
Empirical Software Engineering (2021) 26: 76
https://doi.org/10.1007/s10664-020-09937-1

Resource and dependency based test case generation
for RESTful Web services

Man Zhang1 ·BogdanMarculescu1 ·Andrea Arcuri1,2

Accepted: 30 December 2020
© The Author(s) 2021

Abstract
Nowadays, RESTful web services are widely used for building enterprise applications.
REST is not a protocol, but rather it defines a set of guidelines on how to design APIs to
access and manipulate resources using HTTP over a network. In this paper, we propose an
enhanced search-based method for automated system test generation for RESTful web ser-
vices, by exploiting domain knowledge on the handling of HTTP resources. The proposed
techniques use domain knowledge specific to RESTful web services and a set of effective
templates to structure test actions (i.e., ordered sequences of HTTP calls) within an individ-
ual in the evolutionary search. The action templates are developed based on the semantics
of HTTP methods and are used to manipulate the web services’ resources. In addition, we
propose five novel sampling strategies with four sampling methods (i.e., resource-based
sampling) for the test cases that can use one or more of these templates. The strategies
are further supported with a set of new, specialized mutation operators (i.e., resource-based
mutation) in the evolutionary search that take into account the use of these resources in the
generated test cases. Moreover, we propose a novel dependency handling to detect possible
dependencies among the resources in the tested applications. The resource-based sampling
and mutations are then enhanced by exploiting the information of these detected depen-
dencies. To evaluate our approach, we implemented it as an extension to the EVOMASTER

tool, and conducted an empirical study with two selected baselines on 7 open-source and
12 synthetic RESTful web services. Results show that our novel resource-based approach
with dependency handling obtains a significant improvement in performance over the base-
lines, e.g., up to +130.7% relative improvement (growing from +27.9% to +64.3%) on line
coverage.

Keywords Search-based software testing · RESTful APIs · Web services ·
Test case generation

Communicated by: Antonia Bertolino

� Man Zhang
man.zhang@kristiania.no

Extended author information available on the last page of the article.

/ Published online: 2 June 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09937-1&domain=pdf
http://orcid.org/0000-0003-1204-9322
mailto: man.zhang@kristiania.no

Empir Software Eng (2021) 26: 76

1 Introduction

REST is an architectural style composed of a set of design constraints on architecture,
communication, and web resources for building web services using HTTP (Fielding 2000;
Allamaraju 2010). It is useful for developing web services with public APIs over a network.
Currently, REST has been applied by many companies for providing their services over the
Internet, e.g., Google,1 Amazon,2 and Twitter.3 However, in spite of their widespread use,
testing such RESTful web services is quite challenging (Bozkurt et al. 2013; Canfora and
Di Penta 2009) (e.g., due to dealing with databases and calls over a network).

In this paper, we propose a novel approach to enhance the automated generation of sys-
tems tests for RESTful web services using search-based techniques (Harman et al. 2012).
To generate tests using search-based techniques, we use the Many Independent Objectives
evolutionary algorithm (MIO) (Arcuri 2018b). The MIO algorithm is specialized for system
test case generation with the aim of maximizing code coverage and fault finding. The MIO
algorithm is inspired by the (1+1) Evolutionary Algorithm (Droste et al. 1998), so that an
individual is mainly manipulated by sampling and mutation (no crossover). However, our
novel techniques could be extended and adapted in other search algorithms.

We implemented our approach as an extension of an existing white-box test case gener-
ation tool, called EVOMASTER (Arcuri 2018a; 2019). The tool targets RESTful APIs, and
generates test cases in the JUnit format, where sequences of HTTP calls are made to test
such APIs. During the search, EVOMASTER assesses the fitness of individual test cases
using runtime code-coverage metrics and fault finding ability.

Our novel approach is designed according to REST constraints on the handling of HTTP
resources. First, based on the semantics of HTTP methods, we design a set of effective
templates to structure test actions (i.e., HTTP calls) on one resource. Then, to distinguish
templates based on their possible effects on following actions in a test, we add a property
(i.e., independent or possibly-independent) to the template. A template is independent if
actions with the template have no effect on following actions on any resource. Furthermore,
we define a resource-based individual (i.e., a test case) by organizing actions on top of such
templates. To improve the performance of the MIO algorithm with such individuals (i.e.,
the test cases evolved in the evolutionary search), we propose a resource-based sampling
operator and resource-based mutation operators in our approach.

For the smart sampling operator, we define four sampling methods. At each sampling of
a new random individual in the evolutionary search, one of these methods is applied to sam-
ple a new test. These methods are designed by taking into account the intra-relationships
among the resources in the system under test (SUT). To determine how to select a method
for sampling, we propose five strategies: Equal-Probability enables an uniformly distributed
random selection; Action-Based enables a selection based on the proportions of applicable
templates; Used-Budget-Based enables an adaptive selection based on the passing of search
time; Archive-Based enables an adaptive selection based on their achieved improvement on
the fitness; and ConArchive-Based enables an adaptive selection based on fitness improve-
ment after a certain amount of sampling actions on one resource. Regarding mutation, we

1https://developers.google.com/drive/v2/reference/
2http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
3https://dev.twitter.com/rest/public

76 Page 2 of 61

https://developers.google.com/drive/v2/reference/
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://dev.twitter.com/rest/public

Empir Software Eng (2021) 26: 76

propose five novel operators to mutate the structure of the individuals, with respect to their
use of the resources.

To seek a proper combinations of resources in the tests, we develop resource dependency
handling which comprises dependency identification, and is integrated with resource-based
sampling and resource-based mutation. In REST, there typically exist some dependencies
among resources in the SUTs, and dependency identification is used to detect such depen-
dencies based on REST API Schema, Accessed SQL Tables and Fitness Feedback. To exploit
combinations of the resources, we enhance resource-based sampling and resource-based
mutationwith strategies involving the detected dependencies, e.g., sample actions on depen-
dent resources in a test, and remove actions on a resource which is not related to any other
resources.

We conducted an empirical study on our novel approach by comparing it with the exist-
ing work on white-box testing of RESTful APIs, i.e., the default version of EVOMASTER.
Experiments were carried out on seven open-source case studies, which we used in previ-
ous work and gathered together in an open-source repository4 made for experimentation in
automated system testing of web/enterprise applications. To investigate the role of resource
dependencies in more detail, we also created twelve synthetic case studies,5 designed with
various resource settings and relationships.

Results of our empirical study show that our novel techniques can significantly improve
the performance of the test generation (e.g., relative improvement of line coverage is up to
130.7%) on SUTs that use fully independent, or closely connected, resources. Due to the
randomness of the algorithm, in the worst case the improvements can be negligible.

The paper is an extension of a conference paper (Zhang et al. 2019), and the new
contributions in this paper are summarized as follows:

– To enable proper handling of multiple resources, dependency handling is newly
developed that consists of dependency identification, resource-based sampling with
dependency and resource-based mutation with dependency. Besides, based on our
experiments, dependency handling achieves a further improvement on our resource-
based solution.

– To better assess our proposed resource-based solution, we designed the synthetic
RESTful API generator6 for automatically generating RESTful APIs with various
resource-based configurable properties, i.e., a number of resources, applied HTTP
methods, a number of dependencies, a constructed resource graph, different types of
dependencies, and show/hide dependency on URIs. Note that the generator is also
useful to setup experiments for studying other RESTful APIs-related approaches.

– We designed three resource graphs with two dependency-related constraints and two
URI generations that generate a total of 12 synthetic RESTful APIs. Those are new case
studies for our experiment in this extension.

– With our novel techniques, we answer new research questions and more experiment
settings. Compared with the 22 experiment settings in the conference version, 52
experiment settings are conducted in this extension.

4https://github.com/EMResearch/EMB
5https://github.com/EMResearch/artificial-rest-api
6https://www.evomaster.org

Page 3 of 61 76

https://github.com/EMResearch/EMB
https://github.com/EMResearch/artificial-rest-api
https://www.evomaster.org

Empir Software Eng (2021) 26: 76

– To investigate the performance of our proposed approach on the various case studies, we
characterize in detail five of the real RESTful APIs. We manually derived the resource
dependency graphs for each of these APIs by checking their implementation in details.
Then, the impact of resources and their dependencies on the SUTs are discussed.

– All the experiments are newly conducted with the latest tool version of EVOMASTER.
– Regarding the main changes in the paper, Sections 4, 6, 7.2 and 8 are all new.

The rest of the paper is organized as follows. In Section 2, we provide a brief descrip-
tion on related background topics, needed to better understand the rest of the paper.
Section 3 discusses related work. The overview of the proposed approach is presented in
Section 4, followed by Resource-based MIO (Section 5) and Resource Dependency Han-
dling (Section 6). The applied case studies are presented in Section 7, while the empirical
study and its results are discussed in Section 8. We discuss threats to validity in Section 9
and conclude the paper in Section 10.

2 Background

2.1 HTTP and REST

The Hypertext Transfer Protocol (HTTP) is an application protocol used by the World Wide
Web. The protocol defines a set of rules for data communication over a network. HTTP
messages are composed of four main elements:

– Resource path: indicates the target of the request, referring to a resource that will be
accessed. The resource path defines Uniform Resource Identifier (URI), which can
include query parameters. These latter are pairs of “key=value”, separated by &
symbols, following the resource path after a “?”, e.g., /api/someResource?
x=foo&y=bar.

– Method/Verb: the type of operation that is performed on the specified resource. The
types of operations include: i) GET: retrieve the specified resource that should be
returned in the Body of the response; ii) HEAD: similar to GET, but without any pay-
load; iii) POST: send data to the server. This is often used to create a new resource;
iv) DELETE: delete the specified resource; v) PUT: similar to POST. But PUT is idem-
potent, so it is usually employed for replacing an existing resource with a new one;
vi) PATCH: partially update the specified resource.

– Headers: carries additional information with the request or the response.
– Body: carries the payload of the message, if any.

The Representational State Transfer (REST) is designed for building web services on top
of HTTP. The concept of REST was first introduced by Fielding in his PhD thesis (Field-
ing 2000) in 2000, and it is now widely applied in industry, e.g., Google,1 Amazon,2 and
Twitter.3 REST is not a protocol, but rather it defines an architectural style composed
of a set of design constraints on how to build web services using HTTP. A web ser-
vice using REST should follow some specific guidelines, e.g., the architecture should be
client-server by separating the user interface concerns from the data storage concerns, and
communications between client and server should be stateless. To manage resources, REST
suggests that: i) resources should be identified in the requests by using Uniform Resource
Identifiers (URIs); ii) resources should be separated from their representation, i.e., the

76 Page 4 of 61

Empir Software Eng (2021) 26: 76

machine-readable data describing the current state of a resource; iii) the implemented oper-
ations should always be in accord with the protocol semantics of HTTP (for example,
you should not delete a resource when handling a GET request). In this paper, our novel
approach is based on the assumption that the web services are written following the REST
constraints, especially following the protocol semantics of HTTP method to develop end-
points. However, our approach should not have any significant negative side-effects when
dealing with non-conforming APIs.

In a RESTful API, data can be transfered in any format. However, one of the most typical
format is JSON (JavaScript Object Notation). For example, all the SUTs in our empirical
study use JSON. Furthermore, JSON is also typically used to specify the schemas of such
APIs (e.g., with OpenAPI/Swagger7).

2.2 TheMIO Algorithm

The Many Independent Objective (MIO) algorithm (Arcuri 2018b) is an evolutionary algo-
rithm specialized for system test case generation in the context of white-box testing. The
algorithm is inspired by the (1+1) Evolutionary Algorithm (Droste et al. 1998) with a dyna-
mic population, adaptive exploration/exploitation control and feedback-directed sampling.

Algorithm 1 shows the pseudo-code representation of the MIO algorithm. The search is
started with no populations. Each time a testing target is “reached” when executing a test,
a new empty population is created for such target, and the test is added to it. For example,
when a statement like “if(predicate)” is executed (i.e., “reached”), there will be two
branch-coverage targets, representing the “then” and “else” branches. Unless the evaluation
of the predicate leads to an exception, one of these two branches will be “covered”, whereas
the other will be “reached” but “uncovered”. Afterwards, at each step, with a probability Pr ,
MIO either samples new tests at random or samples (followed by a mutation) a test from a
population that includes reached but uncovered targets.

As the next step, the sampled/mutated test may be added to the populations if it achieves
any improvement on covered targets. Once the size of a population exceeds the population
limit n, the test with worst performance is removed. In addition, at the end of a step, if
an optimization target is covered, the associated population size is shrunk to one, and no
more sampling is allowed from that population. At the end, the search outputs a test suite
(i.e., a set of test cases) based on the best tests in each population. In the context of test-
ing, users may care about what targets are covered, rather than how heuristically close they
are to be covered. Therefore, MIO employs a technique called feedback-directed sampling.
This technique guides the search to focus the sampling on populations that exhibit recent
improvements in the achieved fitness value. This enables an effective way to reduce search
time spent on infeasible targets (Arcuri 2018b). Moreover, to make a trade-off between
exploration and exploitation of the search landscape, MIO is integrated with adaptive param-
eter control. When the search reaches a certain point F (e.g., 50% of the budget has been
used), the search starts to focus more on exploitation by reducing the probability of random
sampling Pr .

7https://swagger.io/

Page 5 of 61 76

https://swagger.io/

Empir Software Eng (2021) 26: 76

In this paper, we introduce resource-based individual by reformulating the individual for
the REST problem, and propose new sampling and mutation operators that enables handling
of resource and dependency in the context of RESTful web services.

The proposed solutions could be applicable and adapted to other evolutionary algorithms
addressing test generation for RESTful web services. As MIO was the best in previous
studies (Arcuri 2018b; 2019) (in terms of the fitness function, which uses code coverage
and fault detection), we employ MIO with the newly proposed solutions in this paper to
assess improvements on the problem of testing RESTful web services.

2.3 RESTful API Test Case Generation

In Arcuri (2019), we proposed a search-based approach for automatically generating system
tests for RESTful web services, using theMIO algorithm (recall Section 2.2). Testing targets
for the fitness function were defined with three perspectives: 1) coverage of statements;
2) coverage of branches; and 3) returned HTTP status codes. In addition, to improve the
performance of sampling in the context of REST, smart sampling techniques were developed
for sampling tests (i.e., sequences of HTTP calls) with pre-defined structures by taking into
account RESTful API design. The structures are described as follows:

– GET Template: k POSTs with GET, i.e., add k POSTs before GET. This template
attempts to make specified resources available before making a GET on them. k is
configurable, e.g., k = 2 indicates that add 2 POSTs before a GET.

– POST Template: just a single POST.
– PUT Template: POSTs with PUT, i.e., add 0, 1, or more POSTs before PUT with a

probability p. PUT is an idempotent method. When making a PUT on a resource that
does not exist, the PUT could either create it or return an 4xx status. So the template

76 Page 6 of 61

Empir Software Eng (2021) 26: 76

involves a probability for sampling a test with either a single PUT, or POSTs followed
by a single PUT.

– PATCH Template: POSTs with PATCH, i.e., add 0, 1, or more POSTs before a PATCH,
and possibly add a second PATCH operation at end with a probability p. The second
PATCH is used to check if POSTs and the first PATCH are doing partial updates instead
of a full resource replacement.

– DELETE Template: POSTs with DELETE, i.e., add 0, 1 or more POST operations
followed by a single DELETE.

The approach was implemented as an open-source tool, named EVOMASTER.6 It has two
components (Arcuri 2018a): Core which mainly implements a set of search algorithms for
test case generation (e.g., WTS Rojas et al. 2017); and Driver that is responsible for contro-
lling (e.g., start, stop, and reset) the SUT, and for instrumenting its source code. With it, the
search algorithm assesses the fitness of individual test cases using runtime code-coverage
metrics (e.g., lines and branches) and fault finding ability (e.g., based on HTTP status codes
such as 500, and on discrepancies of the results with what is expected based on the API
schema). For SUTs that compile into JVM byte-code, the instrumentation to collect code-
coverage metrics is done fully automatically by the Driver when such SUTs are started.

EVOMASTER can also analyse all interactions with SQL databases (Arcuri and Galeotti
2020), to improve the generation of test cases (e.g., by analysing which data is queried).
Furthermore, to make the test independent from each other, the databases are reset at each
fitness evaluation (just the data is cleaned, as there is no need to re-create the SQL schemas
or re-start the databases).

3 RelatedWork

Recently, there has been an increase in research on black-box automated test generation
based on REST API schemas defined with OpenAPI (Atlidakis et al. 2019; Karlsson et al.
2020; Viglianisi et al. 2020; Ed-douibi et al. 2018). Atlidakis et al. (2019) developed
RESTler to generate test sequences based on dependencies inferred from OpenAPI speci-
fications and analysis on dynamic feedback from responses (e.g., status code) during test
execution. In their approach, there exists a mutation dictionary for configuring test inputs
regarding data types. Karlsson et al. (2020) introduced an approach to produce property-
based tests based on OpenAPI specifications. Viglianisi et al. (2020) employ Operation
Dependency Graph to construct data dependencies among operations. The graph is ini-
tialized with an OpenAPI specification and evolved during test execution. Then, tests are
generated by ordering the operations based on the graph and considering the semantics of
the operations. Ed-douibi et al. (2018) proposed an approach to first generate test models
based on OpenAPI specifications, then produce tests with the models.

OpenAPI specifications are also required in our approach for accessing and characteriz-
ing the APIs of the SUT (e.g., which endpoints are available, and what types of data they
expect as input). As we first introduced in Arcuri (2019) and Zhang et al. (2019), the Ope-
nAPI specifications are further utilized for identifying resource dependencies, similarly to
what recently done by approaches like in Atlidakis et al. (2019) and Karlsson et al. (2020).
However, the dependencies we identify are for resources, and not just operations. In our
context, we consider that a REST API consists of resources with corresponding opera-
tions performed on them, and there typically exist some dependencies among the different
resources. To identify such dependencies, we analyze the API specification and collect run-
time feedback.We then use the derived dependencies to improve the search by enhancing how
test cases are generated and evolved. A key difference here is that, in contrast to all existing

Page 7 of 61 76

Empir Software Eng (2021) 26: 76

work, we can further employ white-box information to exploit and derive the dependency
graphs. For instance, if a REST API interacts with a database, manipulating resources often
leads to further access data in such database, e.g., retrieving a resource might require to
query data from some SQL table(s). This information about which tables are accessed at
runtime can be obtained with EVOMASTER. Such runtime information helps to identify
a relationship between a resource and SQL tables. Thus, through the analysis of which
tables are accessed at runtime we can further derive possible dependencies among resources.
In this work, to derive the dependencies, we also employ code coverage and the other
search-based code-level heuristics by checking the effects on involving different resources.

Note that OpenAPI specifications do not need to be necessarily written by hand. Depend-
ing on the libraries/frameworks used to implement the RESTful web services (e.g., with the
popular Spring), such OpenAPI schemas can be automatically inferred (e.g., using libraries
such as SpringFox and SpringDoc). So, the lack of an existing OpenAPI schema is not
necessarily a showstopper preventing the use of tools such as EVOMASTER.

Besides existing work on black-box testing based on industry-standards such as
OpenAPI/Swagger7 schemas, there exist previous approaches to test REST APIs that rely
on formal models and/or ad-hoc schema specifications (Chakrabarti and Kumar 2009;
Chakrabarti and Rodriquez 2010; Fertig and Braun 2015; Pinheiro et al. 2013; Lamela Sei-
jas et al. 2013). The models often describe test inputs, exposed methods of SUTs, behaviors
of SUTs, specific characteristics of REST or testing requirements. An XML schema spec-
ification used for testing was introduced by Chakrabarti and Kumar (2009). This was then
extended in Chakrabarti and Rodriquez (2010) to formalize connections among resources
of a RESTful service, and further focus on testing such “connectedness”. Fertig and Braun
(2015) developed a Domain Specific Language to describe APIs, including HTTP methods,
authentication and resource model. A set of test cases can be generated from such a model.
Lamela Seijas et al. (2013) proposed an approach to generate test cases based on property-
based test models, and UML state machines are applied (Pinheiro et al. 2013) to construct
behavior models for test case generation.

In contrast to such earlier work, to make our approach and tool as usable as possible for
practitioners in industry, we rely on industry standards such as OpenAPI/Swagger specifi-
cations. Our techniques do not require practitioners to write academic formal models to be
able to use our techniques in practice on their systems.

Besides improving coverage of an API, it is important to design new techniques to detect
different categories of faults in such APIs. Segura et al. (2017) developed an approach
for the metamorphic testing of RESTful Web APIs, for tackling the oracle problem. The
approach defined six abstract relations covering possible metamorphic relations in a REST-
ful SUT. Those can be used to detect faults when test data is generated for which those
metamorphic relations are not satisfied. In this work, we do not propose any new approach
to tackle the oracle problem in API testing.

All the above are black-box testing approaches that are different from our approach,
i.e., white-box system test case generation for RESTful APIs. As discussed, in Arcuri
(2017) and Arcuri (2019) our team proposed a means of generating test cases for REST-
ful APIs by using search-based techniques to create sequences of HTTP calls that has
been implemented as a prototype tool, named EVOMASTER. In addition, a major novelty
is that SQL operations are enabled in EVOMASTER for producing tests with handling of
databases (Arcuri and Galeotti 2019; 2020). This is a search-based software testing (Ali
et al. 2010) approach, relying on information obtained from the API specifications and
code instrumentation to generate test cases. It does not, however, identify relationships
between resources and consider the relationships when generating these test cases (apart

76 Page 8 of 61

Empir Software Eng (2021) 26: 76

from some basic templates introduced in Arcuri (2019)). Therefore, in this paper, we pro-
pose a complete resource-based approach, built upon EVOMASTER, by detecting resource
dependencies, introducing resource-dependency handling methods and strategies, as well as
developing tailored sampling and mutation operators.

