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Abstract: Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-
based AI systems to improve lesion detection and characterization in endoscopy. Impressive results
are achieved, but many medical studies use a very small image resolution to save computing re-
sources at the cost of losing details. Today, no conventions between resolution and performance exist,
and monitoring the performance of various CNN architectures as a function of image resolution pro-
vides insights into how subtleties of different lesions on endoscopy affect performance. This can help
set standards for image or video characteristics for future CNN-based models in gastrointestinal (GI)
endoscopy. This study examines the performance of CNNs on the HyperKvasir dataset, consisting of
10,662 images from 23 different findings. We evaluate two CNN models for endoscopic image classi-
fication under quality distortions with image resolutions ranging from 32 × 32 to 512 × 512 pixels.
The performance is evaluated using two-fold cross-validation and F1-score, maximum Matthews cor-
relation coefficient (MCC), precision, and sensitivity as metrics. Increased performance was observed
with higher image resolution for all findings in the dataset. MCC was achieved at image resolutions
between 512 × 512 pixels for classification for the entire dataset after including all subclasses. The
highest performance was observed with an MCC value of 0.9002 when the models were trained on
the highest resolution and tested on the same resolution. Different resolutions and their effect on
CNNs are explored. We show that image resolution has a clear influence on the performance which
calls for standards in the field in the future.

Keywords: image resolution; convolutional neural networks; endoscopic images

1. Introduction

Research communities have put great efforts towards the automation of computer-
aided diagnostic tools with the ability to detect and classify a variety of different endoscopy
findings. Consequently, automated evaluations of endoscopy-related lesion detection can
be used to augment the performance of endoscopists [1–3].

In recent years, Convolutional Neural Networks (CNNs) have emerged as one of the
most successful image classification models [4]. In general, a CNN image classifier consists
of a combination of convolutional layers, pooling layers, fully connected layers, and the
soft-max layer. How many layers and how they are combined depends on the architecture
of the network. A CNN takes an image as input, learns the image’s spatial information,
and creates feature maps which are the input for the following layers [5]. Hence, spatial-
visual information is an important component on which improved performance can be
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achieved. Therefore, the quality of the images and videos used during the development
and application of these methods is a crucial factor. Several factors can cause the quality
of collected images to vary significantly, examples include but are not limited to: the
operator’s expertise, the type of endoscope used, physical barriers, and other disturbances.
One can also see a large variation from high quality images to low quality ones in real
world applications. This also depends on the equipment: for example, newer generations
of smartphones take high quality and resolution pictures, whereas images in medical fields
often cannot be assumed to be of high quality (due to old equipment, software, or lack
of storage space for high quality data). Image quality factors, such as resolution, noise,
contrast, blur, and compression, affect the visual information contained in the images [6].
Although the immediate visual information does not necessarily vary significantly, the
details preserved in the visual information (e.g., fine vessels, the structure of the polyp
surface) can vary drastically with the reduction of image resolution.

In general, the resolutions for training CNNs usually range between 64 × 64 and
256 × 256. Previous studies on the role of image resolution in chest radiographs show
that image resolution impacts CNN performance [7]. In this study by Sabottke et al., it is
shown that better model performance was achieved with lower input image resolutions.
While this might seem paradoxical, a lower number of input variables or features is often
desirable in applications of deep architectures. This is because lowering the number of
parameters that need to be optimized reduces the risk of model overfitting [8].

Based on these prior results and to reduce processing time and resource requirements,
the images today are typically down-sampled to a fraction of the original resolution. How-
ever, extensive reduction of the image resolution eventually leads to the elimination and
loss of important information in the image that is used for the classification. Especially, if
the important information lies hidden in small details, such as blood vessels, pit appear-
ance, the surface of the lesion, and other patterns of the findings. Furthermore, there is an
inherent trade-off in CNN implementations, as a graphics processing unit (GPU)-based
optimization can have limitations where higher image resolution can reduce the usable
batch size (number of samples given to the neural network per training iteration), which
can, in turn, impact the model performance. Determining the optimum image resolution
for different endoscopy related image-based lesion detections and characterizations is thus
an important question that remains to be answered. The primary goal of this article is to
perform an experimental study of varying image resolutions and assess its effects on the
performance of CNN-based image classifiers related to gastrointestinal (GI) endoscopy.

