
Git in an Educational Context

Åsmund Haugse1 and Trond Aalberg1,2[0000−0001−5593−0860]

1 Norwegian University of Science and Technology, Norway
2 Oslo Metropolitan University, Norway

Abstract. The version control system Git is commonly used in com-
puter science education. Best practice use of Git is a relevant professional
skill that students need to learn, but Git also is a natural choice for effi-
cient collaboration on programming assignments. The learning context is
however different from the professional context. In this paper we explore
the implications Git has in an educational context using a questionnaire
and result implies that Git influences some students’ experience with
learning and group work. However, it also verifies previous findings that
using Git is beneficial for student collaboration. Data from the use of Git
can potentially inform students and educators about aspects of group
work. A prototype mirroring tool using GitLab data has been developed
to investigate the data’s potential and semi-structured interviews with
students and teachers were conducted to evaluate and explore the tool.
Results suggest that GitLab data is well-suited to provide students new
insight into their work and educators with an efficient method for mon-
itoring project work and student groups.

Keywords: Git · Collaborative Learning · Mirroring Tool.

1 Introduction

Version control systems, such as the de facto standard tool Git, are crucial
in software development, offering functionality to collaborate and contribute
asynchronously and distributed. Several studies have explored the use of Git in
the classroom and its benefits, disadvantages, and challenges in an educational
context. Feliciano, Storey, and Zagalsky [6] found that the use of Git and GitHub
in software engineering courses was beneficial to and well-received by most of
the students. Hsing and Gennarelli [11] found that students who used GitHub in
the classroom felt a greater sense of belonging to the field, suggesting that Git
can provide benefits beyond its technical capabilities.

Less research has examined the challenges Git may introduce for students in
the process of exploring and learning programming and participating in group
work. The tool is complex and adds to the challenge of learning. Furthermore,
development with Git is transparent and contributions by individual students
may expose differences in skills and competencies. Knowledge about how stu-
dents experience Git is thus important e.g. to identify and compensate for the
negative effects it may have on the learning experience. A questionnaire with
respondents from two different courses has been used to provide insight into



2 Å. Haugse and T. Aalberg

students’ experiences using Git, and how Git affects the learning experience in
group work.

When using Git, detailed data about commits, issues and other aspects are
logged and potentially available for inspection. In an educational context, such
data may describe and inform about the performance of the group as well as
individual students. However, most students pay little attention to the history
of their repository, and current features for inspecting the history is not par-
ticularly useful for educators that may need to inspect and compare numerous
repositories. To explore the use of Git data in an education context, we present
an experimental mirroring tool in the form of a dashboard. The purpose of the
tool is to support students gaining insight into work habits and collaboration.
For an educator, the dashboard informs about the performance of groups and
individuals as well as assist in the identification of problems. Through inter-
views and demonstrations, the dashboard was presented to and tested by both
students and educators. The research questions these contributions attempt to
answer are:

RQ1: What are students’ perceptions on and experiences with using Git?
RQ2: How can Git log data be visualized in a mirroring tool?
RQ3: What does a mirroring tool with Git data offer?

2 Background

2.1 Version Control Systems

Version control is a term describing a system that maintains records of changes
to a set of files, allowing users to access specific versions at a later time [1]. Today,
Git is the most common version control system (VCS). It is open-source, free to
use, efficient and well-suited for handling large projects and non-linear develop-
ment. Various repository hosting services with support for Git are offered. The
most popular being GitHub which is subscription-based although educational
and free subscriptions with some limitations are offered. GitLab is another pop-
ular service providing users with free hosting of repositories. GitLab can also be
hosted locally, which makes it a natural choice for use in education where there
is a need for local ownership. Git repository services typically offer additional
functionality to navigate and perform actions on repositories such as overview of
the commit history, branches and files, as well as processes to support the man-
agement and quality assurance of merging code from individual developers into
the main branch. Repository services such as GitLab and GitHub also provide
developers with the option to manage tasks using issues.

