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A B S T R A C T  

 

Limited driving range, long charging time and high charging costs affect the use of battery electric 

vehicles (BEVs) for intercity travels and often compel drivers to charge their vehicles more than once. 

This study proposes a multistage optimisation model to provide BEV drivers with a charging strategy 

for intercity travel. This model aims to jointly minimise travel time and charging cost and to determine 

the optimal amount of charged energy in each charging station located along the available routes. A 

dynamic programming method for solving this model is also designed. The feasibility and effectiveness 

of the proposed model and solution method are verified through the numerical example and simulations. 

The results indicate that the trade-offs between travel time and charging cost significantly influence the 

proposed solution, and the residual energy at the destination affects the availability of routes. The 

policy implications for the BEV-based intercity travels are discussed.  
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1. Introduction 

Petroleum dependence and environmental issues have directed much attention towards the use of 

vehicles that consume alternative sources of energy. Battery electric vehicles (BEVs) have been long 

regarded as a promising solution to these problems (Riemann et al., 2015). With the recent advances in 

battery technologies and the support of the government, BEVs have enjoyed increasing adoption in 

recent years (Sun et al., 2017). However, BEVs have a shorter driving range compared with internal 
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combustion engine vehicles (ICEVs) and often need to be charged during trips. Therefore, BEVs are 

often regarded as travel tools for short-distance travels and are not widely used for long-distance travels, 

such as intercity travels (Wang et al., 2015). Considering the serious environmental and energy 

problems being faced across the world, ICEVs are predicted to be replaced by BEVs in the future 

(Plötz et al., 2014). Therefore, how to use BEVs for intercity travels presents a critical issue for drivers.  

Drivers of BEVs need to search for and select suitable charging stations along their routes given 

that these stations are much less common than gas stations. As the penetration of BEVs in urban 

transportation systems is predicted to reach high levels in the future, drivers of BEVs need to develop a 

charging strategy. However, previous studies have mostly focused on short-distance BEV travels as will 

be discussed in Section 2. Unlike short-distance travels, intercity travels require BEV drivers to stop at 

more than one charging station along their route. Moreover, charging a BEV is relatively time 

consuming and thereby significantly extend the travel time of drivers. Another important concern is 

that charging BEVs costs money. All of these factors introduce complexities in making decisions 

related to BEV intercity travels. In other words, drivers should consider different travel cost 

components, such as travel time and charging cost, when formulating a charging strategy for intercity 

travels. Travel time often comprises driving time and charging time for a BEV trip, and both charging 

time and cost are influenced by the amount of charged during charging events. In previous studies, the 

fully charged assumption is widely used to simplify the problem formulation. This assumption has 

limited effects on travel costs for short-distance travels as drivers only need to charge their vehicles for 

a few times yet has a significant influence on intercity travels. Therefore, the charging strategy for 

intercity travels should take into account multiple traveling cost components, including driving time, 

charging time and charging cost.  

In this study, we focus on the problem with regards to the charging strategy for BEV intercity 

travels. The problem statement is given as follows: a BEV with a certain level of initial battery energy 

takes a trip between two different cities with long distance. In the road network, there exist a fixed 

number of charging stations that can be used to recharge the vehicle, and different charging stations 

may have different charging power and service cost. In order to realise the intercity travel, the first task 

is to search the available routes from origin to destination. An available route often traverses multiple 

charging stations to ensure that the BEV can be charged multiple times and then reaches its destination. 

As the set of available routes is determined, we aim to devise a multistage optimisation model to 

provide BEV drivers with an optimal charging strategy. In general, drivers tend to choose those routes 

with the shortest travel time to ensure that they would reach their destinations on time (Dell’Orco et al., 

2016). For ICEVs, the total travel time can be approximatively equivalent to the driving time from the 

origin to the destination, whereas the refuelling time is often ignored as it is significantly shorter than 

the driving time. By contrast, the total travel time of BEVs includes driving and charging times. 

Moreover, BEV drivers also spend a considerable amount to charge their vehicles and hence want to 

reduce the charging cost during charging events. Therefore, in the proposed model, both travel time and 

charging cost are treated as optimisation objectives, and a dynamic programming method is designed to 

solve this model. The solution includes the location of recommended charging stations, the amount of 

charged energy in each charging station and the corresponding travel route. The methods developed in 

this study may help BEV drivers determine the optimal charging strategy for intercity travels and 

provide decision support to city planners when designing public charging infrastructure by taking into 

account the demands of BEV drivers for intercity travels.  