Another key difference with existing work is that, not only EVOMASTER is open-source
and freely available on GitHub,6 but also it is actively supported, with extensive docu-
mentation on how to use it. This is essential to enable replicated studies, and for using
EVOMASTER in studies involving tool/technique comparisons. For example, in this work,
we could compare our novel techniques only with the base version of EVOMASTER, as no
other tool was available.

4 Overview of the Proposal

REST defines a set of guidelines for creating stateless services which can be accessed over
a network using HTTP. Figure 1 shows a snippet example of a specification of API follow-
ing REST guidelines. The specification is defined using an OpenAPI/Swagger7 schema. In
the example, the APIs are structured with resource URIs, and relevant HTTP methods are
defined for each resource.

In our context, an individual is a test case composed of a sequence of HTTP
calls. Each HTTP call consists of a specific HTTP method and an associated resource,
defined by its URI for performing some actions on the associated resource. Consider
an API that deals with products and warehouses, as the example in Fig. 1. Some tests
(in pseudo-code) for such API are shown in Fig. 2. Each line represents an action

Fig. 1 Snippet example of OpenAPI/Swagger JSON definitions for a RESTful API

Page 9 of 61 76

Empir Software Eng (2021) 26: 76

Fig. 2 An example of a HTTP request (at line 3) under different status of resources

which follows the format <a method on a resource path with/without parameters><the
method on the path with values of the parameters>. For instance, the HTTP call POST
/products/foo?warehouse=bar&quantity=20 is an action to add 20 new products named foo
in a warehouse named bar.

Note that, to make the examples more readable, here a resource is created with POST
using query parameters. But, in practice, usually the data would be in the body payload of
the requests (as URLs have small size limits). Furthermore, for simplicity we are consider-
ing a POST that fails if the resource already exists. A different approach could have been to
rather use PUT operations to create and/or update these resources.

Regarding the action, we can identify a resource foo of type product directly handled
by this call, and a referred resource bar warehouse. When executing this action in different
tests, the status of the resources (i.e., foo and bar) might be different in the SUT’s back-
end, and so then result in different code executions. As demonstrated in Fig. 2, four tests
represent this action (at line 3) with different statuses of the resources, i.e., Example 1: the
warehouse bar exists and has space to store 40 new products, and the product foo does not
exist; Example 2: the warehouse bar does not exist; Example 3: the warehouse bar exists,
and the product foo exists; Example 4: the warehouse bar exists but there is no enough space
to store 100 products. With each of the states, the call at line 3 executes different paths in
the source code of the SUT. From a testing perspective, exploring those different possible
states of resources may help to improve coverage of the testing targets (e.g., lines, branches
and HTTP status codes).

Typically, search-based techniques use random sampling to create new individuals. In
our context, an individual is a series of HTTP calls, where the resources are identified with
URIs. Those depend on variables that can be part of the search, such as path elements
and query parameters. Depending on quantity and complexity of those variables, sampling
them at random would lead to different URIs (especially when the variables are strings).

76 Page 10 of 61

Empir Software Eng (2021) 26: 76

Furthermore, different but related resources will have different URIs, where the relations
will be expressed by some specific variable (e.g., an ID that is a path element in a resource,
and it is referenced in another resource as a query parameter).

In this manner, it is unlikely we will be able to generate several HTTP calls at random to
perform on relevant, related resources, e.g., line 2 and line 3 on foo product in Fig. 2. If there
exist some relationships among resources and actions just as in the product-warehouse exam-
ple, then it is very unlikely to produce tests that result in good coverage. Therefore, we propose
Resource-based MIO (Section 5) to enable handling of individuals with respect to resources,
i.e., resource-based individual, resource-based sampling and resource-based mutation.

There typically exist some dependencies among resources in a RESTful API. Often, the
dependencies can be identified based on hierarchical structures of the URIs. For example,
the resource foo is hierarchically related to the collection of all products called /prod-
ucts, i.e., the resource products/foo belongs to the collection resource /products. However,
there might exist other kinds of relations, e.g., a product depends on a warehouse, and
that information is not part of the path element in the URI. To derive such further kinds
of dependencies and exploit them to generate higher coverage tests, we propose Resource
Dependency Handling (Section 6).

Page 11 of 61 76

Empir Software Eng (2021) 26: 76

Algorithm 2 represents how the proposed techniques are integrated in MIO (Algo-
rithm 1). These techniques are controlled with parameters, i.e., probability for resource-
based sampling Ps , probability for applying dependency handling Pd , and enabling of
dependency pre-matching PM . At the beginning of the search, dependencies of the SUT
are typically unknown, i.e., an empty D. But there might be some information on the
dependencies stated in the RESTful API schema of the SUT (e.g., based on hierarchical
relationships in the URI path elements). So we develope a pre-matching process to initialize
dependencies with the schema (Section 6.1), the process can be applied when dependency
handling and dependency pre-matching are enabled, i.e., Pd > 0 and PM (see lines 4-5 in
Algorithm 2). During the search, based on a specified probability for resource-based sam-
pling Ps , resource-based sampling (see lines 8-9, discussed in Section 5.2) and mutation
(see lines 14-15, discussed in Section 5.3) are applied to sample and mutate an individual
regarding resources. Note that the individual is a test for REST API. The resource-based
sampling and mutation can be enabled with dependency-based strategies for producing
tests, e.g., sample an individual with actions on dependent resources. The strategies are con-
trolled by the probability Pd and enabled when Pd > rand() is evaluated as true at line
9 (for the sampling introduced in Section 6.2) and line 15 (for the mutator introduced in
Section 6.3). After the individual is executed on the SUT and its fitness is evaluated, we
make use of the information on which database tables were accessed and changes on fitness
to derive the dependencies among resources (see lines 18-21 in Algorithm 2 and introduced
in Section 6.1). Based on such dependency handling, the derived dependencies are updated
and refined over each iteration of the search. At the end of search, the best individuals are
selected to generate the output test suite based on their code coverage and fault finding.

5 Resource-BasedMIO

5.1 Resource-Based Individual Representation

To enable the handling of individuals regarding resources, we defined a set of templates that
list meaningful combinations of HTTP methods based on their semantics. Then, an individ-
ual is reformulated as a sequence of resource-handlings, and each of the resource-handlings
is a sequence of actions (i.e., HTTP calls) on one resource based on the templates (e.g.,
POST-DELETE). With such an individual, the search can be applied to handle actions based
on resources (e.g., sample actions on the same resource) and manipulate resources (e.g., add
actions on a new resource), instead of handling each action independently. However, search
is still needed, for example to evolve the right query parameters for the URIs, the content of
the body payloads (e.g., JSON objects), and the HTTP headers.

Based on the different types of HTTP methods, we define templates in Table 1. Note that
we intentionally make the template short (i.e., at most combine two different types of HTTP
methods) to allow small modifications on the structure of the individuals. As the example
shown in Fig. 2, code coverage does often depend on the status of the resources (e.g., if
they exist or not). Different types of HTTP methods can help to manipulate the status of a
resource before a following action is executed:

– POST (PUT) and DELETE may be applied to handle the existence of a resource;
– PUT and PATCH may be applied to update some properties of a resource when the

resource exists;
– GET and HEAD typically cannot change a status of a resource.

76 Page 12 of 61

Empir Software Eng (2021) 26: 76

Table 1 Definitions of resource-based templates used to generate tests regarding resources

Description independent? Template

1 To retrieve a resource Yes GET

2 To (partially) update an nonexistent resource Yes PATCH

3 To delete a nonexistent resource Yes DELETE

4 To replace a nonexistent resource Yes PUT

5 To create a resource No POST

6 To create an existing resource No CREATE-POST

7 To retrieve an existing resource No CREATE-GET

8 To replace an existing resource No CREATE-PUT

9 To (partially) update an existing resource No CREATE-PATCH(-PATCH)

10 To delete an existing resource No CREATE-DELETE

Note that CREATE means either POST or PUT with 20% probability and #6-10 are only applicable if there
exists POST or PUT on the resource or one of its ancestors’ resource for creating resources

In the design of the templates, we only focused on the existence of resources. This is
because the update action is restricted by the existence condition. For example, assume that
an update (i.e., PATCH) performs on an existing resource and a following action DELETE
improves the code coverage of the tests. This would normally be due to the existence of
the resource itself rather than what update operation was previously performed on it. Even
if the success of a DELETE was dependent on a specific value in a field of the resource,
such a value could have been directly provided in the operation that created the resource in
the first place (e.g., a POST). Therefore, an update operation on the resource would not be
needed in this context.

In the templates, we only use methods (i.e., POST or PUT) to prepare the existence
condition of a resource. We ignore DELETE to make the resources non-existent, i.e., remove
resources. This is because, in EVOMASTER, the SUT is reset at each test execution (e.g.,
the database state is cleaned before each test execution). Furthermore, as the search starts
by usually choosing new values at random for the parameters of the actions, this means
that it is unlikely that the newly sampled values have been previously applied on a creation
method (e.g., POST) for creating that corresponding resource in one specific test. In this
case, a DELETE is almost the same as the situation when no creation method is used.
Thus, executing an extra DELETE per resource (i.e., add DELETE as the first action to
templates #1-#5) would be probably a waste of the search budget (e.g., by making the test
unnecessarily longer, and so more time consuming to run).

We designed 10 templates (shown in Table 1) based on all types of HTTP methods
along with whether the related resource exists. Only 5 new templates are introduced, as
templates #5, #7-#10 are the same as the templates from our previous work (Arcuri 2019)
(Section 2.3). These templates were applied on the sampling of whole test cases. On the
other hand, in this paper, we apply them on a fragment of a test with the aim of han-
dling multiple resources, and each fragment is a sequence of actions performed on a same
resource (i.e., a test case can be composed of one or more fragments). In addition, we
identify properties for all the templates, i.e., independent and possibly-dependent.

There might exist some unknown internal relations among resources in the SUT, e.g.,
/products /{productName} depends on /warehouses/{warehouseName} in Fig. 1. So, it is not
clear, based on the URIs alone, whether actions executed first have effects on the following

Page 13 of 61 76

Empir Software Eng (2021) 26: 76

actions in a test. But actions that never have an impact can be derived based on the seman-
tics of HTTP methods (e.g., GET operations are not supposed to change the state of the
resources in the SUT).

In the context of testing, we also capitalize on invalid sequences of actions, i.e., #2-#3,
that aim to operate on a resource that does not exist. Since the actions are expected as failure
operations, they probably do not change any state of the resources. Therefore, we identify
independent templates (#1-#3) that, when actions with the template are executed, do not
have any effect on follow-up actions on any resource.

PUT might be implemented to create or update a resource (both options are valid accord-
ing to the HTTP semantic). However, the implementation may vary among endpoints or case
studies and is typically not exposed to the schema. Therefore, to cover the potential creation
by PUT, we consider PUT with a 20% probability of creating a resource (i.e., see CREATE
applied in #6-#10 in Table 1). Regarding a single PUT (i.e., #4), we consider its semantic as
update, thus, #4 is independent. We further define a possibly-dependent template as a tem-
plate for which independence cannot be assumed. Note that a possibly-dependent template
might or might not be dependent, because it varies from resource to resource, and depen-
dency of resources is usually unknown before a search starts. Moreover, we further identify
resources based on their applicable templates. An independent resource is a resource which
can only be manipulated with the independent template, and a possibly-dependent resource
is a resource that can be manipulated with at least one possibly-dependent template.

With the defined templates, we formulate the resource-based individual (shown in
Fig. 3) as a sequence of resource-handling constrained with one of the templates, i.e.,
(R1, ..., Ri, ...Rn) where n is a number of the resource-handling. Thus, the resource-
handling is composed of operations that perform a sequence of actions on the same resource
Ri , i.e., Ri = (Ai,1...Ai,j ...Ai,mi

) where mi is a number of actions of Ri and mi > 0. Each
action is composed of a sequence of genes, i.e., Ai,j = (Gi,j,1...Gi,j,k ...Gi,j,tij) where tij
is a number of genes in the j th action of the ith resource-handling and tij ≥ 0. Note that tij
might be 0 if there does not exist any gene in a REST Action, e.g., GET /warehouses. With
the hierarchical formulation, the individual can be seen as either a sequence of actions or a
sequence of genes.

Figure 4 shows an example of a test for handling /warehouses/{warehouseName} with
template #1 and /products/{productName} with template #7 for products-warehouse APIs.
In this example, the test covers a scenario that handles two resources, i.e., warehouse and
product. Regarding the handling (lines 2-3) with template #7 for retrieving a product with
a specified productName, the POST action at line 2 is added to prepare the resource for
the GET action at line 3, then value on the path element productName in the POST is

Fig. 3 Representation of resource-based individual at hierarchies of Resource-handling, Action and Genes.
Ri represents ith resource-handling in a test, Ai,j represents j th action of ith resource-handling, and Gi,j,k

represents kth gene in j th action of ith resource-handling

76 Page 14 of 61

Empir Software Eng (2021) 26: 76

Fig. 4 An example (Example 5) of a test for handling /warehouses with template #1 and /products/
{productName} with template #7

bounded with the same value as in the GET. In addition, the representation of the test as a
resource-based individual is shown in Fig. 5.

In the following subsections, we explain how to sample (Section 5.2) and mutate
(Section 5.3) such an individual during the search.

Note: most of our templates are based on the semantics of HTTP. But, what if an API is
not following such semantics, and for examples it has GET requests with side-effects? Most
likely, in such cases we would see a decrease in performance compared with the default
version of EVOMASTER without our novel templates. However, one of the greatest benefits
and strengths of evolutionary search is its adaptiveness. Test cases with lower fitness will
have lower chances of reproducing. As we apply our templates only with a given probability,
we still sample “regular” test cases. And, if those test cases will have higher fitness, they will
reproduce more often and take over during the search. This could lead to a “slower” start, in
which some search budget would be wasted in sampling tests with our templates. However,
given enough search budget, those side-effects at the beginning of the search might become
negligible.

5.2 Resource-Based Sampling

In this paper, we propose four methods to sample individuals as shown in Table 2. For each
of the methods, we define an applicable precondition regarding exposed HTTP methods on
resources in a SUT. In other words, the method can be applied to sample a test only if the
precondition is satisfied.

One rationale behind the use of these methods is to distinguish related actions from inde-
pendent actions (i.e., actions based on the independent template). By isolating actions with
independent templates, we can reduce unnecessary invocations (i.e., HTTP calls) during the
search. As the example in Fig. 4, the first action is to GET a warehouse by warehouseName.
This is fully independent from the following two actions, as GET operations are not sup-
posed to have side-effects. When applying a mutation on the parameter warehouseName of
that action, it is highly possible that there is no improvement (e.g., covering new statements)
achieved by the invocations of the remaining two actions. Besides, for testing two or more

Fig. 5 An example of the test in Fig. 4 formulated with resource-based individual. An instance of Gi,j,k is
represented with its value, its name and its [type]

Page 15 of 61 76

Empir Software Eng (2021) 26: 76

Ta
bl
e
2

M
et
ho
ds

of
re
so
ur
ce
-b
as
ed

sa
m
pl
in
g
to

se
le
ct
re
so
ur
ce
s
m
an
ip
ul
at
ed

in
a
te
st

M
et
ho
d

D
es
cr
ip
tio

n
Pr
ec
on
di
tio

n

S1
iR

Sa
m
pl
e
on
e
re
so
ur
ce

w
ith

in
de
pe
nd
en
tt
em

pl
at
e

A
tl
ea
st
on
e
in
de
pe
nd
en
tt
em

pl
at
e
ex
is
ts
in

th
e
SU

T

S1
dR

Sa
m
pl
e
on
e
re
so
ur
ce

w
ith

po
ss
ib
ly
-d
ep
en
de
nt

te
m
pl
at
e

A
tl
ea
st
on
e
po
ss
ib
ly
-d
ep
en
de
nt

re
so
ur
ce

ex
is
ts
in

th
e
SU

T

S2
dR

Sa
m
pl
e
tw
o
re
so
ur
ce
s,
an
d
on
ly

al
lo
w
s
th
e
la
st
re
so
ur
ce

w
ith

no
n-
pa
ra
m
et
er

G
E
T

A
tl
ea
st
tw
o
po
ss
ib
ly
-d
ep
en
de
nt

re
so
ur
ce
s
ex
is
ti
n
th
e
SU

T

SM
dR

Sa
m
pl
e
m
or
e
th
an

tw
o
re
so
ur
ce
s,
an
d
on
ly

al
lo
w
s
th
e
la
st
re
so
ur
ce

w
ith

no
n-
pa
ra
m
et
er

G
E
T

A
tl
ea
st
th
re
e
po
ss
ib
ly
-d
ep
en
de
nt

re
so
ur
ce
s
ex
is
ti
n
th
e
SU

T

76 Page 16 of 61

Empir Software Eng (2021) 26: 76

independent resources, it is better to have separate test cases (and thus, separate individu-
als). Shorter test cases are less costly to run, and easier to maintain. Therefore, for handling
independent resources, we developed the S1iR strategy to sample one resource with one
independent template in a test. Regarding handling of one resource, S1dR is defined to
manipulate one resource with a possibly-dependent template in a test.

Another rationale is to explore dependency among resources. So we propose the S2dR
strategy to sample the minimal dependent set by combining only two resources with
possibly-dependent templates (e.g., the example in Fig. 6), and the SMdR for handling the
possibility of complex, multi-resource dependencies. Note that when manipulating multiple
resources in a test (i.e., S2dR and SMdR strategies), only an independent template with a
non-parameter GET is allowed at the last position of the resources (e.g.,GET /warehouses is
allowed, but not GET /warehouses/{warehouseName}). As the non-parameter GET is often
used to retrieve a collection of resources from the SUT, it may cover new statements due to
new resources created by previous actions.

When a new individual is sampled with probability Pr (recall Algorithm 2), the indi-
vidual is sampled with our resource-based sampling with probability Ps , or fully randomly
with probability 1 − Ps . In the former case, one of the four methods in Table 2 is cho-
sen, with a probability denoted as Pm, and the probabilities of the four methods are
Pm(S1iR) + Pm(S1dR) + Pm(S2dR) + Pm(SMdR) = 1.

Note that it is important to still be able to sample tests at random with no structure
with probability 1 − Ps . The templates we define in Table 1 should cover the most impor-
tant cases, but likely not all. Which tests will then be most useful is left to the search to
decide, based on the fitness function. Recall that in the evolutionary algorithms the most fit
individuals have higher chances to reproduce.

The four methods enable us to sample tests with different considerations on resources.
Since normally the resources involved vary from SUT to SUT, we designed five strate-
gies to determine which method should be applied at the beginning of each sampling. For
each applicable method, we set a probability Pm, which enables the selection process to be
controlled by adjusting the appropriate selection probability. The five sample strategies are
described as follows:

Equal-Probability: select methods at random with uniform probability, i.e., the probabil-

ity for each applicable method is equal. It is calculated as Pm = 1.0

nm

, where nm is a number

of applicable methods (i.e., the ones for which their preconditions are satisfied).
Action-Based: the probability for each applicable method is derived based on a number

of independent or possible-dependent templates for all resources (this depends on which
endpoints are available in the SUT, recall Table 1). It is calculated as:

Pm(S1iR) = nat − ndt

(nat + ndt × k)
,

Fig. 6 An example (Example 6) of a test sampled by S2dR method

Page 17 of 61 76

Empir Software Eng (2021) 26: 76

where nat is the sum of the number of applicable templates for all resources, ndt is a sum of
a number of possibly-dependent templates for all resources, and k is a configurable weight.
Note that k(≥ 0) indicates a degree to prioritize the possibly-dependent templates. We set
it to 1 in this implementation. For example, there exist 5 independent templates and 15
possibly-dependent templates in a SUT, with k = 1, Pm(S1iR) = 15−10

(15+10×1) = 0.2, thus,
a sum of the methods with possibly-dependent templates is 0.8. For the probability of each
of the methods,

Pm(si, wi) = (1 − Pm(S1iR)) × wi
∑ndm

j=1 wj

,

where (si , wi) ∈ S = {(si , wi)| si is an applicable method of S1dR, S2dR and SMdR, wi is
a weight of the method, i = 1...ndm, and ndm is the number of applicable methods except
S1iR}. The weight wi for the method can be decided in various ways, e.g., constant 1. In this
implementation, considering that a test involved more resources might take more budget to
execute, the weight is defined based on the number of resources sampled with the method,
i.e., w(S1dR) = 3, w(S2dR) = 2, and w(SMdR) = 1.

Used-Budget-Based: the probability for each applicable method is adaptive to the used
budget (i.e., time or number of fitness evaluations) during search. The strategy samples
an individual with one resource with a high probability (i.e., 0.8) at the beginning of the
sampling (i.e., the used time budget for sampling is less than 50%), and then at later stages
of the search it turns to sample a test with multiple resource methods. This approach allows
the search to explore test cases with one resource first, and only spend effort on multiple
resources if there is still enough available budget to allow for that. The reasoning is that
test cases with multiple resources are harder to develop and more costly to run. They will
be considered after the simpler test cases have been tried, and only if they provide a fitness
improvement over those simpler test cases.

Archive-Based: the probability for each applicable method is adaptively determined by
its performance during the search. The performance is evaluated based on the number of
times that the method has helped to improve the fitness values (i.e., improved times) during
the search. It is calculated as:

Pm(si, ri) = Pm(si, ri) × (1 − δ) + δ × ri
∑nm

j=1 rj
,

where δ = 0.1, (si , ri) ∈ S = {(si , ri)|si is an applicable method, ri is a rank for the
applicable methods that is computed based on improved times, i = 1...nm, and nm is a
number of the applicable methods}.

