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ABSTRACT: 

 

Correct and reliable identification and classification of different structures and infrastructures that make up a city (e.g. residential 

buildings, school buildings, hospitals, power stations, routes of communication, etc.) are of great importance for the AEC/FM 

(Architecture, Engineering, Construction, and Facilities Management) domain and for seismic risk assessments, among others. For 

decades, the method of collecting buildings information has been through field campaigns. This practice requires significant 

resources in terms of qualified engineers or architects to identify the geometry of the different elements that constitute the structure, 

building materials and construction processes. Nowadays, there are different geospatial techniques that allow data acquisition on a 

massive scale in a short period of time. In particular, by means of laser measurements, it is possible to have clouds of millions of 

points with geometric and radiometric information in a matter of seconds. In this article, we present ABM-indoor, a LIDAR-based 

approach that automatically provides a three-dimensional models of buildings in vector format. Models include floors, ceilings, walls 

(up to five dominant directions), columns, elements located on floors and elements hanging from ceilings. Efforts are underway to 

transfer this model to a Building Information Model (BIM). 

 

 

1. INTRODUCTION 

 

Over the last decade, the demand for digital twins has increased 

considerably in different research fields, such as AEC/FM, 

earthquake engineering, cadastre and urban planning, among 

others. In order to carry out a successful assessment of the 

seismic performance of a building, it is necessary to have 

reliable digital twin models. Creating a model that contains 

100% of the elements and their characteristics is not an easy 

task. Furthermore, it requires extensive information about the 

geometry, structural characteristics and materials of the 

building. 

 

The digital representation of buildings started with drawings, 

through three-dimensional models to Building Information 

Models (BIM). The information from a building might be 

readily available for parts of the building stock through 

cadastral data. However, the cadastral data is often not complete 

and falls short of the minimum required information to create 

reliable structural models. This is especially true for older 

buildings in the developed parts of the world. On the other 

hand, the cadastral data in developing countries often fail to 

provide any reliable information about a vast majority of the 

structures rendering reliable seismic risk assessment virtually 

impossible. In order to overcome these shortcomings, the 

experts rely on extensive field campaigns, that require 

significant resources in terms of trained personnel, hardware 

and software to manage all collected data, etc. Furthermore, in 

most cases, non-structural and content elements, which are a 

major source of economic losses in case of strong earthquakes, 

particularly in the low seismic hazard regions (Torres et al., 

2019), are omitted. This leads to uncertainties in the results 

obtained. 

 

Nowadays there are several geospatial techniques that make it 

possible to obtain massive and accurate building information in 

a matter of seconds. However, the processing of this 

information is a major challenge. In order to provide an 

automated and consistent approach to information processing 

and to eliminate the shortcomings of extensive field campaigns, 

we have developed a method that complements existing 

approaches for obtaining digital indoor and outdoor models of 

buildings, and Building Information Models (BIMs). 

 

As authors has shown in Romero-Jarén & Arranz (2021), ABM-

indoor, is an approach that focuses on the automatic 

segmentation, classification and modelling of point clouds. The 

approach is an algorithm that automatically identifies 

architectural elements and creates 3D models of the indoor 

building elements: floors, ceilings, walls columns, and content. 

ABM-indoor is a module of the software MDTopX (2021), 

which is used by many users related with the processing of 

point clouds and digital models. 

 

Up until now, ABM-indoor generates accurate 3D surfaces of 

building elements. Planar elements are created as a vector 

format and non-planar elements as TIN format. Nevertheless, 

we are currently working on transferring the 3D surfaces into 

Building Information Model (BIM) elements. 

 

The structure of this manuscript is as follows. Section 2 

includes a review of the state of the art related with BIM 

applications and point cloud processing. Section 3 presents the 

proposed approach and the experimental results obtained. 

Section 4 includes the development of manual creation of 

structural models. Finally, Section 5 shares our conclusions and 

objectives for further research. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-215-2021 | © Author(s) 2021. CC BY 4.0 License.