The contributions of this study are as follows. Firstly, this work proposes an available route 
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searching method to determine the available routes for BEVs in a road network. These available routes 

ensure that the BEVs reach their destinations in consideration of the limited driving range and number 

of charging stations. In the previous studies, the available routes were often predetermined and the 

conditions for them were not discussed. For BEV-oriented intercity travels, it is an especially important 

issue to search available routes. This is because the multiple charging events are often required during 

the intercity travels, whereas the charging stations for BEVs are much less popular than gas stations. 

Secondly, this work proposes a multistage optimisation model to provide drivers with the optimal 

charging strategy for each available route. This model aims to minimise the generalised cost, which is 

formulated as the weighted sum of travel time and charging cost. The amount of charged energy in each 

charging station along the optimal route can also be calculated by using this model, which in turn is 

solved by applying a dynamic programming method that can effectively integrate the interaction effects 

between different charging actions into the solution. In the exiting literature, most of the related 

methods focused on the short-distance travel problems for BEVs while neglected the characteristics of 

intercity travels, which are consistent in the current development situation of BEV adoption to a certain 

extent. However, as the increasing adoption of BEVs in the future, they will eventually be used to 

undertake intercity travels. In addition, the preferences of the driver for travel cost components are also 

considered in the proposed model, whereas less attention has been focused on the impacts of BEV 

driver’s preferences on the charging strategy in the previous studies, especially for the intercity travels. 

Thirdly, a numerical example and simulations with six available routes are conducted to demonstrate 

the feasibility of the proposed model and the solution method. The results of this work are expected to 

provide valuable references for BEV drivers engaging in intercity travel. In addition, the research 

results also have the contribution to the BEV-based intercity travel policy proposal, and some of the 

related policy implications are discussed. 

The rest of this paper is organised as follows. Section 2 reviews the literature. Section 3 presents 

the characteristics of available routes for BEVs and discusses the proposed available routes searching 

method. Section 4 constructs the charging optimization model and introduces the solution method. 

Section 5 conducts the numerical example and simulations to demonstrate the feasibility of the 

charging optimization model and solution method. Section 6 concludes the paper and presents 

directions for future research. 

2. Literature review  

Previous studies on travel problems have mainly focused on conventional ICEVs (i.e. Li et al., 

2009; Pillac et al., 2013; Kovacs et al., 2014), and only few works have examined alternative energy 

vehicles, such as BEVs. Compared with ICEVs, BEVs have a shorter driving range and often need to 

be charged during trips. Accordingly, the traditional methods proposed in the ICEV-based literature 

should be adjusted to realise BEV trips. To this end, a considerable amount of research has attempted to 

investigate the travel and charging problems for BEVs. For example, Eisner et al. (2011) adopted the 

Dijkstra algorithm to solve the travel route optimisation problem for BEVs in a large network and 

regarded energy consumption as a link cost. Erdoğan and Miller–Hooks (2012) developed a mixed 

integer linear programme to formulate the routing problem of BEVs in consideration of limited driving 

range and insufficient charging stations. Wang et al. (2018a) examined the impacts of driving direction 

on charging station selection and proposed an algorithm to guide BEV routing and charging. They used 

total driving distance as a metric to evaluate the algorithm yet completely ignored the amount of 

charged energy and its effects on travel time. Said et al. (2013) adopted queuing theory to formulate a 

mathematical model for the BEV routing problem that aims to minimise charging time. Kobayashi et al. 
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(2011) designed a route search method for BEVs that considers both limited driving range and 

locations of charging stations. Charging behaviour was also considered in this method based on the 

assumption that BEVs need to be fully charged upon arriving at charging stations. Under the similar 

assumption, Shao et al. (2017) utilised a mixed integer linear programme to formulate a routing 

problem for BEVs and represented travel time in the model by using a piecewise function. Yang et al. 