2.2 Git in Education

Git, and the features offered by repository services adds up to a complex tool
that can be difficult to learn and understand. Lawrance, Jung, and Wiseman [15]
examined the technical obstacles encountered when exposing students to version



Git in an Educational Context 3

control as well as the perceived benefits. Students were often initially confused
by Git’s inner workings, but they appreciated what it offered and did not feel
that learning Git was a waste of time. By using Git in a project with multiple
contributors, students learned of the benefits of adopting good habits such as
branching by topic and minor incrementing changes to prevent massive merge
conflicts. Kelleher [12] also found that students enjoyed using Git knowing that
they were using industry-standard technology. Similar to the study of Lawrance
et al., students encountered technical issues when using Git, but these diminished
as students became more experienced.

Incorporating Git into software education is not a trivial task and stepwise
introduction may be a relevant approach. Haaranen and Lehtinen [8] suggested
using GitHub as an LMS to distribute and collect assignments. They initially
require students to clone assignments and gradually introduced new Git features
such as asking students to make incremental changes, committing changes often
and add tasks that requires using branches and merging.

To give students an authentic experiences with Git, assignments where stu-
dents must work in groups are beneficial. Although merge conflicts can occur
when working alone, they are more common in projects with multiple collabora-
tors and even more common in projects where collaborators have little experience
with Git. Feliciano [5] conducted a study on the use of GitHub in multiple soft-
ware development courses looking at perceived benefits and challenges. Benefits
noted by students was gaining experience with an industry-standard tool but
also its transparency, in seeing when and how their team members work, helped
keep each other accountable for the group project. Additionally, students found
it helpful to use GitHub as a portfolio for their projects.

2.3 Project-based Learning

Software development courses frequently implement project-based learning in
teams [21] and the use of Git also relates to the collaborative learning experience.
Grouping students together and providing tools for efficient collaboration natu-
rally increases the capability of what they can achieve, allowing for more open-
ended assignments and improved learning [7]. Software development in teams,
however, requires skills beyond that of technical competence. A group seldom
consists of equally experienced and talented students. Ideally, this leads to the
more experienced students explaining or giving pointers to the less experienced
and some argue that group diversity is a necessary condition for collaborative
learning [3] or that diversity creates increased learning opportunities [13]. On
the other hand, research on collaboration and group dynamics also present sev-
eral negative scenarios (e.g., internal conflicts, free-riders, competitive behaviors)
that can occur in collaborative work [13]. One of the main concerns are slackers
or free-riders, group members who do not contribute their part to the group
project [18]. Colbeck, Campbell, and Bjorklund [2] found that the potential for
slacking increased as team size increased. Having a slacker can be detrimental to
the learning of all members of the group and students would try to avoid teaming
up with slackers. Hall and Buzwell [9] concludes that many students’ frustration



4 Å. Haugse and T. Aalberg

with slackers stems from the slackers often receiving the same mark as those who
contributed the most, due to the final product often being evaluated instead of
the process leading up to it. In a study by Hendry, Ryan, and Harris [10], both
educators and students rank the frequency of problems occurring when working
in groups. The third most frequent problem was that of the dominant student,
someone who talks a lot and tries to control the direction of the discussion, often
preventing others from contributing. Students reported that the case of domi-
nant students was difficult to solve and that problems arose because of how the
group was working, not because of the task at hand.

2.4 Learning Analytics and Mirroring Tools

Data describing activities and individual contributions has a potential usage
in learning analytics and mirroring tools. The Society for Learning Analytics
Research (SoLAR) defines learning analytics as: The measurement, collection,
analysis, and reporting of data about learners and their contexts, for the purposes
of understanding and optimizing learning and the environments in which it oc-
curs [20]. Research on learning analytics has generally focused on how informa-
tion can support making improvements to the education. Robles and Gonzalez-
Barahona [19] explored the mining of student software repositories in a learning
analytics context. They present a semi-automated solution to gather data from
students’ Git usage in programming assignments. The data was used to assess
code quality, plagiarism, automated feedback, and the creation of personal ex-
ams. Soller et al. [22] focuses on monitoring as a technique to provide educators
and students with insights into student groups and detecting good and bad col-
laboration patterns.