 
215

mailto:rocio.romero.jaren@upm.es


 

2. LITERATURE REVIEW 

 

2.1 BIM applications 

 

The term "Building Description Systems" has been used in the 

field of civil engineering and architecture since 1976 (Eastman). 

In 1986, Rufle first used the word "Building Model" to refer to 

the digital representation of a building. Nowadays, BIM models 

are one of the products generated within the BIM methodology. 

These models are three-dimensional representations of a 

building with all its elements and at different levels of detail 

(AIA, 2013). The use of BIM methodology and models is 

widespread in a variety of research fields. 

 

Our work focuses on the use of BIM models in the field of 

seismic engineering. Previous studies used this models to 

performed seismic risk analysis in school buildings (Biagini et 

al, 2019) where the model is the results of a manual design in 

Revit from 2D drawings and point cloud data. Authors in 

(Perrone et al., 2017) used BIM models to design seismic sway 

braces for pressurized fire suppressant sprinkler piping systems.  

Vitiello et al. (2019) use a BIM model to evaluate the economic 

performance and losses of a building expose to seismic risk. 

 

A different but commonly application of BIM models is in the 

field of quality control and monitoring during construction. In 

Pučko et al. (2018), authors present semiautomatic algorithms 

to track the status of a steel structure under construction. The 

reconstruction of historical heritage can be also developed 

through use of BIM. Authors in (Angelini, 2017) manually 

construct a BIM model from multisource data: topographic total 

stations, Terrestrial Laser Scanning (TLS) and photogrammetry.  

 

2.2 Point cloud processing 

 

BIM models are a very powerful tool, as they are reliable 

representations of reality. In addition, it is possible to include a 

large number of elements at the level of detail desired by the 

user. However, the creation of the models is not simple. 

Different sources of information are used to create the models: 

2D drawings, information obtained from total stations or 

massive data from point clouds or virtual reality devices, among 

others. Point clouds provide accurate geometric and radiometric 

information in a given space. The main disadvantage of these 

massive data is in terms of storing, managing and processing the 

information. With millions of points, we are referring to dozens 

of GB of information and many hours of work to manually 

identify real elements associated with the structures. Nowadays, 

there is no single tool that allows the automatic creation of these 

models from the aforementioned information. Tang et al. (2010) 

and Pətrəucean et al. (2015) present a review of the state of the 

art of different techniques for automatically processing point 

clouds. 

 

Scientists are actively working on the development of methods 

and approaches for automatic point clouds processing using 

renowned algorithms such as the Random Sample Consensus 

(RANSAC) algorithm. It was developed as a robust detection of 

outliers and noise that involves random sampling with the 

implementation of constraints (Fischler & Bolles, 1981). 

Authors in Jung et al. (2014), present a semiautomatic approach 

to model indoor point clouds. They used RANSAC algorithm to 

automatically segments the point cloud for plane extraction. 

Another example of previous publications that use RANSAC 

algorithm is presented in Ochmann et al (2016). The approach 

creates 3D indoor models of building from static point clouds. 

The models include floors, ceilings, walls, and wall openings, 

such as doors and windows. 

 

 

Authors in Wang et al. (2017) use different algorithms and 

techniques to process the point cloud: graph-cut and 

hierarchical clustering. The approach models indoor 

unorganised point clouds The approach identifies planar 

elements (walls, floors, and ceilings). 

 

Other important and widely used algorithms among researchers 

are: Hough Transform, Principal Component Analysis (PCA), 

Fast Point Feature Histograms (FPFH), Region Growing and 

Connected Components and Supervoxelization (Che et al., 

2019). 

 

For the development of our study we also distinguish between 

the different types of data sources. Authors in Zolanvari et al. 

(2018) segment facades of complex urban structures (Rubrics 

building in Dublin, Ireland) using a combination of airborne 

and terrestrial data. Another example of previous publication 

which use a combination of data is presented in Chen et al. 

