
Enhancing Search-Based Testing With Testability
Transformations For Existing APIs

ANDREA ARCURI, Kristiania University College and Oslo Metropolitan University, Oslo, Norway
JUAN P. GALEOTTI, Depto. de Computación, FCEyN-UBA, and ICC, CONICET-UBA. Argentina

Search-based software testing (SBST) has been shown to be an effective technique to generate test cases
automatically. Its effectiveness strongly depends on the guidance of the fitness function. Unfortunately, a
common issue in SBST is the so-called flag problem, where the fitness landscape presents a plateau that
provides no guidance to the search. In this paper, we provide a series of novel testability transformations aimed
at providing guidance in the context of commonly used API calls (e.g., strings that need to be converted into
valid date/time objects). We also provide specific transformations aimed at helping the testing of REST Web
Services. We implemented our novel techniques as an extension to EvoMaster, a SBST tool that generates
system level test cases. Experiments on nine open-source REST web services, as well as an industrial web
service, show that our novel techniques improve performance significantly.

CCS Concepts: • Software and its engineering� Software verification and validation; Search-based
software engineering.

Additional Key Words and Phrases: SBST, test generation, testability transformation, system testing, REST

ACM Reference Format:
Andrea Arcuri and Juan P. Galeotti. 2021. Enhancing Search-Based Testing With Testability Transformations
For Existing APIs. 1, 1 (May 2021), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Search-based software testing (SBST) [4, 37] has been shown to be an effective technique to
automatically generate test cases. Examples include unit testing of Java software with open-source
tools like EvoSuite [28], and testing of mobile applications with the Sapienz tool at Facebook [5].

When doing white-box testing, different techniques are used to define heuristics to smooth the
search landscape. The most common in the literature of SBST is the so-called Branch Distance [41],
which is used in tools like EvoSuite and EvoMaster [8, 17] (the latter targeting system test
generation for web services). Given a boolean predicate in the code of the system under test (SUT),
the branch distance provides a heuristic value to guide the search toward solving such constraints.

Unfortunately, a common issue is the so-called flag problem [21], where the branch distance is not
able to provide any gradient. An approach to address this issue is to transform the code of the SUT to
improve the fitness function, using so-called Testability Transformations [36]. For example, consider
a scenario where our target program is dealing with string operations returning booleans [6], like
comparisons of two strings for equality. By default, a predicate like x.equals("foo")would just be
a flag, returning true or false. But testability transformations can be used to replace such functions

Authors’ addresses: Andrea ArcuriKristiania University College and Oslo Metropolitan University, Oslo, Norway, andrea.
arcuri@kristiania.no; Juan P. GaleottiDepto. de Computación, FCEyN-UBA, and ICC, CONICET-UBA. Argentina, jgaleotti@
dc.uba.ar.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Andrea Arcuri and Juan P. Galeotti

(or insert probes) to provide better heuristic values, with different kinds of string distances. For
example, EvoSuite [28] uses bytecode manipulation to replace all boolean methods in the class
java.lang.Stringwith its own custom versions. However, it can do this only when such methods
are used directly before a bytecode branch instruction (e.g., derived from an if statement), and not
under other circumstances (e.g., when stored in a boolean variable).

Unfortunately, there are several APIs in the core libraries of the different programming languages
(e.g., Java) that can result in the flag problem. This is not only the case for methods that return
a boolean, but also for methods that throw an exception when provided with an invalid input.
For example, this can happen when we use API calls to transform a string into a date object (e.g.,
LocalDate.parse(dateString)), or into a number (e.g., Integer.parseInt(intString)). Here
we would need a way beyond the branch distance to guide the search to find the right inputs that
lead these APIs calls to execute without throwing an exception. Our techniques can be successfully
applied to handle these cases as well.

When dealing with the system testing of REST web services [11], the test generation tools need
to access to a schema (e.g., in OpenAPI/Swagger format [1]) to know which endpoints are available,
and which type of query parameters and body payloads are expected as input. Unfortunately,
schemas could be under-specified (i.e., some important info might be missing), especially when they
are automatically derived based only on method signatures (e.g., when using libraries like SpringFox
or SpringDoc for popular enterprise frameworks like Spring [3]). Testability transformations can
be used here to analyze how HTTP requests are handled at runtime in the SUT, and use this info
to improve the search. Furthermore, when dealing with testing of a RESTful API (and also web
applications in general), for performance reasons there are behaviours in the SUT that should be
avoided, like the HTTP server closing the TCP connections on user errors. This can also be solved
with Testability Transformations, especially in the cases in which those servers do not expose such
functionalities via configurations.

In this paper we provide the following main contributions:

• A novel approach for testability transformations of commonly used APIs. The presented
approach is not limited to transforming methods only before jump instructions and it can
also supports methods that throw exceptions (such as parseInt). It can be used to handle
functions that return booleans and/or throw exceptions on invalid inputs.

• A novel technique to track test inputs that are used directly in our transformed methods
without modifications. In such cases, feedback is given to the search algorithm to generate
the needed data directly.

• A novel testability transformation which is specific for REST web services, and that is able
to detect when the SUT is using HTTP query parameters, headers and body payloads not
specified in the schema of the web service. This feedback is then used to include such HTTP
inputs as part of the search.

We implemented our novel techniques as an extension of the EvoMaster tool, which is open-
source.We evaluated our techniques on nine open-source RESTweb services, as well as an industrial
web service. Our experiments show that our novel techniques improve performance significantly,
both in terms of fault finding and code coverage. For example, on the industrial case study, with
our novel techniques, it was possible to automatically detect seven new faults in it. The presented
techniques could be used in other testing contexts (e.g., unit test generation) and programming
languages (e.g., JavaScript and C#). However, without sound empirical evaluations, we cannot be
sure that they will be as effective.

This paper is an extension of a conference submission [16]. In addition to providing more details
and explanations of our techniques, we improved the handling of input tracking for strings when

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 3

two tracked inputs are compared with each other (Section 5). We also added handling of JSON
parsing (Section 6), and transformations for improving TCP connection handling (Section 7). To
better support the validity of our results, we employed a much larger empirical study (Section 8).
This paper is organized as follows. Section 2 provides background information to better un-

derstand the rest of the paper. Related work is discussed in Section 3. Our novel techniques for
testability transformations are presented in Section 4. How to improve the performance with input
tracking is discussed in Section 5. How to deal with under-specified REST API schemas using geno-
type expansion follows in Section 6. Section 7 shows how we can use testability transformations to
improve performance issues during the search due to TCP connection handling. Section 8 presents
our empirical study. Threats to validity are discussed in Section 9. Finally, Section 10 concludes the
paper.

2 BACKGROUND
2.1 Branch Distance
In SBST, test generation is cast to an optimization problem, where we try to maximize metrics like
code coverage. However, the control flow of a program could depend on complex predicates, like
conditions in if statements. Only a tiny subset of the input space could lead to data for which such
predicates evaluate to true. Without any heuristics, it would be unlikely to find the right data to
maximize code coverage. Consider a trivial example like if(x==42). Assuming x being an integer,
then there is only 1 possibility out of 4 billions (i.e., 232) to get the right data, if chosen at random.
To help the search to find such data, heuristics are used to ‘‘smooth’’ the search landscape.

Instead of a binary decision ‘‘branch covered’’ vs. ‘‘branch not covered’’, which would lead to
fitness plateaus in the fitness landscape, we can provide heuristics to state how ‘‘close’’ an input
is from making the predicate true. For example, a value 50 is heuristically closer than 100000 in
covering if(x==42), although the predicate evaluates as false in both cases.
In the 90s, Korel [41] defined a series of heuristics for numerical constraints, called branch

distance. For example, 𝑑 (𝑥 == 42) = |𝑥 − 42|. The idea is that the predicate is solved when 𝑑 = 0,
and the search process can use such distance as a metric to minimize. Besides numerical constraints,
the branch distance has been then extended for logical operators [31] and string comparisons [6].

2.2 Java Bytecode
Java programs are compiled into an intermediary representation, that is called bytecode. Java
programs are then run in a virtual machine, called JVM. Different programming languages do
compile to JVM bytecode, like Kotlin and Scala.

The JVM is a stack-based machine, where bytecode instructions push and pop data from a stack
(one per execution thread). Bytecode instructions are interpreted, and executed one at a time by
the JVM. But for performance reasons, the JVM can decide to compile some parts of the bytecode
into native code, on the fly, in the so-called Just-In-Time (JIT) compilation.

Consider a simple function like:
public boolean foo (in t x) {

i f (x ==42) {
return true ;

}
return fa l s e ;

}

Its bytecode will look like:
L0

, Vol. 1, No. 1, Article . Publication date: May 2021.

4 Andrea Arcuri and Juan P. Galeotti

LINENUMBER 2 L0
ILOAD 1
BIPUSH 42
IF_ICMPNE L1

L2
LINENUMBER 3 L2
ICONST_1
IRETURN

L1
LINENUMBER 5 L1
ICONST_0
IRETURN

Here, the LINENUMBER instruction is used for debugging, to keep track in which source file
the instruction was defined, and to give labels for jump instructions. Then, the content of input
parameter x is pushed on the stack with the instruction ILOAD 1, followed by the pushing of the
constant 42 with BIPUSH. Then, IF_ICMPNE L1 pops the 2 top values from the stack: if they are
not equal, then the execution flow jumps to the bytecode instruction labeled with L1, otherwise
it continues with the next one (L2 in this case). Here, either the constant 0 or 1 is pushed with
ICONST_*, and then such value is returned with IRETURN. Note that the JVM has no concept of
boolean values, and rather it uses the number 0 for false, and 1 for true.
When a Java (or Kotlin/Scala) program is compiled, .class files will be generated, which can

be archived together into JAR/WAR files. During the program execution, the JVM will load such
bytecode with the so-called Class Loaders. The JVM allows intercepting the loading of all classes
with the so-called Java Agents, which allow manipulating such bytecode at runtime before is loaded
into the JVM by the class loaders (e.g., using the library ASM1). This approach is useful for code
coverage tools, e.g., to add coverage probes, and also by test generation tools like EvoSuite and
EvoMaster to instrument the code, e.g., for branch distance calculations.

2.3 REST APIs
Currently, the most popular kind of web services are REST APIs [27], used, for example, by Google2,
Amazon3, Twitter4, Reddit5, LinkedIn6, etc. Besides providing functionality over the internet (e.g.,
see API portals like ProgrammableWeb7), REST APIs are also very common in enterprise backends,
when microservice architectures are used [48, 50].

REST is not a protocol, but rather a set of guidelines on how to structure resources that are
accessed on a network over HTTP(S). Resources are identified with URLs, and can be manipulated
using the semantics of HTTP, e.g., GET requests to fetch data, POST to create new data, PUT/PATCH
to modify existing data and DELETE to remove it. Inputs can be given in requests via path elements
in the URLs, query parameters, HTTP headers and body payloads. Data can be transferred in any
format, albeit currently one of the most common is JSON.

To make REST API easier to learn and use, it is a common practice to provide schemas, describing
what endpoints are available in an API, and which input formats are supported for the inputs
(e.g., the name and type of the query parameters, if any). Different schema standards exist, where
1https://asm.ow2.io/
2https://developers.google.com/drive/v2/reference/
3http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
4https://dev.twitter.com/rest/public
5https://www.reddit.com/dev/api/
6https://developer.linkedin.com/docs/rest-api
7https://www.programmableweb.com/api-research

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 5

OpenAPI/Swagger [1] is currently the most widely used. This format uses either JSON or YAML to
define such schemas. Schemas can be written either manually, or automatically generated from the
source code of the APIs (e.g., using SpringFox or SpringDoc for the popular enterprise framework
Spring [3]).

2.4 EvoMaster
The open-source tool EvoMaster [8, 17] aims at automated test generation of system-level test
cases for REST APIs, which is an important task to automate [9]. It is a SBST tool, using evolutionary
algorithms like MIO [10] to evolve test cases maximing code coverage and fault finding metrics.
It supports both white-box [11] and black-box [12] testing. For white-box testing, it uses several
different SBST heuristics like the branch distance, not only applied on the predicates in the control
flow of the SUT, but also in all SQL commands executed over a database (if any) [14]. To generate
better test cases, EvoMaster can also exploit dependencies among the API resources [57].
EvoMaster is divided in two main parts: (1) a core process and (2) a driver. The core process

contains all the basic functionality for a SBST tool, like the search algorithms, fitness functions, test
generation outputs, etc. On the other hand, the driver is provided as a library, which engineers need
to use to specify how to start, stop and reset the SUT. This is done with short configuration classes,
that need to be implemented manually. However, the driver is also responsible of instrumenting the
bytecode, which is done automatically. The core and the driver will run as separated processes, com-
municating over HTTP. This architecture will enable to support different programming languages,
as a new supported language would just require a new driver library for it.

