
SceneRecog: A Deep Learning Scene Recognition Model for Assisting
Blind and Visually Impaired Navigate using Smartphones

Bineeth Kuriakose1, Raju Shrestha2 and Frode Eika Sandnes3

Abstract— Deep learning models have recently gained popu-
larity in the research community due to their high classification
success rates. In this paper, we proposed an EfficientNet-Lite
based scene recognition model for scene recognition as a part
of the smartphone-based navigation support application for the
blind and visually impaired. We created a custom dataset with
both indoor and outdoor scenes for training and testing of the
model. The main objective of this work is to support people with
visual impairments navigate by providing information about
the scene via a smartphone application. The results from the
experiment show encouraging performance from the proposed
model. As a proof of concept, a prototype app was developed on
the Android platform. However, the model can be implemented
and deployed in any modern smartphone with good processing
power.

Index Terms— scene recognition; visual impairment; naviga-
tion; deep learning; smartphone; assistive technology.

I. INTRODUCTION

A scene is a representation of incidents, actions, events,
or a landscape that consists of numerous objects. Humans
can recognize and classify scenes using their visual senses.
For example, we can recognize visual scenes such as the
kitchen or bathroom by analyzing the environment and
objects present in their field of view. This scene recognition
capability helps us to avoid danger such as a ‘fire’ in the
vicinity. However, this could be challenging for people with
a vision problem, such as blindness and other forms of visual
impairment (VI).

Scene recognition is a fundamental part when describing
visual scenery. An overall recognition of a scene contrasts
with a simple listing of the visible objects in the scene.
Scene recognition concerns the existence of objects and
the semantic relations between them and the contextual
information concerning the background [1]. Automatic scene
classification is an active avenue of research within com-
puter vision, which involves assigning a label to an image
presented as input based on its overall contents. Visual
scene recognition and understanding can be achieved either
using static input images or dynamic input videos. The
application of scene understanding is used in diversified
domains in computer vision and artificial intelligence, such
as in autonomous vehicle navigation [2], robot navigation

1Bineeth Kuriakose is with the Department of Computer Science, Oslo
Metropolitan University (OsloMet), Oslo, Norway. Corresponding author:
bineethk@oslomet.no

2Raju Shrestha is with the Department of Computer
Science, Oslo Metropolitan University (OsloMet), Oslo, Norway.
raju.shrestha@oslomet.no

3Frode Eika Sandnes is with the Department of Computer
Science, Oslo Metropolitan University (OsloMet), Oslo, Norway.
frodes@oslomet.no

[3], and mobile photography [4]. Scene recognition is also
considered a prerequisite for other advanced computer vision
tasks such as image retrieval and object detection [1].

There are mainly two key challenges associated with
scene recognition that concern the nature of the images
depicting a scene context [5]. The first is related to the visual
inconsistency or low interclass variance. Images belonging to
different classes may be confused with each other. We may
end up with class overlap. The second challenge relates to
annotation ambiguity or intraclass variance. The distinction
of scene categories is a subjective process that is highly
dependent on the experience of the annotators. Therefore,
images from the same class can exhibit significantly dif-
ferent appearances. One method for dealing with the visual
inconsistency problem [5] is to use a multiresolution convo-
lutional neural network (CNN) framework. In multiresolution
CNNs, two levels of resolution are implemented. At a coarse
resolution level, global structures or large-scale objects are
captured. And at a fine resolution level, the detailed local
information of fine-scale objects is captured. Annotation
ambiguity can be handled by merging similar categories
into a supercategory after learning the correlation between
different classes.

According to the World Health Organization, it is es-
timated that at least 2.2 thousand million people world-
wide have vision impairment or blindness1. Technological
solutions that focus to help and support people in tasks
such as navigation, reading, etc. are generally called as
Assistive Technology. A navigation system integrated with a
scene recognition module could support people with visual
impairments when there is an emergency such as ‘fire’
or ‘heavy rainfall’. Besides, portability is one of the vital
requirements in navigation systems for people with visual
impairments [6]. When prioritizing portability, smartphones
are becoming a viable technological platform for a navigation
support solution [7].