(2015) integrated the charging actions of BEV drivers into a traveling salesman problem and designed a 

learnable partheno-genetic algorithm to solve this model. Based on network equilibrium theory, several 

studies have explored the travel route problem of BEVs from the perspective of a macroscopic 

transportation network (i.e. Jiang and Xie, 2013; He et al., 2014; Jiang et al., 2014). For instance, Qin 

and Zhang (2011) and Johnson et al. (2013) attempted to improve the travel efficiency of BEVs by 

alleviating the negative impacts of charging behaviour and thereby formulated charging strategies with 

minimal time spent in charging actions. Wang et al. (2020) conducted a simulation analysis to explore 

the impacts of charging events on the operational efficiency of charging stations. Based on this 

consideration, heuristic-based route guidance strategies have been proposed to formulate charging 

station suggestions for BEV drivers with charging demands. Travel distance minimisation is treated as 

a metric in selecting charging stations from the aspect of the travel cost of individual drivers. The travel 

cost components of BEV trips have multidimensional features due to the costs from charging actions 

coupled with the costs of driving processes. However, the aforementioned studies have mainly focused 

on BEV travel problems with a single objective, such as charging time, travel distance and charging 

cost minimisation, and failed to establish highly comprehensive travel and charging schemes by 

considering multiple travel cost components simultaneously. BEV drivers tend to select routes and 

charging stations whilst taking into account several cost-related factors, and, most importantly, each 

driver may show unique preferences for travel cost components. Therefore, integrating 

multidimensional travel cost components into BEV travel problems can effectively improve the 

performance and acceptability of the solution in actual scenarios. 

To formulate highly comprehensive and acceptable travel and charging schemes, several studies 

have taken into account multiple objectives in BEV trip optimisation. For instance, Sweda and Klabjan 

(2012) built an optimisation model to determine the travel routes for a BEV by considering energy 

consumption and charging cost. Alizadeh et al. (2014) proposed a route optimisation model for BEVs 

and considered travel time and charging cost as the objectives. Given their limited battery capacity and 

potential long charging time, some studies have focused on BEV travel problems whilst taking 

charging time and energy consumption into consideration and also proposed some heuristic algorithms 

to solve the models (Wang et al., 2013; Demir et al., 2014; Alesiani and Maslekar, 2014). Sun and Zhou 

(2016) investigated the impacts of monetary and time factors on BEV trip plans and proposed a 

guidance strategy to realise an intelligent routing design whilst considering travel time and charging 

cost. Yagcitekin and Uzunoglu (2016) proposed a double-layer smart charging strategy in consideration 

of routing and charge scheduling and used travel time and charging cost as metrics to evaluate the 

solution. Wang et al. (2018b) proposed a multi-objective optimisation model to formulate the traveling 

and charging problems of BEVs. The objectives considered in the model include charging cost, energy 

consumption and travel time. Charging event was considered in the model based on the assumption that 

drivers can charge their vehicles only once between their departure points and destinations. Yang et al. 

(2017) integrated time-varying charging cost into the BEV travel and charging problem and formulated 

a crowdsensing-based charging guidance strategy that aims to minimise both trip time and charging 

cost. Although several works have investigated BEV travel problems in consideration of multiple 



5 
 

travel-cost-related factors, only few studies have considered intercity travels. For these travels, BEVs 

often need to be charged multiple times because of the long distance from the origin to the destination 

and the limited driving range of these vehicles. More importantly, different charging actions show a 

definite relationship during intercity travel. In other words, the amount of charged energy in a specific 

charging action can significantly affect the subsequent ones and further influences the charging time 

and cost spent in each charging event and the travel cost for the entire trip. Accordingly, the 

intercity-travel-oriented BEV travel problem is more complex than those problems concerning short 

distance travels. Yi and Shirk (2018) then introduced an optimal model for charging-related decision 

making whilst taking into account situations that involve long travel distance travel. Nevertheless, this 

model only considers monetary and energy costs and ignores travel, driving and charging times during 

a trip. Moreover, the charging strategies in this model are based on itinerary data collected from the US, 

and hence the conditions for the availability of travel routes are not discussed. In some areas, several 

candidate routes may be available, and the available routes should be determined by considering the 

features of vehicle operation, location of charging stations and structure of road networks. To the best 

of our knowledge, only few studies have examined the BEV travel and charging problem from the 

perspective of intercity travels whilst considering multiple travel cost components.  

Overall, whilst previous studies have shown some achievements in BEV travel and charging 

optimization, they still show some limitations as outlined above. In view of these limitations, we 

develop an intercity travel oriented optimisation model with multiple criteria to formulate an optimal 

charging strategy coupled with the travel route for a BEV trip. Unlike most of existing studies, this 

model allows drivers to select several charging stations along their route instead of charging at only a 

single station. The optimal amount of charged energy for each charging action is also explored to 

jointly minimise travel time and charging cost.  

