. 

Finally, both the simulated and experimental data analysis results are presented to show the effectiveness 

of the proposed method for detection of the nanopore current blockage events in analytical chemistry. 
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clustering algorithm. 

 

1. INTRODUCTION 

The basic principle of nanopore analysis technique is that a 

molecule passes the nanopore resulting in a temporary 

reduction in the ionic current and through analyzing the 

current amplitude and time duration of the blocked current 

signal, we can identify the biochemical information of 

analyte. It has been widely used for single-molecule detection 

of ion, DNA, RNA, protein and peptide (Braha et al., 2000; 

Kasianowicz et al., 1996; Ying et al., 2011; Movileanu et al., 

2005). Recent work (for example Ashton et al., 2015; Loose 

et al., 2016; and Quick et al., 2016) revealed that the 

nanopore analysis is able to accurately sequence virus and 

bacterial pathogens.  

The ionic current signal measured from the nanopore 

experiment is inevitably corrupted by noises. Therefore, the 

short blockage events with low current amplitude are easily 

buried in noise and hard to detect. To facilitate signal 

detection and processing, it is necessary to remove the 

higher-frequency noise using a low-pass filter. However, the 

low-pass filter usually distorts the signals especially for the 

short events with duration shorter than 2 rT∗ , 

where 0.3321/r cT f=  is the rising time of the filter with 
cf  

its cut-off frequency (Gu et al., 2015). It increases the 

duration and reduces the current amplitude, which makes it 

difficult to determine the molecules’ biochemical information 

accurately.  

Two strategies have been commonly used to mitigate the 

above issues induced by pre-filtering: 1) retrieve the distorted 

events based on the method of equivalent electric circuit of 

nanopore (Balijepalli et al. (2014)), Full-width-half-

maximum (FWHM) (Arjmandi et al. (2012); Plesa et al. 

(2015)), the slope of event (Pedone et al. (2009)), or the area 

of event (Gu et al., 2015) to improve the performance of pre-

filtered data analysis; 2) Improve the experimental equipment 

performance (Garalde et al. 2013; O'Donnell et al. 2012), 

such as increase the bandwidth of experimental equipment to 

reduce the degree of signal distortion, but this would 

introduce strong noise and make traditional methods no 

longer applicable. In addition, due to the high degree of 

system integration, parts of the experimental device become 

easily consumable, which highly increases the detection cost.  

In order to overcome the disadvantages of the above two 

strategies, we directly process the highly noisy raw 

(unfiltered and almost undistorted) nanopore experimental 

data based on the Hidden Markov Model (HMM) to detect 

the current blockage events’ biochemical information. The 

HMM (Rabiner et al. (1989); Dugad et al. (1996)) is tolerant 

of the strong noise and thus has been successfully used to 

detect events from the noisy ionic current signal measured by 

patch-clamp (Chung et al. (1990); Chung et al. (1991); Qin et 

al. (2004)). Unfortunately, the HMM is sensitive to its initial 

parameters usually pre-set manually in previous work, which 

is not suited to implementation of automatic data processing. 

In this work, we utilize the Fuzzy c-means (FCM) clustering 

algorithm to initialize the parameters of HMM for practical 

applications. 

2. EXPERIMENTS 

2.1  Materials 

α-Hemolysin (α-HL) wildtype-D8H6 was produced by 

expression in BL21 (DE3) pLysS Escherichia coli cells and 

self-assembled into heptamers, and decane were purchased 

from Sigma-Aldrich (≥99%, St. Louis, MO, USA). 1, 2-

Diphytanoyl-sn-glycero-3-phosphocholine (chloroform, ≥
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99%) was purchased from Avanti Polar Lipids (Alabaster, 

AL). All oligonucleotides used in our experiments were 

synthesized by Invitrogen Life Technologies (Shanghai, 

China). Ultrapure water (resistivity of 18.2 MΩ•cm at 25 °C) 
was obtained from a Milli-Q system (EMD Millipore, 

Billerica, MA). The pH 8.0 buffer solution used was 

composed of 1 M KCl. 