In this work, we propose a deep learning-based scene
recognition model as a part of the smartphone-based nav-
igation support application. The model is based on the
EfficientNet-Lite from the family of EfficientNet [8], which
is currently one of the most accurate models that are also
easily deployable on smartphones. To our knowledge, this is
the first attempt to use the EfficientNet-Lite model for scene
recognition in a navigation support application. A custom
dataset was created to train and test the model. In addition,

1https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-
impairment

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/SMC52423.2021.9658913

https://doi.org/10.1109/SMC52423.2021.9658913

a prototype app is developed to demonstrate a portable and
real-time scene recognition solution based on the proposed
model, which outputs both text and audio output from the
recognized scenes.

The paper is organized as follows: Section 2 gives a brief
review of navigation systems proposed for people with visual
impairments and developments in scene recognition. Section
3 describes the EfficientNet-Lite model, which is used as the
base model in the proposed system. Section 4 presents the
proposed system, including the details about the dataset and
the prototype app. Section 5 describes the experiments and
presents the results. The results are discussed in Section 6.
Section 7 concludes the paper.

II. RELATED WORKS

A. Navigation System for people with visual impairments

Several navigation support systems for people with visual
impairments have been proposed in the literature. NavCog
is a mobile navigation app which uses low energy Bluetooth
beacons to give indoor navigation directions to users [9].
PERCEPT is another indoor navigation mobile app where
the user can obtain navigation directions to the destination
when touching specific landmarks tagged with Near Field
Communication tags [10]. Another notable system with
similar indoor navigation functionality is GuideBeacon [11].
The GuideBeacon is also a smartphone application that
uses Bluetooth beacons deployed in the indoor space to
navigate surroundings. The main limitations associated with
all these systems are they need an infrastructure or additional
hardware such as beacons and NFC tags for wayfinding or
navigation.

Researchers also explored the application of computer
vision and deep learning for the design of navigation systems
for the visually impaired. Systems such as [12]–[14] used
various deep learning-based object recognition systems to
help the user navigate in unfamiliar environments. But some
of these systems requires a data connectivity to do operations
which are executed in a cloud environment.

Common to most of the current navigation support systems
is that they focused on how a user can avoid obstacles and
reach a destination without informing the user about the
environment context. Hence, it is relevant to include the
scene recognition feature in a navigation system since it can
help the users to be more aware about the environment. It can
also support users to traverse different environments using
different strategies and ways of moving. Thus, a system with
a scene recognition module can support people with visual
impairments during navigation, both indoor and outdoor, to
learn about the surroundings and help the user make safe
navigation decisions.

B. Scene Recognition

Early scene image representation and recognition mainly
relied on global attribute descriptors, which are formed by
some low-level visual properties to model the perception of
human beings. CENsus TRansform hISTogram (CENTRIST)
[15] and Local Difference Binary Pattern (LDBP) [16] are

some examples of global attribute descriptors. The perfor-
mance of these global attribute descriptors is limited by the
complex visual constitutions of scene images [1].

Later, the patch feature encoding was introduced to im-
prove the recognition performance. Examples of local visual
descriptors that have been widely used in the patch fea-
ture extraction include Local Binary Patterns (LBP) [17],
Scale Invariant Feature Transform (SIFT) [18], Speeded
Up Robust Features (SURF) [19], Histogram of Oriented
Gradients (HOG) [20], and Oriented Texture Curves (OTC)
[21]. Limitations of local visual descriptors includes their
high dimensionality and computational effort. Moreover,
they exhibit poor performance when numerous similar local
features and complex background exist in the matching
image. The Bag-of-Visual-Words (BoVW) framework was
introduced to integrate many local visual descriptors into an
image representation [22]. It was one of the most required
feature transformation methods that were extensively used
for image classification.

Recent developments in deep learning and deep convolu-
tional neural networks, their high classification performance,
and the significant number of annotated datasets have sparked
a substantial interest in addressing image classification and
scene recognition. Scene-centered datasets are created, such
as the MIT Indoor672, SUN3973, and Places3654. Several
works on scene recognition have been reported. Zhou Bolei
et al. reported one well-known work on scene recognition
which used the Places365 dataset [23]. The authors trained
three popular convolutional neural network (CNN) architec-
tures AlexNet [24], GoogLeNet [25], and VGG16 [26].