3. Available route searching method  

In a road network, some routes from the origin to the destination may not be used by BEVs due to 

their limited driving range and lack of charging infrastructures. For example, drivers of ICEVs tend to 

choose those routes with the shortest distances as their trip routes. However, unlike ICEVs, for BEVs, 

the route with the shortest distance may be unavailable because the driving range of these vehicles does 

not cover the distance of the route and charging stations may be unavailable along this route. Fig. 1 

presents the available and unavailable routes for BEVs. 

o d

c

14.4kWh

9.6kWhoe =

12kWh7.2kWh

available

unavailable

 
Fig. 1. Available and unavailable routes in a road network  

As shown in Fig. 1, the origin–destination (O–D) pair, i.e. nodes o and d, is connected by two 

routes. The number near the lines in the figure denotes the energy consumed when traversing the routes. 

One of these routes has a charging station (node c), whereas the other lacks a charging station. The 

nominal capacity of a battery is assumed to be equal to 24 kWh, whereas the initial energy of a BEV is 

equal to 9.6 kWh. The route without a charging station can then be easily determined as unavailable 

because 9.6 kWh is less than 14.4 kWh even though the distance of this route is shorter than that of 

another route. Moreover, a route with a charging station is available because the BEV can reach this 
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charging station (node c) to charge its battery and then arrive at its destination (node d). Therefore, 

before determining the optimal charging strategy for a BEV, one should search for the available routes 

from the departure point to the destination.  

An available route searching method is proposed in this paper to determine the available routes 

for BEVs. Assume that a road network has n charging stations. A BEV driver can select no less than 

one charging station to charge his/her vehicle. The available routes consist of charging station(s) and 

the corresponding travel paths. Let E denote the nominal capacity of a BEV, and let oe  be the initial 

energy when the BEV driver has a charging demand. Given the limited driving range and lack of 

charging infrastructures, an available route from the origin to the destination should meet the following 

conditions. Meanwhile, to better illustrate the conditions required for the availability of the routes, Fig. 

2 is introduced to show an example of the conditions. Similar with Fig.1, we also assume that the 

nominal capacity of a battery equals to 24 kWh, whereas the initial energy is equal to 9.6 kWh.  

(1) The BEV can reach the nearest charging station along an available route by using its initial 

energy oe . As shown in the case (1) of Fig.2, the route connecting c3 to c4 has the chance to become an 

available route because the BEV from the origin can reach c3 through its initial energy oe , and the 

charging station located in node c3 is regarded as the initial accessible charging station (IACS) in this 

study. By contrast, since the energy consumed from the origin to c1 exceeds the initial energy of the 

BEV, the route connecting c1 to c2 has no chance to become an available route.   

(2) Along an available route, the energy consumed to traverse the routes between any two 

adjacent charging stations needs to be less than the nominal capacity E. As shown in the case (2) of Fig. 

2, if both the charging station from the nodes c1 and c3 are IACSs, we need to further check the energy 

consumption on the routes between two adjacent charging stations located in the corresponding paths. 

In this case, the route connecting c3 to c4 has the chance to become an available route because the 

energy consumed from c3 to c4 is less than the nominal capacity E of the BEV. On the contrary, the 

route connecting c1 to c2 has no chance to become an available route because the energy consumption 

on the routes between c1 and c2 exceeds the nominal capacity E of the BEV.   

(3) For an available route, the total energy consumed from the origin to the destination should be 

less than the maximum energy that a BEV can use along the route. As shown in the case (3) of Fig. 2, 

the route connecting c3 to c4 is an available route, because the maximum energy that the BEV can use, 

which includes the initial energy oe , energy charged in c3 and energy charged in c4, exceeds the total 

energy consumed from the origin to the destination. In contrast, the route connecting c1 to c2 is an 

unavailable route. This is because the energy consumption on the route from c2 to the destination 

exceeds the nominal capacity E of the BEV, which indicates that the total energy consumed from the 

origin to the destination is larger than the maximum energy that the BEV can use.    

