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Abstract: A new framework for long-term monitoring of bridges is proposed in order to negate
(i) the impact of measurement uncertainties on damage detection in vibration-based structural health
monitoring and (ii) the low sensitivity of damage indicators to low levels of damage. The framework
is developed using three vibration-based damage indicators that have an intuitive physical correlation
with damage: modal curvature, modal strain energy and modal flexibility. The article first quantifies
the efficacy of these damage indicators when based on two observations, one from the undamaged
state and one from the monitored state, in detecting and locating damage for different damage
levels that are simulated on an 84-m long railway bridge. A long-term monitoring framework based
on a new parameter defined as the frequency of the damage indicator exceeding the threshold
value within a population of observations is developed. Impact of several factors including the
damage location, damage indicator used in the framework, and the noise level on the success of the
developed framework was investigated through numerical analysis. The new parameter, when used
together with modal strain energy, was shown to provide a very clear picture of damage initiation
and development over time starting from very low damage levels. Furthermore, the location of the
simulated damage can be identified successfully at all damage levels and even for very high noise
levels using the proposed framework.

Keywords: long-term SHM; vibration-based; damage detection; localization; damage indicators

1. Introduction

The bridge infrastructure throughout the world is aging rapidly. In Europe alone,
a significant portion of the over one million highway bridges are on the wrong side of
their design life while, as of 2017, 35% of the railway bridges are over 100 years old [1].
In addition, both highway and railway bridges are subject to traffic loads that surpass
the original design loads that they were designed for leading to an acceleration in the
deterioration of their structural performance. As of 2004, over 80,000 bridges in the United
States, i.e., 13.7% of the total inventory of the bridges, were classified as structurally
deficient [2].

Maintenance and inspection of the bridges today are mainly based on manual in-
spections and requires significant resources in terms of experienced and skilled engineers.
As such, the detailed inspections of the bridges are generally conducted at long intervals
leaving the infrastructure potentially vulnerable. Furthermore, due to their subjective
nature, the outcome of a manual inspection depends on the experience and skills of the
inspecting engineer rendering an objective comparison of the condition of different bridges
virtually impossible. Structural Health Monitoring (SHM) techniques present an alternative
to manual inspections by generating real-time and objective data about the condition of
the bridges. Of the different SHM techniques, vibration-based methods provide a very
attractive alternative as they are based on harvesting the readily available vibration data
and provides an opportunity for damage detection at global level without prior knowledge
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about potential damage location and, thus, applied widely [1,3–17]. Other researchers
worked on long-term vibration analysis of bridges and their relation to structural dam-
age [18–21].

Vibration-based detection methods are based on detecting the changes in one or more
dynamic features of the structural system between two discrete points in time; the first
of these two points belonging to the known undamaged state of the structure while the
damage situation at the second point in time is unknown and sought after. The dynamic
features that are used for damage detection are numerous and provide different levels of
damage detection based on their complexity and their sensitivity to damage. The most
widely used damage detection parameters are based on either the basic modal properties
of the structure (e.g., modal frequencies or mode shapes) or features derived from these
basic modal parameters. The latter group was developed in order to find features that
are more sensitive to damage than the basic modal parameters while retaining the clear
physical principles that make these parameters attractive [22]. Among the features derived
from basic modal parameters, modal curvature [23], modal strain energy [24], and modal
flexibility damage indicators are amongst the most popular used within the framework
of vibration-based SHM due to their physical correlation with damage, intuitiveness and
simplicity [22].

These damage indicators are based on comparing two sets of modal parameters
obtained from undamaged and potentially damaged states. Several articles [1,25,26], which
evaluate their performance in detecting, locating and quantifying damage show that,
none of the three damage indicators can provide satisfactory estimates of the presence
and location of the damage, particularly for lower levels of damage. Their relatively low-
sensitivity to low levels of damage leading to inaccurate predictions, particularly when data
is polluted with environmental noise and seasonal changes, is also well-documented [22].

A potential improvement to the uncertainties impacting the efficacy of the afore-
mentioned damage indicators is statistical evaluation of the variation of these indicators
over time through long-term monitoring [25]. Within this context, this article proposes
a framework for long-term vibration-based monitoring of bridges that aims to negate
the impacts of random sources on the damage indicators. The impacts of these sources,
which include but are not limited to measurement noise and environmental effects, are
by nature random and transient. On the contrary, the variations in the damage indicators
are permanent. The proposed framework aims to capture the permanent nature of the
variation in the damage indicators due to damage while ignoring the transient variations
due to random sources.

The article is structured as follows. First, the efficacy of the three damage indicators in
detecting and locating damage for different damage levels and locations on a 84.2 m long,
two-span railway bridge is evaluated. The damage indicators were computed from the
mode shapes identified using stochastic subspace identification method from vibrations
created by a simulated train-crossing. In order to replicate the effect of different sources of
uncertainties on the measurements, the computed vibrations were polluted using spatially
correlated noise. Second, the proposed long-term monitoring framework is described and
its application on the case study is summarized. In the proposed framework, damage
detection and location is based on evaluating the frequency of the chosen damage indi-
cator exceeding the threshold value for an acceptable false alarm rate over a number of
observations instead of evaluating the discrete values of the indicators. Later, impact of
several factors including the damage location, damage indicator used in the framework
and the noise level in the measurements, on the success of the proposed framework was
investigated through numerical analysis. Finally, conclusions drawn from the study and
recommendations for future work are summarized.

2. Vibration-Based Damage Indicators

This section describes briefly the vibration-based damage indicators, that were devel-
oped in early 1990s [22–24] and are widely used in vibration-based health monitoring.
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2.1. Modal Curvature

For structures that exhibit bending behavior and conform to the assumptions of Euler-
Bernoulli formulation, the bending moment at location x, M(x), and bending stiffness, EI,
of the beam-cross section is related through the curvature at the same location, ν′′(x):

ν′′(x) ≈ M(x)
EI

(1)

where E is the modulus of elasticity of the material and I is the cross-sectional moment
of inertia. Equation (1) indicates that the flexural stiffness of a cross-section is inversely
proportional with the curvature. Thus, for a given moment demand, any damage that
is accompanied by a reduction in the flexural stiffness of the cross-section leads to an
increase in curvature [23]. Therefore, changes in curvature can be monitored to detect and
locate damage. Furthermore, the extent of the damage at a section can also be estimated
by measuring the amount of change in the curvature [22,27]. Higher levels of damage
are expected to lead to a larger reduction in the flexural stiffness of the cross-section and,
in turn, a larger increase in the curvature compared to the undamaged state.