Recently, research attention has been drawn towards scene
recognition from moving videos. CNNs, which have shown
promising results for the general task of scene recognition in
images, can also be generalized to video data. The T-ResNet
architecture alongside the YUP++ dataset, established a new
benchmark in the subfield of dynamic scene recognition [27].
Even though the T-ResNet model showed strong performance
for classes with linear motion patterns such as ‘elevator’,
‘ocean’, the performance was negatively impacted for scene
categories that have irregular or mixed defining motion
patterns such as ‘snowing’ and ‘fireworks’. Moreover, the
model exhibits performance degradation when the camera is
in motion.

Due to the proliferation and increasing computational
power of mobile and smartphone devices, much research on
deep learning focused on applications using these devices.
At present, there exist several deep learning architectures
or models for mobile devices, called lite models. MobileNet
[28] is an example of mobile architecture that is used to build
lightweight deep neural networks. Moreover, TensorFlow
Lite provides an option to convert and run TensorFlow
models on mobile, embedded, and IoT devices. Many of
the existing deep learning models such as MobileNet [28],

2http://web.mit.edu/torralba/www/indoor.html
3https://vision.princeton.edu/projects/2010/SUN/
4http://places2.csail.mit.edu/

YOLO [29], EfficientNet [8], and Inception [30] can be
converted into the lite format with some compromise in
accuracy but with better inference time and deployed in
mobile devices using TensorFlow Lite Converters5.

The next section briefly describes the EfficientNet lite
model.

III. EFFICIENTNET-LITE MODEL

EfficientNet is a convolutional neural network (CNN) in-
troduced by Google, which achieves state-of-the-art accuracy
with lesser computations and parameters than similar models
[8]. A convolutional neural network can be scaled in three
dimensions: depth, width, and resolution. The depth of the
network relates to the number of layers in the network. The
width is related to the number of filters in a convolutional
layer. And the resolution is associated with the height and
width of the input image. EfficientNet uses a compound
coefficient ϕ to scale the network width, depth, and resolution
in a more structured and uniform manner [8].

EfficientNet provides an optimized version called
EfficientNet-Lite that is designed for mobile CPU, GPU,
and EdgeTPU and runs on TensorFlow Lite. Due to
the unique nature of mobile and edge devices, several
challenges are raised when a CNN model is deployed. Since
many CNN models have limited floating-point support,
quantization is widely used to overcome the limitation when
the same model is used in mobile/edge devices. However,
a complicated quantization-aware training procedure is
required in most cases. Besides, the model accuracy could
be comprised after the posttraining quantization. Using the
TensorFlow Model Optimization Toolkit6, the model can be
quantized easily via integer-only post-training quantization
without losing much accuracy.

Hardware heterogeneity is one of the challenging issues
when the same model is run on an extensive variety of
accelerators, such as mobile GPU or EdgeTPU. Due to
the hardware specialization, these accelerators often perform
well for only a limited set of operations. This limitation is
crucial for EfficientNet since some of the operations are
not well supported by specific accelerators. To overcome
this limitation, the original EfficientNet is tailored with
some modifications in EfficientNet Lite model. The squeeze-
and-excitation blocks are removed, and ReLU6 activation
functions are introduced in the lite version, which claims
to improve the quality of posttraining quantization7.

EfficientNet-Lite comes in five variants, allowing users
to select from the low latency/model size option, the
EfficientNet-Lite0, to the high accuracy option, the
EfficientNet-Lite47. Fig. 1. shows how EfficientNet-Lite
models perform compared to some popular image classifi-
cation models in terms of accuracy, latency, and model size.

5https://www.tensorflow.org/lite/convert
6https://www.tensorflow.org/model_optimization/guide/get_started
7https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-

with-efficientnet-lite.html

Even though several research have been reported in the
scene recognition domain, our work mainly focuses on how
a model can be trained to be deployed on smartphone
devices with limited memory and computational power,
thereby requiring a comparatively small model size and low
computational demand. Taking these factors into account, we
have chosen EfficientNet Lite4 architecture as the base model
in our proposed system. The selection of the EfficientNet
Lite4 is due to the following considerations.

• The EfficientNet Lite4 model has more Top 1 accuracy
compared to the other models (see Fig. 1). Top 1
accuracy is the accuracy where the true class matches
the most probable class predicted by the model, which
is the same as our standard accuracy. This is an essential
factor to be considered in our application domain. When
there is a trade-off between accuracy and latency, we are
concerned and more interested in accuracy.