2.2  Experimental Procedure 

As described in (Ying et al. (2013), Ying et al. (2011) and 

Liu Y et al. (2013), the lipid bilayers were created by 

applying 1,2-diphytanoyl-sn-glycero-3-phosphocholine (30 

mg/mL) in decane (≥99%, Sigma-Aldrich, St. Louis, MO, 

USA) to a 150 µm orifice in a 1 mL bilayer chamber (Warner 

Instruments, Hamden, CT, USA) filled with KCl (1.0 M) and 

Tris-HCl (10 mM, pH = 8.0). The stability of the bilayer was 

evaluated by monitoring its resistance and capacitance. The 

solution of α-hemolysin was injected into the cis chamber 

proximal to the bilayer. Then seven monomers of α-

hemolysin assembled to form a hydrophilic channel in the 

bilayer. The two compartments of the bilayer cell are termed 

cis and trans. A pair of Ag/AgCl electrodes was inserted into 

the two compartments. After a single nanopore was formed 

on the bilayer, the analyte was injected into the cis chamber. 

The voltage was set to +100 mV during the experiments. A 

ChemClamp instrument (Dagan Co., Minneapolis, MN) in 

the voltage clamp mode was used to amplify and measure the 

ionic current flowing through the nanopore. The filtered and 

unfiltered data were measured simultaneously at a sampling 

rate of 100 kHz by using a DigiData 1440A A/D converter 

(Axon Instruments, Forest City, CA, USA) and the filter cut-

off frequency is 3 kHz. Data was recorded by the PClamp 

software (Axon Instruments). 

3. METHODS 

3.1  Data Analysis Procedure 

The data processing procedure developed is shown in Fig. 1. 

 

Fig. 1. The data analysis procedure. 

The HMM has been successfully used in the single-channel 

current signal recorded by Patch-clamp, which is similar to 

the nanopore data (Chung et al. (1990); Qin et al. (2004)). It 

can be assumed that nanopore current signal is generated by a 

1st-order discrete-time finite-state Markovian process with 

Gaussian white noise, but the state of the process (submerged 

in noise) is not directly observable (or measurable). Therefore, 

the nanopore data can be modelled by the HMM with the 

observable current data (O1, O2,⋯,OT) and the hidden 

(unobservable) state sequence (q1, q2,⋯, qT). 

The HMM, applied to nanopore data analysis, consists of the 

following components/parameters (Rabiner et al. (1989)): 

1. The observation (observed sample) sequence
1 2, , , TO O O  

with the length of T. For the nanopore data analysis problem, 

the observations correspond to the measured current data. 

2. The set of hidden states
1 2{ , , , }NS S S S=  , where N is the 

cardinality of the set, say the number of hidden states. The 

observed sample Ot, t=1, 2,⋯,T can be generated by several 

hidden state qt∈S with certain probability. The observation 

sequence O1, O2,⋯,OT usually corresponds to multiple hidden 

state sequences q1, q2,⋯, qT, and we call the most likely 

hidden state sequence optimal in the sense of maximum 

likelihood. In the nanopore problem, the hidden states 

correspond to the N current levels in the current signal. 

3. The N N× state transition probability matrix { }ijA a= , 

where 1( | )ij t j t ia P q S q S+= = =  , 1 ,i j N≤ ≤  denotes the 

state of the HMM at time t. In the nanopore problem, the 

transition probability denotes the probability of a transition 

from current level Si to  Sj. 

4. The initial state distribution { }iπ=π , 

where
1( ),1i iP q S i Nπ = = ≤ ≤ is N-dimensional column 

vector. In the nanopore problem, it denotes the probability 

that the first observed sample O1 results from each current 

level. 

5. The observation probability distribution matrix in the 

state jS : { ( )}j tB b O= , where 
tO  is the observation at time t, 

and ( ) ( | ),1j t t t jb O P O q S j N= = ≤ ≤ . In the nanopore 

problem, the probability distribution of the observed data due 

to the state Si is assumed to be Gaussian. 