ConArchive-Based (Controlled Archived Based): Distinguished from Archive-Based by
a preparation phase. At the beginning of the sampling, the strategy samples an individual
with one resource with a high probability. After a certain amount of search budget is used,
the strategy starts to apply the same mechanism as Archive-Based. The strategy attempts to
distinguish between improvements obtained by a combination of multiple resources from
improvements obtained by different values on parameters of a resource. For instance, in
Fig. 6, if a referred bar resource by actions at lines 2-3 is created by an action at line 1, the
test could achieve an improvement due to the combination of the two resources (i.e., when
the second resource depends on the first). But, during search, it would not be known whether
the improvement is due to the actions on the first resource, actions on the second resource,
or the combination of the two resources. If we first used some of the budget to sample the
first resource and second resource separately in different tests, then later we may improve
the chances of identifying whether the improvement is due to the combination (i.e., improve
the chances to get the right improved times value for the strategies on multiple resources).

76 Page 18 of 61

Empir Software Eng (2021) 26: 76

5.3 Resource-BasedMutation

When we sample a new individual during the search, we use our templates with some pre-
defined structures. To improve the search, we need novel mutation operators that are aware
of such structures. Therefore, we propose resource-based mutation that follows the same
mechanism with MIO for mutating an individual: mutate values on parameters (i.e., the
content of the HTTP calls, including headers, body payloads and path elements in the URIs),
and mutate the structure of a test (i.e., adding or removing HTTP calls in the test).

Regarding value mutation, we apply the mutation on the parameters of the resources. The
parameters of the resources are represented by the parameters of an action with longest path
among the actions for the same resource. Once the value of any of the parameters is mutated,
we update the other actions on the same resource with the same value. Considering a test
shown in Fig. 6, in terms of /products/{productName} resource, parameters of an action at
line 2 is selected to represent the resource. When a value of the parameter productName is
mutated, e.g., from foo to ack, then the same parameter productName on the action at line 3
is also required to be updated with the same value, i.e., from foo to ack as shown in Example
7 in Fig. 7.

In addition, we propose five operators to mutate the structure of the individuals, for
exploiting relationships among resources and different templates on resources: DELETE:
delete a resource together with all its associated actions on that resource; SWAP: swap the
position of two resources together with all their associated actions; ADD: add a new set of
actions with a template for a new resource in the test; REPLACE: replace a set of actions
constrained with a template on a resource with another set of actions constrained with a
template on a new different resource;MODIFY: modify a set of actions on a resource with
another template. For instance, a test applied with the MODIFY mutator is represented as
Example 8 in Fig. 7.

6 Resource Dependency Heuristic Handling

In a RESTful web service, there typically exist some dependencies among the resources
(recall Section 4). Then, a proper handling of resources according to their dependencies
may help the generated tests to achieve a better coverage. In some cases, such dependen-
cies might be partially identified by the resource path, i.e., hierarchical dependencies on the
URIs, by just analyzing the OpenAPI/Swagger schemas. For example, the /products/{id}
resource is hierarchically related to the resource /products. However, there might still exist

Fig. 7 Examples of applying resource-based mutations on a test in Fig. 6

Page 19 of 61 76

Empir Software Eng (2021) 26: 76

some dependencies that are not exposed directly in the path elements of the URIs. For exam-
ple, those could be HTTP query parameters or fields in body payload objects referencing
IDs of other resources.

Therefore, we developed dependency heuristic handling to identify possible depen-
dencies (Section 6.1). In addition, we enhance sampling (Section 6.2) and mutation
(Section 6.3) by utilizing such identified dependencies among multiple resources.

6.1 Resource Dependency Detection

To identify dependencies among resources, we developed several solutions to derive them
based on REST API Schema, Accessed SQL Tables and Fitness Feedback at runtime. Since
the dependencies are heuristically inferred, each of the derived dependencies has an esti-
mated probability (∈[0.0, 1.0]) for representing the confidence on the correctness of this
inference. If a probability of a derived dependency is 1.0, then this indicates that we strongly
consider this dependency to be correct. On the other hand, if the probability is 0.0, then this
indicates that we strongly assume that there is no dependency between the two considered
resources.

6.1.1 REST API Schema

Based on REST guidelines, a resource path and its parameters are typically designed
with names of related resources. Thus, by identifying similar names, dependencies among
resources might be derived directly based on the API Schema. As the snippet example of
API schema shown in Fig. 1, there exists a dependency between products and warehouses,
e.g., a product should always refer to an existing warehouse. In order to create a product,
its creation method (e.g., POST) should be specified with the id/name of an existing ware-
house. In this example, the dependent warehouse is identified by a query parameter in the
POST /products/{productName}, named warehouse.

By detecting matched names among query parameters and path elements in the URIs,
it is possible to identify potential dependencies among resources. EVOMASTER requires
API schemas specified with OpenAPI.7 Therefore, we identified possible components of
the OpenAPI specification for inferring possible dependencies. The four components in the
OpenAPI specification are: path, parameter (including defined object type of the parameter
and attribute of the defined object type), operation description, and operation summary.

A path defines an endpoint, and it is composed of a sequence of tokens separated
by / and { } symbols. The tokens between { and } are recognized as path parameters.
For example, both /products/foo and /products/42 would match the same endpoint path
/products/{productName}. Since there might exist multiple resources in a path to repre-
sent their hierarchical structure separated by /, to represent this resource, we take the
last non-parameter token as a representative token for the resource. For instance, /prod-
ucts/{productName} can be decomposed into two tokens, products and productName, and
the text products can be used to represent the resource. Given a representative token x for
a resource A, then to check if another resource B has a dependency on A, we analyze if
B has any reference to x in its schema definition (e.g., a query parameter name, or text
description).

For parameter, defined object type and its attribute, we keep their names as tokens.
Besides, we consider some commonly used words (e.g., id, name and value) relevant for
deriving alternative possibilities for the identifying tokens. For example, an alternative token
for warehouseName query parameter is simply warehouse, as the token ends with the word

76 Page 20 of 61

Empir Software Eng (2021) 26: 76

name (ignoring the case). When matching dependent resources, both alternative tokens are
used.

Regarding operation description and operation summary, since they are free-text sen-
tences, we employed Stanford Natural Language Parser8 (SNLP) to analyze them for
identifying nouns as tokens. In addition, with SNLP we may get base forms (i.e., lemmas)
of tokens analyzed from parameters and path elements, e.g., products has product as its
lemma. Therefore each of the tokens is designed with a lemma property that is used as an
alternative for token matching.

For a resource, one representative token and/or more related tokens can be parsed with
such pre-processing on the four components of its resource path and its available operations.
To infer possible related resources, we match tokens of the resource with the representative
tokens of other resources using the Trigram Algorithm (Martin et al. 1998) to calculate a
degree of similarity between any token of the resource and other representative tokens. In
our current implementation, if the degree of at least one token satisfies our specified require-
ment (i.e., >0.6), we create a possible undirected dependency between the two resources.
The probability of the derived dependency is initialized based on that degree.

6.1.2 Accessed SQL Tables

RESTful APIs are supposed to be stateless. This helps with horizontal scalability (e.g., a
service can easily be replicated in several running instances on different processes, as there
is no internal state to keep in sync), and to avoid issues with the restarting of the processes.
This means that the state is usually handled externally, typically in a database, such as
Postgres, MySQL and MongoDB. In these cases, the resources handled by the API are an
abstraction of the data in such databases.

EVOMASTER does analyze all the interactions of the SUT with SQL databases (Arcuri
and Galeotti 2019; 2020) (for NoSQL ones such as MongoDB, it is work-in-progess),
as it computes heuristics based on the results of such operations (e.g., to create the right
input data for which SELECT operations return non-empty sets by satisfying their WHERE
clauses). By exploiting this current feature in EVOMASTER, we can record the information
about all accessed tables in the databases for each executed HTTP call made in the tests.

Theoretically, if different API endpoints operate on the same tables, then there exist some
relationships among them. During the search, we keep a global track in all test cases of all
SQL tables accessed by actions on resources, at each single fitness evaluation. Thus, after
each evaluation, dependencies among resources can be newly derived or updated if actions
on different resources accessed the same tables in the database. Note that, if a dependency
is newly derived (i.e., not currently existing in the graph), the added dependency in the
graph is undirected. The probability of the dependency is then initialized/updated with the
maximum 1.0.

6.1.3 Fitness Feedback

Dependency handling is developed for achieving a proper combination of dependent
resources in a test. Besides heuristics on name matchings and database accesses, we
also consider the feedback on the test fitness (e.g., line coverage), by analyzing its

8https://nlp.stanford.edu/

Page 21 of 61 76

https://nlp.stanford.edu/

Empir Software Eng (2021) 26: 76

variations when different resources are manipulated. With resource-based structure muta-
tion (recall Section 5.3), the combination of resources can be manipulated. Thus, by
analyzing changes of fitness after a mutation operation, the dependency of resources in the
test can be identified.

Assume that a test T = (R1, ..., Rn) is a sequence of Rk (1 ≤ k ≤ n), and each Rk

represents a sequence of actions (i.e., HTTP calls following one of the templates in Table 1)
on one resource. Table 3 represents a set of heuristics to identify dependencies based on
different changes of fitness for each of resource-based structure mutation operators. For
each of the operators:

ADD a resource Rx at index i: fitness of all resources after i index is required
to be examined. For each resource Rm (i ≤ m ≤ n), if there exists any change,
a dependency (i.e., Rm depends on Rx) can be identified, and its probability will be
updated with 1.0. Note that the update of the probability with update(DDRm→Rx , p)
is to take a larger value between the probability and p. For example (also represented
in add row and Example column in Table 3), a test is a sequence of resource han-
dling actions denoted as (A, B, C,D, E), e.g., A can be regarded as a sequence of
actions on the A resource. With add mutation operator, a resource handling action
on the resource F is added to the test at index 2, then the mutated individual
becomes (A, B, F,C, D, E). For instance, if the fitness values contributed by actions
in the C resource are changed in the mutated individual, i.e., with the newly involved
actions on the F resource. This might imply that there exists a dependency, i.e.,
C → F .

DELETE/MODIFY a resource Ri at index i: fitness of all resources after i index is
required to be examined. For each of the resource Rm (i < m ≤ n), if there exist any
change, a dependency (i.e., Rm depends on Ri) can be identified with a probability of 1.0.

REPLACE a resource Ri with Rx at index i: fitness of all resources after i index is
required to be examined. For each of the resource Rm (i < m ≤ n), if the fitness becomes
better, it means that Rm depends on Rx . If the fitness becomes worse, it means that Rm

depends on Ri .
SWAP a resource Ri and a resource Rj (1 ≤ i < j ≤ n): first, fitness of Rj is required

to be examined, if it is changed, it means that Rj might depend on any resource between i

and j (j is excluded). In addition, the fitness of all resources between i and j is required
to be examined. For each of the resource Rm (i < m < n), if the fitness becomes better,
it means that Rm depends on Rj . If the fitness becomes worse, it means that Rm depends
on Ri . Moreover, fitness of Ri is required to be examined, if it is changed, it means that Ri

might depend on any resource between i (i is excluded) and j .

6.1.4 Summarize the Resource Dependency Detection

If the pre-match processing based on REST API Schema (Section 6.1.1) is enabled, the
search will start with a set of undirected derived dependencies. Over the course of the search,
the graph of dependencies will be evolved by adding new derived dependencies, updating
directions of undirected derived dependencies, and updating probabilities of the derived
dependencies. After each fitness evaluation, by further identifying dependencies based on
Accessed SQL Tables (Section 6.1.2), the graph will be expanded and the probabilities of the
dependencies might be updated to 1.0. Besides, by analyzing the changes in fitness scores
(Section 6.1.3), newly directed dependencies can be further detected and the direction of
the undirected derived dependencies might be updated.

76 Page 22 of 61

Empir Software Eng (2021) 26: 76

Ta
bl
e
3

H
eu
ri
st
ic
to

id
en
tif
y
de
pe
nd
en
cy

am
on
g
re
so
ur
ce
s
w
ith

re
so
ur
ce
-b
as
ed

st
ru
ct
ur
e
m
ut
at
io
n

M
ut
at
io
n
op
er
at
or

H
eu
ri
st
ic

(1
)

A
ft
er
/B
ef
or
e
Fi
tn
es
s(
2)

E
xa
m
pl
e,

T
=

(A
,
B

,
C

,
D

,
E

)

A
dd

ad
d

R
x
at
in
de
x

i
(1

≤
i
≤

n
)

ad
d

F
at
in
de
x
2,

i.e
.,

T
′ =

(A
,
B

,
F

,
C

,
D

,
E

)
R

m
∈

{C
,
D

,
E

}
∀R

m
∈{

R
s
|i

≤
s

≤
n
}

IF
F

a
(R

m
)
�=

F
b
(R

m
)

IF
F

a
(C

)
�=

F
b
(C

)

→
R

x
up
da
te
(D

D
R

m
→

R
x
,1

.0
)

up
da
te
(D

D
C

→
F
,
1.
0)
,

E
L
SE

up
da
te
(D

D
R

m
→

R
x
,0

)
E
L
SE

up
da
te
(D

D
C

→
F
,
0)

D
el
et
e

de
le
te

R
i
(1

≤
i
≤

n
)

de
le
te

C
,
i.e
.,

T
′

=
(A

,
B

,
D

,
E

)

R
m

∈{
D

,
E

}
∀R

m
∈{

R
s
|i

<
s

≤
n
}

IF
F

a
(R

m
)
�=

F
b
(R

m
)

IF
F

a
(D

)
�=

F
b
(D

)

→
R

i
up
da
te
(D

D
R

m
→

R
i
,1
.0
)

up
da
te
(D

D
D

→
C
,
1.
0)
,

E
L
SE

up
da
te
(D

D
R

m
→

R
i
,0
)

E
L
SE

up
da
te
(D

D
D

→
C
,
0)

M
od
if
y

m
od
if
y

R
i
(1

≤
i
≤

n
)

m
od
if
y

C
i.e
.,

T
′ =

(A
,
B

,
C

,
D

,
E

)
R

m
∈{

D
,
E

}
∀R

m
∈{

R
s
|i

<
s

≤
n
}

IF
F

a
(R

m
)
�=

F
b
(R

m
)

IF
F

a
(D

)
�=

F
b
(D

)

→
R

i
up
da
te
(D

D
R

m
→

R
i
,1
.0
)

up
da
te
(D

D
D

→
C
,
1.
0)
,

E
L
SE

up
da
te
(D

D
R

m
→

R
i
,0
)

E
L
SE

up
da
te
(D

D
D

→
C
,
0)

R
ep
la
ce

re
pl
ac
e

R
i
w
ith

R
x

(1
≤

i
≤

n
)

re
pl
ac
e

C
w
ith

F
,i
.e
.,

T
′ =

(A
,
B

,
F

,
D

,
E

)
R

m
∈{

D
,
E

}
∀R

m
∈{

R
s
|i

<
s

≤
n
}

IF
F

a
(R

m
)
<

F
b
(R

m
)

IF
F

a
(D

)
<

F
b
(D

)

→
R

i
,
R

x
up
da
te
(D

D
R

m
→

R
i
,1
.0
)

up
da
te
(D

D
D

→
C
,
1.
0)

E
IF

F
a
(R

m
)
>

F
b
(R

m
)

E
IF

F
a
(D

)
>

F
b
(D

)

Page 23 of 61 76

Empir Software Eng (2021) 26: 76

Ta
bl
e
3

(c
on
tin

ue
d)

M
ut
at
io
n
op
er
at
or

H
eu
ri
st
ic

(1
)

A
ft
er
/B
ef
or
e
Fi
tn
es
s(
2)

E
xa
m
pl
e,

T
=

(A
,
B

,
C

,
D

,
E

)

up
da
te
(D

D
R

m
→

R
x
,1

.0
)

up
da
te
(D

D
D

→
F
,
1.
0)

E
L
SE

up
da
te
(D

D
R

m
→

R
i
,0
)

E
L
SE

up
da
te
(D

D
D

→
C
,
0)

up
da
te
(D

D
R

m
→

R
x
,0

)
up
da
te
(D

D
D

→
F
,
0)

Sw
ap

sw
ap

R
i
an
d

R
j
(1

≤
i
<

j
≤

n
)

sw
ap

B
an
d

D
,i
.e
.,

T
′ =

(A
,
D

,
C

,
B

,
E

)
R

m
∈{

C
},

R
im

∈{
B

,
C

},
R

m
j

∈{
C

,
D

}
R

j
IF

F
a
(R

j
)
�=

F
b
(R

j
)

IF
F

a
(D

)
�=

F
b
(D

)

→
∀R

im
∈{

R
s
|i

≤
s

<
j
}

up
da
te
(D

D
R

j
→

R
im

,
1.
0

j
−

i
−

1
)

up
da
te
(D

D
D

→
B
,
0.
5)
,

up
da
te
(D

D
D

→
C
,
0.
5)

E
L
SE

up
da
te
(D

D
R

j
→

R
im
,0
)

E
L
SE

up
da
te
(D

D
D

→
B
,
0)
,

up
da
te
(D

D
D

→
C
,
0.
0)

∀R
m

∈{
R

s
|i

<
s

<
j
}

IF
F

a
(R

m
)
<

F
b
(R

m
)

IF
F

a
(C

)
<

F
b
(C

)

→
R

i
,
R

j
up
da
te
(D

D
R

m
→

R
i
,1
.0
)

up
da
te
(D

D
C

→
B
,1

.0
)

E
IF

F
a
(R

m
)
>

F
b
(R

m
)

E
IF

F
a
(C

)
>

F
b
(C

)

up
da
te
(D

D
R

m
→

R
j
,1
.0
)

up
da
te
(D

D
C

→
D
,1

.0
)

E
L
SE

up
da
te
(D

D
R

m
→

R
i
,0
)

E
L
SE

up
da
te
(D

D
C

→
B
,0

)

up
da
te
(D

D
R

m
→

R
j
,0
)

up
da
te
(D

D
C

→
D
,0

)

R
i

IF
F

a
(R

i
)
�=

F
b
(R

i
)

IF
F

a
(B

)
�=

F
b
(B

)

→
∀R

m
j

∈{
R

s
|i

<
s

≤
j
}

up
da
te
(D

D
R

i
→

R
m

j
,

1.
0

j
−

i
−

1
)

up
da
te
(D

D
B

→
D

,
0.
5)
,

up
da
te
(D

D
B

→
C
,
0.
5)

E
L
SE

up
da
te
(D

D
R

i
→

R
m

j
,0

)
E
L
SE

up
da
te
(D

D
B

→
D

,
0)
,

up
da
te
(D

D
B

→
C
,
0.
0)

N
ot
e
th
at

(1
)

R
i
is
a
se
qu
en
ce

of
ac
tio

ns
(w

ith
th
e
te
m
pl
at
e)

on
on
e
re
so
ur
ce

w
he
re

i
is
an

in
de
x
(b
ef
or
e
th
e
te
st
is
m
ut
at
ed
)
of

th
e
gr
ou
pe
d
ac
tio

ns
on

th
e
re
so
ur
ce
.

(2
)

F
a

pr
es
en
ts
a
fi
tn
es
s
af
te
r
th
e
m
ut
at
io
n,

F
b
pr
es
en
ts
a
fi
tn
es
s
be
fo
re

th
e
m
ut
at
io
n,

F
a

>
F

b
in
di
ca
te
s
ne
w
ta
rg
et
s
ar
e
co
ve
re
d
or

an
y
fi
tn
es
s
of

ta
rg
et
is
im

pr
ov
ed

af
te
r
th
e
m
ut
at
io
n,

F
a

<
F

b
in
di
ca
te
s
fi
tn
es
s
of

an
y
ta
rg
et
is
de
cr
ea
se
d
af
te
r
th
e
m
ut
at
io
n,

F
a

�=
F

b
in
di
ca
te
s
co
ve
re
d
ta
rg
et
s
or

th
ei
r
fi
tn
es
s
ar
e
ch
an
ge
d
af
te
r
th
e
m
ut
at
io
n,

up
da
te
(D

D
R

m
→

R
x
,p

)
is
to

up
da
te
a
pr
ob
ab
ili
ty

of
a
de
ri
ve
d
de
pe
nd
en
cy

(D
D

R
m

→
R

x
m
ea
ns

R
m
de
pe
nd
s
on

R
x
)
w
ith

p
,a
nd

th
e
up
da
te
is
im

pl
em

en
te
d
to

ta
ke

a
la
rg
er

va
lu
e
of

th
e
pr
ob
ab
ili
ty

76 Page 24 of 61

Empir Software Eng (2021) 26: 76

6.2 Smart Sampling with Dependency

Information on derived dependencies can be exploited by sampling methods involving mul-
tiple resources, i.e., S2dR and SMdR, as smart sampling with dependencies. Enabling such
smart sampling with dependencies is controlled with a probability, i.e., Pd , as described in
Section 4. When enabled, for S2dR, a test is sampled with two resources which are linked
with a derived dependency (if any exist). If the dependency is undirected, the order of han-
dling the two resources will be determined randomly. Otherwise, the test starts with handling
the dependent resource first followed by the other. SMdR does sample a test with more than
two resources, and, in the test, there exists at least one derived dependency if the set of
dependencies is not empty (i.e., there exists at least one dependency whose probability is
more than 0.0). In case of no derived dependencies, then SMdR simply chooses resources at
random.

