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Abstract: Affective computing systems can decode cortical activities to facilitate emotional human–
computer interaction. However, personalities exist in neurophysiological responses among different
users of the brain–computer interface leads to a difficulty for designing a generic emotion recognizer
that is adaptable to a novel individual. It thus brings an obstacle to achieve cross-subject emotion
recognition (ER). To tackle this issue, in this study we propose a novel feature selection method,
manifold feature fusion and dynamical feature selection (MF-DFS), under transfer learning principle
to determine generalizable features that are stably sensitive to emotional variations. The MF-DFS
framework takes the advantages of local geometrical information feature selection, domain adap-
tation based manifold learning, and dynamical feature selection to enhance the accuracy of the ER
system. Based on three public databases, DEAP, MAHNOB-HCI and SEED, the performance of the
MF-DFS is validated according to the leave-one-subject-out paradigm under two types of electroen-
cephalography features. By defining three emotional classes of each affective dimension, the accuracy
of the MF-DFS-based ER classifier is achieved at 0.50–0.48 (DEAP) and 0.46–0.50 (MAHNOBHCI)
for arousal and valence emotional dimensions, respectively. For the SEED database, it achieves 0.40
for the valence dimension. The corresponding accuracy is significantly superior to several classical
feature selection methods on multiple machine learning models.

Keywords: emotion recognition; electroencephalography; machine learning; feature selection;
transfer learning

1. Introduction

Human emotions play an important role in conveying information about human–
computer interaction and have a capability to indirectly reflect anxiety, stress and ability
of cognition, communication and decision-making. With the wide application of machine
learning methods in human-centered systems, emotion recognition has attracted much
attention. Specifically, identified human’s emotions can be used as feedback to provide
better service in medical care devices, recommender systems, and information retrieval
engines [1]. It enhances the user experience and satisfaction level and leads to harmo-
nious interactions between human and machine agents. Affective computing technique
plays an important role in a wide range of applications in the domain of human-machine
interactions. Thakur et al. designed a framework for human behavior monitoring [2].
Based on the data of human activities of daily living, multimodal components of user
interactions were analyzed. The human behavioral patterns and their relationships with
the dynamic contextual and spatial features of the environment functionalities were found
to be significant. Machot et al. designed an affective computing module to support driver
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assistance systems [3]. They used Bayesian quadratic discriminating classifier to recognized
driver’s emotional states that can help increase the performance of the transportation task.
Affective computing can be also applied to understand behaviors of the digital society [4].
It quantified the collective emotions by means of fractal analysis and the topology of social
networks. In [5], the social emotion was detected to predict the most appropriated songs to
be played in a certain circumstance. In the domain of computer games, assessing player’s
emotions with physiological signals in real time can maintain the engagement degree by
properly adapting the game difficulty [6].

Human emotions can be explicitly reflected by the information conveyed from speech,
facial expressions, gestures, and/or multimodalities of human behaviors. These external
indicators possess an advantage of the data accessibility due to the use of noninvasive
sensors, e.g., cameras and microphones. However, it is possible that people may hide their
intrinsic emotional states when interacting with machine and/or computer agents [7]. The
potential reason can be a common viewpoint on classical human-machine systems in which
the machine is unable to properly understand human affective behaviors. On the other
hand, affective states are closely related to the activities of human subsystems, e.g., the
central nervous system, peripheral nervous system and somatic nervous system. Therefore,
it is feasible to use physiological signals acquired by neuroimaging techniques as objective
measurement to quantify emotion variations. For instance, the electroencephalography
has a capability to scan multiple cortical regions that are sensitive to arousal and valence
dimensions of core emotions. The decoded information from the signals can be hardly
masked due to the fact that cortical bioelectrical activities are directly recorded on the scalp.
Similar observations can be found when using heart rate variability, electrooculargrams,
and thermal inferred imaging [7] techniques.

It is also worth noting that a contactless physiological measurement, functional in-
ferred imaging (fIRI), was applied in the domain of affective computing [7,8]. The advan-
tage of the fIRI is to measure the facial cutaneous temperature in a remote and noninvasive
manner. The fIRI shows its capability to indicate discrete emotions by reflecting the activity
of the peripheral nervous system. In a recent work [8], it was implemented for evaluating
emotional variations of children when interacting with a commercial educational robot
system. In their work, a total of 31 participants were involved and perform oral interactions
with the robot with speech recognition functionality. The computational psychophysiology
module was used to map the fIRI based thermal data to arousal/valence dimensions. An
overall accuracy of 71% was achieved by the multilayer perceptron classifier on negative,
neutral and positive affective states. Variations in physiological signals are particularly
convincing and reflect true emotional states in an objective way [2]. Among neurophysio-
logical responses, electroencephalography (EEG) scans transitions in spontaneous activities
in multiple cortical regions, which originate human emotional processes. The EEG has
high sensitivity and specificity for distinguishing different emotional feedback [3,4]. In this
study, we access raw EEG signals from three public databases (i.e., DEAP, MAHNOB-HCI,
and SEED) to validate our machine-learning based emotion recognition (ER) framework.

Although EEG signals show optimistic performance in classifying emotions, different
users of ER systems will have different cortical responses and mood swings to an identical
emotional stimulus [9]. Thus, a main issue confronted in designing the ER system is the
individual difference of the EEG response. However, an efficient ER system should be
designed in a cross-subject paradigm. That is, the machine learning model should be
trained by the EEG data recorded from a group of subjects (i.e., users of the ER systems)
and tested on a novel subject. The advantage of such system lies in unnecessity of acquiring
huge amount of data from a single individual.

It is notable that previous studies have shown that the accuracy of the cross-subject
ER system is lower than that of the subject-specific version. Kim and André show that
the best accuracy of the bimodal emotion recognition on all three subjects’ data was 55%,
which is far below the accuracy (92.00%) when the training and testing data were drawn
from the same subject [10]. Zhu et al. extracted differential entropy features of the EEG
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as the input of a linear support vector machine (SVM), where the accuracy of the subject-
specific emotion recognition (90.97%) is much higher than that of the cross-subject condition
(64.82%) [11]. It implied a classifier cannot effectively transfer knowledge pertaining to
EEG data distribution among multiple users [12]. The individual difference leads to a
difficulty for the generality and applicability of the extracted and selected EEG features.

To tackle this obstacle, we focus on designing the feature selection and fusion approach
for transferring knowledge among multiple users’ EEG in the cross-subject ER system.
Transfer learning uses prior knowledge and concepts in the source domain to apply to a
target domain by adjusting the machine model to match the novel data distribution [13].
Transfer learning is widely used in image classification [14], fault diagnosis [15], data
mining and knowledge discovery systems [16]. In particular, it facilitates a cross-subject
ER system to predict correct emotional labels with insufficient EEG instances from a single
subject since all user’s data can be exploited to train a generalizable model. To this end, we
incorporate geodesic flow kernel (GFK) [17] to achieve unsupervised domain adaptation
by sampling points in the estimated manifold [18].

In this study, we propose a cross-subject ER framework based on a novel EEG feature
selection method termed as feature fusion and dynamical feature selection (MF-DFS). In
the MF-DFS model, neighborhood component analysis (NCA) is first applied to reduce
the dimensionality of the EEG features. Then, the GFK is used to map the fused EEG
features to the Glassmann manifold space. Specifically, we propose a dynamical feature
selection method (DFS) combined with the random forest (RF) to determine the most
relevant features and improve the generalization capacity of the ER model.

This paper is structured as follows. Section 2 briefly reviews related works on methods
of the EEG-based emotion recognition. In Section 3, we describe the EEG databases and
approaches of feature selection and machine learning based classification. Comparison
of the emotion classification performance is shown in Section 4. In Section 5, we discuss
the main findings and point out the limitations of the present study. Finally, Section 6
concludes the study and lists our future work.