(2018). Authors use topographic maps to obtain the footprint of 

the buildings and the elevation values, 2) airborne LiDAR, and 

3) architectural conventions to impose some restrictions, to 

create City Information Models (CIMs). 

 

One of the novelties of our approach compared to previous 

publications is that it works both with point clouds from static 

and dynamic sensors. Additionally, we have worked on 

modelling envelope elements (e.g. floors, ceilings and walls) 

and content elements, which can be structural elements 

(columns) or non-structural elements (furniture). 

 

 

3. ABM-INDOOR METHODOLOGY 

 

The proposed approach has two main objectives: 1) automatic 

classification of the elements of unorganized point clouds 

(floors, ceilings, walls, columns, etc.) and 2) three-dimensional 

modelling of the classified elements according to a LOD 300 

model (AIA, 2013). 

 

Our approach focuses on the geometric information of point 

clouds. We used two data sets to test ABM-indoor. One of the 

point clouds was acquired in a car park with a dynamic TLS, 

NavVis M6 (2020), an indoor Mobile Mapping System (MMS) 

with six cameras that obtain 360° imageries, four laser scanners 

at various heights and 6D Simultaneous Localisation And 

Mapping (SLAM) system (Surmann et al., 2004). In this case, 

the point cloud covers approximately 1.000 m2 and has14 

million points (Figure 1.a). The second point cloud represents 

an office space, covers approximately 800 m2 and includes 3 

million points (Figure 1.b). It was obtained from a static TLS. 

In this case, the data acquisition performs multiple scans where 

the position of the sensor is known so the point cloud is 

organized. 
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Figure 1. Samples point cloud of the car park (a) and the office 

space (b). 
 

Figure 2 shows that ABM-indoor workflow has two main steps: 

1) segmenting and labelling the point cloud using automatic 

clustering and 2) creating 3D surfaces of each classified 

element. 

 

 
Figure 2. AMB-indoor workflow 

 

Floors, ceilings and walls are considered planar elements. On 

one hand, we use a slicing method to identify the plane that best 

fits a cluster of points. Firstly, the algorithm identifies floors 

and ceilings, as horizontal elements by using the height value. 

Secondly, ABM-indoor creates 3D surfaces of floors and 

ceilings using Delaunay Triangulation (Isenburg et al., 2006). 

Finally, the algorithm applies minimum area constraints to 

eliminate irregular and useless surfaces and performs automatic 

edge fine-tuning to smooth surfaces boundaries. Before 

classifying the rest of the point cloud, the algorithm defines the 

principle direction of the building using edges longer than four 

meters. 

 

On the other hand, ABM-indoor uses the principle direction of 

the building and the cluster direction value to identify walls. To 

create surfaces from wall clusters, the algorithm first projects 

the boundaries horizontally using Helmert 3D transformation 

and, finally applies polygon filtering and edge fine-tuning. 

 

The algorithm also identifies non-planar elements, such as 

columns. Columns are vertical elements connected to the floor 

slab and to the ceiling of the building. ABM-indoor uses 

existing gaps in the floor and ceiling to identify points that are 

on the vertical between the two gaps (Figure 3). 

 

 
Figure 3. Gaps in the floor (grey plane) and the ceiling (green 

plane). 

 

The algorithm processes the remaining points to identify non-

planar elements once the floors, ceilings, walls and columns 

have been classified and modelled. The approach identifies 

content elements, such as cars, motorbikes, tables, chairs among 

other. To identify and model the aforementioned irregular 

elements, ABM-indoor uses a tetrahedrization algorithm (Figure 

4). 

 

 
Figure 4. Pseudocode of the tetrahedrization algorithm 

(Romero-Jarén & Arranz, 2021) 

 

a) 

b) 
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3.1 Experimental results 

 

Two indoor data sets were used to test the algorithm. In one 

hand, Figure 5.a. shows the created surfaces for the car park, 

where two different wall directions where identified: Wall 1 

(orange) and Wall 2 (green). On the other hand, Figure 5. b 

shows the created surfaces for the office space. Four different 

walls directions were identified: Wall 1 (orange), Wall 2 

(green), Wall 3 (pink), Wall 4 (blue). 