Mirroring tools are orthogonal to learning analytics and describe systems
that collect and aggregate data about students and reflect this information back
to the user. Typically, students in a learning situation generate data, which an
educator or the students can reflect on through visualizations. For students, these
systems aim to enhance self-awareness of one’s actions and behavior [22, 4] to
improve upon. Educators use mirroring tools to gain insight into how students
work and to identify those that need guidance. Dietsch et al. [4] found that
a mirroring tool for student activity in a collaborative software development
setting helped identify reoccurring roles in student groups. For example, they
identified students in the role of free-riders as students who were responsible for
less than 10% of the code.

Mirroring tools designed for educators are sometimes referred to as teacher
dashboards. The usefulness of teacher dashboards comes down to how efficiently
and effectively they convey information to a teacher [16]. Research on the use-
fulness of teacher dashboards has shown that they can be both helpful and
insightful to teachers and that they can be used to give teachers more informa-
tion on their students’ activity [14]. However, research on mirroring dashboards
also shows that they do not consistently improve the detection accuracy of a
teacher concerning student groups [23, 17].



Git in an Educational Context 5

3 Method

3.1 Cases

Two courses at the NTNU Department of Computer Science has been used as
cases for the research presented in this paper. TDT4140 Software Development
teaches software project management and development processes. The students
work on a single project and must complete a set of mandatory demonstrations,
presentations, and other deliverables throughout the semester. Groups consist
of 7 students and are put together at random across study programs. IT2810
Web Development teaches technologies and methods for developing web-based
solutions. Students deliver one individual and 3 group-based projects. Groups
consists of three members and students can choose to work with friends or be
randomly assigned to a group. Deliverables are in the form of a repositories in
GitLab and running prototypes. Another difference in the setup is that IT2810
also includes a peer review process where the code was inspected and reviewed
by fellow random students.

Students enrolled in IT2810 have slightly more experience with development
compared to those of TDT4140 given that students usually take IT2810 in
the third or fourth year, whereas TDT4140 is scheduled for the second year.
TDT4140 is a mandatory course in many study programs, whereas IT2810 is
optional and students often enroll because they have a genuine interest in the
topic. Thus, it is likely with differences in the overall experience of these student
as well as in the perception and experience of using Git.

3.2 Questionnaire

An exploratory study in the form of a questionnaire has been used to provide
insight into these students’ perceptions of and experiences with Git (RQ1). The
questions used can be divided into the following categories:

– Motivation and previous experience.
– Experiences and habits using Git, perceived usefulness and usability.
– Git’s transparency and feedback on code.
– Effects on the social dynamics of group work.

Students were invited to answer the questionnaires via Blackboard and e-mail.
IT2810 students were invited in January 2021 and TDT4140 students were in-
vited in May 2021. In total 91 students answered the questionnaires, 48 from
IT2810 (app. 25% of enrolled students) and 43 from TDT4140 (app. 10%).

The same set of questions were used for the two courses, but with different
wording for certain questions. For instance, the questionnaire for IT2810 had
questions about projects, whereas the questionnaire for TDT4140 had questions
about sprints. Questions are worded as statements to which the student answers
with how much they agree with the claim (Likert scale). For example, one state-
ment is ”I only want to share code that I know is good”, to which the answer
options are ”Not relevant”, ”Strongly disagree”, ”Somewhat disagree”, ”Neither



6 Å. Haugse and T. Aalberg

nor”, ”Somewhat agree” or ”Strongly agree”. The average time spent answering
the questionnaire was 8 minutes and 6 seconds.

The questionnaire was online using the service Nettskjema hosted by the
University of Oslo. Although none of the individual questions of the questionnaire
ask about personal information, an application to conduct the project was sent
to the Norwegian Centre for Research Data (NSD). This decision was made
based on the assumption that someone could guess what student had answered
the questionnaire if viewing answers from an individual.

3.3 The Dashboard Mirroring Tool

To address RQ2 and RQ3, a web-based dashboard was implemented. As a re-
search method this falls within design science where a developed artifact repre-
sents an approach to solve the problem and the evaluation of the artifact is used
to gain insight into qualities and characteristics of the solution. The dashboard
is proof of concept prototype intended to aid student groups in self-reflection
and educators in gaining insight into student groups’ performance.