The HMM is usually used to solve the following three typical 

problems: 

Problem 1. Given the model ( , , )A Bλ = π , determine the 

occurrence probability ( | )P O λ  of observation 

sequence
1 2, , , TO O O . The typical method for this problem 

is Forward and Backward algorithm (Devijver et al. (1985); 

Rabiner et al. (1990)). 

Problem 2. Given the model ( , , )A Bλ = π  and observation 

sequence
1 2, , , TO O O , find the optimal state 

sequence
1 2, , , Tq q q to maximize the probability ( , | )P O S λ . 

The typical method for this problem is Viterbi algorithm, 

which will be briefly introduced later on (Forney et al. (1973); 

Rabiner et al. (1990)). 

Problem 3. Adjust the parameters in the model ( , , )A Bλ = π  

such that the probability ( | )P O λ is maximized. There are 

two typical methods to optimize the HMM parameters: the 

Viterbi training algorithm (aka. segmental k-means in some 
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literature) (Bhowmik et al. (2011); Juang et al. (1990); 

Rabiner et al. (1990)) and Baum-Welch algorithm. 

As mentioned above, in the nanopore data analysis problem 

under study, the observations correspond to the current 

sample data; the hidden states correspond to the current 

blockage events (stairs), N  denotes the number of current 

blockage events in the current signal, the transition 

probability is the probability of state transition from current 

level 
iS  to

jS , and the probability distribution of the 

observation belonging to state 
iS  is assumed to be Gaussian 

distribution 2( , )i iN µ σ , where 
iµ  is the mean of sample 

belonging to
iS and 2

iσ  is the variance (Chung et al. (1990); 

Qin et al. (2004)). The probability of observation 
tO  

generated by 
iS  can be calculated by: 
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The task is to assign each sample data 
tO  to the 

corresponding current level
iS  by using the HMM to remove 

the noise and estimate the current events. In other words, we 

want to accurately estimate the information of current 

blockage events, such as the amplitude and duration of each 

current level by means of the Viterbi algorithm. 

3.2  Data Preprocessing 

In a long raw experimental data, we are interested in the 

detection of those current blockage events only. Therefore, in 

order to improve the computational efficiency of our 

algorithm, we set a small threshold and find the data points in 

the current time-series signal whose current amplitudes are 

smaller than the threshold. Then we only need to process 

these data points using our algorithm. 

3.3  Initialization of HMM Parameters 

Before using the Viterbi training algorithm to optimize the 

HMM parameters, a set of initial parameters must be set, 

including the initial state distribution probability vector π, 

state transition probability matrix A, and probability matrix of 

observation B consisting by the means and variances of each 

state. In most cases, the initial parameters π and A have little 

influence on the results, hence these two parameters can be 

set randomly or fixed. However, the initial value of B usually 

has significant effect on the result. It was found by Qin et al. 

(2004) and Hu et al. (2011) that the Viterbi training algorithm 

is more sensitive to the means μ and variances σ2 than to state 

transition probabilities. Thus it is important to use an 

appropriate method to estimate the initial mean μ and 

variance σ2 of each state. 

Here we use clustering algorithm to initialize the HMM 

parameters. The most commonly-used clustering algorithm is 

k-means (Likas et al. (2003)), but it is very sensitive to the 

initial cluster centroid and its performance could be affected 

if the data of different classes have obvious overlapping. 

Fuzzy c-means algorithm (Bezdek et al. (1984); Pal et al. 

(1995)) is an improved version of the k-means algorithm. In 

the k-means algorithm, each sample belongs to each cluster 

with a probability of either 0 or 1, while in fuzzy clustering, 

each data point belongs to each cluster with a membership 

degree between 0 and 1. When the data of different classes 

overlap severely, the performance of FCM is more stable 

than k-means and traditional hierarchical clustering 

algorithms (Mingoti et al. (2006)). 

