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Abstract. A primary concern of intelligent traffic management systems
(ITMS) is to collect necessary traffic data. Vehicle position is one of
the most important data types to manage traffic effectively. Most cur-
rent approaches to localize modern vehicles (MVs) fall into three cate-
gories. The first category uses standalone reference stations, such as the
wide-area augmentation system (WAAS), which are expensive modules.
The second category uses multiple expensive localization sensors such as
the global positioning system (GPS), global navigation satellite system
(GNSS), and inertial measurement unit (IMU). However, such expensive
solutions may not be applicable in all vehicles, impacting generalizabil-
ity. The third category is a software-based approach. As opposed to the
abovementioned approaches using expensive hardware, the third cate-
gory uses software, such as map-matching techniques, to augment noisy
localization sensors. In this study, we investigated map-matching soft-
ware in some case studies and found that it cannot locate the vehicle
effectively if the positional data are collected by a low-cost and too noisy
GPS receiver. Therefore, this paper analyzes and highlights the impact of
GPS receiver’s noise in applying self-localization. It also proposes a new
methodology by integrating cross-GPS validation, interpolation/best fit,
and map-matching techniques to localize a vehicle in the presence of
GPS signal noise and investigate it in real traffic data from a metropoli-
tan area. Our proposed methodology is able to identify the more accurate
GPS receiver dynamically, by considering the fixed distance between the
two GPS receivers. Our evaluations indicate that the proposed method-
ology can significantly improve vehicle self-localization performance.
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1 Introduction

Over the past several years, population growth has led to an increase in vehicle
numbers. Combined with global urbanization trends, this has resulted in in-
creased traffic congestion in many cities. Therefore, traffic management systems
should be implemented or improved in order to mitigate traffic congestion. As
a result, ITMS is introduced to manage traffic based on traffic data and make
smart decisions. Such data could originate from stationary sensors such as in-
ductive loop detectors, or from vehicle-mounted sensors, such as GPS, camera
radar, and LiDAR.

One of the most important kinds of traffic data is the vehicle location. A
GPS receiver is a common solution to estimate the vehicle location in a GPS
coordinate system, as most MVs are equipped with it. However, the accuracy of
data collected via a GPS receiver depends on several parameters, such as hard-
ware accuracy, satellite geometry, signal blockage, and atmospheric conditions
[6].

To satisfy vehicle localization requirements and mitigate the estimated loca-
tion error, three major categories of approaches are proposed in the literature
[3], [5]. One category of approaches uses a standalone reference station, such
as WAAS (e.g., [17]), to align the computed GPS data. The second one is the
hardware-based approach, which utilizes various sensors (e.g., IMU [8]). Us-
ing technologically advanced sensors to determine vehicle location would boost
estimation accuracy. However, equipping the vehicle with such sensors will in-
crease the vehicle cost. Thus, many vehicle manufacturers may choose to use
low-cost GPS receivers for localization purposes, which are likely to be noisy.
The third category uses software, such as map-matching techniques, to augment
noisy localization sensors [18]. Map-matching is a technique that integrates map
information and recorded geolocation data from the vehicle in order to increase
the accuracy of the vehicle location [19]. Although map-matching techniques are
applied widely to minimize vehicles’ localization error, in this study, we found
that map-matching techniques (e.g., QGIS offline map-matching [13], [12]) do
not work well if the GPS data collected via a low-cost GPS receiver are too noisy.

Therefore, a much-debated question is how to keep the hardware/sensors’
cost low as well as localization accuracy high. This paper analyzes and highlights
the importance of the accuracy of the low-cost GPS receiver in the performance
of vehicle self-localization (i.e., a vehicle determining its position on the map)
and proposes a new methodology by integrating cross-GPS validation, interpola-
tion/best fit, and map-matching techniques to localize a vehicle in the presence
of GPS signal noise. Our proposed methodology is able to identify the more
accurate GPS receiver dynamically, by considering the fixed distance between
the two GPS receivers. We implemented and evaluated our approach using real
traffic data from a metropolitan area in Chengdu, China. The results show that
our proposed approach is able to enhance vehicle localization performance.