The mode shapes detected using Experimental and Operational Modal Analysis (EMA
and OMA) techniques are discretized at the sensor locations. The spatial resolution of
the detected mode shapes can be interpolated using continuous functions such as cubic
spline in order to improve the estimation of the location of possible damage. The curvature
of mode shape j that is approximated at discrete points equally spaced at a distance h
along its length can be computed using the central difference approximation to the second
derivative at the degree of freedom i:

ν′′j,i ≈
νj,i−1 − 2νj,i + νj,i+1

h2 (2)

where νj,i is the component of the jth mode shape at location i. The difference between the
modal curvature of the possibly damaged state, d, and the undamaged state, u, is defined
as the Curvature Damage Index (CDI) and can be used to detect, locate and eventually
quantify any potential damage using the identified mode shapes:

CDIc =
nModes

∑
j=1
|ν′′j,i

d
− ν

′′
j,i

u
| (3)

2.2. Modal Strain Energy

Another damage index that is based on the modal features is the modal strain energy,
which can be defined as the strain energy stored in a structure when it deforms purely in its
mode shape pattern. It is based on the idea that the strain energy distribution throughout
the structure changes with damage. More specifically, when the stiffness of one segment of
the structure is reduced due to sustained damage, it can no longer absorb the same amount
of energy as it did when undamaged [24]. This results in a deviation from the original strain
energy distribution, which can then be used to detect and locate any potential damage.

If a beam is divided into N subregions, then the energy stored in each subregion j in
the ith mode shape is given by Equation (4a) while the total energy stored in the entire
beam can be computed using Equation (4b).

Ui,j =
1
2

∫ aj+1

aj

EIj[ν
′′
i (x)]2 dx (4a)

Ui =
1
2

∫ l

0
EI[ν′′i (x)]2 dx (4b)

where aj and aj+1 are the start and end coordinates of the subregion j and l is the length of
the entire beam.
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Assuming that the subregions are small enough and flexural rigidity is constant in
the subregions, the fractional energy, fi,j, defined as the ratio of the energy stored in each
subregion j to the total strain energy stored in the entire beam can be computed as:

fij =
Ui,j

Ui
=

∫ aj+1
aj

[ν′′i (x)]2 dx∫ l
0 [ν
′′
i (x)]2 dx

(5)

Considering all the identified modes, a damage index, βij, can then be defined for
each subsegment, j, and mode shape, i, of the beam as the ratio of the fractional energy of
the potentially damaged state, d, to the fractional energy of the undamaged state, u:

βij =
f d
ij

f u
ij
=

∫ aj+1
aj [ν′′i (x)d ]2 dx∫ l

0 [ν
′′
i (x)d ]2 dx∫ aj+1

aj [ν′′i (x)u ]2 dx∫ l
0 [ν
′′
i (x)u ]2 dx

(6)

This formulation can often lead to potential problems due to very small values of the
denominator. In order to eliminate these problems, the value of both the nominator and the
denominator are increased by a value of 1.0. Therefore, the definition of the strain energy
based damage indicator can be revised and rewritten for all identified mode shapes as [27]:

β j =
∑nModes

i=1 f d
ij + 1

∑nModes
i=1 f u

ij + 1
(7)

2.3. Modal Flexibility

Flexibility matrix is the inverse of the stiffness matrix and is generally more straight-
forward to identify compared to the stiffness matrix. Damage in a structure that reduces
the stiffness of the structure leads to an increase in the flexibility matrix. Damage detection
using this method is based on computing the modal flexibility matrix for the undamaged
and potentially damaged states of the structure from the identified mode shapes using the
equation:

[F] =
nModes

∑
i=1

1
w2

i
[φ]i[φ]

T
i (8)

Since the contribution of each mode is multiplied by the inverse of the circular fre-
quency of that mode, wi, the contribution of the higher modes, which are more difficult to
identify using EMA and OMA, reduces leading to a more reliable estimate of the flexibility
matrix as compared to the stiffness matrix. The change in the flexibility matrix between the
two states of the structure can then be computed as:

[∆F] = [Fd]− [Fu] (9)

For each degree of freedom j, the change in the flexibility matrix for that degree of
freedom can be defined as the maximum absolute value of the elements in the jth column
of the matrix ∆F:

[δ f j] = max|δ fij| = max| f d
ij − f u

ij | (10)

The quantity δ f j, which is a measure of the change in flexibility between the two states
of the structure can be used to detect and locate the damage.

3. Case Study

To evaluate the efficacy of the vibration-based parameters and the proposed frame-
work, a case study was conducted on a 84.2-m, two-span railroad bridge located on the
Ofot line in Northern Norway.
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A finite element (FE) model of the bridge was developed in the CSI Bridge environ-
ment (Figure 1). Both the bridge deck and the pier were modeled as elastic beam-column
elements. The bridge was assumed to be pinned at the abutments and the bottom of the
pier was modeled as fixed. Although the pinned connections at the abutments may not
have simulated the behavior of the bridge in the two horizontal directions, the behaviour
of the bridge in the vertical direction was simulated satisfactorily as the stiffness of the
elastomeric bearings are relatively high in the vertical direction. Since the scope of this
study was limited to comparing the behavior of the undamaged and damaged bridge in
the vertical direction, the limitations associated with modeling of the boundary conditions
did not impact the results of the study. The results presented in the upcoming sections are
based on the numerical analysis conducted on this finite element model.

Figure 1. Numerical model of the bridge.

The deck of the bridge was a prestressed concrete double-tee section with a total depth
of 2910 mm; see Figure 2. The deck housed a single-track railway line that was trafficked
heavily by iron-ore trains that carries the iron ones mined in Kiruna, Sweden to the port of
Narvik in Norway.

Figure 2. Cross-section of the bridge deck. All dimensions are in mm.