As discussed in Section 5.1, values of parameters of actions within a template will be
bounded for handling one specific resource. For example, all the path variables in a series of
actions on a resource will have the same values (to guarantee to work on the same resource),
and a mutation operation that modifies any of them will propagate its changes to all the
other actions on such resource. To make a dependent resource available to the following
related resources, it is also required to bind values of parameters across resources according
to their dependencies.

Recall the example in Fig. 6, a test is sampled by S2dR that is composed of an action
(at line 1) for handling a warehouse resource and two actions (at lines 2-3) for handling a
product resource, and parameters of the actions at lines 2-3 are bounded for handing same
resource, i.e., a foo product. If the dependency (i.e., product depends on warehouse) is
derived, when processing actions on product, we also need to consider a bar warehouse in
order to make a foo product related to the bar warehouse, i.e., the warehouse parameter
of POST /products/{productName} is bounded with the bar warehouse performed by the
action at line 1 as shown in Fig. 8.

6.3 Smart Mutation with Dependency

As discussed in Section 5.3, one aim of resource-based structure mutation is to exploit rela-
tionships among resources. Thus, we enhance the mutation with a consideration of derived
dependencies to boost its performance. Regarding each of the mutation operators:

DELETE. Delete a resource that is marked as unrelated to any other resource in the test.
SWAP. We propose three strategies to swap two resources with dependency relations:

(1) adjust the order of a resource and its likely dependent resource, i.e., if there exist a
derived dependency with a high probability (i.e., ≥ 0.6) in the test, but the order is incorrect
according to the dependency relation, then we apply the strategy to swap their order in the
test; (2) attempt to adjust the order of a resource and its possibly dependent resource, i.e., if

Fig. 8 An example (Example 9) of a test sampled by S2dR method with dependency

Page 25 of 61 76

Empir Software Eng (2021) 26: 76

there exist a derived dependency with a modest probability (i.e., < 0.6 but still > 0.0) in the
test, but the order is incorrect according the dependency, then we applied the strategy to fix
their order; (3) explore new order of two resources. Similarly to adjust and attempt but apply
on two resources with no dependency information, to evaluate a possible new dependency.
Based on a set of derived dependencies, the applicable strategies are selected at random. If
none of the strategies can be applied, we select two positions randomly as SWAP without
dependency handling.

ADD. Add a resource that is related to one of the resources in the test based on the
inferred dependencies. If none of the resources is related to any other resource, add a new
resource as ADD without dependency handling.

REPLACE. Replace is handled as a combination of DELETE and ADD with a fixed
position, i.e., remove an unrelated resource at a specific position, and then add a new related
resource at that same position.

MODIFY. No further treatment with a consideration of the dependency graph.
Note that, if a resource is mutated with the above operators based on derived dependen-

cies, any other resource bounded to it will need to be updated (e.g., query parameters and
fields in body payloads) as well to maintain the dependency.

7 Case Studies

7.1 Open Source Case Studies

In our empirical study, we employed seven RESTful APIs (available on GitHub4) which we
used in our previous work (Arcuri 2018b; 2019). These APIs consist of three artificial and
four real-world web services. Table 4 shows detailed descriptive statistics on these web ser-
vices, including their number of Java/Kotlin class files, lines of code, number of endpoints
(where with the term endpoint we mean the combination of resource paths and HTTP meth-
ods applicable on them, ignoring any query parameter), and number of accessible resources
(ignoring HTTP verbs) with the number of independent resources among them.

Regarding these services, REST Numerical Case Study (rest-ncs) and REST String Case
Study (rest-scs) are artificial APIs based on functions that were previously used in unit test-
ing for experiments on solving numerical (Arcuri and Briand 2011) and string (Alshraideh
and Bottaci 2006) problems. These APIs simply put each of these stateless functions behind
a different GET endpoint. rest-news is also an artificial API, which was developed for edu-
cational purposes on enterprise development in a university course of one of the authors.9

The APIs features-service, proxyprint, scout-api and catwatch are real RESTful web service
projects, which were selected by analyzing projects on the popular open-source repository
GitHub. More details of the selection can be found in Arcuri (2018b) and Arcuri (2019).

Note: in this article we use the term “real” (for 4 SUTs downloaded from GitHub) just as
opposed to, and differentiate from, the terms “artificial” (used for 3 SUTs) and “synthetic”
(used for 12 SUTs). We do not claim that these systems are widely used in industry, or that
they are representative of industrial systems in general. Furthermore, in this article we use
the term “artificial” to represent the SUTs that were written by hand just for experiment
purposes (e.g., based on software used in the evaluation of unit test generation techniques)
or didactic reasons, in contrast to the “synthetic” SUTs that were automatically generated

9https://github.com/arcuri82/testing security development enterprise systems

76 Page 26 of 61

https://github.com/arcuri82/testing_security_development_enterprise_systems

Empir Software Eng (2021) 26: 76

Table 4 Descriptive statistics of the open source case studies

Name #Classes LOCs #Endpoints #Resource #Independent resource

rest-ncs 9 602 6 6 6

rest-scs 13 859 11 11 11

rest-news 10 718 7 4 1

catwatch 69 5442 23 13 11

feature-service 23 2347 18 11 1

proxyprint 68 7534 74 56 26

scout-api 75 7479 49 21 2

with a tool. But other terminologies could have been used to distinguish those groups, like
Group A, B and C.

7.2 Automatically Generated Synthetic RESTful APIs

To achieve sound results in an empirical study, a large and varied selection of SUTs is
required (Fraser and Arcuri 2012). However, system testing is very time consuming. Fur-
thermore, although open-source repositories such as GitHub do host plenty of software
projects (especially libraries), enterprise applications are not so common among them. This
poses challenges in carrying out empirical studies in this problem domain.

To address this problem, we integrated our empirical study with a set of synthetically
generated APIs, with different characteristics when it comes to intra-resource dependen-
cies. This also enables us to clearly identify how our techniques perform, i.e., pinpoint the
conditions in which they perform well or struggle. However, whether real APIs would have
the same characteristics remains to be seen. This is why it is important to still do empirical
studies on real APIs and not just synthetic ones. In other words, the experiments on these
synthetic APIs are only done to provide more insight, and possibly explain differences in
performance among the real APIs.

To experiment the proposed techniques with various RESTful web applications in terms
of resource and their dependency, we implemented a synthetic REST API generator (Fig. 9)
for automatically producing such applications. In Fig. 9, we propose a model (i.e., Synthetic
REST API Graph) that is composed of elements (denoted as white boxes) for defining the
application with respect to resources and their dependencies. With such a model, a RESTful
web service can be automatically generated with elements (denoted as grey boxes). Note
that the elements with grey boxes are for representing a mapping between the model and
an instantiation that could be carried out with any available tool/framework. In our work,
we used SpringBoot10 JPA11 and automated inference of OpenAPI schemas7 from source
code.12

In our implementation, a Synthetic RESTful API is defined with a set of resources
(ResourceClass), which can be connected with dependencies (Dependency).

ResourceClass represents a type of the resource, and its instances can be considered as an
actual resource. For example, GET /products/foo can be regarded as “to retrieve an instance

10https://spring.io/projects/spring-boot
11https://spring.io/projects/spring-data-jpa
12https://github.com/springdoc/springdoc-openapi

Page 27 of 61 76

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-data-jpa
https://github.com/springdoc/springdoc-openapi

Empir Software Eng (2021) 26: 76

Fig. 9 Synthetic REST API Design and Realization

of product, and the identifying name of the instance should be foo”. Based on the specified
ResourceClass, we generate an Entity (for resource persistence and access in the database)
and its corresponding Data Transfer Object (DTO) (when the resource needs to marshaled
into a JSON object representation for resource transfer through a network).

Dependency is designed to describe “one or more resources depend on one or more of
the other resources”. The dependencies among resources are varied. To generate RESTful
APIs with various dependencies, we designed three kinds of dependency, i.e., Composi-
tion, ExistenceDependency, and PropertyDependency. These kinds are also designed with
different level of complexity in dependency handling, i.e., Composition is the easiest one,
and PropertyDependency is the most challenging one. Definitions of each of these kinds
are presented in Table 5, together with the corresponding constraints on resources and their
dependent resources.

Moreover, we introduced RestMethod for specifying Endpoint generations for a RESTful
API. The RestMethod is associated with a RestMethodKind, which is composed of all the
different types of HTTP methods (e.g., GET and POST), for specifying which HTTP meth-
ods should be provided to access the related resources. As dependencies among resources
might be represented in the resource path, we proposed two strategies to generate resource
paths for each Endpoint, i.e., showing dependency and hidden dependency. Table 6 presents
our strategies to generate endpoints based on different HTTP methods following REST
guidelines.

In our context, in terms of an endpoint, a successful status code (i.e., 2xx) should be
given only if all related dependency constraints are satisfied and an action (according to
specified HTTP method) is performed properly. If any constraint is not satisfied, execution
of the endpoint will exit and return a 4xx status code indicating that there are user errors in

Table 5 Definitions and Constraints of Dependency in the Synthetic REST APIs

Dependency Definitions Constraints

DR1 Composition A resource is composed of resource(s). Owned resources cannot exist inde-
pendently of the resources.

DR2 ExistenceDependency Resource(s) depends on existing
resource(s).

Dependent resources must exist
before performing any action on the
resources.

DR3 PropertyDependency Resource(s) depends on existing
resource(s) with additionally some
constraints on their property(ies).

Dependent resources must exist,
and properties of the dependent
resources must satisfy some speci-
fied constraints.

76 Page 28 of 61

Empir Software Eng (2021) 26: 76

Table 6 Implementation of Generating Endpoints with RestMethod

Method Description Constraint(1) and status code Path(2)

GET COLLECTION get all resources return with 2xx showing dependency: /DRCs/
{rid}/RCs, e.g., /warehouses/
{warehouseName}/products hid-
den dependency: /RCs e.g., /pro-
ducts

POST create a resource IF R, return with 4xx
IF not DR1, return with 4xx
IF not DR2, return with 4xx
IF not DR3, return with 4xx
return with 2xx

PUT create or update
a resource with
its id

IF not DR1, return with 4xx
IF not DR2, return with 4xx
IF not DR3, return with 4xx
return with 2xx

showing dependency: /DRCs/
{rid}/RCs/{id} e.g., warehouses/
{warehouseName}/products/{id} hid-
den dependency: /RCs/{id} e.g.,
/products/{id}

PATCH partially update a
resource with its
id

IF not R, return with 4xx
IF not DR2, return with 4xx
IF not DR3, return with 4xx
return with 2xx

DELETE delete a resource
with its id

IF not R, return with 4xx
return with 2xx

GET get a resource
with its id

IF not R, return with 4xx
return with 2xx

Note that (1) by Constraints column: R is a condition that the requested resource exists; DR1-3 indicate the
corresponding constraint in Table 5 is satisfied; not indicates the condition or constraint is not satisfied. (2)

by Path column: DRC represents dependent resources; {rid} represents an identifier of DRC; RC represents
a resource to be performed by HTTP methods; {id} represents an identifier of RC

this HTTP request. The order and type of the dependency constraint checking is based on
the complexity in the dependency handling setting, i.e., from easy to challenging. Thus, a
test with proper data to handle dependencies can cover more code (as all those constraint
checks are if statements in sequence, checking one condition at a time). Note that, if all of
the constraints are satisfied but the action is still performed improperly (e.g., an exception
is thrown for some reason), then the execution will exit and a server error status code (i.e.,
500) will be returned (this is handled by default in Spring).

To generate the applications with various resource-dependency settings, we designed
three resource graph settings, i.e., Dense-Central, Medium-Deep and Sparse-Straight, as
shown in Fig. 10 (the names of the resources are generated at random). Note that all of the
three settings consist of 5 ResourceClasses with 6 methods. Thus, there are 30 endpoints
for all of the settings.

Regarding Dense-Central, there are 4 dependencies connecting all 5 resource classes
through UEear. Regarding Medium-Deep, 3 dependencies connect 4 out of the 5 resource
classes, but there exist a deep chained dependency from VIL0S to U1rA1 through HErqD
and XpOCt. Regarding Sparse-Straight, 2 out of the 5 resources classes are connected with
1 dependency. Note that in Fig. 10 <is composed of> can only be specified with DR1, but
<depends on> can be specified with either DR2 or DR3, which result into easy or complex

Page 29 of 61 76

Empir Software Eng (2021) 26: 76

OEXmz W27dt B8v25 IUJWo

UEear

<is composed of> <is composed of> <depends on> <depends on>

GqxtS VIL0S HErqD
<depends on>

XpOCt

<depends on>

U1rAl
<depends on>

M4KNg

PtjWC

<depends on>

X7Qey VrS4R JjhK5

Fig. 10 Dependencies of Dense,Medium and Sparse settings.Dense-Central setting is defined with 4 one-to-
one dependencies from UEear that forms 1 two-to-two dependency relationship, i.e., OEXmz and W27dt

depend on B8v25 and IUJWo. Medium-Deep setting is defined with 3 connected one-to-one dependency
relationships. The deepest derived dependency is from V IL0S to U1rA1 through HErqD and XpOCt .
Sparse-Straight setting is defined with 1 one-to-one dependency relationship

dependency constraints. To control for the difficulty in solving dependency constraints, we,
therefore, generated APIs with different choices (i.e., DR2 or DR3) on <depends on> in
the three settings. Moreover, we configured resource paths generation with showing or hid-
den dependencies in paths, since this configuration might impact the handling of resources.
Thus, in total, 12 (3 resource-dependency settings ×2 kinds of dependency constraints
×2 strategies of resource path generation) synthetic RESTful APIs are generated for our
empirical study.

An example is shown in Fig. 11, illustrating different endpoint generations according
to the different configurations. The endpoint in Fig. 11 is for the POST action on UEear
resource shown inDense-Central setting of Fig. 10. In the setting,UEear ownsOEXmz and
W27dt, and has two dependent resources, i.e., B8v25 and IUJwo. Snippets 1-2 present differ-
ent paths regarding showing and hidden dependency in paths, respectively. In Snippet 1, two
dependent resources are shown in the path, i.e., /iUJWos/iUJWoId/b8v25s/b8v25Id/uEears,
while not in Snippet 2, i.e., /uEears. Regarding an implementation of POST, when creat-
ing an instance of UEear, it is the first to check whether the instance exists, denoted as R
check (see line 2 in Snippet 3). Once passing the R check, create owned resources (i.e., an
instance of OEXmz and an instance of W27dt) if the resources do not belong to any others
(DR1 checks), and the code for processing OEXmx is at lines 6-13 in Snippet 3.

76 Page 30 of 61

Empir Software Eng (2021) 26: 76

Fig. 11 Snippet examples of implementations of POST on UEear (see Dense-Central in Fig. 10) with
different configurations

As discussed, <depends on> can be applied with DR2 or DR3. If DR2 is applied, fol-
lowing by the creation of owned resources, we check the existence of dependent resources,
as shown in Snippet 4, i.e., line 16 is for B8v25 and line 20 is for IUJwo. If DR3 is applied,
there are not only the same checks as in Snippet 4, but also additional checks on property
condition in Snippet 5. In this implementation, the property condition is designed based on
value properties of the resource (denoted as RC) and its dependent resources (denoted as
DRCi) as

not (median(SRC) < median(SDRC) and average(SRC) < average(SDRC))

where if RC is composed of more than one other resources (denoted as ORCk), SRC =
{ORCk|k > 1}, otherwise SRC = {RC}; SDRC = {DRCi |i > 0}; median(S) is a
median of values on value property of a set of resources S; average(S) is an average of
values on value property of a set of resources S. For instance, the additional check of UEear
is shown at lines 27-28 in Snippet 5. Last, if all checks are passed, we save the created
instance of UEear in the database and return 201 status code (Snippet 6).

Note that our synthetic REST API generator is not limited for evaluation just in this
work. As we released it as open-source, it could be also useful to setup experiments for

Page 31 of 61 76

Empir Software Eng (2021) 26: 76

studying other RESTful APIs-related approaches. With our generator, a REST API can
be automatically generated by configuring a set of parameters (e.g., a number of resource
nodes, a number of dependencies, applied HTTP methods), or a specific resource depen-
dency graph. Those configurable parameters capture different basic characteristics of a
REST API, and this flexible configuration would be helpful to customize different syn-
thetic case studies (e.g., the number of resources might be used to study the scalability of
an approach). In addition, as the generator is open-source, that presents a possibility to be
further customized by different researchers, e.g., extend PropertyDependencywith different
implementations. Moreover, the generator is designed by following the REST API guide-
lines, and the generated REST APIs come with a schema using OpenAPI/Swagger. Thus,
the generator might offer an opportunity to assess OpenAPI-based approaches with syn-
thetic case studies. However, currently the generator only supports the creation of REST
APIs with SpringBoot and JPA. This may limit the study regarding implementations with
different frameworks/libraries.

8 Empirical Study

In this paper, we have carried out an empirical study aimed at answering the following
research questions.

RQ1: How does resource-based MIO perform? Among the different settings, which one
gives the best results in terms of covered targets, line coverage and branch coverage?

RQ2: How does dependency heuristic handling work with resource-based MIO? Among
the different settings, which one gives the best results?

RQ3: Do our novel techniques achieve any improvement compared to existing work?
Among the different techniques we proposed, which one gives the best results?

8.1 Experiment Design

To assess our novel approach, we conducted an empirical study. The experiment settings
and their design are as shown in Tables 7 and 8, respectively.

Table 7 reports the configurations of our experiments for each investigated technique.
In the experiments, we selected two baselines: Base1 is an implementation of default
MIO (Arcuri 2018b); the other (i.e., Base2) is also based on MIO, but it was integrated with
smart sampling techniques (that can be regarded as resource-based solutions) specialized
for sampling test data for RESTful APIs (Arcuri 2019) (recall Section 2.3). With MIO inte-
grated with smart sampling (i.e., Base2), we used its default setting on the probability of
applying smart sampling at the sampling phase of MIO, i.e., Ps = 0.5. Base2 is the cur-
rent default technique in EVOMASTER, where smart sampling was empirically evaluated
to provide better results (Arcuri 2019). Base1 is simply EVOMASTER with the smart sam-
pling deactivated. In this paper, we still compare with Base1 to get a better insight on what
results can be achieved compared with a more basic approach. Note that, in the past, we
have compared MIO-based EVOMASTER with other search algorithms, e.g., random search
and MOSA (Arcuri 2018b). We do not repeat such comparisons here in this paper, and just
use the current default version of EVOMASTER as baseline, as that is the one that has given
best results in our previous work.

For the proposed approaches, we classified them into two configurations, by distinguish-
ing whether we enable or not the handling of dependencies (Sections 5 and 6). This is

76 Page 32 of 61

Empir Software Eng (2021) 26: 76

Table 7 Description of experiment settings

Technique Sampling Mutation Dependency Count(2)

Strategy Ps Pd Pre-Match

Base1 Random 0 Default 0.0 F 1

Base2 Smart Sampling 0.5 Default 0.0 F 1

R-MIO R-Sampling(1) {0.5, 1.0} R-Mutation 0.0 F 10

Rd-MIO R-Sampling(1) {0.5, 1.0} R-Mutation {0.5, 1.0} {F, T} 40

Note that (1) Resource-based Sampling, R-Sampling∈ {EqualProbability, Actions, TimeBudgets, Archive,
ConArchive}; (2) Count represents a number of configurations for the technique

controlled by the Pd parameter (see Algorithm 2), i.e., Resource-based MIO (denoted as
R-MIO) with Pd = 0, and Resource-based MIO with dependency handling (denoted as
Rd-MIO) with Pd > 0.

Regarding the settings for sampling and mutation, all five sampling strategies (S ∈
{Action, Archive, ConArchive, Used-Budget, Equal}), combined with the proposed resource-
based mutation, are evaluated in the experiments with two different probabilities (Ps ∈
{0.5, 1.0}) of using the proposed sampling. For example, if Ps = 0.5, MIO applies our
novel sampling to sample an individual with 50% probability, or applies random sampling
otherwise.

These sampling and mutations settings for R-MIO and Rd-MIO are different. Because,
when dependency handling is enabled, the derived dependencies might be utilized to guide
the sampling and mutation (recall Section 6). Regarding the settings of dependency han-
dling of Rd-MIO, we set two different probabilities on enabling dependency handling (i.e.,
Pd ∈ {0.5, 1.0}), combined with two different values on whether enabling the inference
of possible dependencies based on the schema API (recall Section 6.1.1) (i.e., Pre-Match,
PM ∈ {F, T }). For example, if Pd = 0.5, then at the sampling phase, when resource-based
sampling is enabled with Ps , MIO applies resource-based sampling with dependencies to
sample an individual with 50% probability (e.g., sample an individual with two resources
that might be dependent), or applies resource-based sampling without dependency oth-
erwise. During the mutation phase, MIO will then apply resource-based mutation with
dependency handling to mutate an individual with 50% probability (e.g., switch actions
of an individual based on the dependency of their resources), or applies resource-based
sampling without dependency otherwise.

For each setting, we ran EVOMASTER using the same fixed value for the search budget
(i.e., 100,000 HTTP calls). All the other settings are left as their defaults in EVOMASTER,
like for example the population size (i.e., 10 per target), maximum length of a test (i.e., 10),
probability of sampling (i.e., 0.5), and start of focused search (i.e., after 50% of the budget
is used).

The design of the experiments is illustrated in Table 8. The table presents, for each
research question, which settings are used, which tasks we performed, which case studies
are used, how many times the experiments are repeated, which statistical tests are applied,
and which metrics are used.

In these experiments, we selected seven open-source RESTful web services (three arti-
ficial RESTful APIs and four real RESTful APIs, recall Section 7.1) and generated twelve
synthetic RESTful APIs covering various resources settings (recall Section 7.2).