The paper is organized as follows. Section 2 gives a brief overview of related
work. Section 3 explains our proposed research design. Section 4 presents our
proposed research approach. Section 5 describes our proposed research approach.
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The discussion is presented in section 6. The last section concludes and proposes
future works.

2 Related Work

Vehicle localization based on GPS receivers is a key component in managing
traffic safely and effectively. However it can be imprecise, causing operational
difficulties. Many approaches have been proposed to process imprecise data from
GPS receivers to acquire accurate vehicle localization [3], [5]. For instance, Islam
et al. [5] enhanced GPS accuracy by considering the vehicle movement direction,
velocity averaging, and distance between waypoints using coordinate data. Their
experiment used a vehicle-mounted Garmin GPS 19xHVS receiver. In order to
study the accuracy, they plotted data on Google Maps. The proposed approach
achieved a GPS position accuracy of 4–10 meters [5]. Acosta et al. [11] proposed
an approach based on Kalman filter, fuzzy logic, and information selection. In the
experiment step, they used three Garmin 18X USB GPS receivers that were con-
nected to two notebook computers. The proposed approach in [11] smoothened
the measurement error, and mitigated the error that fluctuates in time. In 95%
of the measurements, the error fluctuates with ±1 meter, and in some cases in
±0.2 meters [11]. Tang et al., in [15], proposed an adaptive map-matching algo-
rithm based on the hierarchical fuzzy system. In this approach [15], a historical
trajectory, adaptive learning scheme, and hierarchical fuzzy inference structure
were used. The experimental results showed that the proposed algorithm in [15]
was able to increase the matching accuracy, outperformed the topological and
geometric methods. Recent research has focused on AI (Artificial Intelligence)
to address the vehicle localization problem. For instance, Lecce et al. [1] used
generalized regression neural networks to increase GPS position accuracy by cor-
recting the receiver’s position. The idea was to use the analytical description of
the time series to improve the position accuracy. The authors used a two-layer
neural network. They proposed an approach based on removing the GPS posi-
tioning error by training a neural network to mitigate the periodic components
of GPS positioning error. In the experiment step, they used only one GPS re-
ceiver BU-353. The mean improvement in the accuracy of the GPS position of
the proposed approach is 25%. However, the output of this approach strongly
depended on the training data set [1].

3 Research Design

In our recent studies [9], [10], data were collected with a vehicle equipped with
a monocular camera with a built-in GPS receiver. The purposes of those stud-
ies were to use the ego-vehicle as a mobile sensor, estimating traffic data for
surrounding vehicles, in order to share them with ITMS. This approach would
enable ITMS to generate a model (e.g., digital twin) of a traffic status and
make accurate and smart decisions. Through our studies [9], [10] we found that
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the image-based target vehicle localization accuracy is tightly connected to the
localization accuracy of the ego-vehicle itself.

In the current study, to collect data, we used three vehicles to follow various
trajectories. Each vehicle was equipped with two monocular cameras. One cam-
era was mounted on the front windshield, and another camera was mounted on
the rear window of the vehicle. These two cameras were located at a known dis-
tance from each other on each vehicle and helped us to validate the GPS receiver
accuracy, as well as collecting footage from both sides of the vehicle, which were
needed for further image processing-based studies in the future. All cameras used
were of the type GoPro Hero 7. The monocular camera is a low-cost sensor with
great potential to be mounted on most MVs, making our approach generaliz-
able. Moreover, existing advanced vehicles are already equipped with monocular
forward-facing cameras for safety and insurance reliability purposes. Therefore,
an approach based on a monocular camera will be compatible with both existing
advanced vehicles and future ego-vehicles. Furthermore, monocular cameras are
one of the most used sensor types in previous research. In addition to collecting
video footage, the chosen camera enabled GPS data collection, as it included a
built-in GPS receiver.