2. Related Works

We employ the DEAP, MAHNOB-HCI and SEED databases to validate the proposed
ER framework. The DEAP was built by Koelstra et al. [19] and is used to study human
emotion variations based on the multi-modal physiological data. In previous studies, the
recognition accuracy of the valence and arousal dimensions on the DEAP can be achieved
at 70.00% [20,21]. When deep neural networks are employed, the accuracies of arousal
and valence are 61.25% and 62.50%, respectively. For convolutional neural networks and
the RF, the accuracies are 88.49%/87.44% and 59.22%/55.70% for the arousal/valence
dimension [22–24]. Among these studies, most of the classifiers are designed with subject-
dependent paradigm, where training and testing data were drawn from the same sub-
ject. Under this context, bispectral analysis with the support vector machine (SVM) was
developed and the accuracy of 72.50%/73.30% for arousal/valence was achieved [25].
Plataniotis et al. [26] adopted two types of semi-supervised deep learning approaches,
stacked denoising autoencoder and deep belief networks, as feature extractors. The accura-
cies of valence and arousal dimensions are 88.33% and 88.59%, respectively.

The MAHNOB-HCI database was collected by Soleymani et al., where the EEG and
physiological signals from the peripheral nervous system were available to indicate affec-
tive states of subjects [27]. Yan et al. proposed a modified common spatial pattern extractor
and combined it with channel selection method, which achieved an average accuracy of
the MAHNOB-HCI at 94.13% [28]. In our previous work, a locally robust feature selection
method was proposed to find an EEG feature subset with local generalization ability among
a group of subjects [29]. For two emotion classes under cross-subject paradigm, average
classification accuracies on arousal and valence dimensions of the MAHNOB-HCI database
are 67.00% and 70.00%, respectively. Tan et al. used a short-term ER framework based on a
spiking neural network with spatio-temporal EEG patterns [30]. They segmented EEG sig-
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nals and extracted their short-term changes and to avoid handcrafted feature engineering.
The average accuracies of valence and arousal dimensions of the MAHNOB-HCI database
are 72.12% and 79.39%, respectively.

The SEED database was built by the BCMI laboratory. Three (positive, negative and
neutral) target emotions for each physiological data clip were induced when the subject
was watching movie clips. Lu and Zheng built an EEG-based ER system by training deep
belief networks (DBN). It is reported that the average recognition accuracy (86.65%) of
four selected channels is higher than that (86.08%) of the 62 EEG channels [31]. Wang et al.
proposed electrode-frequency distribution maps with short-time Fourier transform for
the EEG feature extraction and applied it on the SEED database [32]. Residual block
based deep convolutional neural network is used as the base classifier and the accuracy is
90.59%, which is 4.51% higher than the baseline [31]. Lu et al. developed a cross-subject ER
system with the dynamic entropy model learning framework [33]. The average recognition
accuracy of negative and positive emotions in the SEED database was 85.11%.

In recent works, machine learning approaches are also validated by using other EEG
databases. Katsigiannis et al. has built the DREAMER database [34] which possessed
multi-modality data from the EEG and electrocardiogram (ECG). Based on the support
vector machine binary classifier. Accuracy for valence dimension reached 62.49% with the
EEG modality, while the fusion of the EEG and ECG features provided the highest accuracy
of the arousal dimension (62.32%). Baldo et al. [35] proposed a model for predicting
consumer’s affective states on the novel products based on the EEG signals. They recorded
EEG data of 40 participants while viewing the different shoes on the computer screen.
Consumer’s preference, i.e., like or dislike, on each pair of the shoes with different fashions
can be classified. Murugappan et al. [36] applied the k-nearest neighbor and probabilistic
neural network to recognize emotional states of 12 participants towards different brand
advertisement videos. By extracting power spectral density, spectral energy and centroid
features of the EEG, the accuracy of 96.62% was achieved. Abadi’s lab present DECAF [37],
a multimodal database for decoding user physiological responses to affective multimedia
content. The brain activity has been scanned by magnetoencephalogram sensors. They
used a linear support vector machine and achieved a mean accuracy of 57.9% and 51.25%
over 30 participants using leave-one-subject-out cross-validation on arousal and valence
dimensions, respectively.

In general, the design of the ER system can be categorized into two schemes, namely
subject-specific and cross-subject. Although the accuracy of the last case is usually lower
than that of the first two cases, there is no doubt that the cross-subject ER system requires
less amount of the EEG instances from a specific individual. Previous studies indicate the
differences of neuro-physiological responses between individuals brought difficulties to the
cross-subject ER task compared to the subject-specific condition. To this end, we focused
on designing the cross-subject EEG feature selection method and emotion classifiers and
validated it on previously mentioned databases.

By briefly reviewing recent reported works, we notice that the individual difference of
the EEG distribution significantly impairs the generalization capability of machine learning
classifiers [26–28]. The reason behind is that the psychophysiological process induced
by specific affective stimuli varies among different people [20–23]. A promising solution
is to extract or select stable EEG features that are invariant across individuals [17–19,24].
In [17], the variational mode decomposition was used to discover these invariant spatial
EEG features from raw signals. In [24], a locally robust feature selection method was
used to quantify the consistency of the feature distribution of the same affective state
among all BCI users. Encouraged by these works, in the present study we first apply
the neighborhood component analysis and geodesic flow kernel to map EEG features
from source and target domains to a Grassmann manifold space. Under this context, the
source and target domains are built from different people. Therefore, consistency feature
representations can be learned based on domain adaptation and knowledge transferring.
We also develop a dynamical feature selection module to adaptively locate sensitive EEG
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features to emotional variations. The selected features can be properly adjusted when the
training EEG data of a specific subject with abnormal feature distribution are employed.

3. Materials and Methods

In this section, the employed EEG databases were first introduced. Then, we provide
procedures for EEG data preprocessing and assignment of the emotion labels. The steps
of feature extraction are also described in detail. Finally, the mathematical method of the
feature fusion and dynamical feature selection method is described. Two manifold learning
techniques (the NCA and GFK) for feature fusion are reviewed. The detailed steps of the
proposed DFS feature selection method is described. The framework of the proposed ER
system is illustrated in Figure 1.

Brain Sci. 2021, 11, 1392 5 of 26 
 

and target domains are built from different people. Therefore, consistency feature repre-
sentations can be learned based on domain adaptation and knowledge transferring. We 
also develop a dynamical feature selection module to adaptively locate sensitive EEG fea-
tures to emotional variations. The selected features can be properly adjusted when the 
training EEG data of a specific subject with abnormal feature distribution are employed. 

3. Materials and Methods 
In this section, the employed EEG databases were first introduced. Then, we provide 

procedures for EEG data preprocessing and assignment of the emotion labels. The steps 
of feature extraction are also described in detail. Finally, the mathematical method of the 
feature fusion and dynamical feature selection method is described. Two manifold learn-
ing techniques (the NCA and GFK) for feature fusion are reviewed. The detailed steps of 
the proposed DFS feature selection method is described. The framework of the proposed 
ER system is illustrated in Figure 1. 

An EEG database of K subject

Bandpass filtreing Feature extraction

364 EEG featuers and differential entropy featuers

Neighborhood component analysis

EEG preprocessing and feature extraction

EEG feature sets of K subjects

DFS feature selection

Subject
#1

Subject
#1

... Subject
#1

Subject
#1...Subject

#1

Subject
#1

Ensemble classifierTest

Cross-subject emotion recognition

Train

Recognized emotions on arousal 
and valence dimensions

K-1 training 
subjectsTesting subject

GFK

MF-DFS

 
Figure 1. Emotion classification framework based on manifold feature fusion and dynamical feature 
selection method (MF-DFS). 

3.1. Database Descriptions 

Figure 1. Emotion classification framework based on manifold feature fusion and dynamical feature
selection method (MF-DFS).