For white-box testing, EvoMaster currently supports APIs that run on the JVM, e.g., written in
Java or Kotlin. It can output test suites in JUnit format, using the library RestAssured [2] for making
the HTTP calls toward the SUT. The generated tests will use the manual configuration classes
which use the driver library. This means that the generated tests are self-contained: the test suite
files can start the SUT before any test is run, reset the state of the SUT before/after each test case
execution (to make them independent), and stop the SUT once all tests are run. This means that the
generated test cases can be used as well for regression testing, as can be added to the repository
of the SUT, and run as part of a Continuous Integration process. Note that, for black-box testing,
there is no need of any driver as EvoMaster could be run on any type of REST API regardless of
their programming language. However, generated test suites would still be output in either Java or
Kotlin.

3 RELATEDWORK
3.1 Testability Transformations
‘‘A testability transformation is a source-to-source transformation that aims to improve the ability of a
given test generation method to generate test data for the original program’’ [36]. In the literature,
different transformations have been proposed [34, 35], mainly to deal with flag conditions [21, 33]
(i.e., branches in the code that depend on the value of a boolean constant). Flags in the code could
depend on string operations [6], loop assignments [20, 22], nested predicates [47], calls to boolean
functions [42, 43, 56] and non-integer comparisons [42].
Testability transformations can also be used to generate pseudo-oracles [46], which can be

helpful to detect numerical inaccuracies and race conditions. Furthermore, besides SBST, testability
transformations can also be useful for Dynamic Symbolic Execution [25].

A testability transformation does not need to preserve the original semantics of the transformed
code, as it only needs to ‘‘preserve test sets that are adequate with respect to some chosen test adequacy
criterion’’ [34]. Most of the aforementioned work apply non-semantics preserving transformations,

, Vol. 1, No. 1, Article . Publication date: May 2021.

6 Andrea Arcuri and Juan P. Galeotti

as targeting test generation for only single targets (e.g., a specific branch in the SUT). In contrast,
in our work we aim at system testing where whole test suites are generated (e.g., as done in [29]
for unit testing) aimed at maximizing coverage over the whole SUT. In such context, many of those
non-semantics preserving transformations would not be applicable. This is because every single
line and branch is a testing target in our context. When applying those transformations on a given
target, the other targets could be affected as well, as such transformations could remove some of
those other lines/branches, or modify them in a way that the adequacy of the chosen test criteria
could be no longer assessed (as those transformations do not preserve the original semantics). For
this reason, a main difference in our work is that we must preserve the semantics of the SUT.
Furthermore, we provide several novel transformations for API calls that have not be investigated
before in the literature.

3.2 Taint Analysis and Seeding
‘‘Dynamic taint analysis (also known as dynamic information flow analysis) consists, intuitively, in
marking and tracking certain data in a program at run-time’’ [24]. Taint analysis has been used in
many different contexts, such as information security, program understanding, software testing
and debugging [53]. Taint analysis has been particular useful for security, as it ‘‘establishes whether
values from untrusted methods and parameters may flow into security-sensitive operations’’ [54]. In
the literature, there has been many applications of taint-analysis [53], and in particular in recent
years on security evaluations of Android applications (e.g., [38, 44, 49]).

In this paper, we use a basic, lightweight form of taint analysis, in which we track input variables
when used in API calls. The novel contribution in this paper is on how we use such information to
enhance SBST. We feed this information back to the search at runtime, modifying the genotype of
the evolving test cases and the type of mutation operators applied to them, based on how such
inputs are used in the SUT.

In some regards, our novel technique could be considered as an improvement over our previous
seeding of values observed at runtime [52], done for unit testing. There, constants (e.g., strings and
numbers) found in the bytecode (or observed at runtime in methods like String.equals) are added
to a pool, and the search can use values from such a pool when sampling new individuals. On the
one hand, this lacks the link to the actual inputs that should use such values (i.e., there is no tracing),
and the use of the right value for a given input in the test is based on chance. The bigger the pool
of constants is, the lower is the probability of randomly sampling the right value. Furthermore,
these seeding techniques would not directly work (without novel extensions) for dealing with
methods like Integer.parseInt or LocalDate.parse. On the other hand, these seeding strategies
can be applied even when inputs are modified before being used in the API calls (which is a current
limitation of our novel approach). Therefore, those seeding strategies could be still useful in this
context, although how to best integrate them would be a matter of future work.

3.3 Testing REST APIs
In recent years, there has been an increasing interest in the research community about test automa-
tion for REST APIs, with several techniques that have been proposed [18, 26, 32, 39, 45, 55], with
open-source tools like RESTest8 and RESTler9. However, all of these techniques are black-box. To
the best of our knowledge, only EvoMaster does support white-box testing, in which the source
code of the SUT can be analyzed to achieve better results. Comparisons with other white-box
techniques are therefore not possible. Currently, EvoMaster is also the only tool that uses SBST

8https://github.com/isa-group/RESTest
9https://github.com/microsoft/restler-fuzzer

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 7

Table 1. Roadmap for the different testability transformations presented in this paper.

Section Objective Involved Classes

4 Flag Problem
Boolean, Byte, Collection, Date, Double, Float,
Integer, LocalDate, LocalDateTime, LocalTime, Long,
Map, Matcher, Object, Pattern, Short, String

5 Input Tracking Same as in Section 4
6 Under-Specified Schemas GSON, HttpServletRequest, WebRequest
7 TCP Issues AbstractEndpoint, Http11Processor

and the advances of evolutionary computation, e.g., by using specialized search algorithms like
MIO [10].

4 TESTABILITY TRANSFORMATIONS USING METHOD REPLACEMENTS
To collect coverage metrics, tools like EvoMaster need to instrument the code of the SUT. This
can be done automatically by manipulating the bytecode of the Java classes when they are first
loaded into memory. In our approach, we implemented a series of custom classes with method
replacements for some existing APIs in the JDK. Every time a SUT class is loaded, we check if it
uses any method 𝑀 for which we have a replacement 𝑅. If so, we remove 𝑀 from the bytecode,
and replace it with 𝑅. For example, a call to String.equals would be replaced by our custom
StringClassReplacement.equals.

Thesemethod replacements are employed to achieve different objectives: address the flag problem
with new distance heuristics (Section 4), enable input tracking (Section 5), deal with under-specified
OpenAPI schemas (Section 6) and issues with the closing of TCP connections (Section 7). Table 1
provides a roadmap for what will be covered in these sections. The heuristics involving strings,
presented here in Section 4, are based on existing work [7]. All the rest (especially what presented
in Section 5 to 7) are novel contributions of this article.

To deal with the flag problem in existing APIs, all our replacement methods are static, and have
the same return types as their original versions. However, the inputs are different. If the original
method is non-static, then the first parameter in 𝑅 is the caller of the original method. The last
parameter is a string object with a unique id, based on the SUT class name and instruction line in
which𝑀 was called. For example, given in java.lang.String the signature:
public boolean e qua l s (Ob j e c t anOb jec t)

then our method replacement 𝑅 for it would have signature:
public s t a t i c boolean e qua l s (S t r i n g c a l l e r ,

Ob j e c t anObjec t ,
S t r i n g idTempla t e)

A call to x.equals("foo") would hence be transformed into a call to StringClassReplace-
ment.equals with arguments x, "foo" and "name-line", where "name-line" would be an actual
class name and line number where in the SUT the replacement is done. Such idTemplate needs
to be pushed on the JVM stack before doing the INVOKESTATIC call on StringClassReplace-
ment.equals.
All of our method replacement 𝑅s have the same semantics as the original version 𝑀s. For

the same input, they either give the same output, or throw exactly the same kind of exception.
Every time a replaced 𝑅 is called at runtime during the search, before returning its value (or before
throwing an exception), we compute a heuristic distance ℎ. Such distance is similar in concept to

, Vol. 1, No. 1, Article . Publication date: May 2021.

8 Andrea Arcuri and Juan P. Galeotti

the branch distance [41], and it aims at determining how far was the input from making 𝑅 returning
either true or false. The goal here is to prevent fitness plateaus, where we want to reward test
inputs that get heuristically ‘‘closer’’ to cover the given testing target.

Once such heuristic distance is computed, we create two new testing targets based on idTemplate,
e.g., named "name-line-true" and "name-line-false". These new testing targets will be added
to the fitness function, and will be part of the search, like any other coverage target (e.g., for lines
and branches). In other words, the search will reward the generation of at least one test case in
which 𝑅 evaluates to true, and at least one test case in which 𝑅 evaluates to false. These tests
can then be useful during the search to cover other targets, like branches.
Besides replacing methods that return a boolean, a novel contribution in this article is that

we also handle exceptions. The bytecode manipulation is the same, it is just that the computed
distance has a different meaning, i.e., how far the input was from throwing an exception and not
throwing an exception. For example, given the method parse in class java.time.LocalDate with
the following signature :

public s t a t i c Loca lDa t e pa r s e (CharSequence t e x t)

we provide a replacement class named LocalDateClassReplacement with a method:

public s t a t i c Loca lDa t e pa r s e (CharSequence input , S t r i n g idTempla t e)

In this new method, a heuristic distance is computed to check how close a string is from being a
valid date in the format YYYY-MM-DD. Two new targets are then added to the search.

Technically speaking, such method replacements could be provided for all the methods in the
API of the JDK that either return a boolean, or throw an exception if the input is invalid. The
challenge then would be to define the right heuristic distances for the different kinds of methods.
In this paper, we provide method replacements for some of the most common APIs, e.g., all of the
API method calls that were present in the SUTs of our case study.

In EvoMaster, each testing target has a heuristic score ℎ ∈ [0,1], where 1 means a target is
covered. All other values represent the target not being covered, where 0 is the worst heuristic
score. Values closer to 1 still represent non-covered targets, but they are heuristically closer to cover
the target. For each method replacement we create two targets, e.g., one target to represent the
evaluation of the function to true, whereas the other target to represent the evaluation to false.
Similarly, we create targets for representing a method throwing or not throwing an exception. If
such a call is never reached during the test execution, both targets get score 0. If on the other hand
that method call is reached, one of the two targets will necessarily get the score 1 (representing
the target being covered), whereas the other target will get a score lower than 1 (representing the
target not being covered), e.g., 𝑏 = 0.1. Observe that, if the value 0 is used to represent a covered
target, it would just be a matter of a simple function transformation to compute the branch distance
𝑑 , (e.g., 𝑑 = 1 − ℎ). Therefore, adapting the presented heuristic distances to other contexts is rather
straightforward.
Here, we discuss some of the details of the heuristic ℎ computations for the true targets. The

values for the false targets will usually be just some constant greater than 0 (to distinguish from
the cases in which the method replacement execution is not even reached, e.g., 𝑏 = 0.1) if the
method returns true (and 1 otherwise). Similarly, we discuss the cases of the heuristic computations
for the targets representing a method non-throwing an exception.
In the case of equality comparisons between two elements, we compute a distance 𝑑 , where

𝑑 = 0 means the two elements are the same. For example, comparing two numbers 𝑥 and 𝑦 would
have distance 𝑑 = |𝑥 − 𝑦 | (i.e., the same as in the typical branch distance [41]). Mapping it into
ℎ ∈ [0,1], where 1 means the two elements are the same, can be done simply with ℎ = 1

1+𝑑 (so, the

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 9

larger the distance 𝑑 , the smaller ℎ will be). However, to handle the case in which the distance
cannot be computed (e.g., due to one element being null), we still need to provide a minimum 𝑏

value to distinguish from the case in which the method is not even called because the execution
flow does not reach it. Therefore, in this cases we use ℎ = 𝑏 + (1−𝑏) 1

1+𝑑 = 𝑏 + 1−𝑏
1+𝑑 . Note the scaling

factor (1 − 𝑏), as we need to guarantee ℎ ∈ [0,1].
Our method replacements are as follows:

Collection.isEmpty. Computes ℎ = 1
1+𝑙 , where 𝑙 is the length of the caller collection. If 𝑙 = 0, then

the heuristic value is ℎ = 1. The greater the collection’s length, the closer to 0 the heuristic value
will be. Here, given a non-empty collection for which this function returns false, our heuristic ℎ
rewards mutation operations that remove elements from such collection (as ℎ increases), while
penalizing operations that add new elements in it (as ℎ would decrease).

String.isEmpty. Computes the same heuristic value as for Collection’s isEmpty. Therefore, muta-
tion operations that add chars into the string will be penalized, whereas operations that remove
chars from the string making it shorter will result in a better fitness score (as ℎ increases).

String.equals. Similarly to what presented in [6], given two strings, the distance 𝑑 is calculated
as the sum of the character distance between each position in the strings. If string lengths differ,
the maximum character distance (i.e., 216, as in the JVM chars use 16 bits) is used for the missing
positions. In turn, the heuristic value computed is ℎ = 𝑏 + 1−𝑏

1+𝑑 , or ℎ = 𝑏 if the argument is null or
not a valid string. The more the second string becomes similar to the first, the better heuristic score
would be obtained.

String.equalsIgnoreCase. The heuristic value is simply the value computed by String.equals using
the lowercased versions of both strings.

String.contentEquals. The method compares the caller string to the toString representation of the
input object parameter. The computed heuristic value ℎ is therefore the same as the value computed
by String.equals.