• Even though this model has a comparatively large model
size, that is not a constraint for our problem domain.
Our primary concern is the model being optimized for
mobile deployment.

• The low inference time is another important criterion for
our problem domain for real-time scene recognition.

IV. PROPOSED SYSTEM

This section gives an overview of the proposed model for
scene recognition. Furthermore, the section provides a brief
description of the custom dataset we created for training and
testing the model. The prototype app developed based on the
model is also described.

A. The proposed scene recognition model

We used the EfficientNet-Lite4 model and employed a
transfer learning technique to adapt to our scene recognition
use case and accelerate the learning process. Transfer learn-
ing allows us to deal with these scenarios by leveraging the
already existing models of some related task or domain. The
knowledge gained from the first task applies to a different
problem domain, such as scene recognition. TensorFlow
offers TensorFlow Lite Model Maker8 for lite models to
apply transfer learning on custom datasets and export the
resulting model to a TensorFlow Lite format. A classifier
head is added to the pre-trained model of EfficientNetLite4
using the TensorFlow Lite Model Maker. An overview of the
model architecture is shown in Fig.2.

B. Dataset

As a first step and as a proof of concept for an initial
prototype, we selected 15 scene categories (classes) that can
occur in indoor and outdoor environments and have relevance
in the navigation scenario of people with visual impairments.
They are: Bathroom, Bedroom, Bridge, Cafeteria, Classroom,
Computer room, Dining hall, Hospital room, Kitchen, Li-
brary indoor, Parking lot, Playground, River, Shopfront, and
Supermarket.

8https://www.tensorflow.org/lite/guide/model_maker

Fig. 1. Comparison of EfficientNet lite versions and 3 other popular deep neural network models: MobileNet v2, ResNet 50 and Inception v4 in terms
of (a) accuracy vs latency, and (b) accuracy vs model size. (inspired from TensorFlow Blog6)

Fig. 2. Architecture of EfficientNet-Lite4 model

The dataset is created by collecting images collected
from four different sources, MIT’s Places3654, Google Open
Images V69, Flicker10, and our own images. Places365 is one
of the well-known datasets used in the scene recognition
domain. The Google Open Images V6 dataset is mainly
used for object detection or segmentation-related research
and not for scene recognition. However, it contains relevant
images for our use case. Flicker contains a large number of
images, and it has API11 support to download images and
given permission to use them for non-commercial purposes.
Relevant images for the 15 scene categories are extracted
from these three data sources. After examining the extracted
images, we found that many of the images were disordered,
and some pre-processing such as re-labeling and image
removal of irrelevant and irregular were needed. Moreover,
additional images from the own collection are added in order
to have some real images from the locality to increase the
dataset and, in turn, improve the performance of the model.
Around 600 images were captured from different scenes
such as ‘supermarket’, ‘storefront’, ‘river’, etc., from Oslo.
Altogether, the dataset consisting of approximately 5000
images per category is created and used for training and
testing of the proposed model. Details of the training and
testing process are described below in section 5.

C. Prototype App

A prototype Android app is developed using the trained
model, converted to tflite (TensorFlowLite) format and de-
ployed in a smartphone. The app can capture and recognize
scenes belonging to the 15 scene categories in real-time. The
app displays the recognized category as a text. It also gives
audio output with synthetic voice when the user touches the
screen. This feature of one-touch-based output is enabled to

9https://storage.googleapis.com/openimages/web/index.html
10https://www.flickr.com/
11https://www.flickr.com/services/developer/api/

avoid random continuous voice prompts, which can disturb
the user during navigation. Fig. 3. shows a screenshot of
the prototype app in action, which recognized the scene as
‘kitchen’. The app shows the prediction based on the highest
probability.

To minimize false positives with unknown scenes, we
incorporated a threshold. When the probability of a scene
recognized by the model is above the threshold and holds
the highest probability among other scene categories, the app
will report the recognition result. Otherwise, it will output as
‘unknown scene’. Based on trial and error, the threshold was
set to 60%. This helps filter out the scenes other than the 15
categories used in our test use case as ’unknown scene.’