The dashboard is simple in architecture, consisting of a browser-based client,
a MongoDB database, and a Node backend for intermediate communication
between the dashboard and GitLab. GitLab has a well-documented API listing
how to query specific resources such as groups or projects. Groups logically
group one or more projects (repositories) or sub groups. Codebases are hosted
as projects and have accompanied issue trackers, repositories, merge requests
and more. The dashboard queries the Group API for all subgroups of a course
and all projects of each subgroup and data is stored in an intermediate database
to reduce the number of requests sent to GitLab. The current implementation
requires manually updating with new data when needed and makes some ad hoc
assumptions on how groups and projects are named and organized.

The dashboard can be interacted with in different ways and offers various
views for exploring the data. The Advised Group Selection is primarily intended
to support educators to get an overview and easily identify specific groups ac-
cording to the metrics (figure 1). Each group is presented with information about
number of commits, codelines, issues and merge requests; each number accom-
panied by a color coded icon of varying colors to indicate what quartile the
student group is in for the specific metric. From bad to good, the colors are red,
orange, yellow, and green, red meaning the group is in the bottom 25% of all
groups for that metric, orange 25-50%, yellow for the 50-75% , and green for
75-100%. Teams can be ordered by number or by a specific metric in the display.
The presentation shows aggregated data up until the current date, but can also
display data for specific dates.

The dashboard also offers a set of views to visualize the metrics for specific
groups and projects. Individual groups can be selected either from the above
mentioned Adviced Group Selection (for educators) or from a more plain view
just showing group numbers (for educators and students). The metrics reflect the
tasks and work in various ways. Merge requests and issues represent work tasks
at a higher level than commits and can be useful metrics to inspect the progress



Git in an Educational Context 7

Fig. 1. The Advised Group Selection view

of a project and how workload is distributed over time. Each visualization has
been designed to highlight certain aspects. Line charts are suitable to show how
data changes over time, bar charts are useful to show how a metric is distributed
along some categorical value, doughnut charts convey values relative to each
other, each slice representing their share of some total value.

Different visualizations that are implemented in the dashboard are:

– Merge requests and issues for a project implemented as a line chart compo-
nent. Lines of different color are used to show a timeline of respectively open
merge requests or issues, and the sum of merge requests or issues.

– Commits and lines and of code for a project distributed by dates, imple-
mented as bar chart. Showing either metrics for the team members combined,
or distributed by members.

– Commits and lines of code distributed by member, implemented as doughnut
charts (figure 2).

– A list of commits with basic data such as commit message, author, date and
number of changed codelines. The component is mainly intended to get more
details about the commits and a possibility to inspect the commit more in
detail in GitLab.



8 Å. Haugse and T. Aalberg

Fig. 2. Doughnut charts showing commit and code line distribution by members

3.4 Interviews

To evaluate the dashboard and to gain insight into the usefulness of the over-
all approach, semi-structured interviews were held with students and educators.
Students received an invitation via email invite to participate in one-on-one
interviews and 9 students from IT2810 and 13 students from TDT4140 partic-
ipated. To collect feedback on the educator’s view, educators who use version
control (GitLab or GitHub) in their courses were invited and 11 educators were
interviewed.

Interviews were semi-structured and following an interview guide, with follow-
up questions and new questions as needed. The same interview guide was used
to interview students from both courses. Interviews opened with some questions
about the student’s group to get to know the interviewee and to make them com-
fortable in the setting. Then, students received an introduction to the dashboard
and its functionality were described to them. Finally, students are instructed to
view the dashboard at their own pace and reflect out loud what the visualiza-
tions mean to them. Students were suggested to use sentences structured as
”This [surprises, makes sense to, is interesting to] me because” and to express
what they like and dislike about the dashboard’s features. The educators were
first presented with the tool through a demonstration, and the interview as a
more open ended discussion of the different features and usage scenarios in the
context of each interviews educational needs.