To begin this research, first, we analyzed the accuracy of the collected GPS
data via the GPS receiver mounted on the front window glass by plotting them
on a map (the data collection process is described in detail in section 5.1). Fig.
1 shows one example of the studied scenarios where the ego-vehicle turns right
at an intersection. In Fig. 1-A, the blue arrow shows the vehicle’s movement
scenario. The polyline, which is a combination of green and red colors, represents
the vehicle location based on the front GPS receivers mounted in the vehicle.
The color of the polyline represents vehicle speed. This polyline and its colors
are plotted automatically by using Telemetry Extractor for GoPro [16].

Fig. 1. Problem formulation. A) Vehicle locations collected via a front-mounted GPS
receiver in the vehicle (green-red polyline), compared with the vehicle’s movement
scenario (blue polyline). B) Map-matching output (yellow polyline) related to the noisy
front GPS receiver (red polyline) by considering the true vehicle trajectory (black
polyline). C) Vehicle locations via two GPS receivers on the same vehicle (front GPS
receiver: red polyline, rear GPS receiver: purple polyline.)
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Our first attempt was to use map-matching software to address the GPS
receiver noise issue to get the precise vehicle location. We used QGIS offline
map-matching software [12], [13], which is one of the widely used approaches
to minimize the GPS error. Fig. 1-B presents our finding after applying map-
matching to the same studied scenario. In this figure, the black polyline is the
true vehicle trajectory on the road. The red polyline represents the positions
collected via the front GPS mounted on the vehicle (part of this red polyline
is covered by the yellow polyline), and the yellow polyline represents the map-
matched positions of the noisy GPS receiver. It is clear from this figure that
QGIS offline map-matching software [13], [12] is not able to identify and map-
match the entire trajectory accurately if the vehicle localization error is too
high.

Then, we analyzed data from another GPS receiver on the same vehicle in
the studied scenario. We found varying degrees of positional error between the
two GPS receivers. Fig. 1-C shows the results. In Fig. 1-C, the red polyline is
the vehicle position based on the GPS receiver mounted on the front window
glass. The purple polyline shows the vehicle position based on the GPS receiver
mounted on the rear window glass on the same vehicle. As this figure shows, the
localization error of the front-mounted GPS receiver is much higher than that
of the rear-mounted GPS receiver in this scenario.

4 Research Approach

Fig. 2 illustrates our proposed approach, which comprises data collection, data
pre-processing, and methodology.

Fig. 2. Our proposed approach.

4.1 Data Pre-Processing

As previously stated, positional data were collected using two GPS receivers
mounted on ego-vehicles. Before applying our methodology, the data were pre-
processed. In this step, first, we need to convert a spherical coordinate system
[14] into a north, east, down (NED) coordinate system [7] on the earth’s surface.
The conversion is both practical and justified, since we are studying a small,
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demarcated area on the earth’s surface. Secondly, since the two mounted GPS
receivers in the vehicle are independent and the data collection was not started
concurrently, we need to synchronize them in the time domain in order to facil-
itate analysis.

4.2 Methodology

In this step, first, we need to analyze the accuracy of the two mounted GPS
receivers in the same vehicle. To detect whether the GPS signals are accurate,
we calculated the vector distance of the estimated positions via the two GPSs
at equal timestamps, as the two GPS receivers were mounted a known distance
from each other in the same vehicle. If it is found that the vector distances
are different from this fixed distance, we can conclude that at least one of the
GPS receivers is inaccurate, which means we need to identify the accurate GPS
receiver.

To identify the more accurate GPS receiver, we developed a new algorithm
based on cross-validation, interpolation/best fit techniques. Cross-validation aims
to find the positions in the trajectory where both GPS receivers are almost in
agreement (with a threshold ±e) with regard to vehicle position. It does so
based on the Euclidean distance between the front and rear GPS receivers. As
the number of validated positions that both GPS receivers agreed on is limited,
we generated extra points based on the validated positions by applying inter-
polation techniques [4]. In addition, for the straight vehicle movements, which
are determined based on the vehicle movement slope, the best fit technique [2]
is used to generate more points in the whole trajectory based on the validated
and interpolated points. Then, to identify the more accurate GPS receiver, we
used the average Euclidean distance between the validated/generated (i.e., in-
terpolation/best fit) positions and the positions collected by each GPS receiver.
The GPS receiver with the smallest average distance is identified as the more
accurate one. Although we can identify that one GPS is more accurate than the
other, it is possible that the more accurate one is also noisy. This step inserts
the data from the identified more accurate GPS receiver into a map-matching
algorithm, using it to further amend the noisy GPS signal. We investigated the
effectiveness of several existing map-matching software applications and identi-
fied the one which was most compatible with our data. We found QGIS offline
map-matching software [13], [12] was a suitable and effective tool to apply map-
matching in our research context.