String.startsWith and endsWith. This method returns true if the string argument is a prefix (re-
spectively suffix) of the caller string; false otherwise. The heuristic value is the one computed by
String.equals using a prefix (respectively suffix) of the caller string with the argument’s length
𝑛, i.e., the char distance is computed only for the first (and respectively last for endsWith) 𝑛 chars.
When the argument is a matching prefix, the distance on each of the first 𝑛 chars would be zero, and
so ℎ = 1. Each mutation operation that leads to a closer match will result in a better ℎ heuristics.

String.contains. Computes all the heuristic values of String.equals for all substrings of the caller
string with argument’s length. Given the caller string with length 𝑙 , and input argument with
length 𝑛, 𝑙 − 𝑛 + 1 heuristics ℎ′ based on String.equals will be computed (if 𝑙 < 𝑛, only one is
computed). The output heuristic value ℎ for contains will be the highest of such heuristic values
ℎ′. The goal here is to reward mutations of the string where any substring becomes closer/similar
to the input argument. However, we only need one match in the caller string, and so we can focus
on the closest one to get a match (which is the substring with highest value ℎ′).

Byte.equals, Short.equals, Integer.equals, Long.equals, Float.equals, Double.equals, Char.equals. For
numeric values, we compute the absolute difference between the two compared values, i.e., 𝑑 =

|𝑥 − 𝑦 |, and then ℎ = 𝑏 + 1−𝑏
1+𝑑 , where 𝑏 is needed for when the input argument is null, is of the

wrong type, or any of the two values is infinite. Note that chars can be treated as 16-bit numbers
when compared.

, Vol. 1, No. 1, Article . Publication date: May 2021.

10 Andrea Arcuri and Juan P. Galeotti

Date.equals, LocalTime.equals, LocalDate.equals, LocalDateTime.equals. If the compared reference
is null or it is a non-null value that is not an instance of Date, then the computed heuristic is
ℎ = 𝑏 = 0.1. Otherwise, both Date instances are compared as long values through the getTime()
method, by calculating a distance 𝑑 as absolute difference between those two long values. Then,
ℎ = 𝑏 + 1−𝑏

1+𝑑 . The closer the two dates are, the smaller the difference between their two time
instants will be, and so ℎ increases. The approach for the other time-related classes (i.e., LocalTime,
LocalDate and LocalDateTime) is the same, although the instant values are retrieved with their
own available methods (e.g., LocalTime.toSecondOfDay).

Objects.equals. We leverage on the equals method replacements previously defined, by using
instanceof to determine the type of the two input Objects that are compared. For example, in
case two strings are compared, the String.equals heuristic value is computed. Same approach is
used for all the other equal methods for which we have defined an heuristic, e.g., Integer, Date,
and Long. If for the type of compared objects we have no custom heuristics, then we simply assign
a flag: 1 for covered, and 0.1 for not covered.

Boolean.parseBoolean. This method returns true if the input string is equal to the string "true"
without considering casing, otherwise it always returns false. Therefore, the heuristic for parse-
Boolean returns the heuristic value of String.equals to the lowercased input to the constant
"true".

Integer.parseInt, Long.parseLong. Each method parses a string into an int or a long value respec-
tively. If the input string cannot be parsed or the parsed value cannot be represented within the
range of values, a NumberFormatException is thrown. Our heuristic optimizes for a string con-
taining an optional minus symbol (i.e., "-"), and a non-empty list of digits (i.e., "0..9"). For each
symbol in the current string, the distance𝑑 ′ of each character (as a char) is compared to the expected
symbol for that position, and sum together into a value 𝑑 . The resulting heuristic value is then
ℎ = 𝑏+ 1−𝑏

1+𝑑 . The distance 𝑑
′ for the first character in the input string will be the minimum of the char

distance from "-" and any of the digits in "0..9", but only if the string is of at least length equal to
2 (i.e., the string "-" itself does not represent a valid number, whereas "-1" is valid). For example,
"ab"would have distance 𝑑 =𝑚𝑖𝑛(|′𝑎′−′−′ |,|′𝑎′−′0′ |, . . . ,|′𝑎′−′9′ |) +𝑚𝑖𝑛(|′𝑏 ′−′0′ |, . . . ,|′𝑏 ′−′9′ |).
In general, given an input string 𝑠 , where with 𝑠 [𝑖] we specify the character of 𝑠 at position 𝑖 , we
have 𝑑 =

∑
𝑖𝑚𝑖𝑛𝑐∈𝐶 (𝑖) (|𝑠 [𝑖] − 𝑐 |), where 𝐶 (𝑖) is the set of valid characters at position 𝑖 . Here, we

want to reward modifications of the input string to get it closer to a valid numeric representation.
However, at each position in the string, the set of valid characters 𝐶 (𝑖) can be different (e.g., "-" is
allowed only in the first position). So, we focus on the most promising character (which is the one
with lowest distance, and that is why we take the minimum).

Float.parseFloat, Double.parseDouble. Each method parses a string into a float or a double value,
respectively. If the string cannot be parsed, a NumberFormatException is thrown. If the parsed
value it is too large or it is too small (in absolute terms) it will be represented as ±∞ or ±0,
respectively. For simplicity, we do not currently support the exponential notation (i.e., inputs such
as "9.18E+09"). The distance 𝑑 for these methods is similar to the parseInt and parseLong but
also expecting a single dot symbol. In other words, our heuristic optimizes for a string containing
an optional minus symbol (i.e., "-"), followed by a non-empty list of digits (i.e., "0..9") with
an optional dot symbol (i.e., "."). If the input string contains no dot "." symbol, then, for each
position, we need to compute the distance from "." as well (and take the minimum to compute
𝑑 ′). If there is one or more ".", such distance for "." is not computed, where 𝑑 ′ for the its first

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 11

occurrence will be 0. As with parseInt and parseLong, the resulting heuristic value is ℎ = 𝑏 + 1−𝑏
1+𝑑

where 𝑑 is the distance computed as described above.

DateFormat.parse. This method returns a Date instance if the input string is parseable on the date
format defined in this object. When the input string is not parseable, the method will signal a
ParseException. If the pattern of the format matches "year-month-day" (e.g., "2019-10-14") or
"year-month-day hour:minute" (e.g., "2019-10-14 13:45"), a distance𝑑 is computed that represents
how far is the input string to satisfy of the corresponding pattern. This is done similarly to what
done for Integer.parseInt, by using the equation 𝑑 =

∑
𝑖𝑚𝑖𝑛𝑐∈𝐶 (𝑖) (|𝑠 [𝑖] − 𝑐 |). To compute 𝐶 (𝑖),

the first 4 chars can be any digit, the 5th can only be a "-", and so on. In turn, the final heuristic
value is computed as ℎ = 𝑏 + 1−𝑏

𝑑+1 . If the pattern used by the DateFormat cannot be obtained, or
the format does not match any of those supported (i.e., "year-month-day" or "year-month-day
hour:minute"), we currently provide no gradient, i.e., simply ℎ = 1 for covered and ℎ = 0.1 for
non-covered target.

LocalDate.parse. Similarly to the parse method of DateFormat, it parses an input string expected
in the "year-month-day" into a LocalDate instance (e.g., "2019-10-14"). If the string does not
satisfy the expected format a DateTimeParseException is thrown. The heuristic value is computed
as with DateFormat.parse.

LocalTime.parse. Thismethod parses an input string of the format "hour:minute" or "hour:minute:second"
into a LocalTime instance (e.g., "13:45", "13:45:30"). Similar to the LocalDate parse method,
if the string does not satisfy the expected format a DateTimeParseException is thrown. The
heuristic value is computed as with DateFormat’s parse method.

LocalDateTime.parse. Thismethod parses an input string of the format "year-month-dayThour:minute"
into a LocalDateTime instance (e.g., "2019-10-14T13:45"). Observe that the ‘‘T’’ character in
the input string is case insensitive. If the string does not satisfy the expected format a Date-
TimeParseException is thrown. The heuristic value is computed as the aggregation of LocalDate
and LocalTime parse methods.

Date.after and before. This method tests if the current date is after (respectively before) the specified
date. The heuristic value for this method is based on the branch distance to 𝑣1 > 𝑣2 (respectively
𝑣1 < 𝑣2), where 𝑣1,𝑣2 are the return values of method getTime() on each Date instance.

LocalDate/LocalTime/LocalDateTime.isAfter and isBefore. Thesemethods are equivalent to Date.after
and Date.before, and our computed heuristic is the same (based on the numeric difference in the
instant values of the two compared dates).

Collection.contains. If the argument is an instance of a class for which we provide custom heuristics
for its equals method (e.g., String and Integer), then the heuristic value is the highest heuristic
between the argument and any instance of that data type stored in the caller collection. If no such
values matching the data type are stored, or simply the collection is empty, the returned heuristic
value is 0.1. Similarly in concept to String.contains, we just need only one match on the whole
collection to make this function to return true. Therefore, once the heuristic distance is computed
on each element, the final ℎ is based on the most promising, i.e., the closer to make such predicate
true.

Map.containsKey. For handling this method, we compute the heuristic value of contains over the
set of keys obtained by invoking keySet method.

, Vol. 1, No. 1, Article . Publication date: May 2021.

12 Andrea Arcuri and Juan P. Galeotti

Pattern, Matcher and String.matches. For matching regular expressions, we apply the same distance
𝑑 as presented in [6], where then we have ℎ = 𝑏 + 1−𝑏

1+𝑑 .

Matcher.find. Gradient for the find method is provided by wrapping the input regular expression
with the leading and trailing regular expression "(.*)" and reusing the gradient for the matches.
With this transformation, the heuristic value will return the value to matching the input regular
expression in any substring of the caller input.

When we have a replacement method 𝑅 for𝑀 in a class 𝐶 , we apply the replacement even for
all implementations of𝑀 in the subclasses of 𝐶 . For example, the method replacement for Collec-
tion.contains is applied to all the collections in Java that inherits from java.util.Collection
(e.g., ArrayList.contains).

One case we do not handle is when a SUT class extends a JVM class for which we have re-
placement methods, and the keyword super is used. For example, the SUT might have have
a class MyList that extends java.util.Collection. In its code, it could have a call like su-
per.contains(x) inside its contains method. In this case, we apply no transformation. The
problem is that, in bytecode, that call is an INVOKESPECIAL, which can be used only in the subclass.
If we made a naive replacement with CollectionClassReplacement using contains(caller,
value, idTemplate) (where caller is an instance of MyList), then we would not be able to
call caller.contains(value) after computing the heuristic distance, as we would otherwise
end up in an infinite recursion. In the JVM, it is not possible to call the actual implementation of
Collection.contains on an instance of a subclass MyList outside of MyList itself. Problem is,
that in our implementations of 𝑅 we still need to call𝑀 to make sure that, given the same input, 𝑅
returns exactly the same value as𝑀 .
An approach to solve this issue would be to replicate (e.g., copy&paste) the code of𝑀 inside 𝑅,

and apply Java reflection to manipulate the internal variables of the caller instance. However, it
would significantly complicate our techniques, making any tool deciding to using them harder to
implement and maintain (e.g., if any new JDK release does change such code).

5 IMPROVING SEARCH THROUGH INPUT TRACKING
Assume that in the code of the SUT there is a string comparison like x.equals("foo"). Now, that
variable x might depend on some of the inputs of the test case. For example, in the testing of a
REST web service, x could be a query parameter in the request URL, or a JSON field in the HTTP
body payload. Or maybe x is not related at all with the input of the current HTTP request. For
example, a previous POST request could have written such value into a SQL database, and then a
HTTP GET request would just read it afterwards.

Even if x depends directly on the input z, the value itself could go throughout several changes be-
fore reaching the statement x.equals("foo"). For example, different strings could be concatenated.
Therefore, using "foo" directly as a value for z does not necessarily mean that x.equals("foo")
will be evaluated as true. Here, the heuristic distance plays a major role to guide the search algorithm
to find the right value of z to get x.equals("foo") true.

But what about the cases in which the input value is not changed during execution, and it is used
directly as it is in some of our replacement methods (recall Section 4)? Our heuristic distances can
provide gradient to the search, but it would be more efficient to just use "foo" directly as input.

Our approach is to analyze if any such case does indeed happen, by tracking all the inputs to our
replacement methods. If indeed we detect that any such input is used directly in a replacement
method, then we can mutate directly the test cases to use the needed values.

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 13

import org . spr ing f ramework . h t t p . MediaType ;
import org . spr ing f ramework . web . b ind . anno t a t i on . ∗ ;
import j a v a . t ime . Loca lDa t e ;
import j a v a . u t i l . Arrays ;
import j a v a . u t i l . L i s t ;

@Res tCon t ro l l e r
@RequestMapping (path = " / ap i / t e s t a b i l i t y ")
public c l a s s T e s t a b i l i t y R e s t {

@GetMapping (path= " / { d a t e : \ \ d { 4 } − \ \ d { 1 , 2 } − \ \ d { 1 , 2 } } / { number } / { s e t t i n g } " , p roduces
=APPLICATION_JSON_VALUE)

public S t r i n g ge t (@PathVar iab le (" d a t e ") S t r i n g date ,
@PathVar iab le (" number ") S t r i n g number ,
@PathVar iab le (" s e t t i n g ") S t r i n g s e t t i n g) {
Loca lDa t e d = Loca lDa t e . p a r s e (d a t e) ;
in t n = I n t e g e r . p a r s e I n t (number) ;
L i s t < S t r i ng > l i s t = Arrays . a s L i s t (" Foo " , " Bar ") ;
i f (d . g e tYea r () == 2019 && n == 42 && l i s t . c o n t a i n s (s e t t i n g))
return "OK" ;

e l se
return "ERROR" ;

}

Fig. 1. First code example of a REST controller in Java Spring framework, with one HTTP GET endpoint.