     

             (1) Condition (1)                             (2) Condition (2)       
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                               (3) Condition (3)      

    Fig. 2. Illustration of the conditions for available routes  

The available route searching method is designed based on the above conditions. Let R denote the 

set of candidate routes between the O–D pair, including the available and unavailable routes, which can 

be obtained by using existing path navigation devices and built-in navigation systems. Correspondingly, 

let rc

be the number of charging stations along the route r , where r R  . Therefore, according to the 

condition (3) as mentioned above, the maximum energy that a BEV can use along the route r  is 
r o rE e E c
 
= +                                 (1) 

where rE

is the maximum energy that a BEV can use in the route r . Eq. (1) indicates that rE


consists 

of the maximum energy that can be charged along the route and the initial energy of the BEV. 

    The purpose of the proposed method is to search and select the available routes from candidate 

ones in consideration of the limited driving range and charging stations; therefore, those methods 

related to enumerating candidate routes are not the focus of this study. Several studies have discussed 

route searching methods based on different objectives (i.e. Santos et al., 2007; Fan and Liu, 2010; Chen 

et al., 2017). Let R denote the set of available routes, and R R . The available route searching method 

aims to generate R by finding out the available routes from R . The detailed steps of this method are 

outlined as follows:  

 Algorithm 1  Available route searching 

 Step 1: Search for the IACSs for the routes from R . 

     Step 1.1: Determine the initial energy oe of the BEV.  

     Step 1.2: Determine the energy consumed to reach the nearest charging 

     stations along the candidate routes from R . 

     Step 1.3: Compare the initial energy oe of the BEV with the energy 

     consumed from the origin to the nearest charging station for each route 

     from R : 

            Step 1.3.1: If the initial usable energy oe is less than the energy 

                     .consumed to reach the nearest charging station for the 

                     .route r , remove the route from R . 

            Step 1.3.2: If the initial usable energy oe is no less than the 

                     .energy consumed to reach the nearest charging 

                     .station for the route r , retain the route from R and 

                     .treat the charging station as an IACS. 

Step 2: Investigate the energy consumed to traverse the routes between any two 

adjacent charging stations.   

     Step 2.1: Check the total number of charging stations along the routes 

     from R : 

            Step 2.1.1: If only one charging station (IACS) is present 
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    Note that, in this section, the minimum required residual energy after each arrival at the charging 

stations is not considered to simplify the algorithm description. It is straightforward to add such a factor 

into the route searching process in the practical application.   

4. Charging optimisation model with multiple criteria 

An optimal charging strategy is then developed by taking into account the available routes 

obtained by the available route searching method. Given that a BEV may be charged more than once 

during intracity travel, we establish a multistage optimisation model to abstract the connected charging 

events. This model aims to obtain the optimal amount of charged energy in each charging station along 

the available routes. Afterwards, the route with the minimum weighted sum of charging cost and travel 

time is selected as the optimal route.     

4.1. Basic assumption 

To facilitate the model construction, the following assumptions are made: 

Assumption 1: To guarantee the availability of the charging optimisation model, we assume that at 

least one available route exists along the road network for a BEV. This is because the existence of 

                     .along the route r , retain the route from R .   

            Step 2.1.2: If more than one charging stations are present 

                     .along the route r , go to Step 2.2. 

     Step 2.2: Compare the nominal capacity E of the BEV with the energy 

     consumed between any two adjacent charging stations located in the  

     routes from R :  

            Step 2.2.1: If the nominal capacity E of the BEV is no less than 

                     .the energy consumed between any two adjacent 

                     .charging stations along the route r , retain the route 

                     .from R .   

            Step 2.2.2: If the nominal capacity E of the BEV is less than 

                     .the energy consumed between any two adjacent 

                     .charging stations along the route r , remove the route 

                     .from R .  

Step 3: Calculate the maximum energy that a BEV can use along the routes      

from R and determine the available routes.   

     Step 3.1: Calculate the maximum energy that a BEV can use along each 

     route from R by using Eq. (1).   

     Step 3.2: Determine the total energy consumed to traverse each route 

     from R .  

     Step 3.3: For each route r , compare the usable maximum 

             energy rE

with the total energy consumed to traverse the route: 

            Step 3.3.1: If the usable maximum energy rE

is no less than 

                     .the total energy consumed to traverse the route r , 

                     .collect the route into R .   

            Step 3.3.2: If the usable maximum energy rE

is less than 

                     .the total energy consumed to traverse the route r , 

                     .remove the route.   

 Step 4: Output the available routes and generate R . 
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available route is the precondition for the application of the proposed model.  

Assumption 2: To realise multistage optimisation modelling, we assume that the energy 

consumption and amount of charged energy are both discretised; accordingly, their values are set as an 

integer in this study.  