All recorded interviews have been transcribed using the software solutions
Temi [56] and oTranscribe[57] and analyzed using NVivo, a qualitative data
analysis software.



Git in an Educational Context 9

4 Results

4.1 Questionnaire results

In the following we discuss some of the findings from the questionnaire. The
two courses represent different populations and for some of the questions it is
interesting to identify and analyse the difference.

The students responding to the questionnaire report different level of ex-
perience with Git. For TDT4140, 72.1% answered they were somewhat or not
experienced with Git, compared to IT2810 where 81.3% of students said they
were quite or very experienced with Git. The difference is likely caused by the
courses being at different level and having different student populations. Stu-
dents of IT2810 are likely to have a different relationship with Git compared to
TDT4140 students. Substantiating the claim that IT2810 students are more ex-
perienced we observe that 89.6% of IT2810 students use Git for private projects
compared to 44.2% of TDT4140. These results may indicate that private projects
is a main source for experience and skills in using Git in these student popula-
tions. 100% of respondents from both courses agree or strongly agree that Git
simplifies working with others. Unsurprisingly, most perceive Git as valuable for
work after studies, 97.9% and 86% of IT2810 and TDT4140 students respectively
agree or strongly agree.

In terms of students perception and experience with git as a tool, we observe
that for IT2810, only 50% agree that Git easy to learn, 72.9% agree it is easy to
use, and 52.1% agree that it is easy to understand. In contrast, for TDT4140,
only 32.6% agree Git is easy to learn, 53.5% agree it is easy to use, and 37.2%,
agree it is easy to understand. The large number of students who find Git hard
to learn may be a result of little or no formal training or that it is a complex
tool to gain experience in. Student answers show that fewer TDT4140 students
understand how Git works (65.1%) compared to IT2810 (87.5%). Although not
all understand Git, most think it is necessary for project work and that it makes
it easier to track progress in the codebase (90.7% of TDT4140 and 93.8% of
IT2810). For IT2810, 6.3% students agree that Git has been demotivating to
use, 50% agreed it has been frustrating to use at times. Results of TDT4140 are
slightly worse, almost one out of five (18.6%) agree it has been demotivating to
use, 7% said it had caused more trouble than it has been helpful, and 58.1% agree
it has been frustrating to use at times. Furthermore, four students (9.3%) from
TDT4140 agree that Git has prevented them from focusing on programming. No
students of IT2810 reported the same. The more experienced IT2810 students
mainly have few problems with Git, compared to the less experienced TDT4140
students, but also shows that Git may impact the learning experience for some.

Regarding Git’s transparency, the two courses are similar in their answers.
Of IT2810 and TDT4140 respectively, 85.4% and 81.4% agree that it is OK that
staff can view their Git history, 79.2% and 67.4% are OK with strangers seeing
their code, and 95.8% to 95.3% are OK with group members seeing their code.
In a course context only educators and team members are likely to see students’
code. Thus, the positive numbers are reassuring.



10 Å. Haugse and T. Aalberg

Offering quantifiable metrics of contribution in terms of completing issues,
amount of commits, and similar metrics, 39.6% of IT2810 students agree that
using GitLab makes group work more competitive, 37.5% disagree, and 20.8%
neither agree nor disagree. On the other hand, only a smaller portion of TDT4140
agrees with the same statement. Most students agree with Git makes differences
in skill level more apparent, namely 75% of IT280 and 81.4% of TDT4140.
Furthermore, 50% and 48.8% respectively agree with Git works best if all team
members are on the same skill level. Close to one out of four (27%) of IT2810
students and 41.9% of TDT4140 students agree with the statement Working with
GitLab makes it worse to be on a lower skill level than the team, but we also
see that 50% and 25.6% respectively agree with GitLab makes it less difficult
to work with someone on a lower skill level than yourself. Whether students
experience this a problem or not is likely to be related to skill level and group size.
Supplementing the former statements, a third (33.3%) of IT2810 students and a
fourth (27.9%) of TDT4140 students agree with the statement of Development
with GitLab turn team members who accomplish less into scapegoats. Worth
noting is that also 45.8% of IT2810 and 51.2% disagree with the same statement.
The statement responses may reflect how less experienced students feel about
their contribution, but it can also be more experienced students who feel this
way. The slightly larger amount of IT2810 students who agree may correlate to
team sizes, because team members who contribute less will be more detrimental
to the project. For the statement of ”Git results in the best members hijacking
the development process”, a concerning 45.8% of IT2810 students and 37.2% of
TDT4140 students agree with the statement.