The single pier was located very close to the middle of the bridge dividing the bridge
into two spans of 43.9 m and 40.3 m. The elevation view of the bridge that shows the
overall bridge dimensions is shown in Figure 3. The pier was a rectangular reinforced
concrete section with dimensions of 1300 mm × 3600 mm. At the top, the pier was rigidly
connected to the deck. At each abutment, the deck sat on two elastomeric bearings. In order
to emulate a realistic SHM system, a total of 10 sensor locations, five at each span, were
selected. For each span, the first two of the five sensors were placed close to the abutment
and the pier, respectively. The sensor locations are depicted by green points on the bridge
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in Figure 3 together with the four simulated damage locations, which are represented by
the red line segments.

Figure 3. Overview of sensor locations indicated with green points and the damage locations
indicated with red line segments. All dimensions are in m.

4. Damage Scenarios, Simulated Vibrations and System Identification

A total of 20 damage scenarios distributed over four damage locations, which are
marked in Figure 3 with red lines, and five separate damage levels were simulated in the
study. The damage locations were selected carefully at different parts of the bridge in order
to be able to evaluate the efficacy of the damage indicators and the proposed framework
in detecting the damage at different locations including the middle of the span as well as
close to the abutment and the pier.

One of the premises of SHM applications is its potential to be able to detect damage at
its initial stages. In order to be able to systematically evaluate the sensitivity of the damage
indicators to different levels of damage as well as the efficacy of the developed framework
in detecting various levels of damage, a total of five damage levels were introduced at
each damage location. These damage levels were simulated by decreasing the flexural
stiffness of a 2-m long segment of the bridge deck by 5%, 10%, 20%, 50%, and 80% at the
desired location. These five damage levels also simulate the development of damage over
time once initiated and will be referred to as 5%, 10%, 20%, 50%, and 80% damage levels,
respectively in the following sections.

It should be noted that the simulated damage levels may emulate different physical
damage states for different damage locations and bridge types. While a reinforced con-
crete bridge was used as a case study, the proposed framework is equally applicable for
steel or composite bridges. For example, 5% damage for concrete bridges may represent
micro-cracks in concrete for reinforced concrete bridges while the same damage level may
represent cracking in the weld connections for steel bridges. In other words, 5% damage
level did not represent one specific physical damage case but emulates all possible cases
which resulted in a 5% decrease in the flexural stiffness of the bridge deck. Similarly, 10%,
20%, 50%, and 80% damage levels represented any physical damage level that led to a
10%, 20%, 50%, and 80% decrease in the flexural stiffness (i.e., EI value) of the bridge deck,
respectively.

Eigen-value analysis was conducted to compute the modal parameters of the bridge
both in its undamaged and damaged states. Figure 4 depicts the first four mode shapes of
the bridge in the vertical direction along with the mode shapes computed for the bridge
assumed to be damaged at the middle of the first span (damage location 3 in Figure 3) for
different damage levels.

Instead of working directly with the mode shapes computed using the FE model and
introducing spatially non-correlated random noise on the mode shapes, a more realistic
approach was used to emulate the entire SHM process. For this, vibrations were generated
on the FE model through moving load analysis that simulates train crossings on the bridge.
HSLM-A10 train was modeled in the FE model as moving load and was virtually driven on
the bridge with a speed of 80 km/h for both the undamaged state of the bridge as well as all
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20 damage scenarios. The accelerations recorded at the 10 virtual accelerometers (Figure 3)
were then used to identify the modal properties of the bridge at both its undamaged and
damaged states using operational modal analysis techniques.

Figure 4. Mode shapes of the first four modes of the undamaged bridge and the bridge damaged at the middle of the
first span.

In addition to the ideal case where no noise in the measurements were considered, four
separate noise levels were introduced to the simulated vibrations: 1%, 5%, 10%, and 20%
noise. Measurement noise was simulated by polluting the accelerograms recorded at each
virtual sensor using:

üj,k = ü0
j + βλü0

j (11)

where ü0
j is the non-noisy acceleration record at sensor j, üj,k is the kth noisy sample of

the acceleration record at the same sensor, β is a parameter that determines the level of
noise and λ is a random number with a standard normal distribution. The parameter β
emulates uncertainties that affect acceleration records in real-life applications including
but not limited to measurement errors, sensor sensitivity, quality of the hardware used,
and environmental factors. In order to simulate the four noise levels, β parameter was set
to 1%, 5%, 10%, and 20%, respectively.

This approach has two distinct benefits compared to using the mode shapes obtained
directly from modal analysis. First of all, this approach takes into account the uncertainties
related to the identification of the mode shapes from the recorded accelerograms using
OMA whereas using the computed mode shapes directly ignores these uncertainties.
Secondly, as discussed in [28], polluting the simulated response using spatially correlated
noise as used in this study provides a much improved emulation of the reality compared
to spatially non-correlated noise, which leads to non-continuous mode shapes.

For the undamaged state, a total of 1000 set of accelerograms were created for each
noise case by polluting the non-noisy accelerograms obtained from the FE analysis using
Equation (11). The first 500 sets were used to identify the threshold values that will ensure
that the desired rate of false alarm is not exceeded for each sensor location.

Due to the sensitivity of the mode shapes and the vibration-based damage indicators
to random sources, a threshold value can be defined for a pre-determined false alarm rate so
that if the variation of the damage indicator exceeded the threshold, the variation was judged
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to be due to damage. Otherwise, the variation in the damage indicator was assumed to be
due to random sources. Ref. [25] provides a detailed description and statistical background
of the threshold value computation.

The remaining 500 sets of accelerograms from the undamaged state emulated the
phase of the monitoring where the bridge remained undamaged.

The development of damage over time was simulated through generating 500 sets of
polluted accelerograms for each damage level, location and noise level using the noise-free
accelerograms obtained from the FE analysis and Equation (11). For each damage location
and noise level, each polluted set of accelerograms emulated an observation conducted in a
real SHM study and was given an observation number. The damage level was assumed to
increase at every 500th observation starting from observation number 1001 emulating the
development of the damage over time. Figure 5 presents the development of the simulated
damage at every damage location with respect to the observation number.

Figure 5. Development of damage with observation number. Each observation represents a set of
polluted accelerograms.