Assumption 3: To reduce model complexity, we assume that the energy consumed to traverse each 

link in the road network is constant. The relationship between energy consumption and its influencing 

factors with time-varying characteristics, such as driving speed (Bi et al., 2018), is outside the scope of 

this work and is therefore not discussed.  

Assumption 4: To reduce model complexity, we assume that the driving time to traverse each link 

in the road network is constant. This assumption is tenable if the traffic condition in the road network is 

stable, i.e. during off-peak hours (Gendreau et al., 2015). The situation with a time-varying road 

network is not the focus in this study and is therefore not considered in the model.  

4.2. Modelling 

When obtaining a set of available routes R , an optimal charging strategy for each available route 

needs to be determined. Multiple charging stations are often available along the available routes in 

intercity travel, and a BEV may need to be charged more than once during a trip. Let rc denote the 

number of charging stations along the available route r, where r R . The charging optimisation 

problem for the BEV operating in the available route r can be divided into rc optimisation stages. 

Specifically, one of these optimisation stages, i.e. the kth stage ( 1, , )rk c= , starts when the BEV arrives 

at the kth charging station along the route and ends when the BEV reaches the 1k + th charging station 

or destination (if rk c= ). Let
l
kt denote the driving time when the BEV travels from the kth charging 

station to the 1k + th charging station, let k be the charging time spent on per unit amount of charged 

energy in the kth charging station and let kx be the amount of charged energy in the kth charging station. 

Fig. 3 presents the overall process for a BEV operating during the kth period.  

 

Fig. 3. Overall process for a BEV operating during the kth stage.  

As shown in Fig. 3, the operating process of a BEV during the kth stage includes the charging 

action in the kth charging station and the driving process on the route between the kth and k+1th 

charging stations. The travel time spent on the kth stage consists of the charging time in the kth 

charging station k kx and the driving time from the kth charging station to the 1k + th charging station
l
kt . 
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Let ( )k kT x denote the travel time during the kth stage with energy amount kx , and this parameter can be 

calculated as 

( ) l
k k k k kT x t x= +                              (2) 

Furthermore, let ( )k kC x denote the charging cost in the kth stage with energy amount kx . This 

parameter can be calculated as  

( )k k k kC x x=                                (3) 

where k represents the charging cost spent on per unit amount of charged energy in the k th period. In 

real-word situations, the charging cost comprises electricity and service costs, which often have 

different pricing policies. Take China for example, where the charging stations located in different 

cities may have a similar pricing for electricity cost and may have significantly different pricing for 

service cost. To conform to such pricing policies, we define the unit charging cost k as the sum of unit 

electricity and unit service costs as shown in Fig. (4); 

e s
k k k  = +                                (4) 

where
e
k and

s
k are the electricity price and service cost spent on per unit amount of charged energy in 

the kth charging station, respectively.  

Eqs. (2) and (3) indicate that kx is a decision variable that is used to determine the amount of 

charged energy; accordingly, the travel time and charging cost during the kth stage are obtained. 

Let kh denote the residual energy as the BEV arrives at the kth charging station. For the available route 

r , the multistage charging optimisation model with multicriteria is constructed as  

                         0

1

min ( ( ) ( ))

rc
l

k k t k k t

k

C x a T x a t
=

+ +                          (5) 

s.t. 

                  
0

1

0

1

0.2 ,                          1   

( ) 0.2  2, ,  

o

k
k o r

j j

j

e E k

h
e x E k c



 
−

=

 −  =


= 
− + −  =


 ，

                    (6) 

r r r

d

c c c
h x e+ − =                                    (7) 

0 ( )                   ( 1,2, , )r
k kx E h k c  − =                (8)  

Zkx                                      .      (9) 

In the model, objective (5) is formulated as weighted sum of the travel time and charging cost 

accumulated as a BEV travels on the available route with serial number r . In this equation, ta  (in 

yuan/minute) represents value of time, whereas 0
lt denotes the driving time from the origin to the IACS 

along the route. ta can also be used to indicate the preferences of the driver for travel cost components. 