In our problem the samples of neighbouring current levels 

often overlap, so we choose the FCM algorithm to initialize 

the HMM parameters. More specifically, we firstly cluster 

the observations to obtain the class label for each data point 

using the FCM algorithm, then based on the clustering results 

we can determine the initial value of π, A, and B according to 

(11)-(15). 

The FCM algorithm partitions a set of observation 

1 2, , , TO O O into several clusters by minimizing the 

objective function: 
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Where T   is the number of samples, N the number of 

clusters (i.e., the number of current levels in our problem), m  

the fuzziness parameter, 
iµ  the center of the i -th cluster, 

(0,1)ijw ∈  the degree of membership of data jO in the i -th 

cluster, and ∗  denotes the Euclidean distance. 

The previous work showed that the weighting exponent m  

greatly influences the FCM performance. For instance, 

Bezdek et al. (1984) stated that the value of m controls the 

degree of samples shared by different clusters. Pal and others 

(1995) examined effect of the parameter m  on cluster 

validity and found that the optimum range of m  is [1.5, 2.5]. 

Therefore, we set the value of m  as 2. 

Fuzzy partitioning is carried out through an iterative 

optimization of the objective function defined in (2). The 

membership degrees and cluster centres 
iµ  are updated by 

                            

2

1

1

1

1

1
ij

mN
j i

k j k

T
m

ij j

j

i T
m

ij

j

w

O

O

w O

w

µ

µ

µ

−

=

=

=

 =
  −

 
 −  


 ⋅


=



∑

∑

∑

                     (3)                                                                     

Bezdek et al. (1984) showed that the numerical convergence 

of FCM algorithm can usually be achieved in 10-25 iterations. 

So in our problem, the algorithm iteration is terminated if the 

variation of membership degree matrix is less 

than 0.0001ε = or the maximum number of 
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iterations 100k = is reached. The iterative procedure of the 

FCM algorithm consists of the following computational steps: 

Step 1: Initialize membership degree matrix
ijW w =   , 

where (0,1)ijw ∈ . 

Step 2: At the k-th iteration, calculate the class centre 

[ ]k

iµ µ=  and update kW by using (3), where kW denotes the 

membership degree matrix in the k-th iteration. 

Step 3: If 1k k

m mJ J ε−− < or 100k > , terminate the algorithm; 

Otherwise loop back to Step 2. 

3.4  Optimization of HMM Parameters 

Given the initial model parameters and a set of observed data, 

the Viterbi or Baum-Welch algorithm can be used to 

optimize the HMM parameters. However, the two algorithms 

are quite different. In the Baum-Welch algorithm, the model 

parameters ( , , )A Bλ = π  are tuned until ( | )P O λ  (the 

probability of the observation sequence O  generated by 

model λ ) is maximized. In the Viterbi algorithm, the model 

parameters ( , , )A Bλ = π  are tuned until the probability 

( , | )P O S λ  (the probability of the observation sequence 

O generated by model λ  and the optimal state sequence S ) 

is maximized. The Viterbi training algorithm only considers 

the best possible state sequence when tuning the model 

parameters in the iterative process, while the Baum-Welch 

algorithm is a full-likelihood approach by summing up the 

probabilities of all possible state sequences and thereby 

produces better estimates of model parameters. However, the 

Viterbi algorithm is usually preferred because we are mostly 

interested in the occurrence of the observation sequence from 

the best possible state sequence. Moreover, the Viterbi 

algorithm requires much less computation than the Baum-

Welch algorithm and has confirmed nice performance in 

practical applications (Rodríguez et al. (2003); Allahverdyan 

et al. (2011)). In the sequel, we will make a detailed 

comparison between the two methods on the simulated data. 

3.5  Viterbi Training Algorithm 

The Viterbi algorithm is briefly introduced here. For a more 

complete description of the algorithm, the interested readers 

are referred to Dugad et al. (1996). 