Stochastic subspace identification with covariance (SSI-cov) [29] method was used to
identify the modal properties of the non-noisy and noisy accelerograms. Once the modal
values at the 10 virtual sensor locations were identified using the SSI-cov method, the spatial
resolution of the identified mode shapes was increased by fitting a cubic spline function.

The damage indicators summarized in Section 2 were then computed using the
identified mode shapes for each observation. As an example, Figure 6 depicts the scatter
plot of the modal curvature damage indicator at sensor 3 for damage at the middle of the
first span for each of the 3500 observations.
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Figure 6. Scatter plot of the modal curvature damage indicator at sensor 3 for damage at the mid-span; 5% noise. Subplots
(a–f) show the development of the scatter plot from the first 1000 observations to 3500 observations. The damage level
increases with the observation number as summarized in Figure 5.
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5. Evaluation of Efficacy of Damage Indicators for Discrete Observations

In order to evaluate the efficacy of damage indicators summarized in Section 2 in de-
tecting damage for discrete observations, the probability of successfully detecting damage
for each damage scenario was computed as the ratio of the number of cases where the
damage indicator was greater than the predetermined threshold value to the total number
of cases for each damage scenario.

For this, first the threshold values for each damage indicator for different acceptable
false alarm rates were computed. Due to noise and other uncertainties in the measurement
process, the damage indicators provided non-zero values for the undamaged bridge.
Figure 7 presents the distribution of the damage indicator, I, for the undamaged and
damaged states. The function fu describes the distribution of the damage indicator for
the undamaged state for a population of observations, while the distribution fd shows
the distribution of the indicator for the damaged state. The variation in the damage
indicator for the undamaged state was a result of random variations in the indicator such
as measurement noise and environmental factors. Damage, on the other hand, led to a
permanent increase in the damage indicator and resulted in a shift in the distribution.
The threshold value was defined so that if the variation of the damage indicator exceeded
the threshold, the location was assumed to be damaged [25]. The threshold value of the
damage indicator, Ith for a given acceptable false alarm rate of γ was computed using
Equation (12). The probability of successfully detecting damage, Pd, could be defined as
the area under the distribution for the damaged state, fd, starting from the threshold value
Ith; Equation (13).

Figure 7. Distribution of the damage indicator in the undamaged and damaged states.

∫ ∞

Ith

fudI = γ (12)

PD =
∫ ∞

Ith

fddI (13)

In this case study, in order to evaluate the range of the damage indicators for the
undamaged bridge, for each damage location and noise level, the damage indicators
computed for the first 500 observations were plotted; see Figure 6a. The threshold values
of the damage indicator for an acceptable false alarm rate was computed such that the
ratio of the number of cases that were above the threshold value to the total number of
observations (500 in this case) was equal to the desired false alarm rate; Equation (12).
Threshold values for the modal curvature damage indicator for sensor number three for
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2%, 5%, 10% acceptable false alarm ratios computed using the methodology described
above are also shown in Figure 6.

Figures 8–10 depict the probability of detection at each sensor for 5%, 10%, and 50%
damage levels at the abutment, quarter-span and mid-span (damage locations 1, 2, and 3
in Figure 3) for the three damage indicators; modal curvature, modal strain energy and
modal flexibility, respectively. The noise level was kept constant at 5% for all three figures.
It should be noted that the probability of detection at a sensor location where there was no
damage indicates the probability of false alarm for that location. In Figures 8–10, the correct
damage location is indicated by the green column, whereas the blue columns indicate the
probability of detection at the locations where there was no damage.

Figure 8 shows that the modal curvature damage index had a very low probability of
correctly detecting damage at all three locations for low damage levels. Furthermore, for 5%
and 10% damage levels, modal strain energy also failed to provide a correct detection
rate that is above the threshold for false alarm; see Figure 9. Modal flexibility damage
indicator provided a better chance of detecting damage for 10% damage level, especially
when the damage was located at the quarter-span and mid-span. However, the accuracy of
locating the detected damage for low damage levels using the modal flexibility parameter
remained very low as the damage was, more often than not, detected at an incorrect
location; see Figure 10. When the damage level increased to 50%, all damage indicators
could consistently detect damage. However, modal strain energy (Figure 9) separated
itself from the other damage indicators in locating damage as it provided a 100% success
rate at detecting the damage at the correct location while no damage was detected on the
other locations. Modal curvature and modal flexibility damage indicators, on the other
hand, detected damage in several other locations in addition to the correct location for 50%
damage level.
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Figure 8. Probability of damage detection using modal curvature damage indicator for 5% noise.
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Figure 9. Probability of damage detection using modal strain energy damage indicator for 5% noise.
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Figure 10. Probability of damage detection using modal flexibility damage indicator for 5% noise.

A parameter that has the potential to impact the probability of successful damage
detection and localization is noise. In order to evaluate the impact of noise, the probability
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of correctly detecting damage at the abutment using the modal curvature damage indicator
using three modes for different damage and noise levels is depicted in Figure 11. The figure
clearly shows that, noise had a significant impact in successfully detecting damage. For 1%
noise level, the damage indicator could very successfully detect damage starting from a
damage level of 10%. On the contrary, when the noise level increased, the probability of
detecting damage fell drastically even for higher damage levels such as 50%. It should be
noted here that 1% noise could be adjudged to be a very low level of noise while 20% could
be assumed to be very high. For more realistic noise levels of 5% and 10%, the success of
detection remained very low for lower damage levels, i.e., 5% to 20% damage. Although,
the effect of noise is presented for only one damage indicator and location for brevity,
the results obtained for the other damage indicators and locations were very similar to
Figure 11 and the observations drawn from this figure could be generalized.

The results presented in this article, along with others [22,25] clearly depicted the
shortcomings of the vibration-based damage indicators in detecting and locating damage,
especially for lower damage levels, when the damage indicator was based on two discrete
observations. Despite their physical connection to damage, these damage indicators
suffered from low sensitivity to damage, high sensitivity to noise, and the smoothing
effect of the polynomial fitted to increase the spatial resolution of the discrete mode shape
data [22] leading to low success rates in detecting and locating damage.

Figure 11. Effect of noise on probability of detecting damage at the abutment using modal curvature
damage indicator.