3.1. Database Descriptions

The DEAP dataset collected EEG and peripheral physiological signals from 32 chan-
nels. When the EEG signals were recorded, 40 selected music videos (1 min each) were
viewed by 32 volunteers (16 males). The participants were asked to assess a self-assessment
manikin questionnaire after watching each video. At the end of a trial, arousal, valence,
dominance, liking and familiarity scales were rated by the volunteers within a range of
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1–9. All the collected EEG signals are downsampled to 128 Hz. In this study, only the EEG
signals are used for building the ER system.

The MAHNOB-HCI, a dataset of 30 volunteers, recorded physiological signals of
electrocardiogram, EEG (with 32 channels), respiratory amplitude and skin temperature.

The EEG modality is used in building the ER system. Since the EEG data of six
subjects are incomplete, only 24 participants’ data are available. Each participant rated
arousal, valence, dominance, and predictability scales from 1 to 9 for 20 selective musical
videos. The recorded EEG is downsampled to 128 Hz. We extract a 60-s EEG segment
from each trial for further analysis. The first 5 s signal and the signal after 65 s of each trial
are removed.

For the SEED database, 15 subjects participated in three trials of data acquisition
experiments with an interval of 1 week between two consecutive trials. Each subject
watched fifteen selected clips of Chinese films to stimulate target emotions on the valence
scale, i.e., positive, neutral and negative. Each clip lasted approximately 4 min. The EEG
data were simultaneously recorded with 62 channels and 32 channels are selected for
further analysis. The selected 32 channels are as same as those used in the DEAP and the
MAHNOB-HCI. The raw EEG signal was recorded at a frequency of 1000 Hz and then
downsampled to 200 Hz.

3.2. EEG Data Preprocessing

In the process of the EEG acquisition, the signals can be interfered by artifacts induced
by the ocular, muscular, and movement noise. Low and high pass filters are selectively
employed to remove muscular noise or ocular disturbance. Compared to the SEED and
DEAP databases, the EEG in the MAHNOB-HCI is required to be referenced. Since the
movement and respiration artifacts are observed in the MAHNOB-HCI, a highpass filter
with the cutoff frequency of 3 Hz is applied. For the DEAP, a bandpass filter with the
cutoff frequencies of 4 and 45 Hz is implemented. For the SEED, a highpass filter (3 Hz)
is first used to remove the motion and respiratory artifacts. Then, a lowpass filter (45 Hz)
is used to eliminate high frequency noise. Table 1 shows the detailed implementations of
the filter settings of the three databases. To generate sufficient training instances of the
ER classifier, we divide a trial EEG data into four nonoverlapped segments for all three
databases. In total, 5120 (160 for each subject), 1920 (80 for each subject) and 2700 (180
for each subject) EEG segments are elicited from the DEAP, MAHNOB-HCI and SEED
databases, respectively.

Table 1. Filter implementations for the EEG in three databases.

Preprocessing Steps Annotations Applied Databases

Channel selection

32 channels: Fp1, AF3, F3, F7,
FC5, FC1, C3, T7, CP5, CP1, P3,

P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz,
F4, F8, FC6, FC2, Cz, C4, T8, CP6,

CP2, P4, P8, PO4, and O2
according to the 10–20 system.

All

Downsampling
The downsampled frequency of
the DEAP and HCI was 128 Hz
and for the SEED it is 200 Hz.

All

Rereferencing Subtract the average amplitude of
all 32 channels. MAHNOB-HCI

Bandpass-filtering Five-order Butterworth filter with
cutoff frequencies of 4 and 45 Hz. All

Highpass-filtering Seventh-order Butterworth filter
with cutoff frequency of 3 Hz. MAHNOB-HCI and SEED

Lowpass-filtering Seventh-order Butterworth filter
with cutoff frequency of 45 Hz. SEED

Data segmentation Data segmentation All
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Since the supervised machine learning models are used for building the ER system,
we assign target emotion classes to each EEG segment as follows. The emotion class
for each trial is fixed. For the DEAP and MAHNOB-HCI databases, three target classes
according to the subjective ratings on arousal and valence dimensions are assigned for
each trial. A rating value higher than 5.5 indicates the high class, the value between 5.5 and
3.5 indicates the neutral class, and the value lower than 3.5 indicates a low class. Hence, for
an affective dimension of arousal or valence, three target emotions are defined and assigned
to each trial of the EEG data. For the SEED database, all trials have been categorized into
three emotional classes (positive, neutral, negative).

3.3. Feature Extraction

The preprocessed EEG signals of each segment are then transformed to a feature
vector aiming at sensitively indicating emotion variations. In this study, we incorporate
364 classical EEG features (CL) [38] and 128 differential entropy (DE) features [39] from the
signals of 32 EEG channels.

3.3.1. Classical EEG Features

For all three EEG databases, 364 CL (204 frequency-domain features and 160 time-
domain features) are extracted and shown in Table 2. Considering the asymmetry of the
left and right hemispheres, power differences between left and right hemispheres of scalps
in four frequency bands (theta: 4–8 Hz, alpha: 8–14 Hz, beta: 14–31 Hz, gamma: 31–45 Hz)
were extracted. The power features of the same four bands of 32 channels were calculated
by the fast Fourier transform. Power ratios of specific channels and frequency bands were
also calculated. At the same time, we extracted five sets of time-domain features as shown
in Table 2.

Table 2. Descriptions of the extracted EEG features.

Feature Type Feature Description Feature Dimension

Classical features

1. Variation
2. Zero Crossing Rate 1
3. Shannon Entropy
4. Kurtosis
5. Skewness

160

6. Average Power Spectral Density (PSD)
Average power of the frequency band in 4–8 Hz, 9–12 Hz,
13–30 Hz, and 31–45 Hz of each EEG channel, respectively.

128

7. PSD Differences of the Four Bands
Frontal scalp: pFp2 − pFp1, pAF4 − pAF3, pF4 − pF3,
pF8 − pF7, pFC6 − pFC5, pFC2 − pFC1
Central scalp: pC4 − pC3, pT8 − pT7, pCP6 − pCP5,
pCP2 − pCP1
Parietal scalp: pP4 − pP3, pP8 − pP7, pPO4 − pPO3,
pO2 − pO1

56

8. Power Ratio
pFz/(pAF3 + pAF4), pCz/pFz, pPz/pCz, pOz/pPz,
pAFz(θ)/pPz(α), pAFz(θ)/pCz(α), pCz(θ)/pPz(α),
pCz(θ)/pOz(α).

20

Differential entropy The DE values of the frequency band in 4–8 Hz, 9–12 Hz,
13–30 Hz, and 31–45 Hz of each EEG channel. 128 1

1 The subscription indicates the channel locations. The term p indicates the PSD value of four bands (theta, alpha, beta, and gamma), the
marker “-” denotes a channel pair for computing the power difference, and the term p(x) denotes the power value on frequency band x.
The marker “/” defines the ratio between two PSD values.
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3.3.2. Differential Entropies

The DE is an extension of the Shannon entropy and has been widely applied for
building the EEG-based ER systems [40]. In this study, we compute the DE for each
classical band defined as follows,

h(X) = −
∫

X
f (x) log( f (x))dx. (1)

According to Equation (1), f (x) is the probability density function of the EEG time
series X in a specific frequency band after bandpass filtering. According to the Kolmogorov–
Smirnov statistic [41], the filtered EEG signals were the time series of Gaussian distribution
N
(

µ, σ
2
)

. Therefore, Equation (1) can be approximately computed based on the variance
of the filtered.

h(X) = −
∫ ∞

−∞

1√
2πσ2

e(x−µ)2/(2σ2)π log
(

1√
2πσ2

e(x−µ)2/(2σ2)
)

dx

=
1
2

log
(

2πeσ2
)

.
(2)

3.4. Manifold Feature Fusion and Dynamical Feature Selection

In this section, the proposed MF-DFS framework for fusing and selecting EEG features
for building the cross-subject ER system is described in detail. We first briefly review the
NCA and GFK feature fusion methods. Then, the details of the proposed DFS feature
selection method are shown.