5 Evaluation

5.1 Data Collection

To evaluate our proposed approach, experiments were run in several case studies
from real traffic. The three equipped vehicles described in section 3 were driven in
the metropolitan region of Chengdu, China. In order to provide acceptable data
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coverage and generalizability, eight different scenarios were defined, comprising
both straight streets and intersection movements. In total, 24 trajectories were
considered. As Fig. 3 shows, there are many tall buildings surround the studied
area, which may interfere with GPS signal accuracy and cause GPS information
inaccuracies, which is a regular occurrence in a metropolitan environment.

Fig. 3. One example of traffic status in a studied scenario from a metropolitan area.

As the ground-truths related to vehicle movements in this study were not
available, we extracted them manually by visually observing forward-facing video
footage and identified the ground-truth vehicle movement using Google Earth
Pro.

5.2 Evaluation Results

As we experimented, if the GPS signal was too noisy, QGIS offline map-matching
[13], [12] was able to minimize the localization inaccuracy of only a segment of the
trajectory, which reduced the performance. The performance of self-localization
may improve by widening that segment, which is addressed in this article. There-
fore, we used the Cartesian length of the trajectory to evaluate our proposed
self-localization approach. Table 1 summarizes our findings. This table included
8 scenarios (S1-S8) by considering three equipped vehicles (V1-V3). The sec-
ond column, named Data, shows input data features: I) the Cartesian length of
the vehicle movement via GPS receivers (Cartesian length measurement error
is in the range of ±2m). II) the average distance between the vehicle positions
collected via each GPS receiver and the ground-truth vehicle trajectory. If the
Cartesian length of the vehicle via both GPSs varies, we can conclude one of the
GPS receivers is noisy. To identify the amount of noise related to each GPS on the
same vehicle, we calculated the average distance between the vehicle positions
collected via each GPS receiver and the ground-truth vehicle trajectories that
were estimated by visually observing the video footage and the GPS information
acquired from Google Earth Pro based on distance to nearest hub (points). The
last column, named Output, summarizes our findings related to both using pure
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QGIS offline map-matching [13], [12] and our proposed approach, which relies
on identifying the more accurate GPS receiver.

Table 1. Case study evaluation.

Data Output

Cartesian Length (m) Avg. Dis. (m)
map-matching-based
Cartesian Length (m)

Our proposed approach
Scenario Vehicle

Front
GPS

Rear
GPS

Front
GPS

Rear
GPS

Front
GPS

Rear
GPS

Accurate
GPS

Cartesian
Length (m)

V1 491 535 12.009 4.935 490 532 Rear 532
V2 513 517 2.044 10.746 513 514 Front 513S1
V3 441 437 2.324 4.415 441 437 Front 441
V1 180 176 1.457 6.058 179 178 Rear 178
V2 191 180 4.358 3.385 191 177 Front 191S2
V3 148 145 1.669 2.19 147 145 Front 174
V1 193 153 1.955 1.774 191 155 Rear 155
V2 190 183 1.552 4.612 189 184 Front 189S3
V3 160 153 3.608 13.860 159 150 Front 159
V1 157 159 4.241 0.665 156 159 Rear 159
V2 163 163 6.044 1.84 163 162 Front 163S4
V3 188 188 1.388 2.264 188 188 Front 188
V1 179 157 5.170 1.798 174 162 Rear 162
V2 188 188 3.126 4.900 188 188 Front 188S5
V3 116 116 1.450 2.385 118 118 Front 188
V1 123 116 3.752 6.913 124 117 Rear 177
V2 186 192 1.333 7.131 186 194 Front 186S6
V3 – – – – – – – –
V1 114 111 1.834 4.460 106 106 Rear 106
V2 141 143 7.660 4.803 141 142 Front 141S7
V3 – – – – – – –
V1 27 103 3.515 1.402 27 109 Rear 109
V2 100 96 1.493 2.983 103 107 Front 103S8
V3 150 148 1.627 2.939 150 148 Front 150