Fig. 3. A screenshot of the real-time scene recognition from the prototype

V. EXPERIMENT AND RESULTS
This section gives the details of the experiment and the

results which we got from our model.

A. Experimental Setup
The proposed model is implemented and runs an HP

Omen Intel core i7 processor with 32GB RAM and NVIDIA

GeForce GTX 1070 GPU. The platform settings of the ex-
periment are TensorFlow-GPU 2.4.1, NVIDIA CUDA toolkit
11.0, and CUDNN 8.1. The model is trained, validated, and
tested by randomly shuffling and splitting the dataset in the
ratio of 80:10:10, respectively.

The training hyperparameter settings used in the experi-
ment are as follows: To avoid the generalization issue with
the larger batch size and the convergence issue with the
smaller batch size, we decided to go with the default batch
size of 32. The learning rate was 0.2 that was the default
rate provided in the TensorFlow Lite Model Maker. At the
end of 10 epochs, when the validation loss began to rise, we
stopped training. Finally, the training accuracy of the model
was at 93.43%, and validation accuracy was at 83.12%.

B. Results

To assess the performance of our scene recognition model,
we used various evaluation metrics. The model was evaluated
for precision, recall, F1 score, and accuracy on all scene
categories. The different performance metrics results are
given in Fig. 4.

Selected results of some test images for all 15 scene
categories that are correctly and incorrectly classified by the
model are shown in Fig. 5. The incorrect results are given
in the figure to analyze which category is predicted by the
model instead of its actual category.

The proposed model is compared with a state-of-the-
art model Inception v4 Lite after training with a similar
environment using the same dataset. The results listed in
Table I. show that our model exhibits higher accuracy,
precision, and recall. The Inceptionv4 Lite model size is also
larger compared to our model, which makes our model more
suitable to deploy on a smartphone device.

TABLE I
PERFORMANCE COMPARISON OF INCEPTION V4 LITE AND

EFFICIENTNET LITE4 ON THE TEST DATASET

Model Params Accuracy Precision Recall F1 Score Model Size

Inception v4 Lite 23M 82.92 0.82 0.73 0.83 51MB

SceneRecog
(our model) 11M 83.33 0.85 0.80 0.81 46MB

VI. DISCUSSIONS

The results show that the proposed model exhibits good
performance in scene recognition even when deployed in a
smartphone with less computational power compared to a PC
or laptop. But at the same time, there exist some misclassi-
fications associated with the proposed scene recognition lite
model, as seen from the results. The three possible scenarios
are discussed below.
(a) Misclassification due to labeling ambiguity: As seen
in Fig. 5., there are various occurrences where the model
fails due to the misclassification. The misclassification may
have occurred when there were two different categories in a
similar scene. For example, a ‘river’ and ‘bridge’ can appear
in the same scene. During the labeling stage of a dataset,
it is the annotator’s decision to categorize the images into

any of those categories. Therefore, there is a chance of
misinterpretation based on the annotator’s decision during
scene labeling. This issue could be resolved by giving an
intimation to the various scene categories presence during
the labeling stage itself by the annotator. Since the primary
aim of this research is to demonstrate how scene recognition
is possible in a smartphone device using EfficientNetLite4,
the focus is more given to the proof of concept. However, in
future work, more effort will be given to solve the labeling
ambiguity issues while creating the dataset.
(b) Misclassification due to the similarity between images:
This case occurs when the model fails to recognize a scene
with another one that shares common features. The similarity
between scenes makes it challenging for the trained model
to differentiate successfully. For example, consider the case
between a ‘cafeteria’ and a ‘dining hall’. The model could
learn the presence of furniture and other food items in the
scene to categorize it into any of those scene categories.
Because of the similarity between the two scenes, there
could also be a potential chance of misclassification reported
from the model. A similar issue may occur in other pairs of
scenes such as ‘playground’ – ‘parking lot’, ‘shopfront’ –
‘supermarket’, etc. This issue is due to the comparatively
poor accuracy of a lite model deployed in a smartphone.
When a highly accurate general model with a larger model
size is used, this issue should be solved. However, we used a
lite model with the constraint of accuracy to demonstrate how
a smartphone device could be used for scene recognition.
(c) Overlap between two categories in the same scene: This
case occurs when there is an overlap between two scenes
with the same input image. The model can predict incorrect
results in such a situation. This is similar to the first case, but
here, the accuracy of the model is prominent. For example,
consider the case of ‘river’- ‘bridge’ or ‘hospital room’- ‘bed-
room’. In each of those cases, there might be chances when
both scenes at present together. One of the solutions that
can be employed here is the use of multilabel classification
on the same image. That is, categorizing the same image
into two different classes by giving equal weight to both.
The accuracy of the model can only be increased in such a
situation by training with more images with multilabel.