Figure 1 shows a code example for a Java class, in which a REST endpoint is defined using the
popular Spring Framework [3]. When a HTTP call is made toward such endpoint, three String
variables are extracted from the URL of the HTTP request. One of the strings is parsed to a date,
whereas another to a number. The string "OK" is returned only if the date is a valid date with year
2019, the number is 42, and the last string is present in an existing list of strings. Generating a
test case that returns "OK" is not trivial, because LocalDate.parse and Integer.parseInt will
throw exceptions when called with non-valid inputs. Furthermore, although there exist testability
transformations for String.equals, those cannot be directly used in the case of List.contains,
because API classes loaded with the Java bootstrap classloader cannot be instrumented.
Consider such example in Figure 1, where based on the REST schema the search evolves three

different string variables (genotype), which then are used to create a valid URL when a HTTP
call is made in the fitness evaluation (phenotype). Consider the variable date, that based on the
REST schema would be of type string. Once EvoMaster executes an HTTP call as part of a test
case fitness evaluation, the SUT running Spring will read such incoming HTTP request (done in
the HTTP server Tomcat), and extract all the needed information (e.g., the path component of
the HTTP request). Based on the path component, the Spring framework would determine that
TestabilityRest.get should be the handler for such HTTP request. The string object date would
then be checked against a regular expression (see Figure 1). And such check would be made in a
Matcher.matches call. Such method is one for which we do provide a replacement (recall Section 4).
As the string variable date in the genotype of the test case is used directly in the replacement
method for Matcher.matches, we could inform the search to directly evolve strings for date based
on the regular expression \𝑑{4} − \𝑑{1,2} − \𝑑{1,2}. As EvoMaster has support for sampling
and mutating strings based on regular expressions, this would be more efficient than mutating a
standard string and hoping it would match such regular expression by chance.

, Vol. 1, No. 1, Article . Publication date: May 2021.

14 Andrea Arcuri and Juan P. Galeotti

To achieve this, there are some challenges that we need to solve first. For example, a check on
inputs can be outside the main code of the SUT, i.e., in a third-party library. This is the case of
Matcher.matches deep inside the Spring’s library code. On the one hand, we need to make such
method replacements even in third-party libraries. On the other hand, we do not want to create
new search targets for those libraries, as that is not the software we want to maximize coverage for.
The amount of code of the third-party libraries can be much, much more than the code of the SUT
(we will show some statistics on this in Section 8). Even if specialized search algorithms such as
MIO [10] can handle large numbers of optimization objectives, adding unnecessary search targets
could hamper the search. Furthermore, these extra targets could lead to generate more test cases in
the final test suite given as output at the end of search, covering different paths in such third-party
libraries which might not be of interest to the user. In this case, the solution is relatively simple:
we apply the method replacements to all classes, both in the SUT and the third-party libraries;
however, the new testing targets are only created if the method replacement is done in a SUT class;
finally, our input tracking in the method replacements is done in all the classes.
A further issue is how to detect that a string value in the execution of the SUT is related to a

variable evolved in the genotype of the test case inside the search algorithm. For example, for that
endpoint in Figure 1, EvoMaster would have three genes of type string. However, what the SUT
would see is just an HTTP message read by the HTTP Tomcat server. If the genotype of a test
case is, for example, the three string values (‘‘𝑎”,‘‘𝑏”,‘‘𝑐”), what the SUT would read from the TCP
socket would just be:

GET / ap i / t e s t a b i l i t y / a / b / c HTTP / 1 . 1 \ r \ n
Host : l o c a l h o s t \ r \ n
\ r \ n

In other words, we need some way to inform our instrumentation runtime of the three distinct
values (‘‘𝑎”,‘‘𝑏”,‘‘𝑐”) to track. Unfortunately, as in EvoMaster the search algorithm and the SUT are
running on different processes [8, 11], sending such information over TCP before a test evaluation
might incur in a non-negligible time overhead. Furthermore, even if such information was sent,
then there would still be the problem to determine inside the replacement of Matcher.matches if
a given string value ‘‘𝑎” is part of the test inputs, or if just an unrelated string constant used in
the code of the SUT or a third-party library (and so changing the genotype by adding the regular
expression info could have negative side effects).
A complete static analysis of the SUT and all third-party libraries might answer this kind of

questions. However, for what we need for test generation, a simpler, light-weighted approach
would suffice. Given a certain probability 𝑃 , when in EvoMaster we mutate a string gene, in our
approach we rather replace it with the value "evomaster_x_input", where 𝑥 is a unique number.
The idea is to create string values that are very unlikely to be used in the SUT source code, and
that then can be easily detected by our replacement methods. For example, we could check if the
given input in a replacement method does match the regular expression 𝑒𝑣𝑜𝑚𝑎𝑠𝑡𝑒𝑟_\𝑑 + _𝑖𝑛𝑝𝑢𝑡 .
This has the benefit of not needing to send any extra information to the instrumentation runtime
before a test case is evaluated. Although it would be very unlikely that a modified/changed or
unrelated input would match that regular expression, even if it happens it would not be a major
issue. If the fitness value of the test would not improve, the test case would simply die out during
the evolutionary search.

With such an approach, given the test case (‘‘𝑎”,‘‘𝑏”,‘‘𝑐”), a string gene like ‘‘𝑐” could be mutated
into ‘‘𝑧” (e.g., a regular, standard mutation in the default version of EvoMaster), while ‘‘𝑎” could
be mutated into "evomaster_0_input" with some probability 𝑃 . The resulting test case would
hence be (‘‘𝑒𝑣𝑜𝑚𝑎𝑠𝑡𝑒𝑟_0_𝑖𝑛𝑝𝑢𝑡”,‘‘𝑏”,‘‘𝑧”). When this test case is going to be evaluated, the value

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 15

"evomaster_0_input"would be extracted from the HTTP request, and then would end up as input
to our MatcherClassReplacement.matches, which can recognize it is a variable that should be
tracked. Once the test case is completed, the instrumentation runtime would then inform back the
search algorithm that the input "evomaster_0_input"was matched against the regular expression
\𝑑{4} − \𝑑{1,2} − \𝑑{1,2}. This information is then used to change the gene type of that input
from string to regex. Next time the test case is mutated, the value "evomaster_0_input" would be
automatically mutated into a valid string matching that regular expression (e.g., "3156-42-77").
Further mutations on this gene would still generate strings matching that regular expression, like
the "77" could be mutated into a "78", but not into a "7a".
Mutating a string into a "evomaster_x_input" value can be useful at the beginning of the

search, but it could be disruptive for the cases in which we need to evolve complex strings for
constraints not handled by our input tracking technique. Therefore, given a starting probability 𝑃 ,
we gradually decrease it throughout the search down to 0 when in the MIO [10] algorithm (which
is the default one used in EvoMaster) its ‘‘focused search’’ starts after 50% of search budget is
used.
One problem though is that a variable could be used as input in many replacement methods.

As soon as a "evomaster_x_input" would be mutated into an appropriate string for the first
replacement method, the following replacement methods would not be able to recognize it any
more, as likely not matching 𝑒𝑣𝑜𝑚𝑎𝑠𝑡𝑒𝑟_\𝑑 + _𝑖𝑛𝑝𝑢𝑡 .
Let us keep considering the case of the variable date in Figure 1. After its value was mutated

into a string matching regular expression like "3156-42-77" due to its use as an argument in
Matcher.matches, it is later used as input to LocalDate.parse. However, "3156-42-77" is not a
valid date. Our novel heuristics in Section 4 would give gradient to evolve a string representing
a valid date. However, as such input arrives to LocalDate.parse unmodified, it would be more
efficient to rather inform the search to handle that gene not as a regex-type gene, but rather as a
date-type gene (EvoMaster has support for mutating and sampling genes representing valid date
strings). Such gene would then still be needed to evolve, due to the constraint d.getYear() ==
2019 in the SUT. However, that constraint is numerical (i.e., comparison of two integers) inside
an if statement, and so would be handled directly by the branch distance (i.e., there would be
direct gradient to modify the year component of the date-type gene into the value 2019, whereas
mutations on the month and day components would have no influence on the fitness).
As regular expression constraints are not uncommon in REST web services, and because they

can be quite complex, we applied the following approach. If based on our input tracking technique
we transform a string-type gene into a regex-type gene, then we will track the values of those
regex-type genes (and only those) as well besides 𝑒𝑣𝑜𝑚𝑎𝑠𝑡𝑒𝑟_\𝑑 + _𝑖𝑛𝑝𝑢𝑡 . This means that, before
we evaluate the fitness of a test case, we need to send over TCP to the instrumentation runtime the
information of which extra values to track, like "3156-42-77" in our example.
Not all the replacement methods in Section 4 need to handle our input tracking technique (e.g.,

Collection.isEmpty). As already stated, parsing of regular expressions would be mapped to
regex-type genes, whereas parsing of dates would me mapped to date-type genes. Strings parsed to
numbers are mapped to the respective number gene types, e.g., the input to a Double.parseDouble
is mapped to a double-type gene, but still treated as string, e.g., quoted as a string "42" instead of
just 42. String comparisons are mapped to enum-type genes, composed of all the constants the
input strings are compared to. String.equalsIgnoreCase is treated specially, as it gets mapped
into regex-type gene matching the string constant, but ignoring its case. For example, given the
call x.equalsIgnoreCase("a+b") where 𝑥 is an input represented by a string-type gene, then
our input tracking technique would transform it into a regex-type gene for the regular expression

, Vol. 1, No. 1, Article . Publication date: May 2021.

16 Andrea Arcuri and Juan P. Galeotti

@ApiOperation (va l u e = " Re tu rns s u c c e s s / i n s u c c e s s " ,
no t e s = " Th i s method a l l ows consumer r e g i s t r a t i o n . ")

@RequestMapping (va l u e = " / consumer / r e g i s t e r " ,
method = RequestMethod . POST)

public S t r i n g addUser (WebRequest r e q u e s t) {

boolean s u c c e s s = f a l s e ;
J s onOb j e c t r e sponse = new J s onOb j e c t () ;
S t r i n g username = r e qu e s t . g e tPa r ame t e r (" username ") ;
Consumer c = consumers . f indByUsername (username) ;

i f (c == null) {
S t r i n g pas s = r e qu e s t . g e tPa r ame t e r (" password ") ;
S t r i n g ema i l = r e qu e s t . g e tPa r ame t e r (" ema i l ") ;
S t r i n g name = r e qu e s t . g e tPa r ame t e r (" name ") ;
S t r i n g l a t = r e qu e s t . g e tPa r ame t e r (" l a t i t u d e ") ;
S t r i n g lon = r e qu e s t . g e tPa r ame t e r (" l o n g i t u d e ") ;
c=new Consumer (name , username , pass , emai l , l a t , l on) ;

Fig. 2. Snippet of a REST controller from the class ConsumerController in the case study proxyprint.

(𝑎 |𝐴)\𝑄 + \𝐸 (𝑏 |𝐵). In other words, each character with different lower and upper case is in an or |
between such two cases, while regex control characters are quoted inside a \𝑄\𝐸.

Let us consider the case when two different tracked inputs are compared, e.g., x.equals(y). We
can detect these cases, and handle them specially, by marking the two variables in the test case as
‘‘bound’’. During the search, when we mutate any string gene, we check if any other gene is bound
to it. If so, those genes get modified as well as part the mutation and assume the exact same value
as the mutated string gene.

6 GENOTYPE EXPANSION FOR REST APIS
To generate test cases for a REST web service, tools like EvoMaster need to know which endpoints
are available, which query parameters they expect, what is the type and structure of the body
payloads, etc. All this information can be provided with a schema, where OpenAPI/Swagger is
likely the most used [1].

There are two approaches to generate a schema: either by writing it manually, or by generating it
automatically from the SUT code using a tool. In both approaches there can be a mismatch between
what specified in the schema and what the web service actually does. Even when an automated
tool is used to infer the schema from the SUT code, not only such tool might have bugs, but also
there might be cases in which it cannot infer the whole correct schema.