6. Proposed Framework

As summarized in Section 5 as well as in literature [8,12,16,22,25], none of the damage
indicators provide satisfactory results in terms of detecting low levels of damage when the
evaluation is based on direct comparison of observations at two discrete points in time;
the first point in time being the known undamaged state while the other is the potentially
damaged state. Particularly, the low level rate of successful detection at the initial stages
of damage formation, i.e., low damage levels as indicated by Figures 8–10, render these
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damage indicators unsuitable for SHM applications which aim to detect damage at earlier
stages when the evaluation is based on two discrete observations in time. On the other
hand, all three damage indicators maintain their attractiveness in SHM applications due to
their physical theoretical connection to damage.

In this study, we propose a long-term monitoring framework that aims to eliminate
the shortcomings of vibration-based damage indicators in identifying and locating low
levels of damage while retaining their physical connection to damage. For this, we propose
a new parameter that can be used together with any damage indicator and is based on a
population of observations as opposed to discrete observations.

f req =
n(DI > TH)

npop
(14)

In Equation (14), DI is the damage indicator that will be used in the framework, TH is
the threshold value associated with the acceptable false alarm rate, and npop is the number
of observations that will be used in damage detection. The computed damage parameter,
f req, indicates the number of cases, out of the last npop observations, where the damage
indicator exceeds the threshold value. In other words, it is the frequency of the damage
indicator exceeding the threshold value computed from the last npop observations.

In Figure 6d, the values of the modal curvature damage indicator for each observation
is plotted for damage levels of 5%, 10%, and 20% for observations 1001 to 1500, 1501 to
2000, and 2001 to 2500, respectively. This figure clearly shows that the probability of correct
detection remains low when each point on the figure is separately evaluated by comparing
each value to the threshold value. On the other hand, it can also be observed that, as the
damage level increases, the number of cases exceeding the threshold value increases.
The proposed f req parameter aims to benefit from this increase and utilizes a population of
the observations shown in Figure 6 rather then the individual observations independently
from each other. Continuing to use the Figure 6d as an example and assuming that the
number of observations used in computing the f req parameter is npop, the freq parameter
at each observation n can be computed as the ratio of the number of points in the last npop
observations prior to and including observation n exceeding the threshold value to the
value of npop.

In Equation (14), the population size is a variable and can be chosen by the user for
each case depending on the frequency of data collection and availability of data. In this
study, the population size was selected as 100; i.e., the frequency of exceedance of the
threshold value was computed from the last 100 observations for all cases.

The proposed framework, which is anchored at the f req parameter given in Equation (14),
is composed of the following steps.

1. Training period: During this period, the threshold values for acceptable false alarm
rates will be determined. For this, the structure will be monitored for a certain
period from the start of the monitoring program and the values of the selected
damage indicator will be computed during this period. At the end of this period,
the structure will be inspected to confirm that no changes in the condition of the
structure occurred during the training period. The variation in the damage indicators
during this period will provide information regarding the impact of the random
factors other than damage on the damage indicators. This data will then be used to
compute the threshold values for the acceptable false alarm rates using the method
described in Figure 7 and formulation given in Equation (12). In this study, the first
500 observations (Figure 5) were used as the training period.

2. Monitoring period: After the completion of the training period, modal parameters of
the potentially damaged structure will be computed from the measured accelerations
periodically. Each of these periodic computations will constitute an observation and
will be used to compute the f req parameter. The damage indicator that will be used in
the framework (i.e., modal curvature, modal strain ratio or modal flexibility) will be
computed from the identified mode shapes and recorded in a database. The frequency
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of the damage indicator exceeding the threshold value, i.e., the f req parameter, will
then be computed using the last npop observations (Equation (14)) and plotted against
the observation number. It should be noted that the f req parameter and the threshold
value, although not directly comparable, are closely related to each other as both are
computed from the distribution of the damage indicator in the undamaged and po-
tentially damaged states. For the undamaged state, the f req parameter is expected to
remain virtually constant around the threshold value while systematically increasing
with an increase in the damage level.

Therefore, in the proposed framework, the damage is identified not through a single
observation of the damage indicator exceeding the threshold value but through a gradual
increase in the number of observations where the indicator starts to systematically exceed
the threshold value. Considering that variations in damage parameters such as modal
curvature and modal strain energy due to reasons other than damage is random, using a
population of observations is expected to negate the impacts of such random variations.
Contrary to variations due to random sources, variations in the vibration-based damage
indicators due to damage are permanent and expected to be visible when a population of
observations is considered to detect and locate damage.

6.1. Application

The developed framework was applied to the case study using the simulated vibra-
tions summarized in Section 4. The first 500 observations for each noise level were used as
the training period to determine the threshold values for each of the three damage indica-
tors for three different acceptable false alarm rates: 2%, 5% and 10%. The monitoring period
started from observation number 501 and the following damage levels were induced to the
structure over time: between observations 501 and 1000, the structure remains undamaged.
This part was used to verify the robustness of the proposed framework against false alarms.
The 5% damage was introduced starting from observation 1001 and increased gradually
as described in Section 4 and shown in Figure 5. The gradual increase in the simulated
damage emulated the development of damage on a structure from its early stages (i.e., 5%
reduction in flexural stiffness) to very high levels (i.e., 80% reduction in flexural stiffness)
and was used to evaluate the success of the proposed framework to detect damage at every
stage of the damage development.

Figure 12 presents the progress of the monitored f req parameter with time (i.e., ob-
servation number) for different damage levels for a noise level of 5%. Modal curvature
at sensor number 3 was used as the damage indicator and damage was introduced at the
middle of the first span (damage location 3 in Figure 3). In Figure 12a, the structure was
undamaged between observations 501 and 1000 and the f req parameter computed using
the modal curvature (Equation (2)) at the sensor closest to the damage location (sensor
#3) remained under or very close to the threshold value. As shown in Figure 12b, the f req
parameter crept over the threshold value as 5% damage was introduced at the damage
location 3. It should be noted that during the first 100 observations after the damage was
introduced (between observations 1001 and 1100), the f req parameter increased gradually
because the computation of the f req parameter included values from both undamaged
and damaged cases as the last 100 observations were used in the computation. After ob-
servation number 1100, the f req parameter was computed solely from the observations
at the damaged state and, therefore, became stable until the damage level increased to
10% starting from observation number 1501; Figure 12c. Figure 12c,d follow a similar
pattern where the f req parameter started to increase immediately after the damage level
increased followed by flattening at a constant level. On the other hand, when the damage
level reached 50%, the frequency of the modal curvature damage parameter exceeding the
threshold value saturated at 100%; Figure 12e. Hence, the f req parameter did not change
when the damage level increased from 50% to 80%.