2. Methods

To study the effect of different image resolutions on the performance of a CNN model,
we use two well-established deep learning architectures on the publicly available Hyper-
Kvasir dataset consisting of 10,662 endoscopic images from 23 different findings [9]. We
measure the classification performance of two CNN architectures, a residual neural net-
work architecture [10] (ResNet) and a dense neural network architecture [11] (DenseNet),
on images of different findings that can occur during endoscopy with a varying level of res-
olution. These two CNN architectures are selected based on the performance shown in the
study [12], which has selected the two networks based on the state-of-the-art performance
of top accuracies for the ImageNet [13] dataset. The CNN architectures are initialized
with the ImageNet [13] weights as provided by PyTorch. Then, both models are trained
using different resolutions where we saved the best checkpoints for each resolution. The
resolutions we study are 32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512 (the highest
common resolution for all images within the dataset is 512 pixels, thus being the upper
limit). An example of the effect of different resolutions on an image is given in Figure 1.
One can easily see that the level of details perceptible in the image increase with higher
resolution, i.e., as expected, details are lost when down-sampling. In addition to training
and testing with the same resolution, we also perform experiments where the resolution
between the training and testing datasets is varied (e.g., a model is trained on 32 × 32 and
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tested on 64 × 64, 128 × 128, 256 × 256, and 512 × 512). For all experiments, the same
configuration and hyperparameters are used, i.e., as set by ImageNet [10,11].
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Figure 1. Examples of an image with the different resolutions used for the experiments in this article.
Clear differences in the level of details that are detectable can be observed. Note that for this figure
all resolutions are re-scaled to the same size to show quality differences.

To evaluate performance, we perform all experiments using two-fold cross-validation
(50:50 data splits) and report the average score of the two folds. The split of the folds is done
randomly at the beginning of the experiments and remains the same across the different
resolutions. The metrics used to evaluate the performance are precision, sensitivity (also
called recall), F1-score, and Matthews correlation coefficient (MCC). Since the numbers of
images per class of the datasets are not equally distributed (which is common for medical
datasets), we choose to bias our precision, sensitivity, and F1-score metrics towards the
least populated classes, which is more relevant for medical applications. Thus, we report
macro averaged results for these three metrics [14], but not for MCC since it is robust
against bias in the classes [15].

2.1. Experimental Setup

We use the HyperKvasir dataset [9], which contains 10,662 images depicting 23 differ-
ent findings of the gastrointestinal (GI) tract (the findings in the dataset contain anatomical
landmarks, pathological findings in the lumen, colon polyps, Barrett’s esophagus, ulcera-
tive colitis, etc.). No duplicate images are included in the dataset, i.e., each finding is only
represented by a single frame, giving the data a large diversity. A complete overview of all
findings in the dataset can be found in Table 1.

The dataset consists of images with different resolutions ranging from 720 × 576 to
1920 × 1072 pixels. The maximum resolution used in our experiments is 512 × 512, which
is an optimal combination of the maximum shared resolution between all samples in the
dataset, the used network architectures, and the available GPU memory. The CNNs are
implemented using the Pytorch framework version 1.6 and Python version 3.8. The used
hardware is an NVIDIA DGX-2 machine using NVIDIA V100 Tensor Core GPUs with the
Ubuntu 18.04 operating system and CUDA version 10.1.
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Table 1. Statistic of the dataset used for the experiments. Split 0 and Split 1 represent two folds used
in our experiments.

Class Split 0 Split 1 Total

Barrett’s Esophagus 20 21 41
BBPS-0-1 323 323 646
BBPS-2-3 574 574 1148

Dyed-lifted-polyps 501 501 1002
Dyed-resection-margins 494 495 989

Hemorroids 3 3 6
Ileum 4 5 9

Impacted-stool 65 66 131
Normal-cecum 504 505 1009

Normal-pylorus 499 500 999
Normal-z-line 466 466 932

Esophagitis-LA grade A 201 202 403
Esophagitis-LA grade B-D 130 130 260

Colon Polyp 514 514 1028
Retroflex-rectum 195 196 391

Retroflex-stomach 382 382 764
Short-segment-Barrett’s 26 27 53

Ulcerative colitis-Mayo score 0–1 17 18 35
Ulcerative colitis 1–2 5 6 11

Ulcerative-colitis-Mayo 2–3 14 14 28
Ulcerative-colitis-grade-1 100 101 201
Ulcerative-colitis-grade-2 221 222 443
Ulcerative-colitis-grade-3 66 67 133

Total 5324 5338 10662

2.2. Convolutional Neural Networks

In total, we trained 20 different models (two models × two folds × five different
resolutions), which are used to obtain results for 100 different resolution combinations.
As mentioned earlier, we perform two-fold cross-validation and switch the train and test
dataset for the different folds. The precision, sensitivity, F1-score, and MCC are calculated
using macro and micro averaging.