Page 33 of 61 76

Empir Software Eng (2021) 26: 76

Ta
bl
e
8

D
es
cr
ip
tio

n
of

ex
pe
ri
m
en
td

es
ig
n
re
ga
rd
in
g
re
se
ar
ch

qu
es
tio

ns

R
Q
s

C
on
f.

(1
)

Ta
sk
s

C
S

T
im

es
St
at
is
tic

al
te
st
s

M
et
ri
cs

R
Q
1

R
-M

IO
-
A
na
ly
ze

ef
fe
ct
iv
en
es
s
of

R
-M

IO
-
Id
en
tif
y
th
e
be
st
fr
om

10
se
tti
ng
s

7(
2)

10
-
E
ff
ec
t
an
al
ys
is

of
fa
ct
or
s

an
d

in
te
r-

ac
tio

ns
:

A
lig

ne
d

R
an
ks

T
ra
ns
fo
r-

m
at
io
n

A
N
O
V
A

an
d

Pa
rt
ia
l

et
a-

sq
ua
re
d

ef
fe
ct

si
ze

-
V
ar
ia
nc
e
an
al
ys
is
:

Fr
ie
dm

an
te
st
-
Pa
ir

co
m
pa
rs
io
n:
M
an
n-

W
hi
tn
ey
-W

ilc
ox
on

U
-t
es
ts

at
a
si
gn
if
i-

ca
nt

le
ve
l
α

=
0.
05

an
d
V
ar
gh
a-
D
el
an
ey

ef
fe
ct
si
ze
s

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

R
Q
2

R
d-
M
IO

-
A
na
ly
ze

ef
fe
ct
iv
en
es
s
of

R
d-
M
IO

-
Id
en
tif
y
th
e
be
st
fr
om

40
se
tti
ng
s

R
Q
3

B
as
e1

B
as
e2

R
-M

IO
R
d-
M
IO

-
C
om

pa
re

be
st
co
nf
ig
ur
at
io
ns

of
R
-M

IO
an
d
R
d-
M
IO

w
ith

ba
se
lin

es
-
A
na
ly
ze

ef
fe
ct
iv
en
es
s
of

R
-M

IO
an
d

R
d-
M
IO

re
ga
rd
in
g

di
ff
er
en
t

ca
se

st
ud

ie
s

7(
2)
+
12

(3
)

30

N
ot
e
th
at

(1
)
de
ta
ile
d
co
nf
ig
ur
at
io
ns

sp
ec
if
ie
d
in

C
on

f.
ca
n
be

fo
un
d
in

Ta
bl
e
7;

(2
)
7
op
en

so
ur
ce

ca
se

st
ud
ie
s;

(3
)
12

sy
nt
he
tic

ca
se

st
ud
ie
s

76 Page 34 of 61

Empir Software Eng (2021) 26: 76

To take into account the randomness of the employed search algorithms, each settings of
each technique should be repeated several times, and 30 times is a typically recommended
value (Arcuri and Briand 2014). However, with 52 configurations and 19 case studies, it is
impractical to run each of the configurations with a search budget of 100,000 HTTP calls
on all case studies 30 times, i.e., 52 × 19 × 30 × 100k = 2964M HTTP calls.

Therefore, we conducted our experiments to answer our RQs as follows:

– For RQ1 and RQ2, we executed all configurations of R-MIO and Rd-MIO 10 times,
just on the 7 open-source RESTful APIs, to study the overall performance of the two
techniques and identify their best settings.

– For RQ3, we applied the best configurations identified by RQ1 and RQ2 to represent
R-MIO and Rd-MIO, respectively, and executed the two baseline techniques and the
two identified configurations 30 times with all 19 (i.e., 7 open-source and 12 synthetic)
case studies.

Experiment results were analyzed with following statistical tests: (1) Factorial data
analysis is conducted with Aligned Ranks Transformation ANOVA (ART) and Partial
eta-squared effect size (ηp

2) (Wobbrock et al. 2011; Kay and Wobbrock 2019). In these
experiments, the configured parameters (e.g., Sampling Strategy R-Sampling) can be
regarded as factors, then we applied the test to study effects of parameters or interaction to
response value; (2) Variance analysis is performed with Friedman test, e.g., variance anal-
ysis on ranks of different settings. But the Friedman test might be inadequate if there exist
multiple factors (Wobbrock et al. 2011). In this case, ART can be conducted first to reduce
the number of factors; (3) Pair comparisons are made with Mann-Whitney-Wilcoxon U-test
at a significant level α = 0.05 and Vargha-Delaney effect size.

In the context of white-box testing, we considered three metrics as response values for
the experiments, i.e., a number of covered targets (#Targets), line coverage (%Lines) and
branch coverage (%Branches), to evaluate the effectiveness of the tests generated by the
different techniques. #Targets is the default coverage criterion that EVOMASTER optimizes
for by default. It is the aggregated value of all the other coverage metrics, including as well
test targets related to the HTTP status codes for each different endpoint (e.g., status codes
such as 500 can be used to detect potential faults). Note that, in the analyses, we mainly
focus on line coverage (i.e., %Line), since it is typically the most used metric to evaluate
test cases in practice. Branch coverage (i.e., %Branches) and covered targets (#Targets) are
reported to provide additional insight on the results.

8.2 Experiment Results

8.2.1 Results of RQ1 (Resource-based MIO)

In Table 9, we report the effectiveness of R-MIO, measured by the average number of cov-
ered targets, line coverage and branch coverage, of the tests generated by each of the 10
settings of R-MIO, when run on the 7 open-source APIs. From the table, we can see that
the tests generated by R-MIO are capable of covering up to 87.3% of lines and 66.2% of
branches for the artificial REST APIs, i.e., rest-ncs, rest-scs and rest-news. For the other
RESTful APIs, R-MIO achieves up to 53.4% line coverage and 21.0% branch coverage.

R-MIO is configured by two main parameters, i.e., R-Sampling with five resource-based
sampling strategies, and Ps with two probabilities of applying resource-based sampling.
To investigate the best configuration among all of these settings, we first conducted an
effect analysis of the parameters, and their interactions, with Aligned Ranks Transformation

Page 35 of 61 76

Empir Software Eng (2021) 26: 76

Table 9 Average, minimum and maximum values (represented as Avg.[min., max.]) of #Targets, %Lines,
and %Branches covered by tests generated by all 10 settings of R-MIO

SUT #Targets %Lines %Branches

rest-ncs 535.5[525.0,543.0] 87.3%[85.0%,88.1%] 66.2%[64.7%,68.1%]

rest-scs 855.2[854.0,860.0] 82.1%[82.0%,82.4%] 51.4%[51.3%,51.7%]

catwatch 1015.9[982.0,1163.0] 26.4%[25.7%,30.5%] 14.5%[13.5%,16.2%]

features-service 596.4[585.0,662.0] 53.4%[52.8%,59.2%] 12.8%[12.7%,16.9%]

proxyprint 1296.2[1280.0,1349.0] 18.7%[18.5%,19.4%] 5.4%[5.3%,6.2%]

rest-news 265.6[250.0,276.0] 40.5%[39.1%,42.4%] 23.3%[20.8%,25.4%]

scout-api 1794.3[1603.0,2141.0] 38.1%[33.8%,45.0%] 21.0%[19.1%,27.3%]

Table 10 Average, minimum and maximum values (represented as Avg.[min., max.]) of #Targets, %Lines,
and %Branches covered by tests generated by all 40 settings of Rd-MIO

SUT #Targets %Lines %Branches

rest-ncs 535.5[525.0,543.0] 87.3%[85.0%,88.1%] 66.2%[64.7%,68.1%]

rest-scs 855.2[854.0,860.0] 82.1%[82.0%,82.4%] 51.4%[51.3%,51.7%]

catwatch 1014.1[982.0,1159.0] 26.3%[25.7%,30.4%] 14.5%[13.5%,16.2%]

features-service 701.7[662.0,721.0] 64.2%[59.6%,65.7%] 18.9%[16.9%,21.2%]

proxyprint 1293.9[1279.0,1351.0] 18.6%[18.5%,19.4%] 5.4%[5.3%,6.2%]

rest-news 266.4[252.0,278.0] 40.7%[39.1%,42.4%] 23.2%[20.8%,25.4%]

scout-api 1765.5[1587.0,2145.0] 37.7%[33.6%,45.5%] 21.0%[18.9%,30.1%]

Table 11 Pair comparison of PreMatch ∈ {T , F } using Mann-Whitney-Wilcoxon U-tests (p-value) and
Vargha-Delaney effect sizes (Â12)

SUT PreMatch #Targets %Lines %Branches

Â12 p-value Â12 p-value Â12 p-value

catwatch T vs. F 0.47 0.144 0.49 0.593 0.47 0.105

features-service T vs. F 0.52 0.311 0.51 0.758 0.47 0.228

proxyprint T vs. F 0.46 0.077 0.47 0.128 0.47 0.151

rest-news T vs. F 0.58 <0.001 0.63 <0.001 0.48 0.411

scout-api T vs. F 0.53 0.155 0.56 0.010 0.50 0.871

Values in bold means T is statistical significant better than F , whereas values in red means F is statistical
significant better than T

76 Page 36 of 61

Empir Software Eng (2021) 26: 76

Table 12 Pair comparison of Pd ∈ {0.5, 1.0} using Mann-Whitney-Wilcoxon U-tests (p-value) and Vargha-
Delaney effect sizes (Â12)

SUT Pd #Targets %Lines %Branches

Â12 p-value Â12 p-value Â12 p-value

catwatch 1 vs. 0.5 0.51 0.815 0.49 0.729 0.53 0.371

features-service 1 vs. 0.5 0.69 <0.001 0.67 <0.001 0.60 0.003

proxyprint 1 vs. 0.5 0.51 0.647 0.50 0.992 0.50 0.884

rest-news 1 vs. 0.5 0.46 0.230 0.47 0.337 0.47 0.476

scout-api 1 vs. 0.5 0.57 0.069 0.56 0.107 0.57 0.049

Values in bold means Pd = 1.0 is statistical significant better than Pd = 0.5, whereas values in red means
Pd = 0.5 is statistical significant better than Pd = 1.0

ANOVA and Partial eta-squared ηp
2. Results are reported in Table 17, in the Appendix.

From that table, we can see that different configurations of R-Sampling have a greater effect
than Ps and their interaction on all three response values for most cases. The exceptions are
feature-service in terms of %Lines, and rest-news with scout-api in terms of %Branches.

Based on this observation, we then conducted the Friedman test on ranks of average
of three metrics among all case studies to identify the best setting on R-Sampling for R-
MIO. Average of ranks among case studies and results of Friedman test are reported in
Table 18, in Appendix. The results are statistically significant in terms of #Targets, but
not %Lines and %Branches. When considering the average ranks, ConArchive achieves the
best performance on #Targets and %Lines, and the second best on %Branches. Therefore,
ConArchive is selected as the default setting on R-Sampling for R-MIO.

We further studied the Ps parameter to configure a probability of applying ConArchive
at the sampling phase. We applied the Friedman test on ranks, and results are reported in
Table 19, in Appendix. The results show that there is no statistically significant difference
between the two settings (i.e, 0.5 and 1.0) regarding all three metrics, and the average ranks
are close as well. Therefore, a reasonable choice is to set Ps = 0.5 as the default setting for
Ps in R-MIO.

According to above results, we can conclude that:

RQ1: Resource-based MIO (i.e., MIO enhanced with resource-based technique) is
capable of automatically generating tests that cover up to 53.4% lines in real REST
APIs and 87.3% lines in artificial REST APIs. Our recommended configuration for

applying R-MIO is ConArchive strategy with a 50% probability.

8.2.2 Results of RQ2 (Resource-Based MIO with Dependency Heuristic Handling)

The overall performance of Rd-MIO is reported in Table 10. In that table, for each case study,
we report the average number of covered targets, lines coverage and branches coverage, of
the tests generated by each of the 40 settings of Rd-MIO. Since all resources in rest-ncs and
rest-scs are identified as independent, there is no benefit to handle resource dependency.
Thus, Rd-MIO and R-MIO perform in a similar manner on the two case studies. This leads
to similar results with Table 9 for rest-ncs and rest-scs. Regarding the other RESTful APIs,
tests generated by Rd-MIO achieve up to 64.2% line coverage and 23.2% branch coverage.

Page 37 of 61 76

Empir Software Eng (2021) 26: 76

Table 13 Average of #Targets, %Lines and %Branches covered by tests generated by four techniques and
their rank

SUT Techniques #Targets %Lines %Branches

rest-ncs

Base1 531.0(4) 86.4%(4) 65.7%(4)

Base2 535.9(2) 87.3%(2) 66.5%(1)

R-MIO 536.2(1) 87.5%(1) 66.3%(2)

Rd-MIO 534.8(3) 87.2%(3) 66.1%(3)

rest-scs Base1 591.2(4) 58.8%(4) 35.2%(4)

Base2 687.7(3) 68.0%(3) 41.6%(3)

R-MIO 855.3(1) 82.1%(1) 51.4%(1)

Rd-MIO 855.0(2) 82.1%(2) 51.4%(1)

catwatch Base1 1000.9(3) 26.2%(3) 14.6%(2)

Base2 998.4(4) 26.8%(4) 14.9%(3)

R-MIO 1013.0(2) 26.6%(2) 14.5%(4)

Rd-MIO 1022.9(1) 26.8%(1) 14.6%(1)

features-service Base1 316.1(4) 27.9%(4) 5.0%(4)

Base2 505.1(3) 45.2%(3) 12.4%(3)

R-MIO 596.5(2) 53.3%(2) 12.8%(2)

Rd-MIO 701.7(1) 64.3%(1) 18.6%(1)

proxyprint Base1 1300.0(3) 18.8%(3) 5.5%(3)

Base2 1302.1(2) 18.7%(2) 5.5%(2)

R-MIO 1303.6(1) 18.8%(1) 5.6%(1)

Rd-MIO 1298.8(4) 18.8%(4) 5.5%(4)

rest-news Base1 269.3(1) 41.5%(1) 23.6%(1)

Base2 266.9(4) 41.0%(3) 23.1%(4)

R-MIO 267.9(2) 41.3%(2) 23.2%(3)

Rd-MIO 267.7(3) 41.0%(4) 23.2%(2)

scout-api Base1 1519.3(4) 32.9%(4) 19.3%(4)

Base2 1577.7(3) 34.0%(3) 19.3%(3)

R-MIO 1794.1(2) 38.4%(2) 20.7%(2)

Rd-MIO 1809.8(1) 38.6%(1) 21.7%(1)

Average rank Base1 3.3 3.3 3.1

Base2 3.0 2.9 2.7

R-MIO 1.6 1.6 2.2

Rd-MIO 2.1 2.3 1.9

Friedman test (χ2, p-value) 7.8, 0.050 6.9, 0.074 3.7, 0.296

Rank value with 1 represents the highest achievement, and values in bold are the highest in the case study

There exist four parameters (i.e., R-Sampling, Ps , Pd and PreMatch) that produce 40
combinations to configure Rd-MIO. To identify the best configuration of Rd-MIO, we
started from PreMatch parameter, because the parameter deals with a static process to derive
possible dependencies before the search starts. For a given case study, dependencies derived
by the process are inferred. But the derived dependencies might be incorrect, and that may
negatively affect the performance of Rd-MIO. So we first studied whether PreMatch should

76 Page 38 of 61

Empir Software Eng (2021) 26: 76

Table 14 Pair comparison of our approaches with baselines in terms of #Targets, %Lines and %Branches
using Mann-Whitney-Wilcoxon U-tests (p-value) and Vargha-Delaney effect sizes (Â12)

SUT A vs. B #Targets %Lines %Branches

Â12 p-value relative Â12 p-value relative Â12 p-value relative

rest-ncs R-MIO vs. Base1 0.77 <0.001 +1.0% 0.79 <0.001 +1.3% 0.71 <0.001 +1.0%

R-MIO vs. Base2 0.46 0.873 +0.1% 0.53 0.594 +0.2% 0.42 0.524 -0.2%

Rd-MIO vs. Base1 0.70 0.024 +0.7% 0.73 0.012 +0.9% 0.64 0.096 +0.7%

Rd-MIO vs. Base2 0.40 0.181 -0.2% 0.47 0.589 -0.1% 0.36 0.103 -0.5%

Rd-MIO vs. R-MIO 0.41 0.298 -0.3% 0.43 0.212 -0.3% 0.42 0.448 -0.3%

rest-scs R-MIO vs. Base1 1.00 <0.001 +44.7% 1.00 <0.001 +39.7% 1.00 <0.001 +46.0%

R-MIO vs. Base2 1.00 <0.001 +24.4% 1.00 <0.001 +20.7% 1.00 <0.001 +23.6%

Rd-MIO vs. Base1 1.00 <0.001 +44.6% 1.00 <0.001 +39.6% 1.00 <0.001 +46.0%

Rd-MIO vs. Base2 1.00 <0.001 +24.3% 1.00 <0.001 +20.7% 1.00 <0.001 +23.6%

Rd-MIO vs. R-MIO 0.45 0.341 -0.0% 0.47 0.484 -0.0% 0.50 1.000 +0.0%

catwatch R-MIO vs. Base1 0.65 0.013 +1.2% 0.69 0.001 +1.5% 0.43 0.237 -0.9%

R-MIO vs. Base2 0.62 0.050 +1.5% 0.67 0.006 +1.8% 0.45 0.401 -0.4%

Rd-MIO vs. Base1 0.60 0.292 +2.2% 0.62 0.222 +2.4% 0.54 0.695 +0.2%

Rd-MIO vs. Base2 0.57 0.450 +2.5% 0.56 0.550 +2.6% 0.61 0.279 +0.7%

Rd-MIO vs. R-MIO 0.49 0.910 +1.0% 0.47 0.732 +0.8% 0.63 0.123 +1.1%

features-service R-MIO vs. Base1 1.00 <0.001 +88.7% 1.00 <0.001 +91.2% 1.00 <0.001 +156.8%

R-MIO vs. Base2 1.00 <0.001 +18.1% 1.00 <0.001 +18.1% 0.74 <0.001 +3.7%

Rd-MIO vs. Base1 1.00 <0.001 +122.0% 1.00 <0.001 +130.7% 1.00 <0.001 +272.7%

Rd-MIO vs. Base2 1.00 <0.001 +38.9% 1.00 <0.001 +42.4% 1.00 <0.001 +50.6%

Rd-MIO vs. R-MIO 1.00 <0.001 +17.6% 1.00 <0.001 +20.6% 1.00 <0.001 +45.1%

proxyprint R-MIO vs. Base1 0.54 0.623 +0.3% 0.57 0.289 +0.3% 0.55 0.414 +1.0%

R-MIO vs. Base2 0.55 0.496 +0.1% 0.59 0.161 +0.2% 0.58 0.199 +0.9%

Rd-MIO vs. Base1 0.49 0.895 -0.1% 0.45 0.587 -0.1% 0.46 0.598 -0.4%

Rd-MIO vs. Base2 0.50 0.991 -0.3% 0.49 0.950 -0.2% 0.50 0.968 -0.5%

Rd-MIO vs. R-MIO 0.48 0.809 -0.4% 0.38 0.129 -0.4% 0.41 0.201 -1.4%

rest-news R-MIO vs. Base1 0.41 0.181 -0.5% 0.47 0.593 -0.4% 0.40 0.104 -1.4%

R-MIO vs. Base2 0.54 0.648 +0.4% 0.58 0.295 +0.8% 0.56 0.466 +0.8%

Rd-MIO vs. Base1 0.38 0.238 -0.6% 0.36 0.123 -1.2% 0.40 0.290 -1.4%

Rd-MIO vs. Base2 0.53 0.817 +0.3% 0.52 0.883 -0.0% 0.57 0.561 +0.8%

Rd-MIO vs. R-MIO 0.47 0.752 -0.1% 0.42 0.334 -0.8% 0.51 0.902 +0.0%

scout-api R-MIO vs. Base1 1.00 <0.001 +18.1% 1.00 <0.001 +16.9% 0.97 <0.001 +7.2%

R-MIO vs. Base2 1.00 <0.001 +13.7% 1.00 <0.001 +12.9% 0.92 <0.001 +7.1%

Rd-MIO vs. Base1 1.00 <0.001 +19.1% 1.00 <0.001 +17.3% 1.00 <0.001 +12.3%

Rd-MIO vs. Base2 1.00 <0.001 +14.7% 1.00 <0.001 +13.3% 0.98 <0.001 +12.3%

Rd-MIO vs. R-MIO 0.52 0.786 +0.9% 0.46 0.637 +0.4% 0.74 0.008 +4.8%

Values in bold means A is statistical significant better than B, and Values in red means B is statistical
significant better than A. relative is calculated based on average of the metric of A and B as A−B

B

be enabled by making a pair comparison analysis with Mann-Whitney-Wilcoxon U-tests
and Vargha-Delaney effect sizes. Results for each case study are shown in Table 11. With
the results, there is no case showing negative side effects when enabling the prematch pro-
cess, while performance improvements are observed in rest-news and scout-api. Therefore,
PreMatch is now enabled by default for Rd-MIO. Note that the inference mainly depends on
the API schema, e.g., explicit descriptions on actions, names of parameters and resources.