Figure 12 depicts that the monitored f req parameter, which is the frequency of the
selected damage indicator exceeding the threshold for a population of observations, was
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very effective in following the development of damage. Using a population of observations
over time had the potential not only to eliminate the false alarms by negating the impact of
random variations in the modal curvature damage parameter, but also to help quantify the
damage level as the variation of the f req parameter provided a clear indication of the level
of damage, especially at the lower damage levels. More specifically, the gradual increase in
the f req parameter with the introduction of low levels of damage (5% and 10% reduction in
flexural stiffness; Figure 12b,c) followed by a period where the f req parameter stayed flat
clearly indicated the points where the level of damage increased; i.e., observation number
1001 and 1501. Recalling that reliable detection of lower levels of damage proved to be
the most challenging task as long as use of the damage indicators based on two discrete
points in time was concerned (Figures 8–10), the proposed monitoring framework that
was based on the f req parameter provided a very attractive alternative for detection and
quantification of low levels of damage.
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Figure 12. Development of the frequency parameter with damage and observation number for sensor number 3. Subplots
(a–f) show the development of the scatter plot from the first 1000 observations to 3500 observations. The line at 0.05 for all
cases indicates the frequency threshold for acceptable false alarm rate.

In the following paragraphs, first, the efficacy of different damage indicators in
predicting damage when used within the proposed framework is investigated. Afterwards,
impact of different parameters including the noise and number of mode shapes used in
the computation of the damage indicator on the results of the developed framework is
investigated. Finally, the success of the developed framework in predicting damage at
different locations on the bridge is explored.

6.1.1. Effect of Damage Indicator

Three different damage indicators were used in computing the f req parameter in the
framework to determine the impact of the indicator on the success of the framework: modal
strain energy, modal curvature and modal flexibility. Figures 13 and 14 depict the results
for damage scenarios at the mid-span and the abutment for the three damage indicators,
respectively, for a noise level of 5%. The f req parameter was computed at each sensor in
order to evaluate the success of the developed framework in locating damage. It should be
noted that, in Figures 13 and 14, along with all the similar figures that will be presented
in the coming sections, all damage levels were represented as the damage level increased
with the observation number at every 500th observation starting from observation number
1000; see Section 4 and Figure 5 for details.
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For the damage in the abutment (damage location 1 in Figure 3), the closest sensor
to the damage location was sensor number 1, while for the damage at the middle of the
first span (damage location 3 in Figure 3), the closest sensor to the damage location was
sensor number 3. For the modal curvature and the modal flexibility damage indicators,
the developed framework could successfully predict the damage at the middle of the first
span starting from relatively low levels, Figure 14. However, both damage indicators failed
to provide a very clear picture of the damage location as the f req parameter computed
using modal curvature and modal flexibility parameters exceeded the threshold at several
sensors concurrently. On the other hand, both damage indicators struggled to detect low
levels of damage when the damage was close to the abutment, i.e., between observations
1000 and 2500 in Figure 13, where the damage at abutment varied between 5% and 25%

Contrary to modal curvature and modal flexibility, modal strain energy provided very
clear indication of the damage location for both cases; i.e., damage at the abutment and
damage at the mid-span, when used within the developed framework. The f req parameter
increased with increasing damage at only the sensor closest to the damage location while
the f req values at other sensors remained below the threshold even for highest level of
damage when the modal strain energy is used. Furthermore, the frequency of modal
strain energy exceeding the threshold increased significantly already at 10% damage level,
i.e., after observation number 1500, for both damage locations; see Figures 13b and 14b.

Figures 13 and 14 clearly demonstrate that the developed framework, although it
could be used with any damage indicator, provided superior results when used together
with the modal strain energy in terms of damage detection and localization. In particular,
modal curvature and modal flexibility damage indicators struggled with locating the
damage while modal strain energy provide a clear picture about the damage location
starting from relatively low levels of damage. Although the results are presented for two
damage locations and one noise level for brevity, the results were very similar for all
damage locations and noise levels considered in the study. As such, the evaluation of
the developed framework in the following paragraphs will be based on the modal strain
energy damage indicator.
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Figure 13. Effect of damage indicator; damage at the abutment; 5% noise.
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Figure 14. Effect of damage indicator; damage at the mid-span; 5% noise.

6.1.2. Effect of Number of Modes

As summarized in Section 2, all three vibration based damage indicators could be
computed using a different number of modes depending on the structure and the user’s
preference. The number of mode shapes used in computing the damage indicators was
previously shown to significantly impact the success of the indicators in detecting and
locating damage [22]. In order to evaluate the impact of the total number of mode shapes
included in the damage indicator used in the the proposed long-term framework, the frame-
work was applied to the scenario where the damage was induced at the middle of the
first span (damage location 3 in Figure 3) using one, two, three, and four mode shapes,
respectively. The results plotted for 5% noise and using the modal strain energy damage
indicator in Figure 15 indicate that increasing the number of modes included in the analysis
did not necessarily lead to an improvement in damage detection and location. On the
contrary, the best results were obtained for the case where the damage indicator was
based on one mode or two modes; see Figure 15a,b. For both cases, the f req parameter
started to increase already starting from 5% to 10% damage level (observation number
1001). On the other hand, when the damage indicator was computed using three or four
modes, the developed framework could start to detect the damage successfully starting
from 20% and 50% damage levels, respectively; see Figure 15c,d. The reason for the drop
in the success of the developed framework can be attributed to the fact that the modal
value for the third and fourth mode shapes were relatively low or very close to zero at
the middle of the first span (Figure 4) leading to an insensitivity of these mode shapes to
damage at this location. As such, the third and fourth modes were not as significantly
impacted by the damage at the middle of the first span compared to the first two modes.
Therefore, including these mode shapes negatively impacted the success of the developed
framework in detecting damage, especially for low levels of damage. This observation
was in line with the observations in [22] which, as a result of their work on the I-40 Bridge,
concluded that, when damage is not severe, inaccurate predictions may be made if modes
not significantly impacted by the damage are included in computation of the damage
indicators. Considering that the higher modes has more nodes and more points that had
very small modal values compared to the lower modes, they were more susceptible to
insensitivity to damage at several locations compared to lower modes. Therefore, it can be
concluded that using one or two modes in computing the damage indicators leads to to
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better damage detection and localization for low levels of damage. Hence, the rest of the
article will be based on the results obtained using two mode shapes.