3.4.1. Neighborhood Component Analysis

The NCA [42] is a non-parametric method for selecting features with the goal of
maximizing prediction accuracy of the classifier. It has a capability to learn the Mahalanobis
distance between training instances and linearly transform them to a subspace such that the
average cross validation classification accuracy is maximized. The motivation of applying
the NCA method lies in two aspects. First, the NCA employs a stochastic 1-nearest neighbor
(1-NN) classifier to examine whether the predicted class is consistent with the target
class of the EEG features. Compared to unsupervised principal component analysis, the
NCA adopts supervised learning principle that could exploit label information to increase
interclass distinguishability. Moreover, the comparison between the predicted and target
classes is based on leave-one-out cross validation. Compared to artificial neural network
with empirical risk minimization, it better controls the overfitting when performing metric
learning of the distance weight. It should be noted that the functionality of the 1-NN
classifier is to evaluate the distance of each two instances belonging to the same class. It
facilitates that the low dimensional features are embedded with large inter-class margin,
which is different from the k-NN classifier directly used for classification. In this study, the
fold for the cross validation is 15.

A multi-class training set T of n samples can be defined as T = {(Xi, yi), i = 1, 2, . . . , n},
where X are d-dimensional feature vectors, yi ∈ {1, 2, . . . , C} are the class labels, and C
is the number of class. The aim is to learn a classifier to generate prediction f (X). The
prediction should be close to the true label y of X. To select the optimal feature subset, we
define Dw as the weighted distance between samples Xi and Xj. In this scheme, a reference
point is randomly chosen to be the nearest neighbor of the new point X. The probability
that a point Xj is picked from T as the reference point for X increases if Xj is closer to X as
measured by the distance function Dw,

Dw
(
Xi, Xj

)
=

d

∑
l=1

w2
r
∣∣Xir − Xjr

∣∣, (3)

where wr is the feature weight.
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The leave-one-subject-out paradigm is then applied to evaluate the classifier’s per-
formance. That is, the predicted label of X(i) is generated by the classifier trained by the
dataset T(−i) that denotes excluding the subset of the training instances

(
X(i), y(i)

)
from

the training set T. The probability that a point Xj is picked as the reference point for Xi is,

pij =


k(Dw(Xi ,Xj))

n
∑

j=1
k(Dw(Xi ,Xj))

, if i 6= j

0, if i = j

. (4)

In Equation (4), kernel function k(z) = exp(−z/σ) achieves a large value when
Dw
(
Xi, Xj

)
decreases. The kernel width σ influences the probability of a training sample

being selected as the reference. The pi is the probability that the classifier correctly classifies
the data point using the training dataset T.

pi =
n

∑
j=1,j 6=i

pijyij. (5)

In Equation (5), yij can be elicited as.

yij = I(yi = yj) =

{
1 if yi = yj
0 otherwise

. (6)

Thus, the average probability of correct classification is derived as,

F =
1
n

n

∑
i=1

pi. (7)

The goal of the NCA is to maximize F to improve the classification accuracy. To
reduce the overfitting, a regularization parameter λ > 0 is induced to balance the F and
the summation of the weights [43]. In this study, the kernel width σ is simply selected as 1.
The objective function in Equation (7) can be generalized as,

F(w) =
1
n

n

∑
i=1

pi − λ
p

∑
r=1

w2
r . (8)

To find the proper value of and determine the dimension of the selected features, the
leave-one-subject-out is applied again as follows:

1. Partition the EEG feature data into K subsets and each subset contains the EEG data
of a subject;

2. Perform K-fold leave-one-subject-out validation;
3. For each fold, train a NCA model on K-1 subsets and validated the trained model on

the remaining subset;
4. Return the value of the classification loss defined as the mean square error for the

current fold;
5. Repeat steps (2)–(4) to find the lowest loss corresponding to optimal the value of λ;
6. Perform NCA feature selection according to the optimal λ.

3.4.2. Geodesic Flow Kernel

The geodesic is defined as the shortest local distance between two points in the feature
space. To find a geodesic, the source and target domains are mapped to a Grassmann
manifold space [17] as shown in Figure 2. Given two points projected on the Glassmann
manifold, the kernel method is used to select all the geodesic points from the source to
target domains with seamless migration. There are three steps to build a GFK model.
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(1) Obtain the optimal dimension of the subspaces.

The GFK adopts the subspace disagreement measure (SDM) to find the intrinsic
dimension of the subspace. The SDM D(d) is defined as,

D(d) = 0.5(sin αd + sin βd). (9)

Given two datasets S and T, the principal component analysis (PCA) is applied and
obtain subspaces PS and PT , respectively. Then, a dataset S + T is created by combining
S and T, the PCA is applied again to derive the subspace PS+T . The term αd (or βd)
represents the dth principle angle between PS and PS+T (or PT and PS+T) [44]. The only
hyper-parameter needs to be tuned is the dimensionality of the subspaces d. The value of
the d is minimized with the constraint of D(d) = 1. The constraint ensures the basis of the
PS or PT is orthogonal to that of the PS+T .

d∗ = min{d|D(d) = 1}. (10)

A larger value of d is preferred to contain more information from the fused features.

(2) Build geodesic flow.

After implementing the PCA, all d-dimensional subspaces are embedded into manifold
H. The terms S and T represent the subspaces of source and target domain, respectively.
Then, H can be regarded as the set of all d-dimensional subspaces. Every possible subspace
in d dimensions can be considered as a point on H. Thus, a geodesic between two points
can form a path between two subspaces.

Suppose that the subspaces of the source and target domains are projected by a
geodesic mapping function Φ, and assume that they are in two poles of 0 and 1 in the
manifold space, there exists Φ0 = Ps and Φ1 = PT . Let RS ∈ RD×(D−d) denote the
orthogonal complement to Ps, and RT

S PS. For a point t mapped within the interval of [0, 1],
the corresponding mapping function is defined as Φt. This function can be computed
as [44,45],

Φt = PSU1Γt −RSU2Σt. (11)

In the equation, U1 and Γ are elicited by the PT
S PT = U1ΓVT according to the singular

value decomposition (SVD) while U2 and Σ are computed via RT
S PT = −U2ΣVT . It is noted

that the diagonal element of Γ can be represented as cos θi while that of Σ is sin θi, where θi
denotes the principle angle between PS and PT with 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θd ≤ π/2.

(3) Calculate the geodesic flow kernel.

For two vectors xi and xj, their projections on Φt can be represented as infinite-
dimensional vector: z∞

i and z∞
j . The inner product of z∞

i and z∞
j defines a geodesic

stream kernel,

< z∞
i , z∞

j >=
∫ 1

0
(Φ(t)Txi)

T
(Φ(t)Txj)dt = xT

i Gxj. (12)
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In the equation, G ∈ RD×D can be calculated by the following closed-form SVD [6],

G =
[

PSU1 RSU2
][ Λ1 Λ2

Λ2 Λ3

][
UT

1 PT
S

UT
2 RT

S

]
. (13)

Thus, through the GFK mapping, the source domain features are transformed into a
Grassmann manifold with Equation (13). The mapping matrix

√
G can be computed based

on the SVD decomposition.

3.4.3. Dynamical Feature Selection and Performance Evaluation of the MF-DFS

The aim of the feature selection to find a relevant feature subset with lower dimen-
sionality and less noise. In this work, we propose a novel DFS method to find the most
informative EEG variables indicating variations of the emotions. The DFS is developed
based on recursive feature elimination (RFE) approach. The RFE was proposed by Guyon
et al. and originally used for the gene selection task [46]. The RFE is a wrapper-based
feature selection method and adopts a sequential backward elimination strategy.

The aim of the DFS is to reduce the differences between individuals and achieves a
more consistent probability distribution across the source and target domain. It is noted that
the DFS should be implemented with a predefined emotion classifier. It is used to generate
the weight of fused features. The input feature matrix XDFS of the DFS is calculated as,

XDFS =
√

GXNCA
T

. (14)

In the equation, XNCA is elicited by the NCA based feature selection and
√

G is derived
based on Equation (13).