Page 39 of 61 76

Empir Software Eng (2021) 26: 76

Ta
bl
e
15

A
ve
ra
ge

of
#T

ar
ge
ts
,%

L
in
es

an
d
%
B
ra
nc
he
s
co
ve
re
d
by

te
st
s
ge
ne
ra
te
d
by

fo
ur

te
ch
ni
qu
es

an
d
th
ei
r
ra
nk

R
es
ou
rc
e
G
ra
ph

Sh
ow

in
g

E
xi
st
en
ce
D
ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

Se
tt
in
gs

D
ep
en
de
nc
y

Te
ch
ni
qu
es

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

D
en
se
-C

en
tr
al

N
B
as
e1

59
2.
9(
3)

51
.5
%
(3
)

26
.5
%
(2
)

58
4.
3(
4)

48
.4
%
(3
)

23
.8
%
(3
)

B
as
e2

58
9.
2(
4)

50
.9
%
(4
)

25
.2
%
(4
)

58
7.
1(
3)

48
.3
%
(4
)

23
.2
%
(4
)

R
-M

IO
62
1.
2(
2)

53
.0
%
(2
)

26
.3
%
(3
)

62
4.
1(
2)

50
.8
%
(2
)

24
.3
%
(2
)

R
d-
M
IO

75
8.
7(
1)

66
.1
%
(1
)

29
.1
%
(1
)

80
9.
4(
1)

65
.0
%
(1
)

29
.6
%
(1
)

Y
B
as
e1

58
8.
1(
4)

50
.7
%
(3
)

24
.9
%
(3
)

58
9.
2(
3)

48
.5
%
(3
)

23
.1
%
(3
)

B
as
e2

58
8.
9(
3)

50
.4
%
(4
)

24
.3
%
(4
)

58
8.
9(
4)

48
.1
%
(4
)

22
.4
%
(4
)

R
-M

IO
61
9.
7(
2)

52
.5
%
(2
)

25
.2
%
(2
)

62
4.
3(
2)

50
.5
%
(2
)

23
.6
%
(2
)

R
d-
M
IO

72
3.
3(
1)

62
.3
%
(1
)

27
.5
%
(1
)

75
8.
7(
1)

60
.5
%
(1
)

27
.6
%
(1
)

M
ed
iu
m
-D

ee
p

N
B
as
e1

44
5.
4(
3)

38
.9
%
(3
)

28
.4
%
(3
)

43
9.
0(
4)

36
.4
%
(4
)

24
.8
%
(3
)

B
as
e2

44
4.
5(
4)

38
.3
%
(4
)

27
.9
%
(4
)

44
3.
9(
3)

36
.5
%
(3
)

24
.6
%
(4
)

R
-M

IO
46
6.
4(
2)

40
.3
%
(2
)

28
.6
%
(2
)

46
3.
5(
2)

38
.2
%
(2
)

25
.2
%
(2
)

R
d-
M
IO

63
6.
6(
1)

60
.9
%
(1
)

29
.5
%
(1
)

51
4.
3(
1)

43
.3
%
(1
)

27
.0
%
(1
)

Y
B
as
e1

44
6.
3(
4)

36
.9
%
(4
)

25
.1
%
(4
)

44
5.
7(
4)

35
.3
%
(4
)

22
.4
%
(4
)

B
as
e2

46
4.
6(
3)

39
.1
%
(3
)

25
.1
%
(3
)

45
7.
9(
3)

36
.4
%
(3
)

22
.7
%
(3
)

R
-M

IO
49
7.
5(
2)

42
.5
%
(2
)

25
.2
%
(2
)

48
2.
5(
2)

38
.8
%
(2
)

23
.3
%
(2
)

R
d-
M
IO

53
9.
4(
1)

45
.9
%
(1
)

28
.2
%
(1
)

51
2.
1(
1)

41
.2
%
(1
)

24
.2
%
(1
)

76 Page 40 of 61

Empir Software Eng (2021) 26: 76

Ta
bl
e
15

(c
on
tin

ue
d)

R
es
ou
rc
e
G
ra
ph

Sh
ow

in
g

E
xi
st
en
ce
D
ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

Se
tt
in
gs

D
ep
en
de
nc
y

Te
ch
ni
qu
es

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

Sp
ar
se
-S
tr
ai
gh
t

N
B
as
e1

50
5.
0(
4)

53
.9
%
(3
)

30
.4
%
(3
)

50
6.
2(
4)

53
.0
%
(3
)

29
.2
%
(3
)

B
as
e2

51
0.
0(
3)

53
.8
%
(4
)

30
.2
%
(4
)

51
0.
0(
3)

52
.9
%
(4
)

28
.6
%
(4
)

R
-M

IO
55
7.
2(
2)

58
.3
%
(2
)

31
.7
%
(2
)

55
0.
7(
2)

56
.6
%
(2
)

30
.0
%
(2
)

R
d-
M
IO

63
3.
9(
1)

67
.4
%
(1
)

32
.7
%
(1
)

61
2.
4(
1)

63
.3
%
(1
)

32
.9
%
(1
)

Y
B
as
e1

51
1.
3(
4)

54
.2
%
(4
)

29
.2
%
(3
)

50
6.
0(
4)

52
.5
%
(4
)

27
.6
%
(3
)

B
as
e2

53
0.
2(
3)

56
.2
%
(3
)

28
.6
%
(4
)

51
2.
6(
3)

52
.6
%
(3
)

27
.1
%
(4
)

R
-M

IO
57
2.
6(
2)

60
.8
%
(2
)

30
.1
%
(2
)

56
2.
4(
2)

57
.8
%
(2
)

28
.8
%
(2
)

R
d-
M
IO

63
6.
5(
1)

67
.1
%
(1
)

31
.7
%
(1
)

60
9.
2(
1)

62
.4
%
(1
)

31
.3
%
(1
)

#T
ar
ge
ts

%
L
in
e

%
B
ra
nc
he
s

A
ve
ra
ge

ra
nk

(a
ll
12

sy
nt
he
tic

ca
se

st
ud
ie
s)

B
as
e1

3.
8

3.
4

3.
1

B
as
e2

3.
2

3.
6

3.
8

R
-M

IO
2.
0

2.
0

2.
1

R
d-
M
IO

1.
0

1.
0

1.
0

Fr
ie
dm

an
te
st
(χ

2
,p
-v
al
ue
)

33
.3
,<

0.
00
1

32
.5
,<

0.
00
1

32
.7
,<

0.
00
1

R
an
k
va
lu
e
w
ith

1
re
pr
es
en
ts
th
e
hi
gh
es
ta
ch
ie
ve
m
en
t,
an
d
va
lu
es

in
bo
ld

ar
e
th
e
hi
gh
es
ti
n
th
e
ca
se

st
ud
y

Page 41 of 61 76

Empir Software Eng (2021) 26: 76

Ta
bl
e
16

Pa
ir
co
m
pa
ri
so
n
of

ou
ra
pp
ro
ac
he
s
w
ith

ba
se
lin

es
in
te
rm

s
of

#T
ar
ge
ts
,%

L
in
es

an
d
%
B
ra
nc
he
s
us
in
g
M
an
n-
W
hi
tn
ey
-W

ilc
ox
on

U
-t
es
ts
(p
-v
al
ue
)a
nd

V
ar
gh
a-
D
el
an
ey

ef
fe
ct
si
ze
s
(Â

12
)
fo
r
al
lo

f
12

sy
nt
he
tic

ca
se

st
ud
ie
s

SU
T

A
vs
.B

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e

D
en
se
-C

en
tr
al

H
id
eD

ep
en
de
nc
y

E
xi
st
en
ce
D
ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
86

<
0.
00
1

+4
.8
%

0.
76

<
0.
00
1

+2
.9
%

0.
44

0.
39
0

-1
.0
%

R
-M

IO
vs
.B

as
e2

0.
91

<
0.
00
1

+5
.4
%

0.
86

<
0.
00
1

+4
.2
%

0.
75

0.
00
2

+4
.1
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
8.
0%

1.
00

<
0.
00
1

+2
8.
2%

0.
87

<
0.
00
1

+9
.5
%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+2
8.
8%

1.
00

<
0.
00
1

+2
9.
9%

0.
97

<
0.
00
1

+1
5.
1%

R
d-
M
IO

vs
.R

-M
IO

1.
00

<
0.
00
1

+2
2.
1%

1.
00

<
0.
00
1

+2
4.
6%

0.
90

<
0.
00
1

+1
0.
7%

D
en
se
-C

en
tr
al

H
id
eD

ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
92

<
0.
00
1

+6
.8
%

0.
87

<
0.
00
1

+4
.8
%

0.
67

0.
01
9

+2
.4
%

R
-M

IO
vs
.B

as
e2

0.
92

<
0.
00
1

+6
.3
%

0.
90

<
0.
00
1

+5
.1
%

0.
80

<
0.
00
1

+5
.0
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+3
8.
5%

1.
00

<
0.
00
1

+3
7.
5%

1.
00

<
0.
00
1

+3
0.
8%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+3
7.
9%

1.
00

<
0.
00
1

+3
7.
8%

1.
00

<
0.
00
1

+3
4.
2%

R
d-
M
IO

vs
.R

-M
IO

1.
00

<
0.
00
1

+2
9.
7%

1.
00

<
0.
00
1

+3
1.
2%

1.
00

<
0.
00
1

+2
7.
8%

D
en
se
-C

en
tr
al

Sh
ow

in
gD

ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
92

<
0.
00
1

+6
.0
%

0.
86

<
0.
00
1

+4
.2
%

0.
62

0.
05
2

+
2.
1%

R
-M

IO
vs
.B

as
e2

0.
92

<
0.
00
1

+6
.0
%

0.
88

<
0.
00
1

+4
.9
%

0.
79

<
0.
00
1

+5
.2
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
8.
8%

1.
00

<
0.
00
1

+2
8.
0%

1.
00

<
0.
00
1

+2
5.
3%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+2
8.
8%

1.
00

<
0.
00
1

+2
8.
8%

1.
00

<
0.
00
1

+2
9.
2%

R
d-
M
IO

vs
.R

-M
IO

1.
00

<
0.
00
1

+2
1.
5%

1.
00

<
0.
00
1

+2
2.
8%

1.
00

<
0.
00
1

+2
2.
8%

76 Page 42 of 61

Empir Software Eng (2021) 26: 76

Ta
bl
e
16

(c
on
tin

ue
d)

SU
T

A
vs
.B

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e

D
en
se
-C

en
tr
al

Sh
ow

in
gD

ep
en
de
nc
y

E
xi
st
en
ce
D
ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
88

<
0.
00
1

+5
.4
%

0.
80

<
0.
00
1

+3
.4
%

0.
57

0.
26
1

+
1.
2%

R
-M

IO
vs
.B

as
e2

0.
90

<
0.
00
1

+5
.2
%

0.
85

<
0.
00
1

+4
.1
%

0.
73

<
0.
00
1

+4
.0
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
3.
0%

1.
00

<
0.
00
1

+2
2.
8%

0.
93

<
0.
00
1

+1
0.
3%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+2
2.
8%

1.
00

<
0.
00
1

+2
3.
5%

0.
98

<
0.
00
1

+1
3.
4%

R
d-
M
IO

vs
.R

-M
IO

1.
00

<
0.
00
1

+1
6.
7%

1.
00

<
0.
00
1

+1
8.
7%

0.
90

<
0.
00
1

+9
.0
%

M
ed
iu
m
-D

ee
p

H
id
eD

ep
en
de
nc
y

E
xi
st
en
ce
D
ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
79

<
0.
00
1

+4
.7
%

0.
68

0.
01
0

+3
.5
%

0.
54

0.
29
2

+
0.
7%

R
-M

IO
vs
.B

as
e2

0.
83

<
0.
00
1

+4
.9
%

0.
78

0.
00
2

+5
.2
%

0.
69

0.
00
1

+2
.5
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+4
2.
9%

1.
00

<
0.
00
1

+5
6.
6%

0.
70

<
0.
00
1

+4
.0
%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+4
3.
2%

1.
00

<
0.
00
1

+5
9.
2%

0.
81

<
0.
00
1

+5
.9
%

R
d-
M
IO

vs
.R

-M
IO

1.
00

<
0.
00
1

+3
6.
5%

1.
00

<
0.
00
1

+5
1.
3%

0.
66

0.
01
0

+3
.3
%

M
ed
iu
m
-D

ee
p

H
id
eD

ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
90

<
0.
00
1

+5
.6
%

0.
84

<
0.
00
1

+5
.0
%

0.
57

0.
08
3

+
1.
6%

R
-M

IO
vs
.B

as
e2

0.
85

<
0.
00
1

+4
.4
%

0.
80

<
0.
00
1

+4
.7
%

0.
67

0.
00
7

+2
.6
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+1
7.
1%

1.
00

<
0.
00
1

+1
9.
0%

0.
97

<
0.
00
1

+8
.6
%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+1
5.
9%

1.
00

<
0.
00
1

+1
8.
6%

0.
98

<
0.
00
1

+9
.7
%

R
d-
M
IO

vs
.R

-M
IO

0.
98

<
0.
00
1

+1
1.
0%

0.
98

<
0.
00
1

+1
3.
3%

0.
88

<
0.
00
1

+7
.0
%

M
ed
iu
m
-D

ee
p

Sh
ow

in
gD

ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
94

<
0.
00
1

+8
.3
%

0.
97

<
0.
00
1

+1
0.
0%

0.
79

<
0.
00
1

+3
.8
%

R
-M

IO
vs
.B

as
e2

0.
85

<
0.
00
1

+5
.4
%

0.
88

<
0.
00
1

+6
.6
%

0.
72

0.
00
4

+2
.7
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+1
4.
9%

1.
00

<
0.
00
1

+1
6.
7%

0.
89

<
0.
00
1

+8
.2
%

R
d-
M
IO

vs
.B

as
e2

0.
96

<
0.
00
1

+1
1.
8%

0.
98

<
0.
00
1

+1
3.
1%

0.
85

<
0.
00
1

+7
.0
%

R
d-
M
IO

vs
.R

-M
IO

0.
89

<
0.
00
1

+6
.1
%

0.
92

<
0.
00
1

+6
.1
%

0.
77

<
0.
00
1

+4
.2
%

Page 43 of 61 76

Empir Software Eng (2021) 26: 76

Ta
bl
e
16

(c
on
tin

ue
d)

SU
T

A
vs
.B

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e

M
ed
iu
m
-D

ee
p

Sh
ow

in
gD

ep
en
de
nc
y

E
xi
st
en
ce
D
ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
94

<
0.
00
1

+1
1.
5%

0.
96

<
0.
00
1

+1
5.
2%

0.
52

0.
72
8

+
0.
7%

R
-M

IO
vs
.B

as
e2

0.
82

<
0.
00
1

+7
.1
%

0.
81

<
0.
00
1

+8
.7
%

0.
57

0.
22
8

+
0.
6%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
0.
9%

1.
00

<
0.
00
1

+2
4.
5%

0.
72

<
0.
00
1

+1
2.
7%

R
d-
M
IO

vs
.B

as
e2

0.
94

<
0.
00
1

+1
6.
1%

0.
97

<
0.
00
1

+1
7.
5%

0.
73

<
0.
00
1

+1
2.
7%

R
d-
M
IO

vs
.R

-M
IO

0.
90

<
0.
00
1

+8
.4
%

0.
91

<
0.
00
1

+8
.1
%

0.
68

0.
00
7

+1
1.
9%

Sp
ar
se
-S
tr
ai
gh
t

H
id
eD

ep
en
de
nc
y

E
xi
st
en
ce
D
ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
94

<
0.
00
1

+1
0.
4%

0.
88

<
0.
00
1

+8
.1
%

0.
76

0.
00
3

+4
.5
%

R
-M

IO
vs
.B

as
e2

0.
95

<
0.
00
1

+9
.3
%

0.
90

<
0.
00
1

+8
.2
%

0.
75

0.
00
6

+5
.1
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
5.
5%

1.
00

<
0.
00
1

+2
5.
2%

0.
86

<
0.
00
1

+7
.5
%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+2
4.
3%

1.
00

<
0.
00
1

+2
5.
2%

0.
84

<
0.
00
1

+8
.2
%

R
d-
M
IO

vs
.R

-M
IO

0.
99

<
0.
00
1

+1
3.
8%

0.
99

<
0.
00
1

+1
5.
8%

0.
62

0.
07
4

+
2.
9%

76 Page 44 of 61

Empir Software Eng (2021) 26: 76

Ta
bl
e
16

(c
on
tin

ue
d)

SU
T

A
vs
.B

#T
ar
ge
ts

%
L
in
es

%
B
ra
nc
he
s

Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e
Â
12

p
-v
al
ue

re
la
tiv

e

Sp
ar
se
-S
tr
ai
gh
t

H
id
eD

ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
94

<
0.
00
1

+8
.8
%

0.
85

<
0.
00
1

+6
.7
%

0.
65

0.
03
6

+3
.0
%

R
-M

IO
vs
.B

as
e2

0.
92

<
0.
00
1

+8
.0
%

0.
86

<
0.
00
1

+6
.9
%

0.
75

<
0.
00
1

+5
.0
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
1.
0%

1.
00

<
0.
00
1

+1
9.
5%

0.
97

<
0.
00
1

+1
2.
9%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+2
0.
1%

1.
00

<
0.
00
1

+1
9.
8%

0.
98

<
0.
00
1

+1
5.
2%

R
d-
M
IO

vs
.R

-M
IO

0.
98

<
0.
00
1

+1
1.
2%

0.
99

<
0.
00
1

+1
2.
0%

0.
90

<
0.
00
1

+9
.7
%

Sp
ar
se
-S
tr
ai
gh
t

Sh
ow

in
gD

ep
en
de
nc
y

P
ro
pe
rt
yD

ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
99

<
0.
00
1

+1
1.
1%

0.
97

<
0.
00
1

+1
0.
1%

0.
75

<
0.
00
1

+4
.5
%

R
-M

IO
vs
.B

as
e2

0.
96

<
0.
00
1

+9
.7
%

0.
95

<
0.
00
1

+9
.9
%

0.
83

<
0.
00
1

+6
.4
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
0.
4%

1.
00

<
0.
00
1

+1
8.
8%

0.
97

<
0.
00
1

+1
3.
3%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+1
8.
8%

1.
00

<
0.
00
1

+1
8.
6%

0.
98

<
0.
00
1

+1
5.
4%

R
d-
M
IO

vs
.R

-M
IO

0.
96

<
0.
00
1

+8
.3
%

0.
95

<
0.
00
1

+7
.9
%

0.
87

<
0.
00
1

+8
.4
%

Sp
ar
se
-S
tr
ai
gh
t

Sh
ow

in
gD

ep
en
de
nc
y

E
xi
st
en
ce
D
ep
en
de
nc
y

R
-M

IO
vs
.B

as
e1

0.
93

0.
00
3

+1
2.
0%

0.
89

<
0.
00
1

+1
2.
3%

0.
64

0.
10
0

+
3.
2%

R
-M

IO
vs
.B

as
e2

0.
85

0.
01
1

+8
.0
%

0.
83

0.
01
3

+8
.3
%

0.
74

0.
03
0

+5
.3
%

R
d-
M
IO

vs
.B

as
e1

1.
00

<
0.
00
1

+2
4.
5%

1.
00

<
0.
00
1

+2
3.
9%

0.
89

0.
00
2

+8
.8
%

R
d-
M
IO

vs
.B

as
e2

1.
00

<
0.
00
1

+2
0.
0%

1.
00

<
0.
00
1

+1
9.
5%

0.
93

<
0.
00
1

+1
1.
0%

R
d-
M
IO

vs
.R

-M
IO

0.
95

<
0.
00
1

+1
1.
2%

0.
95

<
0.
00
1

+1
0.
4%

0.
74

0.
04
8

+5
.4
%

SU
T
co
lu
m
n
re
pr
es
en
ts
th
e
sy
nt
he
tic

ca
se

st
ud
ie
s
sp
ec
if
ie
d
w
ith

th
ei
r
ge
ne
ra
tio

n
se
tti
ng
s.
V
al
ue
s
in

bo
ld

m
ea
ns

A
is
st
at
is
tic
al
si
gn
if
ic
an
tb

et
te
r
th
an

B
,a
nd

V
al
ue
s
in

re
d
m
ea
ns

B
is
st
at
is
tic
al
si
gn
if
ic
an
tb

et
te
r
th
an

A
.r
el
at
iv
e
is
ca
lc
ul
at
ed

ba
se
d
on

av
er
ag
e
of

th
e
m
et
ri
c
of

A
an
d
B
as

A
−B B

Page 45 of 61 76

Empir Software Eng (2021) 26: 76

As shown in Algorithm 2, to configure Rd-MIO, Pd is a main parameter that controls
enabling of dependency heuristic handling, and the probability of applying resource-
dependency smart sampling and resource-dependency mutation. Therefore, we studied
settings for Pd before R-Sampling and Ps . Mann-Whitney-Wilcoxon U-test and Vargha-
Delaney effect size were applied to compare two settings of Pd , and results are presented
in Table 12. Based on the results, we found that Pd = 1.0 outperform Pd = 0.5 in
feature-service regarding all three metrics (p-value ≤ 0.03 and Â12 > 0.6) and in scout-
api regarding %Branches (p-value = 0.049 and Â12 = 0.57), and there is no statistical
significant difference for the rest. As such, we selected Pd = 1.0 for Rd-MIO.

By following the same statistical tests and criteria as in RQ1, settings for R-Sampling
and Ps were decided, i.e., R-Sampling = ConArchive and Ps = 1.0. Detailed results are
represented in Appendix, in Tables 20, 21 and 22.

According to above results, we can conclude that:

RQ2: Resource-dependency MIO (i.e., MIO enhanced with resource-based
technique and dependency handling) is capable of automatically generating tests
that cover up to 64.2% lines in real RESTful APIs and 87.3% lines in artificial
RESTful APIs. Our recommended configuration for applying Rd-MIO is with
ConArchive strategy with a 100% probability, a 100% probability of applying

dependency handling, and enabling of prematch process.