To describe the information presented in 1 in detail, consider scenario S8,
vehicle V3 as an example. In this row, the Cartesian length of the map-matched
positions via both GPS receivers are almost similar (front GPS:=150 m, rear
GPS:=148 m). This shows that applying map-matching software would be enough
to correct such small errors satisfactorily. However, this table shows that when
the GPS error is high, applying only QGIS offline map-matching [13], [12] may
not be effective. For instance, consider scenario S8, vehicle V1. In this case, in
the Data column, the Cartesian length related to the front GPS receiver equals
27 m, while it is equal to 103 m for the rear GPS receiver. As the difference
in estimated movement length across the two receivers is high, it can be con-
cluded that one of the receivers is very noisy and unable to estimate the vehicle
trajectory correctly. In the Output column, we can see that applying only map-
matching matched 27 m of the whole trajectory and was not able to improve
the measurement error caused by the front GPS effectively, which means that
identifying the more accurate GPS is vital. Therefore, by applying our proposed
approach, the accurate GPS receiver is identified and presented in the Output–
Accurate GPS column. So, in this case, the rear GPS is labeled as the accurate
one, and the applied map-matching used that GPS receivers and improved the
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accuracy of 109 m of the trajectory. By applying further analysis, it was found
that our proposed approach increased the localization performance in 53.86% of
the studied scenarios. In this table, for vehicle 3 in scenarios S6 and S7, the more
accurate GPS receiver was unidentified, as the rear-end GPS receiver did not
record during the whole scenario. The reason for this could be that the battery
died, or the memory card became full.

6 Discussion

Prior studies have noted the importance of identifying and mitigating the mea-
surement error of GPS receivers. This paper developed a new algorithm to iden-
tify the more accurate GPS receiver if there are multiple possibly noisy GPS
receivers installed on the same vehicle, based on cross-validation and interpola-
tion/best fit techniques.

Compared to the approach relying on expensive GPS receivers or multiple
sensors, our approach provides a low-cost solution to identify a vehicle’s loca-
tion precisely. Compared to the approach that solely relies on map-matching,
our strategy of detecting GPS inaccuracy and prioritizing using the data from
the more accurate GPS helped enhance the performance of the map-matching
software.

The most important limitation in this study lies in the fact that the cross-
validation step relies on finding overlapping positions collected by both GPS
receivers on the same vehicle. If the localization error of one GPS receiver is too
high and there are no overlapping points with the other receiver, cross-validation
is simply not feasible. This might be the case if one GPS receiver has estimated
the vehicle position totally wrong. Also, this method is based on post-processing
and is not instantaneous.

7 Conclusion and Future Work

In this study, our focused context is defined as mounting two low-cost and possi-
bly imprecise GPS receivers on the same vehicle with a fixed and known distance
from each other to accurately identify the position of the vehicle based on cross-
validation, interpolation/best fit while the vehicle is moving. We developed a new
algorithm to identify the more accurate GPS receiver in the presence of noise
and fed the GPS information from the identified more accurate GPS receiver to
map-matching software. The proposed approach minimized the measurement er-
ror of the low-cost GPS receiver and was able to enhance the vehicle localization
performance, specially when the GPS signal was too noisy. Since the study was
limited to vehicle movements through intersections and along straight streets,
more studies are needed to be able to generalize our approach by considering
various vehicle movements, driving speeds, and weather conditions. Also, fur-
ther research should be undertaken to evaluate the accuracy of our proposed
approach by considering different types of scenarios with longer trajectories.
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