The procedure for implementing the DFS is summarized as follows.

1. Perform the leave-one-subject-out training and testing procedure;
2. Select a CL or DE feature set from a database with N subjects and compute the

corresponding feature matrix XNCA;
3. Define a testing set, where the EEG data are drawn from a specific subject;
4. A predefined emotion classifier is trained by the learning algorithm L based on the

remaining N− 1 subjects’ EEG data. The dimension of the EEG feature is defined as n;
5. Perform feature ranking according to the feature weights according to the

trained classifier;
6. Remove the feature with the lowest weight and update the feature matrix;
7. Retrain the SVM classifier based on the current feature matrix and update the weight;
8. Repeat steps (5)–(7);
9. Generate a feature ranking according to the order of the feature removal. The first (or

last) removed feature possesses the lowest (or highest) ranking;
10. Given the classifier, compute n classification accuracies. For instance, the 1st accuracy

corresponds to that the optimal feature is adopted according the feature rankings to
train the classifier, the 2nd accuracy indicates the optimal two features are adopted,
and the nth accuracy indicates all features are used;

11. Determine the optimal feature combination corresponding to the highest accuracy
elicited in step (10);

12. Repeat steps (3)–(11) for all testing subjects.

The generalization capability of the proposed MF-DFS model is validated by the
leave-one-subject-out cross validation paradigm combined with specific machine learning
classifiers. We take the DEAP database with the EEG recorded from 32 subjects as an exam-
ple. The EEG features are first fused and selected by the MF-DFS model and then divided
into 32 subsets. Each subset contains the EEG data with the reduced dimensionality from
an individual. The machine learning classifier for classifying low and high arousal/valence
classes is trained based on 31 subsets and validated on the remaining subset. Therefore,
each subset can be validated once. After all subsets are validated for 32 rounds of such
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training and testing procedure, the average classification accuracy is computed as the
performance of the MF-DFS method. For the HCI and SEED databases, 24 and 15 subsets
are built according to the number of the individuals, respectively.

4. Results
4.1. NCA Model Selection

To achieve the optimal performance of the proposed MF-DFS method, the hyper-
parameter λ of the NCA is carefully determined based on the leave-one-subject-out cross
validation. For each feature set (CL or DE), the average loss (mean square error, MSE) of all
folds are computed. Note that the number of features in the NCA across different features
sets varies within an interval of 27–38. The optimal λ with the smallest MSE is applied in
the NCA model. The variations of the MSE vs. corresponding values of λ for all feature
sets and emotional dimensions are shown in Figure 3. Taken Figure 3a as an example,
the best loss of 0.34 is achieved corresponding to the λ value of 0.0037. In Figure 3b, the
corresponding weights of the DE feature set of the DEAP database are shown. We can
observe most weight values are zeros, which identify an irrelevant feature subset. Thus,
the number of the selected features and the optimal value of λ can be simultaneously
determined for each feature set of all databases according to Figure 3. It should be noted
that we also adopt a threshold to control the number of the selected features when most of
the weights are zeros or non-zeros.

The feature importance to variations of the emotion can be interpreted by the NCA
weight shown in Figure 3. By averaging weight values of all EEG channels and databases,
beta (0.1694) and gamma (0.1622) bands possess higher importance than that from theta
(0.0502) and alpha (0.0699) bands with respect to the valence dimension. For arousal
variations, similar observations are shown with the averaged weight of 0.0175, 0.0447,
0.1516 and 0.1546 for the theta, beta, beta and gamma bands, respectively. By sorting the
weight in a descending order, the most important channels to the valence for the beta band
are the Pz and O1. It implies an increased cortical response in parietal and occipital regions.
The most important channels to the valence for the gamma band are Fp1 and F7, which
shows an increased cortical activity in the left frontal region. For the arousal dimension,
the most important features in the beta band are T7 and Fp2 while those in the gamma
band are Fp1 and F8. In conclusion, the features that are sensitive to emotion variations are
identified from beta and gamma power in central parietal, left occipital, frontal and left
temporal regions of the scalp.

4.2. Feature Selection Performance with Different Classifiers

To further validate the performance of the MF-DFS based ER systems, five classi-
fiers, random forest (RF), adaptive boosting (AdaBoost), gradient boosting decision tree
(GBDT), extreme gradient boosting (XGBoost) and decision tree (DT) are applied. All hyper-
parameters of the classifiers have been carefully selected and listed in Table 3. The selected
hyper-parameters are fixed under all cases of the experiments.

Table 3. Hyper-parameter settings for the ER classifiers.

Classifier Hyper-Parameter Settings

RF Number of the estimators = 50
AdaBoost Number of the estimators = 50, maximum depth = 24

GBDT Number of the estimators = 50, maximum depth = 16
XGBoost Number of the estimators = 50, maximum depth = 22

DT Maximum depth = 10, minimum samples in the leaf node = 12
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Figure 3. Model selection of the NCA. Subfigures (a,b) denote the loss values and the NCA weight for the CL features from
the DEAP database of the valence dimension. Subfigures (c,d) denote the loss and NCA weight for the CL features from the
DEAP of the arousal dimension. Subfigures (e,f) denote the loss and NCA weight for the DE features from the DEAP of the
valence dimension. Subfigures (g,h) denote the loss and NCA weight for the DE features from the DEAP database of the
arousal dimension. Subfigures (i,j) denote the loss and NCA weight for the CL features from the MAHNOB-HCI database
of the valence dimension. Subfigures (k,l) denote the loss and NCA weight for the CL features from the MAHNOB-HCI of
the arousal dimension. Subfigures (m,n) denote the loss and NCA weight for the DE features from the MAHNOB-HCI of
the valence dimension. Subfigures (o,p) denote the loss and NCA weight for the DE features from the MAHNOB-HCI of
the arousal dimension. Subfigures (q,r) denote the loss and NCA weight for the CL features from the SEED database of
the valence dimension. Subfigures (s,t) denote the loss and NCA weight for the DE features from the SEED of the valence
dimension.

In Tables 4–6, we compare the accuracy of the CL and DE feature sets under five feature
selection methods, i.e., Chi-squared-based feature selection (CSBS), mutual information-
based feature selection (MI), ridge regression-based feature selection (RR), extremely
random forest (ERF), and the proposed DFS. All accuracies are computed based on the
inter-subject manner based on the leave-one-subject-out paradigm. Training data of all
classifiers are processed based on the NCA and GFK. Therefore, the last column of each
table shows the results of the MF-DFS. In total, there are 25 combinations of different
feature selection methods and classifiers. For the DEAP and MAHNOB-HCI databases, the
arousal and valence dimensions of the emotions are recognized. For the SEED database,
only the valence dimension is evaluated since the arousal targets are unavailable.

From the tables, it is shown the classification accuracies of the DFS combined with all
five classifiers are significantly higher than the other four feature selection methods for all
three databases. Moreover, it can be found that the DFS combined with the RF possesses
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the highest average classification accuracy (0.4236). In addition, in the comparison of
the two feature sets in three databases, the CL feature has a higher average classification
accuracy than the DE feature set for both arousal and valence dimensions. The average
accuracy of DEAP database CL feature is 0.4470, and that of DE feature is 0.4381. For the
MAHNOB-HCI database, the average accuracies for two feature sets are 0.4178 and 0.4062.
For the SEED database, the average accuracies for two feature sets are 0.3465 and 0.3450.
It implies the emotions in the DEAP database possess higher distinguishability.