8.2.3 Results of RQ3 (Comparison among Different Techniques)

To compare our novel approaches with the baselines, we selected the best configurations
to represent them, i.e., R-MIO with (S = ConArchive, Ps = 0.5), and Rd-MIO with
(S = ConArchive, Ps = 1.0, Pd = 1.0, PM = T), based on the results of RQ1 and
RQ2.

Results on Open-Source Case Studies Regarding the seven open-source case studies,
results of the four applied techniques (i.e., Base1, Base2, R-MIO and Rd-MIO) are reported
in Table 13 and in Table 14. As can be seen from those tables, our approaches (i.e., R-MIO
and Rd-MIO) have the best overall results. In Table 13, for each of the case studies, the best
average number of #Targets and %Lines are obtained by our approaches in six out of the
seven case studies, except rest-news, and the best of %Branches are obtained in five out of
the seven case studies, except rest-ncs and rest-news. For these case studies, by comparing
the worst metrics value from our approaches with the best results from Base1 and Base2,
the differences are minimal, i.e., for rest-news it is less than 2 targets, less than 0.5% line
coverage and less than 0.4% branch coverage; for rest-ncs it is just less than 0.4% branch
coverage.

Regarding average ranks, our approaches (i.e., R-MIO and Rd-MIO) are consistently bet-
ter than the baselines for all metrics, i.e., R-MIO are best for #Targets and %Lines, and
Rd-MIO are best for %Branches. In addition, from Table 14, in three out of the seven
case studies (i.e., rest-scs, feature-service, and scout-api), our approaches achieve a clear
improvement over the baselines based on the low p-value and high effect size, i.e., #Tar-
get: p-value < 0.001, Â12 = 1.0, relative ∈ [13.7%, 122.0%]; %Lines: p-value < 0.001,
Â12 = 1.0, relative ∈ [12.9%, 130.7%]; %Branches: p-value < 0.001, Â12 > 0.74,

76 Page 46 of 61

Empir Software Eng (2021) 26: 76

relative ∈ [3.7%, 272.7%]. For the rest, in rest-ncs and catwatch, by comparing with
Base1, R-MIO achieves a slight but statistically significant improvement over the baselines
(i.e., p-value < 0.024, and Â12 ∈ [0.65, 0.77]); and in proxyprint and rest-news, there is no
statistically significant difference between our approaches and the baselines.

Results on Synthetic Case Studies Regarding the 12 synthetic case studies, Table 15
reports the average of #Targets, %Lines and %Branches, with a relative rank for all the
four techniques. Table 16 reports results of the pair comparisons with relative improve-
ment among the four techniques. With the results, our proposed (i.e., R-MIO and Rd-MIO)
techniques significantly outperformed baselines techniques (i.e., Base1 and Base2). More
specifically, in Table 15, for all metrics, Rd-MIO is consistently ranked as the best, and R-
MIO is ranked as the second best with one exception (denoted with blue text in the table).
Besides, variance on the ranks in the techniques is significant with the Friedman test, i.e.,
p-value < 0.01. Moreover, as seen from Table 16, Rd-MIO performed significantly bet-
ter than baselines with all of the 12 case studies for all of the three metrics based on low
p-value (i.e., < 0.001), high effect size (i.e., > 0.94) and over 11% relative improvement.

For R-MIO, as shown in Table 16, compared with baselines, it has better overall per-
formance, i.e., R-MIO is significantly better than baselines on all case studies for #Targets
and %Lines metrics, significantly better than Base1 in 5 out of the 12 case studies for
%Branches, and significantly better than Base2 in 11 out of the 12 case studies for
%Branches. Additionally, there is no downside, i.e., neither of baseline techniques performs
significantly better than R-MIO on any case study.

Based on the experiment results on the 7 open-source and 12 synthetic case studies, we
can conclude that:

RQ3: Our proposed techniques (i.e., R-MIO and Rd-MIO) statistically significantly
outperformed the two selected baseline techniques in 2 out of the 3 artificial case
studies, 3 out of the 4 real case studies, and all of the 12 synthetic case studies (i.e.,
relative improvements of line coverage are up to 39.7% for artificial case studies, up

to 130.7% for real case studies and up to 59.2% for synthetic case studies).

8.3 Result Discussion

We now discuss the results on each case study in more detail, starting from the ones which
have high percentage of independent resources (Table 4), i.e., rest-scs (11/11 = 100%),
rest-ncs (6/6 = 100%), and catwatch (11/13 = 85%).

For rest-scs, both of R-MIO and Rd-MIO achieve a high coverage (i.e., 82.1% line cov-
erage), as reported in Table 13. They have a significant improvement, considering the low
p-value (i.e.,< 0.001) and high effect size (i.e.,> 0.82) compared with baselines.

For rest-ncs, results in Table 13 show a high achievement on line coverage with R-MIO
and Rd-MIO (i.e., 87.5% and 87.2% respectively). But, by comparing with the baselines,
improvements (reported in Table 14) are modest. The results show that only the comparison
with Base1 (and not Base2) is significant with a low p-value (i.e., < 0.024) and a high
effect size (i.e.,> 0.70). However, the relative improvements are modest. One reason for
the relative low improvement may be that a number of accessible resources is relatively low
(i.e., 6). Thus, given the search budget (i.e., 100k HTTP calls), it might be that the baselines
are already very close to get the maximum achievable coverage on this case study.

Page 47 of 61 76

Empir Software Eng (2021) 26: 76

For catwatch, the achievements of line coverage (Table 13) are modest, i.e., 26.6% by R-
MIO and 26.8% by Rd-MIO. Regarding comparisons with baselines, the results (Table 14)
still indicate an improvement, but there are few statistically significant cases (i.e., p-value<

0.05), modest effect size and relative improvements. By going into the details of the imple-
mentation of catwatch, we found that all the endpoints on possibly-dependent resources
(i.e., /config/scoring.project with POST, /import with POST) are deactivated in the SUT.13

This results in no accessible endpoints for manipulating the existence of resources that may
limit the effectiveness of our novel resource-based solutions. In addition, retrieve actions
(i.e., endpoints with GET) are complex in catwatch. For instance, GET /contributors is to
“return all information like name, url, commits count, projects count of all the Contributors
for the selected filter”, and the filter is specified with seven query parameters: (required)
organizations with String type for “List of github.com organizations to scan(comma sepa-
rated)”; limit with Integer type for “Number of items to retrieve. Default is 5”; offset with
Integer type to “Offset the list of returned results by this amount. Default is zero”; start-
Date with String type to “Date from which to start fetching records from database(default
= current date)”; endDate with String type to “Date till which records will be fetched from
database (default = current date)”; sortBy with String type to “parameter by which result
should be sorted. ’-’ means descending order (default is count of commit)”; q with String
type to “query parameter for search query (this will be contributor names prefix)”. In the
implementation of this endpoint, it first needs to validate the values of all of the parameters
according to their format constraints. This means that following business logic of the end-
point can be executed if and only if all those inputs are valid. However, such constraints are
not formally defined in the OpenAPI/Swagger schema (it is just a comment in the descrip-
tion field), and so our technique cannot handle it yet. A possible item for future work would
be to do byte-code instrumentation on the source code of the SUT to analyze and handle
these further constraints. This issue may result in the modest improvements on line coverage
for all techniques (i.e., < 26.8% in Table 13).

For the remaining four case studies, based on the results reported in Tables 13 and 14,
we can identify that, regarding improvements by comparing with baselines, our resource-
based techniques are the most effective for feature-service, quite effective for scout-api, but
less effective on proxyprint and rest-news. As descriptive statistics show in Table 4, it is
likely that there exist dependent resources in the four case studies. The different effective-
ness in our results might be due to the different dependencies among resources. Therefore,
we took a detailed look at APIs and source code of all case studies, to manually identify
their resources and dependencies, and compare experiment results with the identified real
dependencies. The four case studies are discussed based on the effectiveness of resource-
based techniques, from most effective to least, i.e., feature-service, scout-api, proxyprint
and rest-news.

Regarding feature-service, results showed that performance of the four techniques
can be ranked as Base1 (worst), Base2, R-MIO and Rd-MIO (best). Figure 12 rep-
resents the real resources and their dependencies identified manually. As seen from
the figure, all resources are closely and directly connected, and Product is the most
frequently depended on. In addition, by checking resource URIs, they are in accord
with those dependencies, e.g., ProductConfiguration can be manipulated with /prod-
ucts/{productName}/configurations/{configurationName} and the dependent Product is

13https://github.com/EMResearch/EMB/blob/master/cs/rest/original/catwatch/catwatch-backend/src/main/
java/org/zalando/catwatch/backend/web/admin/AdminController.java

76 Page 48 of 61

github.com/EMResearch/EMB/blob/master/cs/rest/original/catwatch/catwatch-backend/src/main/java/org/zalando/catwatch/backend/web/admin/AdminController.java
github.com/EMResearch/EMB/blob/master/cs/rest/original/catwatch/catwatch-backend/src/main/java/org/zalando/catwatch/backend/web/admin/AdminController.java

Empir Software Eng (2021) 26: 76

Feature

Product

<depends on><depends on>

FeatureConstraint

<depends on>

<depends on>

<depends on>

<depends on>

<depends on>

Fig. 12 Resource and their dependencies in feature-service case study

shown in the URI. Based on such resource dependencies and URIs, the results might be
explained as:

– Base2 is better than Base1, because a set of test templates were developed in Base2 and
the templates are partially handling resources.

– R-MIO is better than Base2, because R-MIO enables handling of an individual based on
resources which might help to seek a better combination of multiple resources.

– Rd-MIO is better than R-MIO, because real dependencies might be identified by
dependency heuristic handling that might accelerate the process of seeking the better
combination.

Regarding line coverage on feature-service, Rd-MIO strongly improved the line coverage
to 64.3% from 27.9% by Base1 as reported in Table 13.

Regarding scout-api, ranks of all techniques are similar with feature-service, but Rd-
MIO, i.e., there is no significant difference between R-MIO and Rd-MIO. As shown in
Fig. 13, in scout-api, five out of the seven resources are connected with six dependencies.
Two out of the six are Composition. The three dependencies of the remaining four, i.e.,
Category(v1)/Tag(v2)-User, Rating-User andUser-User, were implemented with authoriza-
tion. For instance, by POST /v2/activities/{id}/rating, the system only allows a valid User
to rate an existing Activity (i.e., Rating-User dependency). The Activity is specified with
the id path parameter, and the User is carried by HTTP authorization header of the request.
Note that authorization is handled by EVOMASTER whereby sampling HTTP actions with
a probability of applying one of the valid authentication credentials. The valid authentica-
tion credentials are pre-specified in a driver14 needed when using EVOMASTER on a SUT
(recall Section 2.3). Thus, the three dependencies can be solved when a valid authenti-
cation credential is applied on the related HTTP actions. The remaining dependency, i.e.,
Rating-Activity, is manifested by the path /v2/activities/{id}/rating.

Based on such dependencies, the results are explained as:

– with such connected resources in scout-api, improvements compared with baselines
might be achieved by the manipulation of multiple resources in R-MIO and Rd-MIO.

– in scout-api, dependencies are simple and most of them are exposed to R-MIO, so there
is no further improvement made by Rd-MIO.

14https://github.com/EMResearch/EvoMaster/blob/master/docs/write driver.md

Page 49 of 61 76

https://github.com/EMResearch/EvoMaster/blob/master/docs/write_driver.md

Empir Software Eng (2021) 26: 76

Moreover, in scout-api, R-MIO and Rd-MIO performed better than baselines, but the overall
line coverage is still not high, i.e., best is 38.6% by Rd-MIO. Therefore, by checking their
implementation, we found the same issue as in catwatch, i.e., complex input validation
where the constraints are not formalized in the schema. For instance, the GET endpoint
/v1/activities/{id} in scout-api is about “Read a specific activity” with one query parameter
called attrs. This is used to specify what attributes should be included in the response by
following specific defined rules, i.e., a “Comma-separated list”. However, given a budget
of 100k HTTP calls, currently EVOMASTER does not properly handle such constraints.

Based on the results of proxyprint, all techniques achieved modest line coverage, i.e.,
18.8% in Table 13, and there is no statistically significant difference reported in the pair
comparisons of the four techniques in Table 13. In terms of dependencies among resources,
there are many, as shown in Fig. 14, that should result in a good performance of R-MIO and
Rd-MIO. First, by checking its API specification, we found that the SUT does not follow
the REST best practices, i.e., 15 resource URIs start with /consumer, but a creation of a con-
sumer is under /consumer/register. Furthermore, 22 resource URIs start with /printshops,
but there is no endpoint for creating a printshop, and a collection of printshop examples
can be initialized by POST /seed with Admin permission. In addition, by further investigat-
ing the implementation, Printshop is, to some extent, the most important resource that is
depended on by many resources, and has an impact on 65 out of 74 endpoints in proxyprint.
For the 65 endpoints, it is difficult to cover code for successful requests if there is no valid
PrintShop.

As mentioned above, there does not exist an endpoint for creating a specific PrintShop.
In our proposed resource-based techniques, resource-creation endpoints (i.e., POST/PUT)
are employed for preparing dependent resources. Therefore, for proxyprint, R-MIO and Rd-
MIO probably failed to prepare a Printshop for endpoints that require a reference to an
existing Printshop. This might be the main reason for the modest achieved line coverage
and no improvement made by R-MIO and Rd-MIO. To handle this issue, a possible solution
could be to provide more manners for preparing resources, e.g., collect existing resources
with GET methods, or create new resources directly in the database.

Activity

MediaFile

<is composed of>

Category(v1)/Tag(v2)

<is composed of>

System

SystemMessage

User

<depends on>

<depends on>

Rating

<depends on>

<depends on>

Fig. 13 Resource and their dependency in scout-api case study. Resource node with red line means that
authorization is required to access the resource

76 Page 50 of 61

Empir Software Eng (2021) 26: 76

Admin User
<extends>

Consumer

<extends>

Document

DocumentSpec<is composed of>

Employee

PrintShop

<depends on>

<extends>

Manager
<depends on>

<extends>

<depends on>

PrintingSchema
<depends on>

PaperItem

<depends on>

PrintRequest

<depends on>

<is composed of>

<depends on>

PriceTable

<is composed of>

RegisterRequest

<depends on>

<depends on>

Review

<depends on>

<depends on>

Pay

<depends on>

IPN

<depends on>

Money

Item

<extends>

RangePaperItem
<extends>

BindingItem
<extends>

CoverItem

<extends>

<depends on>

<is composed of>

Fig. 14 Resource and their dependency in proxyprint case study. - Resource node with red line means that
authorization is required to access the resource

Regarding rest-news, we made no improvement compared with baselines. But, as can be
seen in Table 13, the results of #Targets, %Lines and %Branches do not vary much among
the different techniques (i.e., for #Targets, %Lines and %Branches, difference between
the best and the worst are just 3, 0.5% and 0.5% respectively). In addition, all techniques
achieved around 41% line coverage. In rest-news, there are only two resources (Fig. 15), i.e.,
News and Country, and News depends on Country for indicating which country the news
are from. But the collection of Country is fixed, i.e., there is not endpoint for creating/delet-
ing/updating a Country. The collection is used to check whether a HTTP request on News
is specified with a valid country. With such an implementation, the slight difference among
techniques might be explained by considering small size of resources, and simple depen-
dency and implementation. Regarding the results of line coverage, any uncovered lines are
probably due to the issue of resources preparation (as discussed in proxyprint), i.e., prepare
a specific Country for News with POST/PUT.

Regarding the synthetic SUTs, to study the performance of the different techniques with
respect to each case study, we first analyze the results based on the different aspects/proper-
ties of the generation of the synthetic case studies. As discussed in Section 7.2, these aspects
are three resource graph settings (i.e., Dense-Central, Medium-Deep and Sparse-Straight),
two dependency constraints (i.e., ExistenceDependency and PropertyDependency), and two
resource path generation strategies (i.e., ShowingDependency and HideDependency). By
checking results (reported in Table 15) regarding those aspects, we found that there exists a
consistent trend for all the techniques that can be visualized with Fig. 16.

Regarding %Lines, in terms of resource graph settings, all of the four techniques have the
best performance on Sparse-Straight, then on Dense-Central, and worst on Medium-Deep.

News Country
<depends on>

Fig. 15 Resource and their dependency in rest-news case study

Page 51 of 61 76

Empir Software Eng (2021) 26: 76

This may point a precise ranking of difficulty of the problems to solve, i.e., from easy to
challenging: Sparse-Straight, Dense-Central andMedium-Deep.

In terms of dependency constraints, all of the four techniques are more effective on case
studies with ExistenceDependency than case studies with PropertyDependency. This con-
firms our expectations. Besides, in terms of path generation strategies, the trend for the
techniques is different for %Lines. One possible explanation of the results might be that the
one path generation strategy (i.e., ShowingDependency) is designed to provide additional
information, however, the additional information might lead to side effects in some of the
techniques.

Regarding Base1, since it does not employ resource-based solutions, it is reasonable
that there is not much difference in its performance on these two configurations. For the
other techniques, as they apply strategies based on exploiting the URIs of the resources,
one would expect that their performances on ShowingDependency would be better than
on HideDependency. However, this is not the case in the obtained results. Recall the
Dense-Central graph setting, there exists a one-to-two dependency, e.g., UEear depends
on B8v25 and IUJWo as shown in Fig. 10. With the ShowingDependency strategy, the path
would be /iUJWos/{iUJWoId}/b8v25s/{b8v25Id}/uEears. Based on hierarchical structures
of such paths, B8v25 should depend on IUJWo. However, such a dependency does not
exist. This might limit the effectiveness of Base2, R-MIO and Rd-MIO to case studies with
ShowingDependency in Dense-Central.

In terms of Medium-Deep (Fig. 10), there exists an indirect dependency from VIL0S to
U1rA1 through HErqD and XpOCt, thus, with ShowingDependency, the path of VIL0S is
/u1rA1s/{u1rA1Id}/xpOCts/{xpOCtId}/hErqDs/{hErqDId} /vIL0Ss/{vIL0SId}. Based on the
hierarchical structure, in order to prepare a resource for example like a GET on the path,
at least another 4 actions are required, as follows. Note that these 5 actions are regarded as
actions with template #7 CREATE-GET on one resource, as discussed in Section 5.1.

1 POST / u1rA1s
2 POST / u1rA1s / ack / xpOCts
3 POST / u1rA1s / ack / xpOCts / baz / hErqDs
4 POST / u1rA1s / ack / xpOCts / baz / hErqDs / bar / vIL0Ss
5 GET / u1rA1s / ack / xpOCts / baz / hErqDs / bar / vIL0Ss / foo

With the maximum length of a test (i.e., 10), this deep hierarchical structure might limit
the number of resources in a test, and accelerate consumption of the search budget for each
evaluation (i.e., recall that the cost of each fitness evaluation depends on the length of the
test cases).

In addition, in the synthetic case studies, the POST methods implemented for creat-
ing new resources were using only a Body payload, which has an attribute named id
for representing its identifier, e.g., POST /u1rA1s. However, for all settings with Show-
ingDependency, the name of the parameter for referring to the resource is <name of the
resource>Id, e.g., a path parameter u1rA1Id of POST /u1rA1s/{u1rA1Id}/xpOCts. This is
different from just using id (which does not contain any reference to the name of the
resource). In this case, without exploiting text information, our technique probably fails to
match that parameter to the resource just created. This limits the effectiveness of resource
preparation by our techniques, e.g., Base2, R-MIO and Rd-MIO. Moreover, since Rd-MIO
is capable of binding values among resources for making resource correlate to its dependent
resource, such additional actions with possible failure of resource preparation may cause
a side-effect in Rd-MIO. With these results, Base2 and R-MIO performed overall better

76 Page 52 of 61

Empir Software Eng (2021) 26: 76

Fig. 16 Visualized trends of average %Lines of each of the techniques by case studies. Note that detailed
number is reported in Table 15

in ShowingDependency case studies than in HideDependency, while Rd-MIO consistently
showed less effectiveness in ShowingDependency than HideDependency.

To get more insight on the effectiveness of R-MIO and Rd-MIO, we analyzed as well a
direct comparison between R-MIO and Rd-MIO. Detailed results (i.e., p-value with Mann-
Wilcoxon U-tests, Vargha-Delaney effect sizes and relative improvements) of comparison
among techniques can be found in Table 16. We also report in Fig. 17 in Appendix the visu-
alization of the differences among techniques, with bar and line charts, in the categorized
synthetic case studies.

Compared with R-MIO, we found that Rd-MIO achieved more improvements in Dense-
Central and Medium-Deep settings than Sparse-Straight. This indicates that Dependency
Handling helped to generate effective test cases for SUT which handles a number of
connected resources, e.g., high-density dependencies, or deep connected dependencies.
Besides, by comparing with R-MIO in terms of HideDependency, there exist notable
improvements by Rd-MIO, showing that Dependency Handling is capable of identifying
dependencies even when they are not explicit in the URIs. However, with PropertyDe-
pendency, the improvements of Rd-MIO on HideDependency are decreased. For instance,
in terms of %Lines, the biggest improvement (i.e., 51.3% which is the highest point
of Relative (Rd-MIO vs. R-MIO) line chart in Fig. 17) by Rd-MIO from R-MIO is
achieved in Medium-Deep-HideDependency-ExistenceDependenecy, while the improve-
ment is 13.3% inMedium-Deep-HideDependency-PropertyDependenecy. This might imply
that dependency relationships can be identified by Rd-MIO, but the test data for solving the
dependency constraints is not evolved yet within 100k action evaluations. Thus, the search
might require more budget for generating suitable data. Regarding ShowingDependency,
Rd-MIO still outperformed other techniques, but its efficiency is limited.