 

After processing the point cloud, the approach developed a 

precision analysis using confusion matrix. From the matrix 

results, we calculated the false positive and true positive rates 

and plotted them in a Receiver Operating Characteristics (ROC) 

graph (Fawcett, 2006). Figure 6 shows the ROC graph for the 

car park. For this point cloud, the best classified object classes 

are floors and ceilings. Figure 7 shows the ROC graph for the 

office space point cloud classification. In this case, the best 

classified object classes are floors, ceilings and walls. The 

accuracy analysis of the car park point cloud, shows that all the 

classified elements, with the exception of "Other objects" and 

“Objects on ceiling”, were identified with a precision over than 

80% (Table 1). In contrast, the office space accuracy analysis 

shows that "Other objects", “Objects on floor”, “Objects on 

ceiling” and “Columns” were identified with a precision below 

than 80% (Table 2). Nevertheless, both point clouds, where 

classified with a global precision of more than 90% (correctly 

classified points vs. total points) 

 

Non-planar elements are located on floors or hanging on 

ceilings. As mentioned above, ABM-indoor uses a 

tetrahedrization algorithm to classify the points belonging to 

these elements in order to create 3D surfaces. For instance, 

Figure 8 shows the 3D model of a car located in one of the 

point clouds. Content elements are identified and modelled as 

individual elements. 

 

 
Figure 5. Modelled surfaces for the car park (a) and the office 

space (b). 

 

 
Figure 6. ROC graph for the car park point cloud. 

 

Class Recall TP rate Precision 

Floor 0.01 1.00 0.99 

Ceiling 0.04 0.97 0.99 

Wall 2 0.21 0.81 0.97 

Wall 1 0.27 0.78 0.93 

Other objects 1.00 0.07 0.31 

Objects on floor 0.17 0.95 0.87 

Objects on ceiling 0.30 0.91 0.77 

Columns 0.22 0.83 0.93 

Table 1. Accuracy metrics for the car park point cloud: Recall 

(false positive rate), True Positive (TP) rate and Precision. 

 

 
Figure 7. ROC graph for the office space point cloud. 

 

Class Recall TP rate Precision 

Floor 0.00 1.00 1.00 

Ceiling 0.00 1.00 1.00 

Wall 2 0.15 0.85 0.97 

Wall 1 0.14 0.98 0.89 

Wall 3 0.00 1.00 1.00 

Wall 4 0.00 1.00 1.00 

Other objects 0.88 0.03 0.64 

Objects on floor 0.33 0.92 0.78 

Objects on ceiling 0.99 0.95 0.08 

Columns 0.44 0.92 0.70 

Table 2. Accuracy metrics for the office space point cloud: 

Recall (false positive rate), True Positive (TP) rate and 

Precision. 

 

 
Figure 8. Tetrahedrization for an automobile in the car park 

point cloud. The left figure shows the raw coloured point cloud 

of a car. The middle figure shows that all the points of the car 

have been included in the same class (objects on floor). The 

right figure shows the volume of the car, identified as an 

individual element. 

 

 

b) 

a) 
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4. MODELS COMPARAHASION AND MODAL 

ANALYSIS 

 

We intend to compare the results obtained in a seismic 

assessment of a building using both a theoretical model, named 

“Traditional Model” (TM) and the As-Built Model (ABM), 

generated with AMB-indoor. We used the term “Traditional 

Model” to refer to the structural model created from drawings 

and field campaigns. This is a commonly used method to define 

structural analysis models, which does not consider information 

from any geospatial technology. For the current study, we have 

selected an educational building built in Madrid (Spain), 

“Escuela Técnica Superior de Ingenieros en Topografía, 

Geodesia y Cartografía” of the “Universidad Politécnica de 

Madrid”. It is a steel-braced frame building from 1977. It has 

five floors and a total constructed area of 9.645 m2. The 

building has superficial concrete slab foundations under 

columns, joint extensions and braces in two of the facades. 