In Tables 4–6, five classifiers were validated based on different feature selection and
fusion techniques. For the DEAP database, the AdaBoost combined with the MF-DFS
achieves the optimal performance on both of classical and differential entropy features for
arousal and valence dimensions. The improvement is approximately 0.2–1.5% averaged
for all cases against other combinations in Table 4. For the MAHNOB-HCI database, the
RF combined with the MF-DFS is superior to other cases with the accuracy improvement
of 1–3.7%. For the SEED database, the improvement of the DT with 0.6–1.8% is observed.
Overall, the RF model outperforms the other classifiers averaged by all three tables. The
potential reason lies in two aspects. The RF employs a group of member classifiers to build
a classification committee by majority voting. A hyper-parameter is required to be tuned,
i.e., number of the member classifiers. By using the proper amount of member classifiers,
the fitting capability can be superior to that of the DT with only a single classification model.
Moreover, the RF employs random sampling simultaneously on training instances and
input EEG features, which is different from the AdaBoost and classical ensemble method
only adopting instance sampling. The training subset can be built based on the bootstrap
approach using a lower feature dimension. It thus potentially reduces the overfitting of the
member decision trees.

4.3. Statistical Test of Feature Selection Performance

In Figures 4–6, we show of the RF classifier combined with five feature selection
methods of the three databases. In Figure 4, the MF-DFS achieves the optimal accuracy on
both CL and DE feature sets. For the CL feature set, the MF-DFS combined with the RF
classifier achieves a recognition accuracy of 0.48 and 0.5 for valence and arousal dimension,
respectively. For the DE feature set, the corresponding accuracies of the valence and
arousal are 0.48 and 0.5, respectively. In Figure 5, for the MAHNOB-HCI database, the
accuracy of the CL feature set is 0.54\0.48 (valence\arousal) and that of the DE feature set
is 0.51\0.47 (valence\arousal). In Figure 6 for the SEED database, the valence accuracy of
the CL and DE feature sets are 0.40 and 0.40, respectively. It indicates the performance
of the proposed MF-DFS method achieves higher median than other feature selection
methods. It should be noted the accuracies of the MF-DFS share a larger variance for the
arousal dimension of the DEAP database. It implies the cross-subject classification fails on
specific individuals.

In Figure 7, the results of the paired t-test are shown to compare whether the im-
provement between the MF-DFS and other feature selection methods is significant or not.
To achieve a fair comparison, the ER classifier is fixed as the AdaBoost. In Figure 7, it can be
observed that the MF-DFS significantly outperforms the remaining four feature selection
methods with p < 0.05 for the valence dimension and the CL feature set of the arousal
dimension. The difference between DFS and the other four feature selection methods is
insignificant with the DE feature set for the arousal dimension. In Figures 8 and 9, the
significant improvement of the MF-DFS for the MAHNOB-HCI and SEED databases are
observed across all cases and feature sets.
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Table 4. Classification performance comparison across different combinations of feature selection methods and machine
learning classifiers on the DEAP database.

Performance Classifier
Feature Selection Method

NCA-GFK-CSBS NCA-GFK-MI NCA-GFK-RR NCA-GFK-ERF MF-DFS

CL-Average
valence

RF 0.4490
(5.60 × 10−2)

0.4445
(5.59 × 10−2)

0.4449
(6.26 × 10−2)

0.4678
(5.10 × 10−2)

0.4791
(6.63 × 10−2)

AdaBoost 0.4455
(4.74 × 10−2)

0.4283
(5.48 × 10−2)

0.4230
(6.12 × 10−2)

0.4400
(5.56 × 10−2)

0.4959
(7.76 × 10−2)

GBDT 0.4328
(5.05 × 10−2)

0.4357
(4.71 × 10−2)

0.4254
(6.83 × 10−2)

0.4373
(5.88 × 10−2)

0.4807
(7.85 × 10−2)

XGBoost 0.4447
(6.36 × 10−2)

0.4486
(6.30 × 10−2)

0.4355
(5.77 × 10−2)

0.4584
(5.67 × 10−2)

0.4814
(7.10 × 10−2)

DT 0.4039
(3.85 × 10−2)

0.3980
(4.30 × 10−2)

0.3887
(4.61 × 10−2)

0.3967
(5.73 × 10−2)

0.4754
(5.52 × 10−2)

CL-Average
arousal

RF 0.4477
(4.62 × 10−2)

0.4543
(4.60 × 10−2)

0.4465
(4.73 × 10−2)

0.4717
(6.15 × 10−2)

0.4984
(1.04 × 10−1)

AdaBoost 0.4609
(3.57 × 10−2)

0.4506
(3.28 × 10−2)

0.4541
(3.62 × 10−2)

0.4625
(4.35 × 10−2)

0.5166
(1.30 × 10−2)

GBDT 0.4326
(4.88 × 10−2)

0.4408
(4.90 × 10−2)

0.4328
(4.73 × 10−2)

0.4490
(4.96 × 10−2)

0.5053
(1.40 × 10−1)

XGBoost 0.4336
(5.04 × 10−2)

0.4375
(5.03 × 10−2)

0.4252
(5.22 × 10−2)

0.4510
(6.42 × 10−2)

0.5015
(1.40 × 10−1)

DT 0.4123
(4.24 × 10−2)

0.3982
(4.14 × 10−2)

0.4027
(4.08 × 10−2)

0.3957
(5.56 × 10−2)

0.4879
(9.14 × 10−2)

DE-Average
valence

RF 0.4293
(3.42 × 10−2)

0.4248
(3.03 × 10−2)

0.4256
(2.52 × 10−2)

0.4389
(2.36 × 10−2)

0.4779
(6.64 × 10−2)

AdaBoost 0.4422
(2.85 × 10−2)

0.4482
(2.61 × 10−2)

0.4447
(2.90 × 10−2)

0.4445
(2.13 × 10−2)

0.4754
(7.42 × 10−2)

GBDT 0.4162
(3.72 × 10−2)

0.4211
(3.72 × 10−2)

0.4188
(3.34 × 10−2)

0.4201
(3.31 × 10−2)

0.4831
(7.32 × 10−2)

XGBoost 0.3885
(3.43 × 10−2)

0.3822
(3.56 × 10−2)

0.3809
(3.56 × 10−2)

0.3924
(3.64 × 10−2)

0.4754
(7.55 × 10−2)

DT 0.4102
(3.61 × 10−2)

0.4162
(4.41 × 10−2)

0.4031
(3.70 × 10−2)

0.3891
(3.87 × 10−2)

0.4738
(6.08 × 10−2)

DE-Average
arousal

RF 0.4531
(2.52 × 10−2)

0.416
(2.74 × 10−2)

0.4564
(2.44 × 10−2)

0.4635
(1.96 × 10−2)

0.4971
(1.28 × 10−1)

AdaBoost 0.4686
(1.74 × 10−2)

0.4703
(1.63 × 10−2)

0.4773
(2.09 × 10−2)

0.4684
(1.88 × 10−2)

0.5000
(1.50 × 10−1)

GBDT 0.4433
(3.18 × 10−2)

0.4379
(3.46 × 10−2)

0.4469
(2.69 × 10−2)

0.4443
(3.37 × 10−2)

0.4988
(1.49 × 10−1)

XGBoost 0.4037
(3.11 × 10−2)

0.3980
(3.86 × 10−2)

0.4086
(3.58 × 10−2)

0.3977
(4.87 × 10−2)

0.4998
(1.55 × 10−1)

DT 0.4268
(3.59 × 10−2)

0.4143
(3.96 × 10−2)

0.4053
(3.66 × 10−2)

0.3904
(4.03 × 10−2)

0.4953
(1.22 × 10−1)

Note: The highest performance metric in each row is in boldface. The terms CL and DE denote the classical feature sets and differential
entropy feature sets, respectively. The standard deviation is listed in brackets. The optimal values are shown in boldface.
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Table 5. Classification performance comparison across different combinations of feature selection methods and machine
learning classifiers on the MAHNOB-HCI database.