Figure 15. Effect of number of modes; damage at the mid-span; 5% noise.

6.1.3. Effect of Damage Location

In order to evaluate the efficacy of the developed framework in detecting and locating
the damage at various locations on the bridge, four different damage scenarios were
investigated. In these four scenarios, damage was introduced (i) at the abutment, (ii) at
one-fourth of the length of the first span, (iii) at the middle of the first span and (iv) by
the bridge pier; damage locations 1 to 4 in Figure 3, respectively. The sensor locations
closest to the damage locations are shown in Figure 3 as well. As in the previous sections,
the damage level was increased from 5% to 80% at every 500th observation starting from
observation number 1001. The frequency of exceedance of threshold value of 5% using
modal strain energy for 5% noise level is plotted in Figure 16. The results clearly indicate
that, the developed framework, when used together with the modal strain energy damage
indicator, was very successful in detecting and locating the damage for all four damage
locations investigated. Even for 10% damage, the f req parameter clearly exceeded the
threshold value at the sensor that was closest to the damage location for all damage
locations while it remained below or around the threshold for all the other sensor locations.

Figure 16. Frequency of exceedance using modal strain energy with two modes for all damage locations, 5% noise and
5% threshold.
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6.1.4. Effect of Noise Level

Four different noise levels were included in the analysis to study the effect of noise in
the results of the proposed framework: 1%, 5%, 10%, and 20%. Figures 17 and 18 present
the results for different noise levels for damage simulated at the one-fourth of the first span
and at the mid-span; damage locations 2 and 3 in Figure 3, respectively. Both figures, which
were created using the modal strain energy damage indicator, show that the proposed
framework could successfully detect damage even for low damage levels at noise levels
up to 10%. For the 20% noise level (Figures 17d and 18d), which can be deemed to be a
very high level of noise, the developed framework could only detect damage once the
damage level reached 50% (observation number 2500 and beyond) when the damage was
at one-fourth of the first span and 20% damage (observation number 2500 and beyond)
when the damage was at the mid-span. On the other hand, it should be noted that, even
for such high levels of noise, the developed framework did not produce any false alarms
as the f req parameter never increased above the threshold value at the locations where
there was no damage. Furthermore, for all noise levels, the developed framework could
successfully locate the damage as the f req parameter increases beyond the threshold only
at the sensor location closest to the damage for the damage at the quarter-span and the two
closest sensor locations to the damage for mid-span damage.

It should however be noted that, for very low noise levels, the f req parameter saturated
at 1.0 even at very low levels of damage rendering the quantification of damage very
challenging based on the f req parameter. However, for higher, and arguably more realistic
levels of noise for practical applications, the development of the f req parameter with the
number of observations provided opportunities for quantification of the damage.

Figure 17. Frequency of exceedance using modal strain energy with two modes for different noise levels, increasing damage
at quarter-span (location 2) and 5% threshold.
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Figure 18. Frequency of exceedance using modal strain energy with two modes for different noise levels, increasing damage
at mid-span (location 3) and 5% threshold.

7. Conclusions

This article proposes a framework for long-term monitoring of bridges based on
vibration-based damage indicators. First, the efficacy of three damage indicators that are
physically connected to damage; modal curvature, modal strain energy, and modal flexi-
bility in detecting and locating damage when used by comparing the indicator computed
for each observation with a threshold value is evaluated. Later, a new framework and
a parameter for detecting and locating damage that is based on monitoring the selected
damage indicator for a population of observations is proposed. The efficacy of the proposed
framework is verified by applying the framework on a numerical model with simulated
damage at different locations of a railway bridge for varying noise levels. The effect of
several parameters on the results of the proposed framework is evaluated. As a result of
the numerical analysis conducted, the following conclusions were drawn:

• Modal curvature, modal strain energy and modal flexibility damage indicators have
very low success rates in detecting and locating damage, especially for low levels of
damage, when the estimations are based on comparing the value of the indicator from
a single observation with a threshold value.

• The proposed long-term monitoring framework, that relies on monitoring the fre-
quency of exceedance of the threshold value within a population of observations,
provide an opportunity to successfully detect, locate and track the formation of dam-
age starting from very low levels of damage.

• The proposed framework is very efficient in negating the impact of random sources
that create variations in the damage indicators that are transient. On the other hand,
the impact of damage on the damage indicators that is permanent are retained and
highlighted through the proposed framework leading to successful detection and
localization of damage at all noise levels starting from very low damage levels.

• Although the proposed framework can be used with any damage indicator, the analy-
sis results clearly indicate that modal strain energy, by far, provides the best alternative
among the three investigated indicators in terms of detecting and locating damage.

• Increasing the number of modes included in the computation of the damage indicator
does not necessarily increase the success rate. On the contrary, including the third and
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fourth modes in computing the damage indicator, which have more number of points
that has modal values close to zero, leads to a poorer performance compared to their
counterparts computed using only the first one or two mode shapes.

• The proposed framework provides a very clear picture of damage development even
for very high levels of noise.

This articles provides a framework that negates the effects of random variations
on vibration-based damage indicators that hinder the success of these indicators, which
otherwise are instinctive and based on theoretically sound formulation. The proposed
framework proves also to be a promising method for damage quantification. Further
studies are required in order to understand and quantify the correlation between the
frequency of exceedance of the threshold for a given damage indicator and the damage
level and location.