In the case of a Spring application, libraries like Springfox can generate the schema automatically,
by analyzing static information like annotations such as @PathVariable and @GetMapping (e.g.,
recall Figure 1). However, they would not be able to determine information that depends on the
code execution of the SUT. Consider, for example, the code snippet in Figure 2, from the case
study proxyprint. Here, the needed data from the HTTP request is not injected directly in the
controller (which is the common practice, e.g., Figure 1). On the other hand, a whole WebRequest is
injected, from which query parameters like "username" are then extracted. A schema generation
tool such as Springfox might not be able to infer that parameters such as "username" should be
part of the schema. This is because it would not be enough to just use Java reflection to analyze
the annotations on the SUT methods and their parameters. It would require code analysis of all

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 17

@ApiOperation (va l u e = " Updates the consumer i n f o rma t i on " ,
no t e s = " Th i s method a l l ows consumers to update t h e i r p e r s on a l

i n f o rma t i on . ")
@Secured (" ROLE_USER ")
@RequestMapping (va l u e = " / consumer / i n f o / update " , method = RequestMethod . PUT)
public S t r i n g updateConsumerInfo (P r i n c i p a l p r i n c i p a l , H t t p S e r v l e t R e qu e s t r e q u e s t)

{
boolean s u c c e s s = f a l s e ;
J s onOb j e c t r e sponse = new J s onOb j e c t () ;
S t r i n g reques t JSON = null ;
Consumer ed i tedConsumer= null ;
try {

reques t JSON = IOU t i l s . t o S t r i n g (r e q u e s t . g e t I npu t S t r e am ()) ;
ed i tedConsumer = GSON . f romJson (request JSON , Consumer . c l a s s) ;

} catch (IOExcep t i on e) {
e . p r i n t S t a c kT r a c e () ;

}
i f (p r i n c i p a l . getName () != null) {

Consumer c = consumers . f indByUsername (p r i n c i p a l . getName ()) ;
i f (c != null) {

i f (! c . getName () . e qu a l s (ed i tedConsumer . getName ())) {
c . setName (ed i tedConsumer . getName ()) ;

}

Fig. 3. Snippet of a REST controller from the class ConsumerController in the case study proxyprint.

the method instructions. Furthermore, whether some query parameters are read might depend on
non-trivial computation, like for example the if(c == null) branch depending on a SQL query
into the database, i.e., the consumers.findByUsername in Figure 2. In that specific case study
proxyprint, no query parameter information was inferred by Springfox and added to the schema.
To overcome this limitation, we track all usages of the WebRequest objects at runtime. This is

done by a simple testability transformation in which we store the input values of all method calls
like getParameter and getHeader, by replacing them with our own custom static methods. Once
a test case execution is completed, and any such method was called, we ‘‘expand’’ the genotype
of the test cases by adding genes representing those query parameters. For example, once such
/consumer/register endpoint is called for the first time with no query parameters (as such info is
not in the schema), the test case will get a new gene for the query parameter username, initialized
with a random string. To avoid modifying the phenotype of an evaluated test, such new genes are
marked as a optional genes (see [11] for details), disabled by default. When this test case is going to
be mutated during the search, its optional genes could be mutated from disabled to enabled (and so
added to the URL of the HTTP request), and their string content will be mutated as well as part of
the search. This genotype expansion is applied every time new headers and query parameters are
accessed. For example, an expansion occurs when the if(c == null) branch is evaluated as true,
and so all the other parameters such as password and email are accessed in that code branch.

Besides query parameters, there can also be challenging to infer the proper type of the input body
payloads of the HTTP requests (if any). Consider the code snippet in Figure 3, which shows one
of the other endpoints in the proxyprint case study. Here, such endpoint expects a JSON payload
with information about a consumer. However, the endpoint does not autowire such body payload
directly, but rather it injects the whole HTTP request object, i.e., HttpServletRequest request.
Therefore, Springfox is not able to infer the schema of the expected body payload. In the business

, Vol. 1, No. 1, Article . Publication date: May 2021.

18 Andrea Arcuri and Juan P. Galeotti

@Entity
@Inher i t ance (s t r a t e g y = Inhe r i t a n c eType . SINGLE_TABLE)
@Table (name = " consumers ")
public c l a s s Consumer extends User {

@Column (name = " name " , n u l l a b l e = f a l s e)
pr ivate S t r i n g name ;
@Column (name = " ema i l " , n u l l a b l e = true)
pr ivate S t r i n g ema i l ;
@Column (name = " l a t i t u d e " , n u l l a b l e = true)
pr ivate S t r i n g l a t i t u d e ;
@Column (name = " l o n g i t u d e " , n u l l a b l e = true)
pr ivate S t r i n g l o n g i t u d e ;

@JoinColumn (name = " consumer_id ")
@OneToMany (c a s c ade = CascadeType . ALL)
pr ivate Set <Pr in t ingSchema > pr in t i ngSchemas ;

@OneToMany (c a s c ade = CascadeType . ALL)
@JoinColumn (name = " consumer ")
@Exclude
pr ivate Set < P r i n tReque s t > p r i n t r e q u e s t s ;

@OneToMany (c a s c ade = CascadeType . ALL)
@JoinColumn (name = " consumer ")
@Exclude
pr ivate L i s t < N o t i f i c a t i o n > n o t i f i c a t i o n s ;

@Column (unique = true)
pr ivate Money ba l an c e ;

Fig. 4. Snippet of the fields in the class Consumer in the case study proxyprint.

logic of the endpoint, the body payload is read as a byte-stream, converted into a string, and then a
library is used to convert from such string into a Consumer object, which expects several different
kinds of fields (see Figure 4).
To handle these cases, we use our testability transformations to intercept all the calls to get-

InputStream() in the HTTP request objects, and track them. Then, we consider the library GSON
for JSON parsing, and intercept all its calls to fromJson(). If during a test case execution such
methods are called, our instrumentation will inform the search about it. Depending on which class
definition is used as input to fromJson() (e.g., the class Consumer in the previous example), we
automatically create a schema definition for it, in the same format as in OpenAPI/Swagger. When
creating such schema, we follow the same algorithm as in the GSON library, i.e., we use reflection to
analyze all the fields, and skip the ones that are transient, or marked for exclusion via annotations
(e.g., @JsonIgnore). With these object schemas, the search can then generate valid body payloads
in the HTTP requests of the following test cases, e.g., by providing valid JSON objects that will
not crash GSON when they are unmarshalled into a Consumer instance. These objects will then
be evolved in the same way as if such definition was provided in the original OpenAPI/Swagger
schema of the REST API. This is important, as the fields in such object can then be used in the
control flow of the SUT (see Figure 3), e.g., in if statements.

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 19

Note that the JDK does not provide any native support for JSON handling. On the JVM, the two
most popular libraries for JSON handling are GSON and Jackson. We currently provide support
only for GSON. Supporting also Jackson is just a matter of technical/implementation effort, as it
would follow the same approach.

7 TESTABILITY TRANSFORMATIONS FOR TCP PERFORMANCE
During the search, EvoMaster can generate millions of HTTP calls toward the SUT, depending
on for how long the search is left running. Each HTTP call will be sent over a TCP connection.
For performance reasons, unless one is doing performance or stress testing, it makes sense to
re-use the same TCP connection. This can be achieved by adding, at each HTTP request, the header
Connection: Keep-Alive. This tells the server to keep the TCP connection open, as more HTTP
requests will be coming in shortly on it.

However, Connection: Keep-Alive is not enforced, it is just a ‘‘suggestion’’ for the server. To
avoid denial of service (DoS) attacks, it is common for web servers to close the TCP connections
in certain cases. For example, the popular Tomcat (which is the default server for SpringBoot),
automatically closes the TCP connections after every 100 HTTP calls, even if those calls come with
a Connection: Keep-Alive header. Furthermore, Tomcat also closes the TCP connections for any
request that results in any of the following HTTP status codes: 400, 408, 411, 413, 414, 500, 501, 503.
For tools like EvoMaster that generate a high number of HTTP calls, this is a problem. TCP

connections are Operating System (OS) resources. Allocating and de-allocating such resources
can be expensive. For example, it can take a couple of minutes before the ports of a closed TCP
connection can be re-used and marked as available by the OS. When making a TCP connection to
a server, not only we need to specify the port on the server, but also a port on the local machine
is opened to read the responses. Typically, such port would be an ephemeral one (i.e., a port not
currently in use by the OS). In the OS, there can be only up to 216 = 65536 possible TCP ports.
However, the ephemeral ones are even less: e.g., by default on Windows they are typically in the
range 1025 − 5000, whereas Linux uses 32768 − 60999. If during the search the server keeps closing
TCP connections, a new connection needs to be established by EvoMaster for the following HTTP
calls using an available ephemeral port, possibly running out of local ephemeral ports if the OS is
not fast enough in releasing them once their TCP connections are closed by the SUT server. If no
new TCP connection can be established, then the search has to stop, as no new test case can be
evaluated. This problem is further exacerbated when several instances of EvoMaster are run in
parallel: e.g., during experiments by researchers on their local machines, or by practitioners that
have several different APIs they want to test at the same time on the same machine.

When it comes to Tomcat, the closing of connections to prevent DoS attacks can be configured
via the setting MaxKeepAliveRequests (which has default value 100), e.g., a value like −1 will
simply tell Tomcat to deactivate such feature. However, closing the connection due to error status
codes is not something that can be currently deactivated, as hardcoded in a function inside Tomcat.
Fortunately, testability transformations can be used here to prevent such issues. In particular,

for Tomcat, we replace all the calls to AbstractEndpoint.getMaxKeepAliveRequests() with a
function that always return -1, and all calls to Http11Processor.statusDropsConnection(code)
to always return false.

8 EMPIRICAL STUDY
In this paper, we aim at answering the following research questions:
RQ1: How effective, in terms of code coverage, are our novel testability transformations on simple
code examples?
RQ2: How often can our testability transformations be applied?

, Vol. 1, No. 1, Article . Publication date: May 2021.

20 Andrea Arcuri and Juan P. Galeotti

Table 2. REST web services used in the empirical study. We report the number of Java/Kotlin classes, lines of
code (LOC), and number of HTTP endpoints.

Name Classes LOC Endpoints

catwatch 69 5442 13
features-service 23 1247 18
languagetool 814 125862 2
proxyprint 68 7534 74
rest-ncs 9 602 6
rest-news 10 718 7
rest-scs 13 862 11
restcountries 21 1516 22
scout-api 75 7479 49
industrial 75 5687 20

Total 1177 156949 222

RQ3: How effective, in terms of code coverage and fault finding, are our novel testability transfor-
mations on open-source software?
RQ4: How effective, in terms of code coverage and fault finding, are our novel testability transfor-
mations on industrial software with complex input validation?

8.1 Artifact Selection
Our case study is divided in three parts:

• a set of three toy code examples,
• a set of nine open-source REST web services, and
• an industrial web service provided by one of our industrial partners.

We created three small code examples to make sure that our novel techniques work as intended.
These toy examples are also helpful to better understand the addressed problem. The idea is that,
without our novel techniques, these code examples should be hard to solve for an automated test
generation tool. And indeed this was the case for EvoMaster, which was not able to fully cover
these examples. On the other hand, once our novel techniques are employed, they should become
trivial.
Table 2 shows some statistics on the RESTful APIs, like the number of classes (not including

tests, nor third-party libraries) and HTTP endpoints in these SUTs. Due to a NDA, the industrial
web service is simply referred with the label industrial. Regarding the nine open-source projects,
these are a superset of the ones we used in our previous work on EvoMaster [10, 11]. To ease their
re-use for experimentation, we collected them in a single repository on GitHub10. In this selection,
there is a variety in terms of lines of code, number of endpoints and popularity (e.g., measured in
number of stars on GitHub). For example, restcountries and languagetool are widely used (1.8k and
4.5k stars on GitHub, respectively, at the time of this writing).

8.2 Results on Code Examples
Our first example is the one we already discussed in Figure 1. Even if we do not consider REST

APIs, this simple example would be challenging even for unit testing. For example, Figure 5 shows
the result of running the unit test generation tool EvoSuite [28] on the TestabilityRest class for
10https://github.com/EMResearch/EMB

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 21

@Test (t imeou t = 4 00 0)
public void t e s t 0 () throws Throwable {
T e s t a b i l i t y R e s t t e s t R e s t 0 = new T e s t a b i l i t y R e s t () ;
try {
t e s t R e s t 0 . g e t (" " , " " , " ") ;
f a i l (" Expec t i ng : Da teT imePar seExcep t ion ") ;
} catch (Da teT imePar seExcep t ion e) {
v e r i f y E x c e p t i o n (" j a v a . t ime . fo rmat . DateTimeFormat te r " , e) ;

}
}
@Test (t imeou t = 4 00 0)
public void t e s t 1 () throws Throwable {
T e s t a b i l i t y R e s t t e s t R e s t 0 = new T e s t a b i l i t y R e s t () ;
try {
t e s t R e s t 0 . g e t (null , " T e s t a b i l i t y R e s t " , "PATCH") ;
f a i l (" Expec t i ng : Nu l l P o i n t e r E x c e p t i o n ") ;

} catch (Nu l l P o i n t e r E x c e p t i o n e) {
v e r i f y E x c e p t i o n (" j a v a . u t i l . Ob j e c t s " , e) ;

}
}

Fig. 5. Tests generated by EvoSuite on the TestabilityRest class from Figure 1.