Fig. 4. shows that two of the scene categories, ‘cafeteria’,
and ‘computer room’, achieves less than 70% recognition
accuracy. At the same time, five scene categories have an
accuracy of more than 90%. The confusion matrix reveals
that there was a high misclassification between the ‘dining
hall’ and ‘cafeteria’. The model founds it challenging to
categorize both classes—the same holds for combinations
of the ‘parking lot’ – ‘bridge’ and ‘river’ – ‘bridge’.

The proposed scene recognition model is implemented
by considering both the processing and power limitations
of a portable mobile device. There might be models which
yield better scene recognition performance with high com-
putational requirements, such as general EfficientNet and In-
ceptionv4 architectures. However, according to our problem
domain, the model needs to be used in real-time and should
use computation and memory resources sparingly. The model

Fig. 4. Confusion matrix of the scene recognition results from the SceneRecog model. The figure also shows the Precision, Recall, F1 Scores, and
accuracy metrics values of each class.

Fig. 5. Example prediction results from the model (red: incorrect, green: correct).

size and accuracy trade-offs are also some critical design
decisions in a smartphone-based application. In this scenario,
EfficientNet Lite provides reasonably good performance in
summing up all those factors contributing to its overall
performance. The work presented in this paper is only a
proof of concept. The model can be improved by increasing
the scene categories and training the model with more data
to incorporate it into a full-fledged application. We think
that the result is encouraging, and the proposed model
hence provides a pragmatic solution for providing scene
information in a navigation support application for people
with visual impairments.

VII. CONCLUSIONS

Developing robust and reliable models for the automatic
recognition of scenes is vital in intelligent systems and
artificial intelligence since it directly supports real-life appli-
cations. We have shown how an EfficientNetLite4 model can
be used for scene recognition and deployed in a smartphone
through this work. The solution outputs the recognized
scene using synthetic speech and can help the users with
visual impairments to get an overview of their environment
during navigation. The results achieved from the trained
model using the custom dataset demonstrate its potential
for navigation support systems. The system can be further
enhanced through training using larger datasets with more
classes and images.

REFERENCES

[1] L. Xie, F. Lee, L. Liu, K. Kotani, and Q. Chen, "Scene recognition:
A comprehensive survey," Pattern Recognition, vol. 102, p. 107205,
2020.

[2] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, "Deep learning-based
image recognition for autonomous driving," IATSS Research, vol. 43,
no. 4. Elsevier B.V., pp. 244–252, Dec. 01, 2019.

[3] P. Espinace, T. Kollar, N. Roy, and A. Soto, "Indoor scene recognition
by a mobile robot through adaptive object detection," Robotics and
Autonomous Systems, vol. 61, no. 9, pp. 932–947, Sep. 2013.

[4] J. Li and Y. Qian, "Automatic scene recognition for digital camera by
semantic features," in Proceedings of the 2008 International Confer-
ence on Wavelet Analysis and Pattern Recognition, ICWAPR, 2008,
vol. 1, pp. 327–332.

[5] L. Wang, S. Guo, W. Huang, Y. Xiong, and Y. Qiao, "Knowledge
Guided Disambiguation for Large-Scale Scene Classification with
Multi-Resolution CNNs," IEEE Transactions on Image Processing,
vol. 26, no. 4, pp. 2055–2068, Apr. 2017.

[6] B. Kuriakose, R. Shrestha, and F. E. Sandnes, "Tools and Technologies
for Blind and Visually Impaired Navigation Support: A Review," IETE
Technical Review, pp. 1–16, Sep. 2020.

[7] B. Kuriakose, R. Shrestha, and F. E. Sandnes, "Smartphone navigation
support for blind and visually impaired people - a comprehensive
analysis of potentials and opportunities," in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Jul. 2020, vol. 12189 LNCS,
pp. 568–583.