4.2 Dashboard evaluation

The dashboard was evaluated through demonstrations in combination with semi-
structured interviews with both students and educators. The intended outcome
of this evaluation is knowledge related to the specific visualizations and selection
of data and the perceived usability of the overall dashboard approach.

The advised group selection screen is of most interest to educators, providing
quick insight into the composition of all student groups of an entire course. The
current implementation was by none perceived to be perfect, and most educators
suggested changes that would fit better to their needs. Despite its shortcomings,
the general feedback was that the overarching idea of the dashboard was helpful.
The use of colors to quickly convey information visually, was well-received by all
educators. Most educators, however, were indifferent to smiley faces, emphasizing
the use of colors instead.

The selected metrics of commits, lines, merge requests, and issues, were per-
ceived to be good choices to capture student group performance, although not
equally valuable. For example, one educator suggested that for an exercise where
the curriculum is on issues, that metric would be the only of interest. Moreover,
he noted that for courses where students had yet to learn merge requests and
issues, it would not make sense to use those metrics.



Git in an Educational Context 11

Educators were also pleased to see how issues and merge requests developed
over time; some admitted not considering the data points as indicators before-
hand. As metrics to provide insight, an educator said

The curves (of the two diagrams) are very useful because they provide
insight into how the students experience the scope of the projects and
how they work towards it.

When asked if the dashboard could be helpful to them, all educators con-
firmed. Seven of the educators expressed that they would be interested in using
the dashboard’s Advised Group Selection view to gain insight into how student
groups perform throughout the semester. They expressed that they would use it
to spot struggling student groups, decide what student groups to give attention
to or contact. One educator noted that having issues visualized could impact
how he structured his course. Others indicate that more knowledge about how
students use Git could impact how they teach and train students in the use of
the tool. Several instructors said they already consult GitLab to gain insight
into student groups and that the same insight is more efficiently available from
using the dashboard. One educator is quoted below on the topic:

That is more useful than what GitLab offers out of the box. And I think
it would pretty much cover the typical use cases that we currently use the
data for. It’s a bit easier having the dashboard because you don’t have to
do sort of a manual checking yourself.

The anonymity of students was also a topic in the interview since user names
can be displayed. Some expressed that the dashboard should hide names to en-
sure a fair assessment of students. One educator expressed that showing student
names would improve their trust in the system and help validate the system’s
accuracy. Beyond this, the educator claimed that showing or hiding names would
not change the value of the dashboard.

As a mirroring tool, the dashboard aims to aid students in self-reflection and
provide new insights into their group’s performance. Overall, most students ex-
pressed that the visualizations made sense to them based on their impression of
their group’s work. When asked what wrong assumptions an outsider, e.g., an
educator, could make about their group, all students shared the same concern —
it does not capture all aspects of group work. All students of TDT4140 expressed
that the dashboard gave the impression that their group had significant differ-
ences in how much each member contributed because it does not account for
pair programming or other project-related work (e.g., report writing, planning).
Almost all IT2810 students expressed similar concerns.

When asked if they were made aware of anything new, a handful of students
replied that they had become more aware of Git as a tool and the correlation (or
lack of) correlation between commits and lines. Some students expressed that
viewing their data visualized changed their impression of their own contribution
to the project. One student, claiming to be the least experienced member of
their group, expressed:



12 Å. Haugse and T. Aalberg

Now looking at project four, like I felt that I was contributing very little
to the project sometimes, but looking at it now, it’s like, I’m definitely
had fewer commits or whatever than others, but it’s not that uneven...