@Test
public void t e s t _ 0 () {
g iven () . a c c e p t (" a p p l i c a t i o n / j s on ")
. g e t (s u tU r l + " / ap i / t e s t a b i l i t y / 2019 −03 −04 /42 / Foo ")
. then ()
. s t a t u sCode (2 0 0)
. a s s e r t T h a t ()
. contentType (" a p p l i c a t i o n / j s on ")
. body (c o n t a i n s S t r i n g ("OK")) ;

}

Fig. 6. A test generated by EvoMaster, with our novel testability transformations, on the Spring application
where the TestabilityRest class from Figure 1 is used.

one hour. Only two low-coverage unit tests were generated, throwing exceptions. This is because
EvoSuite has no gradient in its fitness function to generate inputs to reach the return "OK";
statement.

When dealing with system testing, there is a further complication. When Spring creates a REST
handler based on the @RestController and @GetMapping annotations, it executes a validation
check on the date variable. In particular, the date parameter is checked against the regular expres-
sion \𝑑{4} − \𝑑{1,2} − \𝑑{1,2} even before the SUT method TestabilityRest.get is called. The
check is done deep inside the Spring framework’s library, using Matcher.matches. Furthermore, a
string matching that regular expression is not necessarily a valid date. For example, a value like 42
for the month or day would be wrong (i.e., LocalDate.parse will throw an exception), although it
would still match \𝑑{1,2}.

Figure 6 shows one system-level test case generated by EvoMaster when extended with our
novel techniques. It was possible to generate the right HTTP call (using the library RestAssured)
that returns "OK" in less than one minute. By applying our novel testability transformations, it was

, Vol. 1, No. 1, Article . Publication date: May 2021.

22 Andrea Arcuri and Juan P. Galeotti

@Res tCon t ro l l e r
public c l a s s TTPaperParam {

@GetMapping (" / a p i / param ")
public S t r i n g ge t (WebRequest wr) {

S t r i n g param = wr . g e tPa r ame t e r (" param ") ;

i f (param . e qu a l s ("FOO")) {
return "OK" ;

}

return null ;
}

}

Fig. 7. Second code example of REST controller.

@Test
public void t e s t _ 1 () {

g iven () . a c c e p t (" ∗ / ∗ ")
. g e t (b a s eUr lO f Su t + " / ap i / param?param=FOO")
. then ()
. s t a t u sCode (2 0 0)
. a s s e r t T h a t ()
. contentType (" t e x t / p l a i n ")
. body (c o n t a i n s S t r i n g ("OK")) ;

}

Fig. 8. Test generated by EvoMaster on the API depicted in Figure 7.

possible to achieve full coverage on such SUT. Nine different test cases were generated covering
different scenarios (but not displayed here in this paper due to space limitations).
In Figure 7, there is another code example, in which the value "OK" is returned only if a query

parameter called param is given as input with value "FOO". However, a WebRequest is used. This
means that automated tools that generate OpenAPI schemas will miss the presence of such param-
eter. However, our testability transformation has no issue in handling these cases, which leads
EvoMaster to quickly generate (in a few seconds) test cases like the one in Figure 8.
In the third and last example in Figure 9, we have a POST request that expects a JSON body

payload, which is then unmarshalled into a BodyDto class instance. However, as the handler takes
as input a HttpServletRequest instead of delegating to Spring to extract the body payload and
unmarshall it into BodyDto (which would be simply achieved by giving as input @RequestBody
BodyDto dto), such definition is missing from the generated OpenAPI schema. Without our
testability transformations, tools like EvoMaster (and any black-box testing tool) cannot predict
what is the proper input for the body payloads. However, with our novel techniques, such case
becomes trivial, and can be solved in a few seconds, e.g., by generating tests like the one in Figure 10.

RQ1: thanks to our testability transformations, code examples which we could not fully cover before
become now trivial.

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 23

@Res tCon t ro l l e r
public c l a s s TTPaperBody {

@PostMapping (path = " / ap i / body "
, consumes = MediaType . APPLICATION_JSON_VALUE)

public S t r i n g po s t (H t t p S e r v l e t R e qu e s t r e q u e s t) throws Excep t i on {

S t r i n g j s on = IOU t i l s . t o S t r i n g (r e q u e s t . g e t I npu t S t r e am ()
, S t anda r dCha r s e t s . UTF_8) ;

BodyDto dto = new Gson () . f romJson (j son , BodyDto . c l a s s) ;

i f (d to . x > 0) return "OK" ;
e l se return null ;

}
}

c l a s s BodyDto {
public I n t e g e r x ;

}

Fig. 9. Third example of REST API, with also a DTO (Data Transfer Object) class representing the input body
payload.

@Test
public void t e s t _ 1 () {

g iven () . a c c e p t (" ∗ / ∗ ")
. contentType (" a p p l i c a t i o n / j s on ")
. body (" { " +

" \ " x \ " : 9 8 5 . 0 " +
" } ")

. po s t (b a s eUr lO f Su t " +/ ap i / body ")

. then ()

. s t a t u sCode (2 0 0)

. a s s e r t T h a t ()

. contentType (" t e x t / p l a i n ")

. body (c o n t a i n s S t r i n g ("OK")) ;
}

Fig. 10. Test generated by EvoMaster on the API depicted in Figure 9.

8.3 REST API Experiment Settings
For the RESTful APIs, we carried out two distinct sets of experiments. In the first one, we run
EvoMaster on the nine open-source services, considering five different configurations:

• Base, the default version of EvoMaster, with none of our novel techniques presented in
this article.

• M: using Method Replacement (Section 4) and Genotype Expansion (Section 6).
• M+T: as in𝑀 , but also using Input Tracking (Section 5). For the probability 𝑃 of applying the
mutation, we considered three different values: 0.1, 0.5 and 0.9.

, Vol. 1, No. 1, Article . Publication date: May 2021.

24 Andrea Arcuri and Juan P. Galeotti

Table 3. Number of times, per SUT, in which a method was replaced with our testability transformations
(Section 4). We distinguish whether this happened in one of the core classes of the SUT, or in a third-party
library. We also report how often the testability transformations were used to collect data on what accessed
from the HTTP requests (Section 6) and to improve the TCP handling (Section 7). For the replacements done
in the SUTs, we also report the average number of such replacements per class, and also how many 𝑥 LOCs a
transformation is applied on average. Note: due to the results for rest-ncs, the aggregated statistics show the
median of the averages instead of the average of the averages.

SUT Replacement HTTP SUT Replacement
SUT Third-party Avg. Per-Class Avg. 1-per-x LOCs

catwatch 33 4522 3 0.47 164.9
features-service 6 4081 3 0.26 207.8
languagetool 2794 662 0 3.43 45.0
proxyprint 113 4076 24 1.66 66.6
rest-ncs 0 2690 3 0.00 -
rest-news 4 4305 3 0.40 179.5
rest-scs 86 2678 3 6.61 10.0
restcountries 46 3581 3 2.19 32.9
scout-api 52 3718 0 0.69 143.8

Total/Median 3134 30313 42 0.69 143.8

To take into account the randomness of the search algorithm, each experiment was repeated
30 times with different random seeds, for a total of 9 × 5 × 30 = 1350 runs. As stopping criterion,
we chose the same amount of fitness evaluations as done in our previous work [10, 11], which
consisted of 100,000 HTTP calls per run. Depending on the SUT and the hardware employed, each
run would take roughly between 20 and 60 minutes.

The second set of experiments on the industrial case study was with the same kind of configura-
tions, i.e., Base,𝑀 and𝑀 +𝑇 , but only one value for 𝑃 (so, three configurations in total). As such
industrial case study does complex, heavy input validation on most of its endpoints, we experi-
mented with longer search budget. In particular, we considered a stopping criterion of 1,000,000
HTTP calls, which roughly required 12 hours per run on the employed hardware. Experiments
were repeated 30 times, for a total of 3 × 30 = 90 runs.

For both sets of experiments we relied on EvoMaster with its default settings except for the
HTTP call budget. The results of the experiments were analyzed following the guidelines in [13]. In
particular, we used the Wilcoxon-Mann-Whitney U-test, and the Vargha-Delaney �̂�12 effect size.

8.4 Results on Open-Source Software
Table 3 shows how often our transformations were applied on the open-source SUTs. These only
count the number of times a method was replaced in classes loaded by the SUT during the search.
For example, if a class is never used (and so never loaded in the JVM of the SUT), then it is not
instrumented by the EvoMaster runtime, and would not be counted in that table. The numbers
reported are the total number considering all the 1350 runs.
The number of applied testability transformations varies significantly from SUT to SUT, like

from 0 for rest-ncs to 2794 for languagetool. However, it is clear that there is a very large number of
third-party libraries involved in the execution of the SUT. On each case study, there are between 662
and 4522 method calls that were replaced with our testability transformations. This is not surprising,

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 25

Table 4. Average (over 30 runs) bytecode-level line coverage per configuration, on each of the open-source
SUTs. Results are ranked per SUT, from 1 (best configuration) to 5 (worst configuration). Values in bold are
the best (i.e., rank 1).

SUT Base 𝑀 𝑀 +𝑇
0.1 0.5 0.9

catwatch 503.6 (4) 507.0 (3) 500.4 (5) 507.3 (2) 509.3 (1)
features-service 169.9 (5) 189.7 (1) 187.5 (2) 185.9 (3) 180.9 (4)
languagetool 4864.3 (5) 6820.9 (4) 9891.1 (3) 10137.8 (2) 10156.0 (1)
proxyprint 744.3 (4) 768.6 (2) 787.7 (1) 763.2 (3) 738.4 (5)
rest-ncs 250.8 (5) 251.2 (2.5) 251.1 (4) 251.2 (2.5) 251.3 (1)
rest-news 94.3 (1) 92.7 (3) 92.0 (4) 91.6 (5) 92.9 (2)
rest-scs 180.5 (5) 220.7 (4) 236.8 (3) 240.5 (2) 240.6 (1)
restcountries 385.0 (5) 396.2 (3) 395.9 (4) 397.6 (2) 398.8 (1)
scout-api 631.8 (5) 632.1 (4) 640.6 (1) 635.3 (3) 635.4 (2)

Average Rank 4.3 2.9 3.0 2.7 2.0

Table 5. Average (over 30 runs) number of found faults per configuration, on each of the open-source SUTs.
Results are ranked per SUT, from 1 (best configuration) to 5 (worst configuration). Values in bold are the best
(i.e., rank 1).

SUT Base 𝑀 𝑀 +𝑇
0.1 0.5 0.9

catwatch 20.9 (5) 21.1 (4) 21.3 (3) 21.7 (1) 21.4 (2)
features-service 33.9 (3.5) 34.0 (2) 34.0 (1) 33.9 (3.5) 33.8 (5)
languagetool 8.1 (5) 25.2 (4) 52.5 (3) 61.4 (1) 56.0 (2)
proxyprint 95.4 (5) 101.9 (2) 102.3 (1) 100.4 (3) 99.4 (4)
rest-ncs 5.1 (1) 5.1 (2) 5.0 (4) 5.0 (4) 5.0 (4)
rest-news 7.0 (2) 7.1 (1) 7.0 (3) 6.9 (4) 6.9 (5)
rest-scs 11.0 (1) 11.0 (2) 10.8 (3) 10.7 (4) 10.4 (5)
restcountries 23.0 (3) 23.0 (3) 23.0 (3) 23.0 (3) 23.0 (3)
scout-api 102.9 (4) 102.6 (5) 105.5 (2) 103.2 (3) 105.9 (1)

Average Rank 3.3 2.8 2.6 2.9 3.4

considering the complexity of handling HTTP requests (e.g., using Tomcat) and accessing databases
(e.g., using Hibernate), with beans autowired by Spring (which is used by seven of the SUTs).

Regarding our Genotype Expansion technique (Section 6), it was applicable 21 times, but only on
the proxyprint case study. Seven SUTs use Tomcat (as they are SpringBoot applications), which
leads to 3 call replacements each for handling the TPC connections (Section 7).

RQ2: our testability transformations could be applied 3134 times on the SUT classes, and more than
30,000 times on the classes of the third-party libraries.

EvoMaster optimizes for several criteria, like line coverage, branch coverage, coverage of HTTP
status codes per endpoint, detected faults, etc. In previous work (e.g., [14]), we usually reported
such total number of covered testing targets to measure and compare the effectiveness of our
techniques. However, our testability transformations presented in Section 4 introduce new testing

, Vol. 1, No. 1, Article . Publication date: May 2021.

26 Andrea Arcuri and Juan P. Galeotti

targets. Looking at the total of covered targets would hence be unsound when doing comparisons
with the default Base technique that does not do such instrumentation (and this was a mistake
done in the previous version of this study [16]). Due to space limitations, we do not report each
metric individually, but rather show the results for the two most important ones: line coverage and
fault detection.
Regarding line coverage, EvoMaster computes it at bytecode level, counting the number of

LINENUMBER instructions that are covered. However, for system testing, there is a challenge in
computing the total percentage values, as the total number of LINENUMBER instructions per class
can be derived only for the classes that are actually loaded into the JVM during the search. If some
classes are never loaded (e.g., because their execution depends on code that was not reached), then
we cannot reliably compute the percentage of achieved line coverage. Notice that 7 out of 9 SUTs
use SpringBoot, whose custom class-loader does a scan of the whole classpath to analyze all the
classes that need to be instantiated as proxy-beans. For those, all the SUTs classes will be loaded
into the JVM, so for them this is not a problem. However, for the other two SUTs (i.e., scout-api and
languagetool), some classes might have not been loaded during the experiments. This is the reason
why we are also going to report the actual total number of covered LINENUMBER instructions. When
we report percentages, those are calculated by taking into account the highest number of loaded
classes considering each of the 150 experiments per SUT.
Regarding fault detection, EvoMaster counts each returned 500 status code per different end-

point, distinguished based on the last executed statement in the business logic of the SUT. This
allows to detect possible different faults in the SUT that can lead to a crash in the same endpoint
(which is among one of the main advantages of white-box testing compared to black-box tech-
niques). Furthermore, EvoMaster can detect when a returned response is not matching what
specified in the OpenAPI/Swagger schemas.