 

On the one hand, we have created the TM using the software 

SAP2000 (Figure 9). To construct the TM, we have used both 

the 1977 available drawings and the information gathered from 

inspections that we have carried out. Columns and beams are 

HE180B and IPE450 sections respectively and the building has 

one-way floor slabs of concrete (20 cm thickness) and brick 

partitioning walls (15 cm thickness). We have considered 

plastic hinges located in columns (P-M3), beams (M3) and steel 

braces (axial). On the other hand, we have an outdoor point 

cloud of the educational building (Figure 10). This point cloud 

was acquired with the static TLS HDS7000 (Leica Geosystems, 

2011) and the Airborne Laser Scanner ALS60 (Leica 

Geosystems, 2008), both from Leica Geosystems. The point 

cloud has seven million points with a resolution of 5 cm.  

 

 
Figure 9. Traditional model of the educational building 

designed in SAP2000. 

 

 
Figure 10. Outdoor point cloud of the educational building. 

 

4.1 Modal analysis results 

 

We have carried out a modal analysis of the educational 

building on the TM and we have computed the fundamental 

periods of the structure along with the mode shapes. We have 

included the results obtained for the four modes of vibration 

with the highest mass contribution in the two fundamental 

directions, X and Y. Table 3 shows the results obtained for the 

X direction. For this direction, the highest mass contribution, 

24%, is associated to the fifth vibration mode (period of 0.88 

seconds). The results associated with the Y direction are 

included in Table 4. For this direction, mode 11 has the highest 

mass contribution, 24%, with a period of 0.60 seconds. 
 

X direction 

Mode Period (s) Mass contribution (%) 

5 0.88 25 

1 1.21 24 

2 1.08 13 

3 1.08 13 

Table 3. Modal analysis results 

 

Y direction 

Mode Period (s) Mass contribution (%) 

9 0.60 25 

11 0.47 19 

8 0.67 8 

7 0.67 7 

Table 4. Modal analysis results 

 

5. CONCLUSIONS 

 

We present ABM-indoor, an approach to automatically classify 

and model unorganized and organized point clouds. The 

algorithm has an iterative workflow, as shown in Figure 2, 

which starts classifying and modelling floors and ceilings, 

continues with walls, columns and content elements. We only 

considered the geometric information of the point cloud. To 

create 3D surfaces of the elements, we used triangulation 

algorithms. We tested the algorithm with two indoor data sets 

and obtained as a main result that the classification results over 

90% of global accuracy (number of correctly classified points to 

number of total points ratio). 

 

AMB-indoor provides files in vector format for planar elements 

and in TIN format for non-planar elements. The algorithm will 

be used to create ABMs of buildings in order to perform the 

seismic assessment of singular buildings. We are currently 

working to improve the algorithm. Up until now, ABM-indoor 

is limited to modelling visible elements and we need to 

complement the ABM with data from the TM to consider 

hidden elements, such as beams. For this reason, we started 

working on a singular building.  

 

As a preview of the study, we have carried out a modal analysis 

of the TM. After the modal analysis, we would expect to obtain 

vibration modes that reach 90% mass contribution. However, in 

our work, the maximum mass contribution obtained is 24%. 

Due to the existence of an expansion joint, it is possible to say 

that the building is divided into four sections. Each of these 

sections behaves independently for each mode of vibration. 

Therefore, the mass moving for each section represents a certain 

percentage of the total mass of the building and is higher if we 

only focus on the structure of that section. 

 

We have included only four modes of the building for each 

façade direction. These modes correspond to the first vibration 

mode of each of the four individual building sections. However, 

we have not included the first four modes of each section 
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because this would be a total of 16 modes and is beyond the 

length of this manuscript. 

 

At present, we are working to obtain the indoor point cloud of 

the educational building with the aim of merging the indoor and 

outdoor point clouds to generate the ABM of the building. 

Finally, we would like to compare the results obtained for the 

modal analysis of the TM and the ABM. 
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