In contrast, several students expressed that the dashboard served to confirm
notions they had of their group. All students were told to use the dashboard
with their project experiences in mind. However, some students experienced the
dashboard not to be useful. Although they agreed with the visualizations, they
did not express any new insights, realizations or enjoyment.

Students were mainly of the impression that the dashboard should not hide
students’ names, although some also made arguments for anonymization. Con-
cerning the harmful effects of having students’ contributions on display, some
students were concerned about how those who contributed less would experience
this transparency. Although the same data is available in GitLab, differences are
more apparent when data is aggregated.

5 Conclusion

The survey conducted to answer the research question on students’ perceptions
on and experiences with using Git, serves both to verify previous research and
to probe into the relatively unexplored social implications of Git in educational
group work. Previous finding on the challenges of learning and using Git is
verified but also the positive perception of its usefulness and relevance. Results
also indicate that using Git has effect on group dynamics and how students
perceive their team members. Respondents have different opinions on statements
such as Git makes skill differences more apparent, Git makes it worse to be on a
lower skill level than other, Git makes team members that accomplish less into
scapegoats, Git results in the best members hijacking the development process.
These are all problems where educators need to listen to the voice of the few. As
long as some have these experiences they need to be addressed when we make
use of Git in education.

Respondents on the questionnaire where recruited from two courses at NTNU
and the findings are more of value as qualitative insight rather than quantitative,
given the low number or participants. It is also worth commenting that many
study programs (even at NTNU) have a more systematic approach to the use of
Git in the education and possible future work is to survey these courses to learn
about the effect when Git is better integrated in the teaching.

To answer the research questions on how to visualize Git data and what these
visualizations have to offer, a dashboard solution using GitLab data has been
implemented and evaluated by both educators and students. The visualizations
are designed to provide insight into student groups work and offers educators
functionality to identifying groups that may be lagging behind or have anoma-
lies in how team members contribute. The interviews support the relevance of
such a tool. Feedback from interviewees shows that the selected visualizations
can be helpful to gain insight into work and work patterns in retrospect. The vi-
sualizations allowing for comparing student contributions were well-received by



Git in an Educational Context 13

both students and educators. Furthermore, the dashboard design was perceived
to have high affordance and conveyed data to students and educators in a way
that made sense.

Interviews with students and educators have solidified the need for better
understanding of the data and critical thinking when viewing the visualizations.
Although providing some insight into how students work, the data on its own do
not do accurately capture all aspects of software development in groups. Find-
ings also indicate that the visualizations can be helpful to students to improve
self-reflection, planning in groups, and make students aware of work patterns.
However, results show that individuals viewing the dashboard in retrospect made
few new realizations.

The implemented prototype dashboard served well to demonstrate the use
of mirroring tool using git data. In particular the educators had many opinions
about what to show and in what way, indicating that such a dashboard solu-
tions needs to be highly configurable to succeed as an attractive tool to use in
education - which is a topic for future work.

References

1. Chacon, S., Straub, B.: Pro git. Springer Nature (2014)

2. Colbeck, C.L., Campbell, S.E., Bjorklund, S.A.: Grouping in the Dark. The Journal
of Higher Education 71(1), 60–83 (Jan 2000)

3. Curşeu, P.L., Pluut, H.: Student groups as learning entities: The effect of group
diversity and teamwork quality on groups’ cognitive complexity. Studies in Higher
Education 38(1), 87–103 (Feb 2013)

4. Dietsch, D., Podelski, A., Nam, J., Papadopoulos, P.M., Schäf, M.: Monitoring
Student Activity in Collaborative Software Development. arXiv:1305.0787 [cs] (Jun
2013)

5. Feliciano, J.: Towards a Collaborative Learning Platform: The Use of GitHub in
Computer Science and Software Engineering Courses. Thesis, University of Victoria
(2015), accepted: 2015-08-31T21:15:20Z ISSN: 1906-1927

6. Feliciano, J., Storey, M.A., Zagalsky, A.: Student Experiences Using GitHub in
Software Engineering Courses: A Case Study. In: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering Companion (ICSE-C). pp. 422–431
(May 2016)