Performance Classifier
Feature Selection Method

NCA-GFK-CSBS NCA-GFK-MI NCA-GFK-RR NCA-GFK-ERF MF-DFS

CL-Average
valence

RF 0.4333
(8.23 × 10−2)

0.4213
(8.41 × 10−2)

0.4427
(8.00 × 10−2)

0.4421
(8.37 × 10−2)

0.5380
(9.07 × 10−2)

AdaBoost 0.4182
(8.15 × 10−2)

0.4317
(7.31 × 10−2)

0.4208
(6.62 × 10−2)

0.4177
(9.14 × 10−2)

0.5047
(3.56 × 10−2)

GBDT 0.4208
(8.68 × 10−2)

0.4015
(8.43 × 10−2)

0.4344
(8.38 × 10−2)

0.4244
(7.01 × 10−2)

0.5234
(9.56 × 10−2)

XGBoost 0.4208
(6.83 × 10−2)

0.4093
(6.31 × 10−2)

0.4307
(7.90 × 10−2)

0.4375
(6.87 × 10−2)

0.5146
(7.16 × 10−2)

DT 0.3969
(6.60 × 10−2)

0.3838
(5.02 × 10−2)

0.3974
(6.29 × 10−2)

0.3875
(7.06 × 10−2)

0.5078
(7.50 × 10−2)

CL-Average
arousal

RF 0.4477
(6.68 × 10−2)

0.3854
(6.95 × 10−2)

0.3771
(7.65 × 10−2)

0.4031
(7.37 × 10−2)

0.4755
(6.80 × 10−2)

AdaBoost 0.4609
(4.59 × 10−2)

0.3708
(5.22 × 10−2)

0.3516
(5.57 × 10−2)

0.3948
(6.85 × 10−2)

0.4495
(6.39 × 10−2)

GBDT 0.3719
(6.32 × 10−2)

0.3734
(5.92 × 10−2)

0.3677
(6.33 × 10−2)

0.3828
(8.23 × 10−2)

0.4682
(8.57 × 10−2)

XGBoost 0.3740
(6.56 × 10−2)

0.3614
(6.63 × 10−2)

0.3521
(6.58 × 10−2)

0.3796
(7.25 × 10−2)

0.4646
(4.42 × 10−2)

DT 0.3458
(6.87 × 10−2)

0.3802
(6.33 × 10−2)

0.3656
(6.72 × 10−2)

0.3750
(6.58 × 10−2)

0.4521
(4.54 × 10−2)

DE-Average
valence

RF 0.4198
(9.21 × 10−2)

0.4072
(8.56 × 10−2)

0.4026
(8.37 × 10−2)

0.4286
(8.12 × 10−2)

0.5120
(9.10 × 10−2)

AdaBoost 0.3932
(9.48 × 10−2)

0.3979
(7.47 × 10−2)

0.3990
(6.39 × 10−2)

0.4073
(7.22 × 10−2)

0.4750
(6.99 × 10−2)

GBDT 0.3911
(9.33 × 10−2)

0.3822
(8.44 × 10−2)

0.4021
(7.31 × 10−2)

0.4062
(8.36 × 10−2)

0.4953
(9.25 × 10−2)

XGBoost 0.4156
(8.50 × 10−2)

0.3744
(8.42 × 10−2)

0.4177
(7.63 × 10−2)

0.4020
(8.73 × 10−2)

0.4859
(6.56 × 10−2)

DT 0.3964
(6.58 × 10−2)

0.3713
(8.85 × 10−2

0.3818
(6.37 × 10−2)

0.3838
(9.31 × 10−2)

0.4745
(6.43 × 10−2)

DE-Average
arousal

RF 0.4010
(7.33 × 10−2)

0.3786
(6.89 × 10−2)

0.4208
(7.67 × 10−2)

0.4083
(7.95 × 10−2)

0.4661
(5.21 × 10−2)

AdaBoost 0.3776
(6.85 × 10−2)

0.3718
(6.17 × 10−2)

0.3927
(6.17 × 10−2)

0.3870
(6.26 × 10−2)

0.4589
(6.34 × 10−2)

GBDT 0.4208
(8.02 × 10−2)

0.3867
(7.26 × 10−2)

0.3818
(6.83 × 10−2)

0.3630
(5.09 × 10−2)

0.4630
(7.57 × 10−2)

XGBoost 0.3625
(5.32 × 10−2)

0.3546
(6.18 × 10−2)

0.3724
(6.03 × 10−2)

0.3651
(6.55 × 10−2)

0.4578
(4.87 × 10−2)

DT 0.3578
(6.42 × 10−2)

0.3635
(6.32 × 10−2)

0.3646
(5.43 × 10−2)

0.3505
(8.24 × 10−2)

0.4609
(5.00 × 10−2)

Note: The highest performance metric in each row is in boldface. The terms CL and DE denote the classical feature sets and differential
entropy feature sets, respectively. The standard deviation is listed in brackets. The optimal values are shown in boldface.
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Table 6. Classification performance comparison across different combinations of feature selection methods and machine
learning classifiers on the SEED database.

Performance Classifier
Feature Selection Method

NCA-GFK-CSBS NCA-GFK-MI NCA-GFK-RR NCA-GFK-ERF MF-DFS

CL-Average
valence

RF 0.3326
(3.17 × 10−2)

0.3207
(2.48 × 10−2)

0.3396
(3.74 × 10−2)

0.3478
(4.56 × 10−2)

0.3956
(2.14 × 10−2)

AdaBoost 0.3415
(2.57 × 10−2)

0.3385
(3.40 × 10−2)

0.3552
(5.68 × 10−2)

0.3478
(5.07 × 10−2)

0.3859
(2.35 × 10−2)

GBDT 0.3219
(4.42 × 10−2)

0.3381
(2.92 × 10−2)

0.3311
(3.27 × 10−2)

0.3400
(5.09 × 10−2)

0.3867
(2.04 × 10−2)

XGBoost 0.3178
(3.60 × 10−2)

0.3237
(2.72 × 10−2)

0.3274
(3.34 × 10−2)

0.3363
(4.94 × 10−2)

0.3907
(2.04 × 10−2)

DT 0.3326
(3.64 × 10−2)

0.3307
(3.78 × 10−2)

0.3370
(5.34 × 10−2)

0.3407
(3.24 × 10−2)

0.4037
(1.95 × 10−2)

DE-Average
valence

RF 0.3463
(4.28 × 10−2)

0.3263
(3.70 × 10−2)

0.3411
(4.57 × 10−2)

0.3415
(3.44 × 10−2)

0.3901
(2.33 × 10−2)

AdaBoost 0.3374
(3.38 × 10−2)

0.3189
(3.29 × 10−2)

0.3452
(3.30 × 10−2)

0.3267
(2.52 × 10−2)

0.3889
(2.68 × 10−2)

GBDT 0.3437
(3.96 × 10−2)

0.3278
(3.52 × 10−2)

0.3356
(3.13 × 10−2)

0.3278
(3.16 × 10−2)

0.3822
(2.61 × 10−2)

XGBoost 0.3452
(4.36 × 10−2)

0.3263
(4.09 × 10−2)

0.3459
(3.67 × 10−2)

0.3315
(3.03 × 10−2)

0.3833
(3.34 × 10−2)

DT 0.3326
(3.35 × 10−2)

0.3130
(3.24 × 10−2)

0.3330
(3.26 × 10−2)

0.3370
(2.45 × 10−2)

0.3974
(2.09 × 10−2)

Note: The highest performance metric in each row is in boldface. The terms CL and DE denote the classical feature sets and differential
entropy feature sets, respectively. The standard deviation is listed in brackets. The optimal values are shown in boldface.
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and arousal dimensions are shown in (c,d), respectively. 

Figure 4. Boxplots of the classification accuracy based on the RF classifier combined with five feature
selection methods of the DEAP database. The accuracies of CL features for the valence and arousal
dimensions are shown in (a,b), respectively. The accuracies of DE features for the valence and arousal
dimensions are shown in (c,d), respectively.
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Figure 6. Boxplots of the classification accuracy based on the RF classifier combined with five fea-
ture selection methods of the SEED database. The accuracies of CL features for the valence dimen-
sion are shown in (a). The accuracies of DE feature for the valence dimension are shown in (b). 