To estimate the optimal state sequence 
1 2, , , tq q q  from 

observation sequence
1 2, , , tO O O , we define the maximum 

probability along a single path at time t  which accounts for 

the first t  observations by the hidden state 
iS as: 

               1 2 1

1 2 1 2
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t t i t
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i P q q q S O O Oδ λ
−

= =
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then we have 
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Moreover, we use ( )t jψ  to indicate the state that 

maximized ( )t jδ . The procedure of finding the best state 

sequence can be summarized as follows. 

Step 1 - Initialization: 
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Step 3 - Termination: 
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Step 4 - Path (state sequence) backtracking: 

                       * *

1 1( ), 1, 2, 1t t tq q t T Tψ + += = − −  .            (9) 

The input arguments of the Viterbi algorithm are 

( , , )A Bλ = π  and the observation sequence and the output 

argument is the estimated class label of each observed data. 

Given a nanopore blocking current time-series 

signal
1 2, , , tO O O , we use the Viterbi algorithm to classify 

each data point into several classes (i.e., hidden states in 

HMM) and to detect the blocking current events. More 

specifically, given an observation sequence and the initial 

HMM model λ, we classify each data point through the 

Viterbi algorithm. Based on the classification results obtained, 

we re-calculate the initial probabilities π, transition 

probabilities A and the probability distribution matrix of 

observation B. 

If the first data point’s class label is i , we can determine 

                                   ( ) 1 , 1i i N= ≤ ≤π                             (10) 

According to Qin et al. (2004), the transition probabilities A 

can be determined by 

                       
( , )

1 1
( )

ij

n i j
a i N j N

n i
= ≤ ≤ ≤ ≤， ，                  (11) 

where ( , )n i j is the number of occurrences of 

{ }1t i t jO S and O S+∈ ∈ for all t  and ( )n i  the number of 

occurrences { }t iO S∈ for all t . 

We recalculate mean and variance of each current level by: 
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Then we determine B using
iµ , 

iσ  and the Gaussian p.d.f.: 
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              (13) 

The training procedure continues iteratively until the 

variation in the probability ( , | )P O S λ falls within a pre-set 

threshold (set as 0.0001 in our data analysis). The flowchart 

of the Viterbi training algorithm is shown in Fig. 2. 

 

Fig. 2. Flowchart of the Viterbi training algorithm. 

4. RESULTS AND DISCUSSION 

4.1  Synthetic Data 

In order to validate the performance of the proposed method 

on the raw (unfiltered) signal, we firstly apply it on the 

simulated blockage current data. The frequency of the 

simulated data is 100 kHz, a total of 500 ms data were 

generated involving 800 short blockage current events with 

the duration of 70-130 μs. The baseline current is 3 pA and 

the amplitude of blocking current follows a Gaussian 

distribution with the mean and variance of 2 pA and 0.1 pA, 

respectively. Then zero-mean Gaussian white noise with s.d. 

ranging from 0.1 pA to 0.5 pA (with an interval of 0.1 pA) 

was added to generate five trials of simulated data, whose 

SNR i/σ=10, 5, 3.3, 2.5, and 2 respectively. 

Firstly FCM algorithm, with two clusters (i.e., current levels), 

is used to process the simulated data. For example, when 

σ=0.3 pA (this noise level is very close to the experimental 

data), a sample (column 1-3, …, 31186, 31187 …, 49998-

50000) of the membership degree matrix (2×50000), 

obtained by FCM algorithm, is: 

0.01 0.05 0.02 0.93 0.53 0.03 0.01 0.06

0.99 0.95 0.98 0.07 0.47 0.97 0.99 0.94

 
 
 

 

 

 

Based on this matrix, the cluster label of each data point can 

be determined by using the maximum membership degree 

approach. 

Then the initial parameter of HMM is determined by using 

(10)-(13) and the samples’ class labels. The initial parameters 

determined by FCM are: 
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Then we use the Viterbi training algorithm to optimize these 

parameters, obtaining the optimized parameters: 
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By comparison we can find that the values of μ and σ before 

and after optimization are very close. Then we use the class 

labels obtained to determine the time duration of each event. 