Table 4 shows the results of comparing the five different configurations of our experiments on
each of the nine open-source SUTs in terms of line coverage. For most SUTs, the configuration
𝑀 +𝑇 with 𝑃 = 0.9 gives the best results (as it has the lowest rank 2.0). But, for proxyprint, it seems
like our input tracking has some negative side effects, as best results are for 𝑃 = 0.1, and, the higher
the 𝑃 the lower the performance. However, it still gives better results than𝑀 . But this is not the
case for features-service, where although𝑀 is better than Base, the use of input tracking worsens
the results. This could be explained if indeed our novel heuristics give better gradient to the search,
but, at the same time, they involve inputs that are transformed before used in the replacement
methods. In those cases, using string values like evomaster_x_input would be just a waste of
resources.

The default version of EvoMaster, i.e., Base, gives the worst results on average (worst rank 4.3).
However, out of nine SUTs, there is one where Base gives the best results, which is rest-news. But,
the difference in performance is minimal, i.e., only 2 lines out of 94 covered. On the other hand, for
example for languagetool the coverage more than double with𝑀 +𝑇 , i.e., 10,156 vs. 4,864 covered
lines.

Table 5 shows the results regarding the found faults in these SUTs. Even for such metric,𝑀 +𝑇
is the configuration that gives the best results. On the one hand, interestingly there is a negative
effect regarding 𝑃 , where low values give better results. On the other hand, the difference in actual
number of found faults is quite minimal among the SUTs, for all but languagetool and, to a lesser
degree, proxyprint.

From the results of Table 4 and Table 5 it is clear that𝑀 +𝑇 gives better results than𝑀 and Base.
But the choice of 𝑃 is not straightforward. We suggest 𝑃 = 0.9, but the other two evaluated values
would be reasonable as well. Future work will be needed to prevent this kind of side-effects. One

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 27

Table 6. Statistical comparisons for line coverage percentage of the two configurations Base and𝑀 +𝑇 with
𝑃 = 0.9. We report the resulting �̂�12 effect sizes, and the p-values of the statistical tests (in bold when lower
or equal to 0.05).

SUT Base 𝑀 +𝑇 �̂�12 p-value

catwatch 31.0% 31.4% 0.59 0.239
features-service 39.9% 42.5% 0.72 0.003
languagetool 18.6% 38.7% 0.99 ≤ 0.001
proxyprint 27.1% 26.9% 0.50 0.984
rest-ncs 87.7% 87.9% 0.62 0.073
rest-news 51.2% 50.5% 0.37 0.081
rest-scs 60.0% 79.9% 1.00 ≤ 0.001
restcountries 71.7% 74.3% 0.97 ≤ 0.001
scout-api 38.5% 38.7% 0.54 0.594

Table 7. Statistical comparisons for fault findings of the two configurations Base and𝑀 +𝑇 with 𝑃 = 0.9.
We report the resulting �̂�12 effect sizes, and the p-values of the statistical tests (in bold when lower or equal
to 0.05).

SUT Base 𝑀 +𝑇 �̂�12 p-value

catwatch 20.9 21.4 0.62 0.105
features-service 33.9 33.8 0.43 0.223
languagetool 8.1 56.0 0.98 ≤ 0.001
proxyprint 95.4 99.4 0.68 0.004
rest-ncs 5.1 5.0 0.43 0.042
rest-news 7.0 6.9 0.45 0.231
rest-scs 11.0 10.4 0.25 ≤ 0.001
restcountries 23.0 23.0 0.50 1.000
scout-api 102.9 105.9 0.61 0.144

possible approach to mitigate side-effects would be to use an adaptive system to modify the value
𝑃 based on fitness feedback during the search.
Table 6 and Table 7 show a more in depth comparison between Base and 𝑀 +𝑇 with 𝑃 = 0.9.

Regarding line coverage, our novel techniques improve performance significantly in four SUTs, with
strong effect size, e.g., the maximum possible 1.0 for rest-scs, very high 0.97 − 0.99 for restcountries
and languagetool, and good 0.72 for features-service.

Regarding fault detection, we have statistically significant improvement for languagetool (+47.9
new found faults) and proxyprint (+4 new found faults). However, we get statistically worse
results for rest-ncs and rest-scs, albeit the difference in results is minimal, i.e., −0.1 and −0.6 faults,
respectively.

RQ3: our novel techniques with configuration𝑀 +𝑇 and 𝑃 = 0.9 provides significant performance
improvements, especially for large and complex SUTs like languagetool.

8.5 Results on Industrial Software
Table 8 shows the results of the experiments on the industrial case study (which is a SpringBoot
application). On such SUT, the improvements are very large and substantial. Target coverage more

, Vol. 1, No. 1, Article . Publication date: May 2021.

28 Andrea Arcuri and Juan P. Galeotti

Table 8. Average results (over 30 runs) on the industrial web service, where the Base configuration is compared
against𝑀 +𝑇 . Besides reporting the average number of covered targets (which is a total of several different
metrics), we report as well some of those metrics, like bytecode line coverage, percentage of endpoints for
which a successful 2xx status code was returned, a faulty 5xx was returned, and the number of detected faults
in such a web service. We also report the resulting �̂�12 effect sizes, and the p-values of the statistical tests.

Base 𝑀 +𝑇 �̂�12 p-value

Targets 142.0 512.3 1.00 ≤ 0.001
Lines 0.8% 11.5% 1.00 ≤ 0.001
HTTP 2xx 5.0% 26.0% 1.00 ≤ 0.001
HTTP 5xx 95.0% 95.0% 0.50 1.000
Faults 38.0 44.6 1.00 ≤ 0.001

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20
0

30
0

40
0

50
0

Budget Percentage

C
ov

er
ed

 T
ar

ge
ts

5 10 20 30 40 50 60 70 80 90 100

● Base
M
M+T

Fig. 11. Average (out of 30 runs) number of covered targets throughout the search, for the three configurations
Base,𝑀 and𝑀 +𝑇 .

than tripled (however recall the presence of extra targets for the testability transformations), with
line coverage going from not even 1% to 11.5%. It was possible to automatically detect 7 new faults
in such web service. On each single metric but HTTP 5xx, we have very low p-values, with the
strongest possible �̂�12 = 1 effect size.
This web service is composed of 20 endpoints, most of them using input validation based on

several regular expressions and date parsing. Without our novel techniques, a tool like EvoMaster
(or any black-box technique) would have extremely low probability of sampling strings that would
pass those input validations.

Based on the results of Table 8, we can see that there is 1 out of 20 endpoints for which it is easy
to obtain a 2xx code (so likely no input validation on it). However, on the other 19 endpoints there
are several regular expression checks made by Spring before the SUT main code is even executed.
This would explain the very low statement coverage 0.8% for Base. However, even with random
inputs, it was possible to generate invalid inputs for which the SUT wrongly returns a 5xx status
(server error) code instead of a 4xx one (which is used in HTTP to represent user errors). On the
other hand, with our novel testability transformations, it was possible to create the right data to at
least pass this first layer of input validation.

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 29
49

0
49

5
50

0
50

5
51

0

catwatch

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

15
0

16
0

17
0

18
0

19
0

features−service

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

20
00

40
00

60
00

80
00

10
00

0

languagetool

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

60
0

65
0

70
0

75
0

proxyprint

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

24
0

24
5

25
0

rest−ncs

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

87
88

89
90

91
92

93
94

rest−news

Budget Percentage

C
ov

er
ed

 L
in

es
5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

18
0

20
0

22
0

24
0

rest−scs

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

37
5

38
0

38
5

39
0

39
5

restcountries

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

54
0

56
0

58
0

60
0

62
0

scout−api

Budget Percentage

C
ov

er
ed

 L
in

es

5 10 20 30 40 50 60 70 80 90 100

Base
M
M+T

Fig. 12. Average (out of 30 runs) number of covered bytecode-level lines throughout the search, for the three
configurations Base,𝑀 and𝑀 +𝑇 with 𝑃 = 0.9.

The performance of a search algorithm strongly depends on for how long it is left running.
However, how engineers will use such test generation tools in practice is not yet clear. Would 4
hours be a too long time? Or would engineers be happy to keep the tool running overnight, and
collect the results the day after (e.g., after 16 hours)? For fair comparisons, algorithms and their
configurations should be compared with different search budgets, possibly representing realistic
budgets that engineers would use in practice.
Figure 11 shows the performance of the three compared configurations at each 5% intervals of

the search budget (i.e., every 50,000 HTTP calls). There is no performance difference between Base
and M. This is expected, as 𝑀 has no effect on third-party libraries (e.g., the regular expression
checks in Spring). On the other hand, already at 5% of the budget,𝑀 +𝑇 has performance nearly
twice as high as the other configurations at the end of the search (i.e., at 100%). For completeness,
Figure 12 shows how bytecode-level line coverage varies throughout the search for the open-source
SUTs.

, Vol. 1, No. 1, Article . Publication date: May 2021.

30 Andrea Arcuri and Juan P. Galeotti

Even considering the 𝑀 + 𝑇 configuration, a line coverage of 11.5% could be considered low.
However, this is system testing of a complex industrial web service, where fitness evaluations are
expensive, because they can involve several HTTP calls, with access to external databases like
Postgres. At any rate, even with the current settings, our results are already of practical importance
for our industrial partners, as 7 new faults were automatically found.
RQ4: with our novel testability transformations, line coverage increased more than 10 times, and 7

new faults were automatically found in the industrial SUT.

8.6 Results Discussion
Our empirical study shows the effectiveness of our novel techniques, in regards to code coverage
and fault finding, when applied to white-box testing of RESTful APIs written for the JVM (e.g.,
using Java and Kotlin). But some of our techniques could be used in other testing contexts as well.

The method replacement techniques discussed in Section 4 could likely be used in any white-box
testing context, like unit test generation. For example, tools such as EvoSuite do optimize for
several different testing criteria [51]. Therefore, new testing targets could be considered for each
transformed method. For example, a new testing target for the transformed method throwing an
exception, and another testing target for the same method not throwing an exception. Due to the
design of the MIO [10] algorithm, our heuristic values ℎ are scaled in the range [0,1], where 1
means the target is covered. Mapping such values into a more traditional branch distance 𝑑 (where
the value 0 is used to represent a covered target) would be as trivial as applying a transformation
function like 𝑑 = 1 − ℎ. However, how to best integrating these values ℎ in other tools will depend
on how the fitness functions are defined.
Adapting the use of input tracking (Section 5) would require more work, as it depends on the

implementation of the search operators. For example, EvoMaster has a rich gene-system, where we
already had specialized mutation operators for strings representing dates and regular expressions.
This was done to handle such type of constraints in OpenAPI schemas [11] and SQL databases [15].

Although the techniques presented in Section 6 are specific for RESTful APIs (and so they are
unlikely to be useful in other contexts), what presented in Section 7 could likely be applied in any
other testing context where TCP connections are involved. These would include the testing of
other kinds of web services (e.g., SOAP, GraphQL and gRPC), as well as web applications.
We have implemented our techniques for the JVM. However, they could be applied to other

programming languages as well. Most languages do provide APIs for common operations, such
as dealing with strings and date objects. As an example, .Net bytecode has many similarities with
Java bytecode, as both VMs are stack-based. So, adapting these techniques for C# will likely be
just a technical effort (but of course, we cannot be sure until such endeavor has been undertaken).
On the other hand, dynamically and weakly typed languages such as JavaScript would be more
complex to support.
The architectural design of EvoMaster (with a clear distinction between the core and driver

processes) was made from the start to support different programming languages [8] (as those require
just to write a new driver). We are in the process of supporting other programming languages,
besides the ones that compile to JVM bytecode. Once such initial support is completed, we will
adapt the techniques presented in this paper and investigate their performance for these other
programming languages as well.
Although our experiments show an improvement in both code coverage and fault finding, this

was not the case for all the SUTs in our case study. For some, there was no improvement. The
techniques presented in this paper address one type of flag problem, specifically the case of flags in
the methods/functions of existing standard APIs (like the JDK). If an SUT is negatively affected

, Vol. 1, No. 1, Article . Publication date: May 2021.