The trade-off between travel time and charging cost is embodied by translating travel time into 

monetary cost. The baseline of parameter ta can be determined by referring to both electricity price and 

charging rate based on an assumption that the baseline for the value of time mainly depends on the unit 

electricity price and unit charging time. Constraint (6), which is a piecewise equation, indicates that the 
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residual energy when the BEV reaches any charging station should not be less than the minimum 

required residual energy, i.e. 20% of the nominal capacity E (Bi et al., 2018). In this equation, 0  

represents the energy consumption from the origin to IACS, and j 1)j （ is the energy consumption in 

the jth stage. Constraint (7) denotes the residual energy as the BEV reaches its destination, where the 

value of de can be determined according to the driver’s trip purpose or other factors. Constraint (8) 

represents the upper and lower bounds of the amount of charged energy in the kth charging station, 

whereas constraint (9) ensures that the charged energy amount kx belongs to the integer. 

4.3. Dynamic programming for optimal charging strategies 

The multistage charging optimisation model can be regarded as a multi-period decision-making 

problem that can be effectively solved by using the dynamic programming method (Tian, 2015). 

Different periods are not independent of one another in the proposed model, that is, the previous stage 

can influence the subsequent stage, and the task is to obtain a sequence of charged energy amounts 

during each stage with the optimisation goal of minimising the overall generalised cost. In other words, 

for an intercity travel with multiple charging events, the previous charging process can influence the 

subsequent one, and then affect the overall optimal charging strategy. Confronted with such a problem, 

the conventional global optimisation methods are not adequately efficient to explore the insightful 

solution, as compared to the dynamic programming method. As a matter of fact, the previous studies 

often aim to optimise the BEV travel path and thus simplify the charging behaviour to a certain extent 

(i.e. Erdoğan and Miller-Hooks, 2012; Shao et al., 2017; Wang et al., 2018b). By this way, the 

corresponding problems can be solved by the global optimisation algorithms. Unlike the previous 

literature, this study aims to optimise the charging strategy for BEV-oriented intercity travels by 

considering the interaction effects between different charging actions. Fortunately, the dynamic 

programming method can deal with the interrelation amongst different stages, store the solution in each 

stage and avoid repetitiously solving the same sub-problem, thereby increasing the solving efficiency. 

Therefore, the dynamic programming method shows significant advantages in solving the proposed 

model compared with other approaches, such as the divide-and-conquer method (Liao et al., 2016). In 

view of these advantages, this paper uses the dynamic programming method to solve the charging 

optimisation model. Based on the architecture of the proposed model, the dynamic programming 

method transforms the original problem into several interrelated sub-problems. Afterwards, the 

sub-problems are solved one by one before arriving to a solution to the multi-period decision-making 

optimisation problem. The dynamic programming method does not have a standard mathematical 

expression or an explicitly defined regulation. Each problem may correspond to a unique architecture 

of the dynamic programming method. Therefore, a targeted dynamic programming method must be 

designed for the charging optimisation model. The critical points for the dynamic programming method 

are to define the states, the decision variable and the state variable and to determine the state transition 

equation and optimal value function (Pang and Liu, 2013). Considering the characteristics of the 

problem, a stage in the model is regarded as a period in the dynamic programming method. 

Meanwhile, kx and kh in the model are regarded as the decision and state variables in the dynamic 

programming method, respectively. Based on these settings, the state transition equation is formulated 

as 

1k k k kh h x + = + −                                    (10) 

which highlights the interrelation between the state in the kth stage and the subsequent stage (i.e. 1k + th 

stage). This equation includes the decision variable kx of the model.  

To design the optimal value function of the dynamic programming method, the objective function 
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of the proposed model should be transformed, and the structure of the objective function after 

transformation includes the optimal value function. Considering the characteristics of the model, a 

reverse solution method is adopted to design the optimal value function. Let ( )k kf h denote the 

minimum total generalized cost from the kth charging station to the destination with the value of kh . 

The optimal value function is 

1
max(0, ) ( )

( ) min [ ( ) ( ) ( )]    ( =1, , )
k k k i k

r
k k k k t k k k k k k

h x E h
f h C x a T x f h x k c


+

−   −
= + + + −      (11)  

For the proposed model, the boundary condition of the optimal value function is 

                     
1 1
( ) ( ) ( )r r r r

d d
tc c c c

f h C e a T e
+ +

= +                         (12) 

Therefore, based on the optimal value function, as shown in Eq. (11), the objective function of the 

model can be transformed as  

 0 1 1 0

1

min ( ( ) ( )) ( )

rc
l l

k k t k k t t

k

C x a T x a t f h a t
=

+ + = +                (13) 

The architecture of the objective function after transformation, as shown in Eq. (13), is different 

from that in the original model, as shown in Eq. (5). However, both functions have the same optimal 

objective values. 