Based on the analysis, we can summarize that:

Our proposed techniques (i.e., R-MIO and Rd-MIO) statistically significantly
outperformed the two selected baselines, especially on SUTs that handle fully
independent, or clearly connected, resources. Besides, Rd-MIO is particularly

effective on SUTs that handle closely connected resources and their dependencies
are not exposed in the URIs.

Page 53 of 61 76

Empir Software Eng (2021) 26: 76

9 Threats to Validity

Conclusion validity. Due to the randomness in search algorithms, results may be signif-
icantly affected by chance. To handle this threat, especially in the context of techniques
with multiple settings, we first repeated all settings of the techniques 10 times to select
the best performing settings. Then, we repeated these representative settings of the tech-
niques 30 times for further technique comparisons. Based on the standard guideline to report
search-based software engineering experiments (e.g., Arcuri and Briand 2014), we chose
the Friedman test for variance analysis by ranks, the Mann-Whitney U-test to calculate p-
value for pair comparisons at the significance level α = 0.05 and the Vargha-Delaney Â12,
to determine the practical and statistical significance of results.

Construct validity. As suggested in Ali et al. (2010), the same stopping criterion must be
applied for the algorithms to avoid any potential bias in results. In the experiments, we set
the same search budget (i.e., 100k HTTP calls) to deal with this type of validity threat. Using
the number of HTTP calls instead of passed time also help in replicating these experiments,
as the used stopping criterion is independent of the employed hardware. The execution time
strongly depends on the used hardware and what the SUT executes in its business logic.
When running EVOMASTER on the SUTs in our empirical study, using a laptop with 16GB
RAM and an Intel i7 Processor, 100k HTTP calls take roughly 1 hour on average (i.e., each
HTTP call take around 35ms-40ms), but there is quite a bit of variety among the SUTs. Note,
this also includes all the extra network calls that EVOMASTER requires to operate, e.g.,
to extract coverage information from the SUT each time the fitness function is computed,
and to tell the driver that the SUT must reset its state at the end of a test evaluation, like
deleting all the new data that was added to the database, if any. Whether this amount of time
is something that practitioners would run tools such EVOMASTER, or if it will be for more
or for less time, is something we do not know at the moment. Interviews and surveys from
practitioners would be required to answer questions like “for how long would you typically
run EVOMASTER to generate tests for your APIs?”.

Internal validity. A threat to the internal validity is that we used our prototype implemen-
tation to conduct our experiments. Although we carefully tested it, we cannot guarantee that
our implementation is bug free. To cope with this threat, our implementation is open-source,
so anyone can review the code and replicate this study.

External validity. An external validity threat typical to any empirical study is about the
generalization of the results. Our results were obtained from conducting experiments on
three artificial REST APIs, four real REST APIs and twelve synthetic REST APIs. The
fact that only four real case studies were used in the empirical experiment is due to (1)
such enterprise-level REST APIs are normally not open-source, and (2) executions of such
experiments on system testing are very time-consuming. Note that only one run with the
best configuration is required when applying the approach in practice, e.g., when software
engineers need to automatically generate system tests for their RESTful APIs. When we
release new versions of EVOMASTER, we provide default parameter settings which gave
the best results on average on the SUTs in our empirical studies. However, on any specific
SUT of a user, some other settings could lead to better results.

10 Conclusions

In recent years, application of REST for building web services has been growing in industry.
It is particularly useful to companies to provide public APIs of their services (e.g., on the

76 Page 54 of 61

Empir Software Eng (2021) 26: 76

cloud) over the Internet. However, testing RESTful web services is challenging. In this
paper, we propose a resource-based approach to improve search-based test case generation
for white-box testing of RESTful web services. Our approach takes advantage of the MIO
algorithm and EVOMASTER. We design resource-based sampling with five smart sampling
strategies, resource-based mutation, and resource dependency handling, to exploit domain
knowledge of REST on the handling of HTTP resources and their dependency.

We compared our approach with the default version of EVOMASTER on seven open-
source RESTful APIs (used in our previous work) and twelve synthetic RESTAPI generated
with various resource-based settings for conducting experiments on automated system test-
ing for web/enterprise applications. Based on our results, compared with existing work, our
best strategy has an overall best performance among the case studies, and achieves signifi-
cant improvements on SUTs that handle fully independent, or clearly connected, resources.
Relative improvements of up to +130.7% line coverage were achieved.

In the future, we plan to conduct additional experiments with more case studies, and
further study the generalization of our approach. Besides, with synthetic RESTful API
generator, we plan to extend it by introducing small changes (e.g., bugs) of programs for
evaluating our approaches regarding fault finding. Moreover, to reduce failures in han-
dling resources (e.g., create operations), we plan to investigate novel solutions for doing a
more intelligent analysis of resources in web services that are not fully following the REST
guidelines. Furthermore, we would like to further involve database operations to directly
manipulate resources in the RESTful APIs.

EVOMASTER and the employed case studies are freely available online on GitHub. To
learn more about EVOMASTER, visit our webpage at www.evomaster.org.

Appendix

This appendix contains several tables and figures for the empirical analyses carried out
in this paper. They are not essential for the understanding of the paper, but they provide
valuable data to get more insight in the results.

Table 17 We applied nonparametric Aligned Ranks Transformation ANOVA for analyzing effects of
different configurations of RS and Ps on all three response values for R-MIO

SUT A=R-Sampling, #Targets %Lines %Branches

B=Ps Df F Pr(> F) ηp
2 Df F Pr(> F) ηp

2 Df F Pr(> F) ηp
2

catwatch A 4 28.96 <0.001 0.13 4 28.40 <0.001 0.13 4 8.37 <0.001 0.04

B 1 7.31 0.007 0.01 1 8.56 0.004 0.01 1 0.15 0.697 0.00

A:B 4 3.56 0.007 0.02 4 4.73 <0.001 0.02 4 0.40 0.809 0.00

features-service A 4 4.44 0.001 0.02 4 1.96 0.100 0.01 4 12.43 <0.001 0.06

B 1 4.72 0.030 0.01 1 4.53 0.034 0.01 1 0.01 0.919 0.00

A:B 4 0.62 0.648 0.00 4 1.45 0.215 0.01 4 8.17 <0.001 0.04

proxyprint A 4 17.03 <0.001 0.16 4 21.74 <0.001 0.20 4 26.77 <0.001 0.24

B 1 0.02 0.886 0.00 1 1.05 0.306 0.00 1 2.33 0.128 0.01

A:B 4 3.21 0.013 0.04 4 2.91 0.021 0.03 4 3.58 0.007 0.04

rest-news A 4 18.16 <0.001 0.09 4 54.74 <0.001 0.24 4 0.49 0.742 0.00

B 1 0.13 0.722 0.00 1 38.33 <0.001 0.05 1 5.11 0.024 0.01

A:B 4 2.63 0.033 0.01 4 11.54 <0.001 0.06 4 2.40 0.049 0.01

Page 55 of 61 76

Empir Software Eng (2021) 26: 76

Table 17 (continued)

SUT A=R-Sampling, #Targets %Lines %Branches

B=Ps Df F value Pr(> F) ηp
2 Df F value Pr(> F) ηp

2 Df F value Pr(> F) ηp
2

scout-api A 4 4.83 <0.001 0.02 4 15.10 <0.001 0.07 4 0.88 0.474 0.00

B 1 21.81 <0.001 0.02 1 11.45 <0.001 0.01 1 14.01 <0.001 0.02

A:B 4 1.69 0.150 0.01 4 2.22 0.065 0.01 4 0.89 0.468 0.00

Values in bold means the effect of the factor on the response is significant, i.e., Pr(> F) > 0.05, and the
effect size is measured by Partial eta-squared ηp

2. Interpretation of ηp
2 is that a value is [0.01, 0.06) for

Small, [0.06, 0.14) for Medium, and [0.14, ∞) for Large

Table 18 We applied Friedman test for analyzing variance of different sampling strategies (i.e., RS) among
case studies for R-MIO

R-Sampling #Targets %Lines %Branches

EqualProbability 3.4 3.2 3.8

Actions 3.2 3.2 2.6

TimeBudgets 2.6 2.2 2.2

Archive 4.4 4.4 4.0

ConArchive 1.4 2.0 2.4

Friedman test χ2=9.76, p-value=0.045 χ2=7.36, p-value=0.118 χ2=5.6, p-value=0.231

Average ranks, χ2 and p-value are reported. Rank with a small value represents higher achieved coverage,
and values in bold are the highest

Table 19 We applied Friedman test for analyzing variance of different probabilities (i.e., Ps) with a fixed
RS (i.e., ConArchive) among case studies

Ps #Targets %Lines %Branches

0.5 1.4 1.6 1.4

1 1.6 1.4 1.6

Friedman test χ2=0.2, p-value=0.655 χ2=0.2, p-value=0.655 χ2=0.2, p-value=0.655

Average ranks, χ2 and p-value are reported. Rank with a small value represents higher achieved coverage,
and values in bold are the highest

76 Page 56 of 61

Empir Software Eng (2021) 26: 76

Table 20 We applied nonparametric Aligned Ranks Transformation ANOVA for analyzing effects of
different configurations of RS and Ps on all three response values for Rd-MIO

SUT A=R-Sampling #Targets %Lines %Branches

B=Ps Df F Pr(> F) ηp
2 Df F Pr(> F) ηp

2 Df F Pr(> F) ηp
2

catwatch A 4 1.04 0.392 0.03 4 0.98 0.423 0.03 4 0.52 0.723 0.02

B 1 0.12 0.734 0.00 1 0.17 0.679 0.00 1 0.07 0.797 0.00

A:B 4 0.26 0.902 0.01 4 0.35 0.845 0.01 4 1.74 0.145 0.06

features-service A 4 14.25 <0.001 0.34 4 18.66 <0.001 0.40 4 5.92 <0.001 0.17

B 1 39.24 <0.001 0.26 1 62.70 <0.001 0.36 1 14.17 <0.001 0.11

A:B 4 1.13 0.348 0.04 4 3.41 0.011 0.11 4 1.61 0.177 0.05

proxyprint A 4 1.12 0.349 0.03 4 1.00 0.411 0.03 4 0.81 0.524 0.03

B 1 5.54 0.020 0.04 1 3.39 0.068 0.03 1 7.34 0.008 0.06

A:B 4 16.97 <0.001 0.35 4 16.99 <0.001 0.35 4 17.86 <0.001 0.37

rest-news A 4 0.96 0.431 0.03 4 0.09 0.984 0.00 4 0.72 0.581 0.02

B 1 1.30 0.257 0.01 1 0.05 0.821 0.00 1 2.64 0.107 0.02

A:B 4 0.19 0.945 0.01 4 0.21 0.931 0.01 4 0.48 0.747 0.01

scout-api A 4 0.77 0.546 0.03 4 0.97 0.425 0.03 4 0.70 0.591 0.03

B 1 11.66 <0.001 0.10 1 11.05 0.001 0.09 1 3.00 0.086 0.03

A:B 4 0.96 0.435 0.03 4 0.55 0.697 0.02 4 0.45 0.773 0.02

Values in bold means the effect of the factor on the response is significant, i.e., Pr(> F) > 0.05, and the
effect size is measured by Partial eta-squared ηp

2

Table 21 We applied Friedman test for analyzing variance of different sampling strategies (i.e., RS) among
case studies for Rd-MIO

R-Sampling #Targets %Lines %Branches

EqualProbability 3.8 3.8 3.6

Actions 3.8 3.4 3.9

TimeBudgets 2.6 2.8 2.5

Archive 2.4 2.6 2.6

ConArchive 2.4 2.4 2.4

Friedman test χ2=4.32, p-value=0.364 χ2=2.72, p-value=0.606 χ2=3.92, p-value=0.417

Average ranks, χ2 and p-value are reported. Rank with a small value represents higher achieved coverage,
and values in bold are the highest

Table 22 We applied Friedman test for analyzing variance of different probabilities (i.e., Ps) with a fixed
RS (i.e., ConArchive) for Rd-MIO

Ps #Targets %Lines %Branches

0.5 1.8 1.8 1.8

1 1.2 1.2 1.2

Friedman test χ2=1.8, p-value=0.180 χ2=1.8, p-value=0.180 χ2=1.8, p-value=0.180

Average ranks, χ2 and p-value are reported. Rank with a small value represents higher achieved coverage,
and values in bold are the highest

Page 57 of 61 76

Empir Software Eng (2021) 26: 76

Fig. 17 Visualized difference of average %Lines among techniques for each of the case studies. Note that
detailed number of average %Lines is reported in Table 15 and relative improvement of %Lines (e.g.,
Relative(Rd-MIO vs. R-MIO)) is reported in Table 16

Acknowledgements This work is supported by the Research Council of Norway (project on Evolutionary
Enterprise Testing, grant agreement No 274385).

Funding Open Access funding provided by Kristiania University College.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Ali S, Briand L, Hemmati H, Panesar-Walawege R (2010) A systematic review of the application and empir-
ical investigation of search-based test-case generation. IEEE Trans Softw Eng (TSE) 36(6):742–762

Allamaraju S (2010) Restful web services cookbook: solutions for improving scalability and simplicity.
O’Reilly Media Inc.

Alshraideh M, Bottaci L (2006) Search-based software test data generation for string data using program-
specific search operators. Softw Test Verification Reliab 16(3):175–203. https://doi.org/10.1002/stvr.
v16:3

Arcuri A (2017) RESTful API Automated Test Case Generation. In: IEEE International Conference on
Software Quality, Reliability and Security (QRS), pp. 9–20. IEEE

Arcuri A (2018) Evomaster: evolutionary multi-context automated system test generation. In: IEEE Interna-
tional conference on software testing, verification and validation (ICST). IEEE

Arcuri A (2018) Test suite generation with the Many Independent Objective (MIO) algorithm. Inform Softw
Technol (IST) 104:195–206

Arcuri A (2019) Restful api automated test case generation with evomaster. ACM Trans Softw Eng Methodol
(TOSEM) 28(1):3

Arcuri A, Briand L (2011) Adaptive random testing: an illusion of effectiveness? In: ACM Int. Symposium
on software testing and analysis (ISSTA), pp 265–275

Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw Testing Verif Reliab (STVR) 24(3):219–250

76 Page 58 of 61

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1002/stvr.v16:3
https://doi.org/10.1002/stvr.v16:3

Empir Software Eng (2021) 26: 76

Arcuri A, Galeotti JP (2019) Sql data generation to enhance search-based system testing. In: Proceed-
ings of the genetic and evolutionary computation conference, GECCO ’19. Association for Computing
Machinery, New York, pp 1390–1398, https://doi.org/10.1145/3321707.3321732

Arcuri A, Galeotti JP (2020) Handling sql databases in automated system test generation. ACM Trans Softw
Eng Methodol (TOSEM) 29(4):1–31

Atlidakis V, Godefroid P, Polishchuk M (2019) Restler: Stateful rest api fuzzing. In: Proceedings
of the 41st international conference on software engineering, ICSE ’19, p 748–758. IEEE Press.
https://doi.org/10.1109/ICSE.2019.00083

Bozkurt M, Harman M, Hassoun Y (2013) Testing and verification in service-oriented architecture: a survey.
Softw Test Verif Reliab (STVR) 23(4):261–313

Canfora G, Di Penta M (2009) Service-oriented architectures testing: a survey. In: Software engineering.
Springer, pp 78–105

Chakrabarti SK, Kumar P (2009) Test-the-rest: an approach to testing restful web-services. In: Future com-
puting, service computation, cognitive, adaptive, content, patterns, 2009. COMPUTATIONWORLD’09.
Computation World. IEEE, pp 302–308

Chakrabarti SK, Rodriquez R (2010) Connectedness testing of restful web-services. In: Proceedings of the
3rd India software engineering conference. ACM, pp 143–152

Droste S, Jansen T, Wegener I (1998) On the optimization of unimodal functions with the (1 + 1) evolutionary
algorithm. In: Proceedings of the international conference on parallel problem solving from nature, pp
13–22

Ed-douibi H, Cánovas Izquierdo JL, Cabot J (2018) Automatic generation of test cases for rest apis: a
specification-based approach. In: 2018 IEEE 22nd international enterprise distributed object computing
conference (EDOC), pp 181–190

Fertig T, Braun P (2015) Model-driven testing of restful apis. In: Proceedings of the 24th international
conference on World Wide Web. ACM, pp 1497–1502

Fielding RT (2000) Architectural styles and the design of network-based software architectures. Ph.D. thesis,
University of California, Irvine

Fraser G, Arcuri A (2012) Sound empirical evidence in software testing. In: ACM/IEEE International
conference on software engineering (ICSE), pp 178–188

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: trends, techniques and
applications. ACM Comput Surv (CSUR) 45(1):11

Karlsson S, Causevic A, Sundmark D (2020) Quickrest: property-based test generation of openapi described
restful apis. In: IEEE International conference on software testing, verification and validation (ICST).
IEEE

Kay M, Wobbrock J (2019) Artool: aligned rank transform for nonparametric factorial anovas. R package
version 0.10.6.9000. https://doi.org/10.5281/zenodo.594511. https://github.com/mjskay/ARTool

Lamela Seijas P, Li H, Thompson S (2013) Towards property-based testing of restful web services. In:
Proceedings of the twelfth ACM SIGPLAN workshop on Erlang. ACM, pp 77–78

Martin S, Liermann J, Ney H (1998) Algorithms for bigram and trigram word clustering. Speech Commun
24(1):19–37

Pinheiro PVP, Endo AT, Simao A (2013) Model-based testing of restful web services using uml protocol
state machines. In: Brazilian workshop on systematic and automated software testing

Rojas JM, Vivanti M, Arcuri A, Fraser G (2017) A detailed investigation of the effectiveness of whole test
suite generation. Empir Softw Eng (EMSE) 22(2):852–893

Segura S, Parejo JA, Troya J, Ruiz-Cortés A (2017) Metamorphic testing of RESTful web APIs. IEEE
Transactions on Software Engineering (TSE)

Viglianisi E, Dallago M, Ceccato M (2020) Resttestgen: automated black-box testing of restful apis. In: IEEE
International conference on software testing, verification and validation (ICST). IEEE

Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric facto-
rial analyses using only anova procedures. In: Proceedings of the SIGCHI conference on human factors
in computing systems. ACM Press, pp 143–146. https://doi.org/10.1145/1978942.1978963, http://depts.
washington.edu/aimgroup/proj/art/

Zhang M, Marculescu B, Arcuri A (2019) Resource-based test case generation for restful web services. In:
Proceedings of the genetic and evolutionary computation conference, pp 1426–1434

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 59 of 61 76

https://doi.org/10.1145/3321707.3321732
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.5281/zenodo.594511
https://github.com/mjskay/ARTool
https://doi.org/10.1145/1978942.1978963
http://depts.washington.edu/aimgroup/proj/art/
http://depts.washington.edu/aimgroup/proj/art/

Empir Software Eng (2021) 26: 76

Man Zhang is a Postdoctoral Researcher at the Artificial Intelligence in Software Engineering (AISE) Lab,
Kristiania University College, Norway. Previously, she obtained her PhD in Computer Science at Sim-
ula Research Laboratory and University of Oslo, Norway (2015 - 2018). Her main research focuses on
developing novel methods with search techniques for automated test generation for enterprise systems.

Bogdan Marculescu is a post-doctoral researcher at Kristiania University College, where he is part of the
Artificial Intelligence in Software Engineering (AISE) lab. His research focuses on software testing and
applying metaheuristic techniques to improve software testing. He received his PhD in software engineering
from Blekinge Institute of Technology, Sweden, in 2017.

76 Page 60 of 61

Empir Software Eng (2021) 26: 76

Dr. Andrea Arcuri is a Professor of Software Engineering at Kristiania University College and Oslo
Metropolitan University, Oslo, Norway. His main research interests are in software testing, especially test
case generation using evolutionary algorithms. Having worked 5 years in industry as a senior engineer, a
main focus of his research is to design novel research solutions that can actually be used in practice. Dr.
Arcuri is the main-author of EvoMaster and a co-author of EvoSuite, which are open-source tools that can
automatically generate test cases using evolutionary algorithms. He received his PhD in software testing from
the University of Birmingham, UK, in 2009.

Affiliations

Man Zhang1 ·BogdanMarculescu1 ·Andrea Arcuri1,2

Bogdan Marculescu
bogdan.marculescu@kristiania.no

Andrea Arcuri
andrea.arcuri@kristiania.no

1 Kristiania University College, Oslo, Norway
2 Oslo Metropolitan University, Oslo, Norway

Page 61 of 61 76

http://orcid.org/0000-0003-1204-9322
mailto: bogdan.marculescu@kristiania.no
mailto: andrea.arcuri@kristiania.no

	Resource and dependency based test case generation for RESTful Web services
	Abstract
	Introduction
	Background
	HTTP and REST
	The MIO Algorithm
	RESTful API Test Case Generation

	Related Work
	Overview of the Proposal
	Resource-Based MIO
	Resource-Based Individual Representation
	Resource-Based Sampling
	Resource-Based Mutation

	Resource Dependency Heuristic Handling
	Resource Dependency Detection
	REST API Schema
	Accessed SQL Tables
	Fitness Feedback
	Summarize the Resource Dependency Detection

	Smart Sampling with Dependency
	Smart Mutation with Dependency

	Case Studies
	Open Source Case Studies
	Automatically Generated Synthetic RESTful APIs

	Empirical Study
	Experiment Design
	Experiment Results
	Results of RQ1 (Resource-based MIO)
	Results of RQ2 (Resource-Based MIO with Dependency Heuristic Handling)
	Results of RQ3 (Comparison among Different Techniques)
	Results on Open-Source Case Studies
	Results on Synthetic Case Studies

	Result Discussion

	Threats to Validity
	Conclusions
	Appendix:
	References
	Affiliations