In Figure 7, the results of the paired t-test are shown to compare whether the im-
provement between the MF-DFS and other feature selection methods is significant or not. 
To achieve a fair comparison, the ER classifier is fixed as the AdaBoost. In Figure 7, it can 
be observed that the MF-DFS significantly outperforms the remaining four feature selec-
tion methods with p < 0.05 for the valence dimension and the CL feature set of the arousal 
dimension. The difference between DFS and the other four feature selection methods is 
insignificant with the DE feature set for the arousal dimension. In Figures 8 and 9, the 

Figure 5. Boxplots of the classification accuracy based on the RF classifier combined with five feature
selection methods of the MAHNOB-HCI database. The accuracies of CL features for the valence and
arousal dimensions are shown in (a,b), respectively. The accuracies of DE features for the valence
and arousal dimensions are shown in (c,d), respectively.
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significant improvement of the MF-DFS for the MAHNOB-HCI and SEED databases are 
observed across all cases and feature sets. 

 
Figure 7. Heat map of the p-values of the paired t-test between different feature selection methods 
for the DEAP database. The p-values of CL features for the valence and arousal dimensions are 
shown in (a,b), respectively. The p-values of DE features for the valence and arousal dimensions are 
shown in (c,d), respectively. 

Figure 7. Heat map of the p-values of the paired t-test between different feature selection methods for
the DEAP database. The p-values of CL features for the valence and arousal dimensions are shown in
(a,b), respectively. The p-values of DE features for the valence and arousal dimensions are shown in
(c,d), respectively.

4.4. Performance Comparison between the MF-DFS and Original EEG Features

In this section, we compare the MF-DFS with the baseline state, where the extracted
classical features and differential entropy are directly fed to the classifiers. The derived
cross-subject emotion classification accuracy is presented in Tables 7–9. For the DEAP
database, the performance of the average classification accuracies on valence and arousal
dimensions of all adopted five classifiers of the two feature sets are all improved by 5.41%.
For the MAHNOB-HCI database, the accuracy of classical features set is increased by 8.30%
and that of differential entropy is increased by 8.24%. For the SEED database, the average
classification accuracies of the classical and differential entropy feature sets are improved
by 3.82% and 5.95%, respectively. The results show the competency of the MF-DFS model
against the case using the original EEG features without proper feature selection.
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Figure 9. Heat map of the p-values of the paired t-test between different feature selection methods
for the SEED database. The p-values of CL feature for the valence dimension are shown in (a). The
p-values of DE features for the valence dimension are shown in (b).
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Table 7. Classification accuracy comparison across different machine learning methods in two
different feature sets on the DEAP database.

Classifier

DEAP Database

Valence Arousal

without Feature
Selection MF-DFS without Feature

Selection MF-DFS

RF-CL 0.4367 0.4984 0.4613 0.4984
AdaBoost-CL 0.4215 0.4959 0.4719 0.5166

GBDT-CL 0.4418 0.4807 0.4660 0.5053
XGBoost-CL 0.4418 0.4814 0.4582 0.5016

DT-CL 0.3975 0.4754 0.4037 0.4879
RF-DE 0.4223 0.4779 0.4441 0.4970

AdaBoost-DE 0.4307 0.4754 0.4541 0.5000
GBDT-DE 0.4383 0.4831 0.4646 0.4988

XGBoost-DE 0.4156 0.4754 0.4383 0.4998
DT-DE 0.4174 0.4738 0.4098 0.4953

Note: The highest accuracy in each row for arousal or valence dimension is in boldface. The terms CL and DE
indicate the classical and differential entropy features are used for deriving the accuracy.

Table 8. Classification accuracy comparison across different machine learning methods in two
different feature sets on the MAHNOB-HCI database.

Classifier

MAHNOB-HCI Database

Valence Arousal

without Feature
Selection MF-DFS without Feature

Selection MF-DFS

RF-CL 0.4365 0.5380 0.3844 0.4755
AdaBoost-CL 0.4135 0.5047 0.3922 0.4495

GBDT-CL 0.4250 0.5234 0.4193 0.4682
XGBoost-CL 0.4271 0.5146 0.4073 0.4646

DT-CL 0.4047 0.5078 0.3589 0.4521
RF-DE 0.4302 0.5120 0.3615 0.4661

AdaBoost-DE 0.4104 0.475 0.3734 0.4589
GBDT-DE 0.4271 0.4953 0.3766 0.4630

XGBoost-DE 0.4260 0.4860 0.3651 0.4578
DT-DE 0.4297 0.4745 0.3250 0.4609

Note: The highest accuracy in each row for arousal or valence dimension is in boldface. The terms CL and DE
indicate the classical and differential entropy features are used for deriving the accuracy.

Table 9. Classification accuracy comparison across different machine learning methods in two
different feature sets on the MAHNOB-HCI database.

Classifier

SEED-CL SEED-DE

Valence

without Feature
Selection MF-DFS without Feature

Selection MF-DFS

RF 0.3685 0.3956 0.3393 0.3901
AdaBoost 0.3530 0.3859 0.3285 0.3889

GBDT 0.3477 0.3867 0.3315 0.3822
XGBoost 0.3555 0.3907 0.3211 0.3833

DT 0.3470 0.4037 0.3241 0.3974

Note: The highest accuracy in each row for arousal or valence dimension is in boldface. The terms CL and DE
indicate the classical and differential entropy features are used for deriving the accuracy.

5. Discussion

In this study, a three-class ER system based on the NCA-GFK feature fusion and
the DFS feature selection has been proposed. Specifically, the ER system is developed
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with the cross-subject paradigm. Due to individual differences among the subjects in
each database, such ER system is relatively difficult to share a satisfactory generalization
capability. In practice, large amount of EEG data from a specific subject are difficult
to acquire. Thus, efficient identification of the relevant EEG features between different
individuals related to emotional variations is particularly critical.

The MF-DFS combines manifold feature fusion techniques and dynamical feature
selection approach to achieve domain adaptation and knowledge transferring of the EEG
statistics. It successfully reduces the dimension of the features and improves transferability
across classical PSD and differential entropy feature sets of different individuals. In par-
ticular, the leave-one-subject-out accuracy of the proposed DFS significantly outperforms
four competitive feature selection methods. The potential reason is the introduction of a
dynamical feature filter aiming at adapting the personality of the EEG distribution of each
user of the brain computer interface. The fairness of the comparison can be ensured since
both NCA and GFK are leveraged to discover the proper manifold for all feature selection
methods. By analyzing the cross-subject classification accuracy, the proposed MF-DFS has
a capability to improve the accuracy of individual-independent emotion recognition in
three different physiological databases.

The limitations of the proposed ER framework mainly manifest in the following two
points. (1) The accuracy of the cross-subject emotion classification accuracy is still lower
than 50% for three classification cases. It is still an obstacle for practical application for
online implementation of the algorithms. (2) The essential of the DFS is a dynamic recursive
process and it induces a high computational cost for finding the most relevant features.

6. Conclusions

In this study, we proposed an EEG feature selection method termed as the MF-DFS. It
is specifically designed for cross-subject emotion recognition. The MF-DFS adopted the
merits of local geometrical information-based feature selection (NCA), manifold estimation
with domain adaptation (GFK) and dynamical feature selection to boost the performance
of emotion classifiers. We validated the MF-DFS based on classical and differential entropy
feature sets from three EEG database: the DEAP, MAHNOB-HCI and SEED. We observed
the MF-DFS significantly outperforms classical feature selection methods on five machine
learning classifiers. It partially demonstrated its generalization capability and transferabil-
ity for inter-individual EEG feature selection. The future work will focus on the aspect of
reducing the computational cost in its recursive procedure and further improve its usability
for its practical application.
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