[8] M. Tan and Q. v. Le, "EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks," in 36th International Conference on
Machine Learning, May 2019, vol. 2019-June, pp. 6105–6114.

[9] D. Ahmetovic, C. Gleason, C. Ruan, K. Kitani, H. Takagi, and C.
Asakawa, "NavCog: a navigational cognitive assistant for the blind."
Proceedings of the 18th International Conference on Human-Computer
Interaction with Mobile Devices and Services. 2016.

[10] A. Ganz, J. M. Schafer, Y. Tao, C. Wilson and M. Robertson,
"PERCEPT-II: Smartphone based indoor navigation system for the
blind," 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2014, pp. 3662-3665.

[11] S. A. Cheraghi, V. Namboodiri and L. Walker, "GuideBeacon: Beacon-
based indoor wayfinding for the blind, visually impaired, and disori-
ented," 2017 IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2017, pp. 121-130.

[12] J. Bai, D. Liu, G. Su, and Z. Fu. 2017. A Cloud and Vision-based
Navigation System Used for Blind People. In Proceedings of the
2017 International Conference on Artificial Intelligence, Automation
and Control Technologies (AIACT ’17). Association for Computing
Machinery, New York, NY, USA, Article 22, 1–6.

[13] B. Kim, H. Seo, and J.D. Kim. "Design and implementation of a
wearable device for the blind by using deep learning based object
recognition." Advances in Computer Science and Ubiquitous Com-
puting. Springer, Singapore, 2017. 1008-1013.

[14] M. Poggi, and S. Mattoccia. "A wearable mobility aid for the visually
impaired based on embedded 3D vision and deep learning." 2016 IEEE
Symposium on Computers and Communication (ISCC). IEEE, 2016.

[15] J. Wu, J. R.-I. transactions on pattern analysis and, and undefined
2010, "Centrist: A visual descriptor for scene categorization," IEEE
transactions on pattern analysis and machine intelligence, vol. 33, no.
8, pp. 1489–1501, 2010.

[16] X. Meng, Z. Wang, L. W.-P. recognition, and undefined 2012, "Build-
ing global image features for scene recognition," Pattern recognition,
vol. 45, no. 1, pp. 373–380, 2012.

[17] T. Ojala, M. Pietikäinen, D. H.-P. recognition, and undefined 1996,
"A comparative study of texture measures with classification based on
featured distributions," Pattern recognition, vol. 29, no. 1, pp. 51–59,
1996.

[18] D. G. Lowe, "Distinctive image features from scale-invariant key-
points," International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Nov. 2004.

[19] H. Bay, T. Tuytelaars, and L. van Gool, "SURF: Speeded up robust
features," in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 2006, vol. 3951 LNCS, pp. 404–417.

[20] N. Dalal and T. Bill, "Histograms of oriented gradients for human
detection," in IEEE computer society conference on computer vision
and pattern recognition (CVPR’05), 2005, pp. 886–893.

[21] R. Margolin, L. Zelnik-Manor, and A. Tal, "OTC: A novel local
descriptor for scene classification," in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2014, vol. 8695 LNCS, no.
PART 7, pp. 377–391.

[22] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, "Visual
Categorization with Bags of Keypoints," in Workshop on statistical
learning in computer vision, ECCV, 2004, pp. 1–2.

[23] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning
Deep Features for Scene Recognition using Places Database," Ad-
vances in Neural Information Processing Systems (NIPS), vol. 27,
2014.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification
with deep convolutional neural networks," Communications of the
ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke and A. Rabinovich., "Going Deeper with
Convolutions," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[26] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," Sep. 2015, Accessed: Mar. 02, 2021.
[Online]. Available: https://arxiv.org/abs/1409.1556.

[27] C. Feichtenhofer, A. Pinz, and R. P. Wildes, "Temporal residual
networks for dynamic scene recognition," in Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Nov. 2017, vol. 2017-January, pp. 7435–7444.

[28] A. G. Howard et al., "MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications." Accessed: Mar. 23, 2021.
[Online]. Available: https://arxiv.org/abs/1704.04861.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 779–788.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, "Rethinking the
Inception Architecture for Computer Vision," in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