We use the two most basic CNN architectures from the five methods discussed in
the paper [16]. The first method uses pre-trained (using ImageNet) DenseNet-161 and the
second method ResNet-152 to predict 23 classes. We select these basic architectures over
the more complex ones because our aim is not to demonstrate the best well-performing
methods, but rather the effect the input image resolution has on the performance. In
both cases, we use cross-entropy loss and stochastic gradient descent as loss function and
optimizer, respectively. We use an initial learning rate of 0.001 and reduce it by a factor of
10 when the models do not show any progress in validation performance for 25 consecutive
epochs, using the learning rate scheduler from Pytorch [16]. For our final predictions,
we use the best-scoring model after an early stopping conditioned upon a learning rate
of 10e−6.

3. Results

Table 2 shows the results of the performance of the CNN algorithms for endoscopic im-
age classification for varying image resolutions. The performance of the CNNs is reported
in terms of precision, sensitivity, F1-score, and MCC for the DensNet-161 and ResNet-152
models. The presented numbers are the average over both folds in the cross-validation. We
observe that increasing the resolution leads to increased performance measured in almost
all metrics for both models. There is a slight decrease in sensitivity and F1-score in ResNet-
152 for the highest resolution (512 × 512) compared to the lower resolution (256 × 256), but
taking the MCC value into account there is an overall improvement. Comparing the two
models, we see that they perform and behave quite similarly as noted by the MCC score
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which is almost the same. Figure 2 depicts the increase in performance as measured by
MCC, macro F1, macro precision, and macro sensitivity with increased image resolution.

Table 2. Average DenseNet-161 and ResNet-152 results for both cross-validation splits. Best MCC
score in bold.

Network Resolution MCC (Rk) F1-Score Precision Sensitivity

DenseNet-161

32 × 32 0.8241 0.5366 0.5414 0.5399

64 × 64 0.8554 0.5701 0.5721 0.5748

128 × 128 0.8865 0.6004 0.6033 0.6012

256 × 256 0.8995 0.6149 0.6230 0.6141

512 × 512 0.9002 0.6351 0.6446 0.6344

Resnet-152

32 × 32 0.8076 0.5108 0.5247 0.5137

64 × 64 0.8556 0.5727 0.5725 0.5756

128 × 128 0.8866 0.6112 0.6136 0.6137

256 × 256 0.8965 0.6175 0.6182 0.6193

512 × 512 0.9002 0.6115 0.6329 0.6171
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Figure 2. Comparison of MCC, macro F1, macro precision, and macro sensitivity when the models are trained and tested
with the same input resolution.

Additionally, we analyze the impact of using different input resolutions on DNN
models trained with a fixed resolution and reporting the performance metric on MCC.
Average values from the two folds of DenseNet-161 and ResNet-152 are plotted as confusion
matrices in Figure 3. The larger the difference in the resolution, the lower the performance.
We also observe a clear correlation between different train and test resolutions on both axes
in the confusion matrices, for both architectures. Furthermore, we have analyzed the time
consumed by the models to perform predictions, and the results are tabulated in Table 3.

A complete overview of all obtained results including the macro and micro average
for precision, sensitivity, and F1-score is shown in Figure 4.
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Table 3. Average time for predicting output using DenseNet-161 and ResNet-152 in the inference stage.

Time (ms) per Image

Resolution DenseNet-161 Resnet-152

32 × 32 19.875 17.190

64 × 64 20.248 15.148

128 × 128 21.606 15.450

256 × 256 20.246 14.986

512 × 512 20.422 16.690
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4. Discussion

We evaluate the impact of low resolution on the performance of endoscopic image
classification using two CNNs, i.e., ResNet-152 and DenseNet-161. Our findings are
consistent with prior studies evaluating the role of image resolution on the performance of
lesion detection, and classification accuracy in radiology and ophthalmology [7].