Although using long-term, continuous data instead of a limited number of obser-
vations leads to a much improved damage detection and localization, it is economically
very challenging to provide a long-term monitoring setup for every bridge. It should be
expected that, for the foreseeable future, monitoring of numerous bridges will be based on
periodic deployment of instruments on the bridge and, hence, only the damage detection
methods that are based on two discrete observations in time will be available for these
bridges. Furthermore, the efficacy of the proposed framework depends on the availability
of a population of observations where the damage propagation is gradual and continuous.
For certain cases, where the damage initiation and propagation are very rapid, the pro-
posed framework, which relies on a population of observations at the damaged state,
may not provide reliable results due to insufficient number of observations at a given
damage state. For such cases, methods that rely on discrete observations may provide
more useful information due to their reliance on only two observations in time. Therefore,
further research that will improve the performance of the damage indicators when based
on discrete observations is needed.

Finally, the efficacy of the proposed framework should be evaluated using experimen-
tal measurement data, either using laboratory experiments of long-term monitoring data,
where a population of vibration data is available for various damage levels.
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12. Altunışık, A.C.; Okur, F.Y.; Karaca, S.; Kahya, V. Vibration-based damage detection in beam structures with multiple cracks:

Modal curvature vs. modal flexibility methods. Nondestruct. Test. Eval. 2019, 34, 33–53. [CrossRef]
13. Ni, Y.; Zhou, H.; Chan, K.; Ko, J. Modal flexibility analysis of cable-stayed Ting Kau Bridge for damage identification. Comput.

Aided Civ. Infrastruct. Eng. 2008, 23, 223–236. [CrossRef]
14. Pandey, A.; Biswas, M. Damage detection in structures using changes in flexibility. J. Sound Vib. 1994, 169, 3–17. [CrossRef]
15. Aktan, A.; Lee, K.; Chuntavan, C.; Aksel, T. Modal testing for structural identification and condition assessment of constructed

facilities. In Proceedings of the SPIE the International Society for Optical Engineering; The International Society for Optics and
Photonics: Honolulu, HI, USA, 1994; pp. 462–468.

16. Doebling, S.W.; Farrar, C.R.; Prime, M.B. A summary review of vibration-based damage identification methods. Shock Vib. Dig.
1998, 30, 91–105. [CrossRef]

17. An, Y.; Chatzi, E.; Sim, S.H.; Laflamme, S.; Blachowski, B.; Ou, J. Recent progress and future trends on damage identification
methods for bridge structures. Struct. Control Health Monit. 2019, 26, 1–30. [CrossRef]

18. Flint, M.M.; Fringer, O.; Billington, S.L.; Freyberg, D.; Diffenbaugh, N.S. Historical Analysis of Hydraulic Bridge Collapses in the
Continental United States. J. Infrastruct. Syst. 2017, 23, 04017005. [CrossRef]

19. Fenerci, A.; Kvåle, K.A.; Wiig Petersen, Ø.; Rønnquist, A.; Øiseth, O. Data Set from Long-Term Wind and Acceleration Monitoring
of the Hardanger Bridge. J. Struct. Eng. 2021, 147, 04721003. [CrossRef]

20. Xu, F.; Zhang, M.; Wang, L.; Zhang, J.R. Recent Highway Bridge Collapses in China: Review and Discussion. J. Perform. Constr.
Facil. 2016, 30, 04016030. [CrossRef]

21. Zhang, M.; Xu, F.; Han, Y. Assessment of wind-induced nonlinear post-critical performance of bridge decks. J. Wind Eng. Ind.
Aerodyn. 2020, 203, 104251. [CrossRef]

22. Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective, 2nd ed.; John Wiley & Sons: West Sussex,
UK, 2013.

23. Pandey, A.; Biswas, M.; Samman, M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145, 321–332.
[CrossRef]

24. Stubbs, N.; Kim, J.T.; Topole, K. An efficient and robust algorithm for damage localization in offshore structures. In Proceedings of
the 10th ASCE Structures Conference; American Society of Civil Engineers: San Antonio, TX, USA, 1992; pp. 543–546.

25. Limongelli, M.P.; Giordano, P.F. Vibration-based damage indicators: A comparison based on information entropy. J. Civ. Struct.
Health Monit. 2020, 10, 251–266. [CrossRef]

26. Alvandi, A.; Cremona, C. Assessment of vibration-based damage identification techniques. J. Sound Vib. 2006, 292, 179–202.
[CrossRef]

27. Duvant, G.; Lions, J.L. Structural Health Monitoring of Large Civil Engineering Structures; Wiley-Blackwell: West Sussex, UK, 2018.
28. Tondreau, G.; Deraemaeker, A. Numerical and experimental analysis of uncertainty on modal parameters estimated with the

stochastic subspace method. J. Sound Vib. 2014, 333, 4376–4401. [CrossRef]
29. Peeters, B.; De Roeck, G. Stochastic system identification for operational modal analysis: A review. J. Dyn. Sys. Meas. Control

2001, 123, 659–667. [CrossRef]

http://dx.doi.org/10.1111/j.1467-8667.2008.00546.x
http://dx.doi.org/10.1088/0964-1726/10/3/313
http://dx.doi.org/10.1098/rsta.2000.0717
http://dx.doi.org/10.1177/1475921704047500
http://dx.doi.org/10.1016/S0141-0296(96)00149-6
http://dx.doi.org/10.1080/10589759.2018.1518445
http://dx.doi.org/10.1111/j.1467-8667.2008.00521.x
http://dx.doi.org/10.1006/jsvi.1994.1002
http://dx.doi.org/10.1177/058310249803000201
http://dx.doi.org/10.1002/stc.2416
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000354
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002997
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000884
http://dx.doi.org/10.1016/j.jweia.2020.104251
http://dx.doi.org/10.1016/0022-460X(91)90595-B
http://dx.doi.org/10.1007/s13349-020-00381-9
http://dx.doi.org/10.1016/j.jsv.2005.07.036
http://dx.doi.org/10.1016/j.jsv.2014.04.039
http://dx.doi.org/10.1115/1.1410370

	Introduction
	Vibration-Based Damage Indicators
	Modal Curvature
	Modal Strain Energy
	Modal Flexibility

	Case Study
	Damage Scenarios, Simulated Vibrations and System Identification
	Evaluation of Efficacy of Damage Indicators for Discrete Observations
	Proposed Framework
	Application
	Effect of Damage Indicator
	Effect of Number of Modes
	Effect of Damage Location
	Effect of Noise Level


	Conclusions
	References