Fig. 3(A) shows the simulated data under five different levels 

of noise and the restored signal acquired by our method (in 

red line). Then the simulated signals were filtered by using a 

5 kHz low-pass Bessel filter (in this case, the event with time 

duration shorter than 130 μs will be severely distorted). The 

filtered signals were processed by the FWHM method 

(Arjmandi et al., 2012) and DBC (2nd-order Differential-

Based Calibration) method (Gu et al., 2015). 

To compare the three methods, we make a statistical analysis 

of the time duration obtained by each of them. The too short 

event with time duration shorter than 40 μs (i.e., comprising 4 

or less data points) is excluded from the statistical analysis. 

Fig. 3(B) shows the statistical distribution of the time 

duration data acquired by the three methods under different 

levels of noise. The histogram of the (known) true duration of 

simulated data is shown in Fig. 4(A). Compared with the 

results on the filtered data obtained by the FWHM and DBC 

method, the results on the unfiltered obtained by HMM are 

closer to the true value (70-130 μs). 

To evaluate the accuracy of the three methods, we define the 

mean relative error (MRE) as: 

                       norm nom

1

1
ˆ( ) /

n

i

i

MRE t t t
n =

= −∑                          (14) 
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Fig. 3. (A) Simulated data (unfiltered) with five levels of noise (~1000 samples shown) and the results of our method (red line); 

(B) The distribution of event’s duration (~800 events): (left) HMM; (middle) FWHM applied on the filtered data (5 kHz low-

pass Bessel filter); (right) DBC applied on the filtered data.

where n  is the number of the events with the same duration 

in the simulated data,   
ît  the estimated duration of the i-th 

event, and
nomt  the true value (70-130 μs). 

Fig. 4(B-F) compares the MRE of duration acquired by the 

three methods, from which we can find that under all five 

different levels of noise the proposed method resulted in the 

least MRE. For the strongest noise with i/σ = 2 (σ = 0.5 pA), 
the MRE of the proposed method is about 20%, which is 

much smaller than that of DBC (~55%) and FWHM method 

(~45%). Therefore, more accurate information can be 

extracted from the unfiltered data by the modified HMM 

method (MHMM). 

 

Fig. 4. Comparison of mean relative error of event’s duration 

of the three methods under five different levels of noise. 

4.2  Comparison of Viterbi and Baum-Welch Algorithms 

To further substantiate the superiority of the Viterbi training 

algorithm for our problem, we compare the performance of 

the Viterbi and Baum-Welch algorithms in this section. 

We evaluated the two methods in terms of the error rate of 

the number of the detected events (Qin et al. (2004)), defined 

by /nom nomn n n−  with 
nomn  (~800) being the true number of 

events set in the simulations and n the estimated number 

events detected. Fig. 5(A) shows the error rate of the two 

algorithms under 5 different levels of noise, from which we 

can find that both algorithms attained a low error rate and 

that the error rate of both algorithms increases for the noisier 

data. This is because with the increase of the noise level, it 

becomes more difficult to separate the interested current 

blocking events from the noise and when the noise is very 

strong, some noise may be mixed up with the short events. In 

general, the performance of the Baum-Welch and Viterbi 

algorithm is comparable. 

Furthermore, we also make an analysis of the time duration 

time of each detected event. The duration of the simulated 

events is in the range of 70-130 μs. The MRE of events’ 

duration is calculated by using (14). 

Fig. 5(B) shows the MRE results on the simulated data with 

event duration of 70 μs, 90 μs, 110 μs and 130 μs under five 

levels of additive noise. We can find that the error of average 

duration of the detected events increases with higher level of 

noise. With the same level of noise, the shorter events have a 

higher error rate because they are submerged in noise. 

 

Fig. 5. (left) The error rate of the detection of the number of 

events; (middle) MRE of event’s duration. Four types of 

events with the duration of 70 μs, 90 μs, 110 μs, and 130 μs 

are shown in black, blue, red and green, respectively. The 

solid and dotted line denotes the results of Viterbi and Baum-

Welch algorithm, respectively; (right) Computational time. 