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 31

by other types of flags as well, then not obtaining better results can be expected. For example,
currently we do not handle flags in interprocedural boolean method calls [43]. To achieve better
results, these other kinds of flags would need to be handled as well.
Besides search-based techniques, another successful approach for test generation is Dynamic

Symbolic Execution (DSE) [19, 23, 40]. Applying DSE directly to testing of web services would be
challenging (e.g., due to the dealing of TCP connections and database accesses), and that might be
one reason why there is no current DSE approach for this problem domain. However, for constraints
that can be handled with a constraint solver, DSE can be faster than SBST approaches. So, hybrid
approaches that combine the strengths of SBST and DSE could lead to better results. This has been
shown to be promising for unit test generation [30]. And so, this could hold as well for system
testing of web services. But, several research and technical challenges would need to be addressed
to successfully combine these two techniques for this specific problem domain.

9 THREATS TO VALIDITY
Threats to internal validity comes from the fact that that our experiments are based on an extension
of the EvoMaster tool. Bugs in such extension could undermine the validity of our results. Although
our extension was rigorously tested, we cannot guarantee it is fault-free. To address this problem,
and to also enable the replicability of this study and third-party independent validation, our
EvoMaster tool is published as open-source on GitHub.

Evolutionary algorithms are based on randomized algorithms. To analyze the effects of random-
ness on the results, we followed the guidelines in [13]. In particular, we used the Wilcoxon-Mann-
Whitney U-test, and the Vargha-Delaney �̂�12 effect size. All experiments were repeated 30 times,
using different random seeds.
Threats to external validity comes to the fact that only 10 web services were used in the case

study, due to the high cost of running experiments on system testing. We used open-source services
to enable replicability of our study. We also used an industrial web service to study relevance and
effectiveness in practice. However, we cannot claim that our results would generalize to other web
services as well.
Our novel testability transformations were evaluated in the context of system testing of web

services. As discussed in more details in Section 8.6, some of those transformations could be used
also in other white-box testing contexts (e.g., unit testing). But, without empirical validation,
we cannot affirm that our novel testability transformations would be as effective in those other
contexts.

10 CONCLUSION
In this paper, we have presented a series of novel testability transformations to enhance search-
based software testing. Experiments on nine open-source and one industrial REST web services
show that our novel techniques improve performance significantly. For example, it was possible to
automatically detect seven new faults in the industrial web service.

Future work will aim at providing more transformations for other common API methods. Further-
more, techniques and ideas from taint analysis, seeding (e.g., [52]) and Dynamic Symbolic Execution
could be integrated in the search algorithms to improve performance even further. Although our
novel techniques show significant improvements, there is still much more that need to be done to
get high code coverage results and higher fault detection. System test generation is very complex,
and the techniques presented in this paper provide an important contribution toward solving such
complex problem.

, Vol. 1, No. 1, Article . Publication date: May 2021.

32 Andrea Arcuri and Juan P. Galeotti

To enable the replicability of our study, we implemented our techniques as an extension to our
EvoMaster open-source tool. To learn more about EvoMaster, visit its website at:

http://www.evomaster.org

ACKNOWLEDGMENTS
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 864972), and
partially by UBACYT-2018 20020170200249BA, PICT-2015-2741.

, Vol. 1, No. 1, Article . Publication date: May 2021.

http://www.evomaster.org

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 33

REFERENCES
[1] [n.d.]. OpenAPI/Swagger. https://swagger.io/.
[2] [n.d.]. RestAssured. https://github.com/rest-assured/rest-assured.
[3] [n.d.]. Spring Framework. https://spring.io.
[4] S. Ali, L.C. Briand, H. Hemmati, and R.K. Panesar-Walawege. 2010. A systematic review of the application and

empirical investigation of search-based test-case generation. IEEE Transactions on Software Engineering (TSE) 36, 6
(2010), 742--762.

[5] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols, Taijin Tei, and Ilya Zorin. 2018.
Deploying Search Based Software Engineering with Sapienz at Facebook. In International Symposium on Search Based
Software Engineering (SSBSE). Springer, 3--45.

[6] Mohammad Alshraideh and Leonardo Bottaci. 2006. Search-based software test data generation for string data using
program-specific search operators. Software Testing, Verification and Reliability (STVR) 16, 3 (2006), 175--203.

[7] Mohammad Alshraideh and Leonardo Bottaci. 2006. Search-based software test data generation for string data
using program-specific search operators. Software Testing, Verification, and Reliability 16, 3 (2006), 175--203. https:
//doi.org/10.1002/stvr.v16:3

[8] Andrea Arcuri. 2018. EvoMaster: Evolutionary Multi-context Automated System Test Generation. In IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE.

[9] Andrea Arcuri. 2018. An experience report on applying software testing academic results in industry: we need usable
automated test generation. Empirical Software Engineering (EMSE) (2018), 1--23.

[10] A. Arcuri. 2018. Test suite generation with the Many Independent Objective (MIO) algorithm. Information and Software
Technology (IST) (2018).

[11] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with EvoMaster. ACM Transactions on Software
Engineering and Methodology (TOSEM) 28, 1 (2019), 3.

[12] Andrea Arcuri. 2020. Automated Blackbox and Whitebox Testing of RESTful APIs With EvoMaster. IEEE Software
(2020).

[13] A. Arcuri and L. Briand. 2014. A Hitchhiker’s Guide to Statistical Tests for Assessing Randomized Algorithms in
Software Engineering. Software Testing, Verification and Reliability (STVR) 24, 3 (2014), 219--250.

[14] Andrea Arcuri and Juan P Galeotti. 2020. Handling SQL databases in automated system test generation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1--31.

[15] Andrea Arcuri and Juan P. Galeotti. 2020. Handling SQL Databases in Automated System Test Generation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1--31.

[16] Andrea Arcuri and Juan P. Galeotti. 2020. Testability Transformations For Existing APIs. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE, 153--163.

[17] Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. 2021. EvoMaster: A Search-Based System
Test Generation Tool. Journal of Open Source Software 6, 57 (2021), 2153.

[18] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler: Stateful REST API Fuzzing. In Proceedings
of the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press, 748–758. https://doi.org/10.1109/
ICSE.2019.00083

[19] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of symbolic
execution techniques. ACM Computing Surveys (CSUR) 51, 3 (2018), 1--39.

[20] A. Baresel, D. Binkley, M. Harman, , and B. Korel. 2004. Evolutionary testing in the presence of loop-assigned flags: a
testability transformation approach. In ACM Int. Symposium on Software Testing and Analysis (ISSTA). 108--118.

[21] A. Baresel and H. Sthamer. 2003. Evolutionary testing of flag conditions. In Genetic and Evolutionary Computation
Conference (GECCO). 2442--2454.

[22] D. W. Binkley, M. Harman, and K. Lakhotia. 2011. FlagRemover: A testability transformation for transforming
loop-assigned flags. ACM Trans. Softw. Eng. Methodol. 20, 3 (2011), 12:1--12:33. https://doi.org/10.1145/2000791.2000796

[23] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: three decades later. Commun. ACM
56, 2 (2013), 82--90.

[24] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic taint analysis framework. In
Proceedings of the 2007 international symposium on Software testing and analysis. 196--206.

[25] H. Converse, O. Olivo, and S. Khurshid. 2017. Non-Semantics-Preserving Transformations for Higher-Coverage Test
Generation Using Symbolic Execution. In 2017 IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017. 241--252. https://doi.org/10.1109/ICST.2017.29

[26] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Automatic Generation of Test Cases for
REST APIs: A Specification-Based Approach. In 2018 IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC). 181--190.

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1002/stvr.v16:3
https://doi.org/10.1002/stvr.v16:3
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/2000791.2000796
https://doi.org/10.1109/ICST.2017.29

34 Andrea Arcuri and Juan P. Galeotti

[27] Roy Thomas Fielding. 2000. Architectural styles and the design of network-based software architectures. Ph.D. Dissertation.
University of California, Irvine.

[28] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented software. In
ACM Symposium on the Foundations of Software Engineering (FSE). 416--419.

[29] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE Transactions on Software Engineering 39, 2
(2013), 276--291.

[30] Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. 2014. Extending a search-based test generator with adaptive
dynamic symbolic execution. In ACM Int. Symposium on Software Testing and Analysis (ISSTA). ACM, 421--424.

[31] Matthew J. Gallagher and V Lakshmi Narasimhan. 1997. Adtest: A test data generation suite for ada software systems.
IEEE Transactions on Software Engineering (TSE) 23, 8 (1997), 473--484.

[32] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent REST API Data Fuzzing. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 725–736.
https://doi.org/10.1145/3368089.3409719

[33] D. Gong and X. Yao. 2012. Testability transformation based on equivalence of target statements. Neural Computing
and Applications 21, 8 (2012), 1871--1882. https://doi.org/10.1007/s00521-011-0568-8

[34] Mark Harman. 2018. We need a testability transformation semantics. In International Conference on Software Engineering
and Formal Methods. Springer, 3--17.

[35] M. Harman, A. Baresel, D. W. Binkley, R. M. Hierons, L. Hu, B. Korel, P. McMinn, and M. Roper. 2008. Testability
Transformation - Program Transformation to Improve Testability. In Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers. 320--344. https://doi.org/10.1007/978-3-540-78917-8_11

[36] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, André Baresel, and Marc Roper. 2004.
Testability transformation. IEEE Transactions on Software Engineering (TSE) 30, 1 (2004), 3--16.

[37] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys (CSUR) 45, 1 (2012), 11.

[38] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and precise taint analysis for android. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis. 106--117.

[39] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST: Property-based Test Generation of OpenAPI
Described RESTful APIs. In IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.

[40] J. C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385--394.
[41] B. Korel. 1990. Automated Software Test Data Generation. IEEE Transactions on Software Engineering (1990), 870--879.
[42] Y. Li and G. Fraser. 2011. Bytecode Testability Transformation. In Search Based Software Engineering - Third International

Symposium, SSBSE 2011, Szeged, Hungary, September 10-12, 2011. Proceedings. 237--251. https://doi.org/10.1007/978-3-
642-23716-4_21

[43] Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong. 2020. Recovering fitness gradients for
interprocedural Boolean flags in search-based testing. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 440--451.

[44] Linghui Luo, Eric Bodden, and Johannes Späth. 2019. A qualitative analysis of Android taint-analysis results. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 102--114.

[45] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest: Black-Box Constraint-Based Testing of
RESTful Web APIs. In International Conference on Service-Oriented Computing.

[46] Phil McMinn. 2009. Search-based failure discovery using testability transformations to generate pseudo-oracles. In
Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009.
1689--1696. https://doi.org/10.1145/1569901.1570127

[47] P. McMinn, D. Binkley, and M. Harman. 2009. Empirical evaluation of a nesting testability transformation for
evolutionary testing. ACMTrans. Softw. Eng. Methodol. 18, 3 (2009), 11:1--11:27. https://doi.org/10.1145/1525880.1525884

[48] Sam Newman. 2015. Building Microservices. " O’Reilly Media, Inc.".
[49] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do android taint analysis tools keep their promises?. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 331--341.

[50] RV Rajesh. 2016. Spring Microservices. Packt Publishing Ltd.
[51] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri. 2015. Combining multiple coverage

criteria in search-based unit test generation. In International Symposium on Search Based Software Engineering. Springer,
93--108.

[52] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in search-based unit test generation.
Software Testing, Verification and Reliability (STVR) (2016).

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1007/s00521-011-0568-8
https://doi.org/10.1007/978-3-540-78917-8_11
https://doi.org/10.1007/978-3-642-23716-4_21
https://doi.org/10.1007/978-3-642-23716-4_21
https://doi.org/10.1145/1569901.1570127
https://doi.org/10.1145/1525880.1525884

Enhancing Search-Based Testing With Testability Transformations For Existing APIs 35

[53] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask). In 2010 IEEE symposium on Security and
privacy. IEEE, 317--331.

[54] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman. 2009. TAJ: effective taint analysis of
web applications. ACM Sigplan Notices 44, 6 (2009), 87--97.

[55] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RESTTESTGEN: Automated Black-Box Testing of
RESTful APIs. In IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.

[56] Stefan Wappler, Joachim Wegener, and André Baresel. 2009. Evolutionary testing of software with function-assigned
flags. Journal of Systems and Software 82, 11 (2009), 1767--1779. https://doi.org/10.1016/j.jss.2009.06.037

[57] Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2019. Resource-based test case generation for RESTful web
services. In Proceedings of the Genetic and Evolutionary Computation Conference. 1426--1434.

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1016/j.jss.2009.06.037

	Abstract
	1 Introduction
	2 Background
	2.1 Branch Distance
	2.2 Java Bytecode
	2.3 REST APIs
	2.4 EvoMaster

	3 Related Work
	3.1 Testability Transformations
	3.2 Taint Analysis and Seeding
	3.3 Testing REST APIs

	4 Testability Transformations using Method Replacements
	5 Improving Search through Input Tracking
	6 Genotype Expansion for REST APIs
	7 Testability Transformations for TCP Performance
	8 Empirical Study
	8.1 Artifact Selection
	8.2 Results on Code Examples
	8.3 REST API Experiment Settings
	8.4 Results on Open-Source Software
	8.5 Results on Industrial Software
	8.6 Results Discussion

	9 Threats to Validity
	10 Conclusion
	Acknowledgments
	References