7. Freeman, K.A.: Attitudes toward Work in Project Groups as Predictors of Aca-
demic Performance. Small Group Research 27(2), 265–282 (May 1996), publisher:
SAGE Publications Inc

8. Haaranen, L., Lehtinen, T.: Teaching Git on the Side: Version Control System as a
Course Platform. In: Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education - ITiCSE ’15. pp. 87–92. ACM Press,
Vilnius, Lithuania (2015)

9. Hall, D., Buzwell, S.: The problem of free-riding in group projects: Looking beyond
social loafing as reason for non-contribution. Active Learning in Higher Education
14(1), 37–49 (Mar 2013), publisher: SAGE Publications

10. Hendry, G.D., Ryan, G., Harris, J.: Group problems in problem-based learning.
Medical Teacher 25(6), 609–616 (Nov 2003), publisher: Taylor & Francis Ltd



14 Å. Haugse and T. Aalberg

11. Hsing, C., Gennarelli, V.: Using GitHub in the Classroom Predicts Student Learn-
ing Outcomes and Classroom Experiences: Findings from a Survey of Students
and Teachers. In: Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education. pp. 672–678. SIGCSE ’19, Association for Computing
Machinery, New York, NY, USA (Feb 2019)

12. Kelleher, J.: Employing git in the classroom. In: 2014 World Congress on Computer
Applications and Information Systems (WCCAIS). pp. 1–4 (Jan 2014)

13. van Knippenberg, D., Schippers, M.C.: Work Group Diversity. Annual Review of
Psychology 58(1), 515–541 (2007)

14. Kosba, E., Dimitrova, V., Boyle, R.: Using Student and Group Models to Support
Teachers in Web-Based Distance Education. In: Ardissono, L., Brna, P., Mitrovic,
A. (eds.) User Modeling 2005. pp. 124–133. Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg (2005)

15. Lawrance, J., Jung, S., Wiseman, C.: Git on the cloud in the classroom. In: Pro-
ceeding of the 44th ACM technical symposium on Computer science education.
pp. 639–644. SIGCSE ’13, Association for Computing Machinery, New York, NY,
USA (Mar 2013)

16. van Leeuwen, A., Rummel, N.: Comparing teachers’ use of mirroring and advising
dashboards. In: Proceedings of the Tenth International Conference on Learning An-
alytics & Knowledge. pp. 26–34. LAK ’20, Association for Computing Machinery,
New York, NY, USA (Mar 2020)

17. Mazza, R., Dimitrova, V.: CourseVis: A graphical student monitoring tool for sup-
porting instructors in web-based distance courses. International Journal of Human-
Computer Studies 65(2), 125–139 (Feb 2007)

18. Oakley, B., Felder, R.M., Brent, R., Elhajj, I.: Turning student groups into effective
teams. Journal of Student Centered Learning 2(1) (2004), publisher: Citeseer

19. Robles, G., Gonzalez-Barahona, J.M.: Mining student repositories to gain learn-
ing analytics. An experience report. In: 2013 IEEE Global Engineering Education
Conference (EDUCON). pp. 1249–1254 (Mar 2013)

20. Siemens, G.: Learning Analytics: The Emergence of a Discipline. American Be-
havioral Scientist 57(10), 1380–1400 (Oct 2013), publisher: SAGE Publications
Inc

21. Sindre, G., Giannakos, M., Krogstie, B.R., Munkvold, R.I., Aalberg, T.: Project-
Based Learning in IT Education: Definitions and Qualities. 147-163 (2018), ac-
cepted: 2018-06-13T13:17:13Z Publisher: Universitetsforlaget

22. Soller, A., Mart́ınez, A., Jermann, P., Muehlenbrock, M.: From Mirroring to Guid-
ing: A Review of State of the Art Technology for Supporting Collaborative Learn-
ing. International Journal of Artificial Intelligence in Education (IOS Press) 15(4),
261–290 (Dec 2005)

23. Voyiatzaki, E., Avouris, N.: Support for the teacher in technology-enhanced collab-
orative classroom. Education and Information Technologies 19(1), 129–154 (Mar
2014)