Primarily, low image resolution can significantly decrease the classification perfor-
mance of CNNs, as shown in Figure 2. This is true even if the decrease in the image
resolution is relatively small: A noticeable drop in performance is still observed for the
lowest considered decrease in resolution, arguably difficult to spot with a naked eye in
many cases. For endoscopic deep learning applications, particularly those focused on
subtle lesions such as sessile serrated adenomas, dysplasia in Barrett’s esophagus, etc.,
even small performance changes can potentially have significant effects on patient care
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and outcomes. In contrast, Table 3 shows that an increasing image resolution does not
have a huge effect on the prediction speed in the inference stage. Then, having high-
resolution images with deep learning methods has better advantages when we cannot see
any considerable performance drops.

For mixed resolution cases, we observe that up-scaling from lower resolution results
in a higher performance loss than down-scaling from higher resolutions. This suggests the
need for images in GI datasets to be collected in high resolution, given that down-scaling is
easy, while up-scaling to the original resolution is (given the tools available at the time of
writing) impossible.

Currently, CNNs usually operate on low to mid-level resolutions (256 × 256 and
lower). In the field of GI endoscopy, different deep learning applications have employed
many different image resolutions that can be compared to the different image resolutions
we used in our experiments. However, unfortunately, the details of the resolution of the
images and how these models perform in varying resolution is not always mentioned. For
example, in the paper by Wang et al. [3], they mention that among low quality images,
the sensitivity of polyp detection is significantly lower. Given that real-time endoscopy in
the community can have varied image resolutions, it has to be borne in mind that these
algorithms which perform excellently in controlled studies using endoscopic images with
high resolution might perform poorly in real life.

Higher-resolution datasets might require new methods, architectures, and hardware.
As hardware improvements and algorithmic advances continue to occur, developing deep
learning applications for endoscopy at higher image resolutions becomes increasingly
feasible. Nevertheless, although the full potential of high-resolution datasets might not be
exploitable yet, it is evidently important to collect data with the highest resolution possible.

One limitation of our present work was that, due to graphics processing unit memory
constraints, we fixed the batch size at eight for all models as our hardware was not
capable of training high-resolution models at larger batch sizes. However, as hardware
advances make graphics processing units with larger amounts of random access memory
increasingly available, there is an opportunity for obtaining better performance from high
image resolution models with larger batch sizes.

Several directions for further research can be envisioned: First of all, the use of
technology such as super-resolution remains unexplored in the context of endoscopic
images. It is likely that given future improvements in the quality of super-resolution
methods, it will be possible to further reduce the negative impact low-resolution images
have on current classification performance. Further research exploring the impact of image
resolution on specific subclasses of the images (e.g., Barrett’s esophagus and Ulcerative
colitis) was not done and is beyond the scope of this paper. However, we provide the
code and documentation of the system used in the current study on GitHub (https://
github.com/vlbthambawita/Endoscopy_Res_vs_DL (accessed on 19 November 2021)) to
promote reproducibility.

For future work, an important consideration is a possible trade-off between image
size on one hand, and the time needed both for training the CNN model making new
predictions on the other. Usually, we can observe, as shown in another study [17], that the
lower the resolution, the faster the latter two. In addition, the highest resolutions (above
HD) require either complicated training paradigms (e.g., distributed learning) or specific
hardware, which are not standard or widely available yet.

5. Conclusions

In this paper, we propose a methodology to evaluate the effect of image resolution
on the performance of CNN-based image classification by using a standard image dataset
HyperKvasir. The experimental results and analysis conclude that the performance of the
classifier is mainly dependent upon visual information and the resolution of images. A
decrease in image resolution decreases the performance of the CNN-based image clas-
sification as quantified by lower MCC, F1, precision, and sensitivity results. Therefore,

https://github.com/vlbthambawita/Endoscopy_Res_vs_DL
https://github.com/vlbthambawita/Endoscopy_Res_vs_DL
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given that higher image resolutions lead to better performance of the CNN models, the
current trend of reducing the resolution for faster processing needs to be reconsidered
in the future in the realm of GI endoscopy computer-aided diagnosis. Details regarding
the characteristics of the image resolution and the performance of the models at different
resolutions should be mentioned in research papers to facilitate realistic expectations of
such technology. Moreover, minimum standards for image resolution as it pertains to GI
images need to be considered.
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