In addition, we compare the computational efficiency (or 

time consumption) of the two algorithms coded and run on 

the computing environment of Intel(R) Core(TM) i5-2450 

CPU @2.5GHz, 4G RAM, 64 bit Win7 Prof. OS and Matlab 
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R2013a. The time consumption of the two algorithms under 

five levels of noise is shown in Fig. 5(C). We can find the 

computational time required by both algorithms increases 

with higher level of noise. This is mainly because for noisier 

data, they need more iteration to converge. Furthermore, we 

found that with the same level of noise, the Baum-Welch 

algorithm is much slower than the Viterbi algorithm (it takes 

nearly 5 times of computational time required by the latter). 

Moreover, the Viterbi algorithm can achieve the mean 

amplitude of current blocking events. For example, when 

0.3σ = pA (SNR ≈ 3.3), The two levels’ amplitude derived 

by the Viterbi training algorithms are 1.99 pA and 3 pA, 

which is very close to the true values. 

From the performance of the Viterbi training algorithm on 

the simulated data, we may conclude that it is very tolerant of 

the noise and thus suitable for processing the raw (unfiltered) 

nanopore experimental data with lower signal-to-noise ratio. 

By comparing the Viterbi and Baum-Welch algorithms, we 

found that both algorithms can detect the current blocking 

events accurately but the former is more efficient 

computationally especially for the challenging problem of 

large-scale data analysis in real time. 

4.3  Experimental Data 

In this section, we applied our method to the unfiltered 

experimental data of poly(dA)30 of about 100 s. A sample of 

the results (~ 70 ms) are shown in Fig. 6(A). Fig. 6(B) shows 

five sample events detected by our method. We also use the 

existing FWHM and DBC method to the corresponding 

filtered data by using a 3 kHz low-pass Bessel filter. Table 1 

presents the five events’ time duration time estimated by the 

three methods. 

 

Fig. 6. (A) The prefiltered experimental data of poly(dA)30 

(~70 ms data) and results of our method (red line); (B) a 

sample of unfiltered signal and the events detected by our 

method. 

Table 1. Comparison of the event duration estimated by the 

three methods. 

Method 
Event duration estimated (μs) 

1 2 3 4 5 

HMM 70 80 70 80 140 

FWHM 170 140 110 150 160 

DBC 250 250 200 260 290 

The histograms of the events’ time duration estimated by the 

three methods are compared in Fig. 7. All the histograms are 

fitted by a Gaussian function. The time duration obtained by 

our method on the unfiltered data is 0.13± 0.008 ms, while 

the results of FWHM and DBC methods are 0.17± 0.003 ms 

and 0.33± 0.003 ms, respectively. 

The significant difference in time duration between the 

proposed method and the two existing methods is mainly due 

to the unwanted filtering effect on many very short events: 

the increase of the time duration in general. The comparative 

results demonstrated the capacity of the proposed method for 

accurate and efficient elicitation of events from the raw 

experimental data. 

 

Fig. 7. The duration histogram of poly(dA)30: (A) HMM 

applied on raw data; (B) FWHM applied on the filtered data; 

(C) DBC. The statistical results were fitted by the Gaussian 

function (black line). 

5.  CONCLUSION 

In this paper, in order to alleviate the sensitivity of HMM to 

its initial parameters setting, we utilized the FCM clustering 

technique to initialize the HMM parameters. Then we used 

the modified HMM to process nanopore experimental data. 

The analysis results of both the simulated and experimental 

raw nanopore data showed that the proposed method is more 

accurate than traditional methods for detection of the current 

blocking events. The Viterbi training algorithm is shown to 

be faster than the Baum-Welch algorithm by a factor of about 

5 and thus more suitable for online data analysis. 

Furthermore, the proposed method is shown to be especially 

suited for short current blockage events, which are hard to 

accurately detect by traditional methods due to the signal 

distortion by pre-filtering. 
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