5. Numerical example and simulations 

5.1. Example scenario description 

This section presents a numerical example to demonstrate the feasibility of the proposed model. 

Specifically, this model is applied to solve a multistage charging optimisation problem for a BEV trip 

in the road network with 17 charging stations, as shown in Fig. 4. In the figure, the nodes are denoted 

by two colours, with the red nodes representing the origin and destination, and the yellow nodes 

representing the charging stations. The directed links that connect the nodes are used to abstract the 

road segments between a charging station and an O–D node or two charging stations. The figure also 

presents the detailed information on the energy consumption and travel time for each road segment, 

which are assumed by reference to the map information of the highway network.  

Fig. 4. Road network with energy consumption and driving time in the numerical example. 

Referring to the existing BEV models, such as the BYD e6, we assume that the nominal capacity 

E of a battery is equal to 60 kWh and that the BEV has a full battery as it starts to leave the origin. 

Based on the charging station locations coupled with the road structure, the available routes that can be 

used for intercity travel are determined by using the available route searching method, and all the 

available routes need to meet the conditions required for the availability of the routes, as mentioned in 

Section 3. Accordingly, six available routes are identified between origin and destination, as listed in 

Table 1, and these routes are denoted by available routes 1-6. In this example, the residual energy at 

destination ed is set to 20% of the nominal capacity, i.e. 12 kWh. Those other cases with different 

values of ed are discussed in Section 5.3. 
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         Table 1  

         Available routes deriving from the numerical example.  

Available route Charging stations along the available route 

Available route 1 Origin→CS 1→CS 5→CS 7→CS 9→CS 12→CS 15→CS 17→Destination 

Available route 2 Origin→CS 2→CS 4→CS 7→CS 9→CS 12→CS 15→CS 17→Destination 

Available route 3 Origin→CS 2→CS 4→CS 11→CS 13→CS 16→Destination 

Available route 4 Origin→CS 2→CS 6→CS 8→CS 10→CS 14→Destination 

Available route 5 

Available route 6 

Origin→CS 2→CS 4→CS 11→CS 10→CS 14→Destination 

Origin→CS 3→CS 6→CS 8→CS 10→CS 14→Destination 

Apart from driving time, BEV drivers should also consider the time and monetary costs in 

charging their vehicles during trips. In the numerical example, the unit charging time for each charging 

station is determined by referring to the related information for the charging infrastructure of China. 

Meanwhile, the service cost for each charging station is obtained by referring to the price standards 

issued by Chinese local governments. Table 2 presents information on the charging stations in the 

numerical example, including unit charging time k (min/kWh) and unit service cost s
k (yuan/kWh).  

Table 2  

Unit charging time k and unit service cost s
k  of charging stations.  

Charging 

 stations  

Unit charging time 

  (min/kWh) 

Unit service cost 

 (yuan/kWh) 

Charging 

station 

Unit charging time 

   (min/kWh) 

Unit service cost 

 (yuan/kWh) 

CS 1      0.75   1.00 CS 10 0.60  0.65 

CS 2      0.75   1.00 CS 11   1.00  0.65 

CS 3      0.75   1.00 CS 12   0.60  2.04 

CS 4      1.00   0.60 CS 13   0.75         1.68 

CS 5      1.00   0.60 CS 14   0.50  1.68 

CS 6      1.00   0.65 CS 15   0.75  1.68 

  CS 7      1.00   0.65 CS 16   0.50         2.04 

  CS 8      1.00   0.65 CS 17   0.50  2.04 

CS 9      0.75   0.65      

In contrast to service cost, electricity price often follows a relatively uniform price standard in 

some countries, such as China. Therefore, we suppose that the charging stations located in the road 

network have the same electricity price 
e
k  and set 1.00 yuan/kWh as the unit electricity price based 

on actual information about the electricity price standard in China. The unit electricity price coupled 

with unit charging time is also used to determine the baseline for the value of time at (yuan/min) when 

drivers have equal preferences for travel time and charging cost. In the numerical example, without loss 

of generality, the most common value of unit charging time (1 min/kWh as shown in Table 2) is 

selected, and accordingly, the baseline for the value of time at is computed as 1.00 yuan/min
e
k

k




= . 

Note that, the different drivers’ preferences for the travel cost components may have the significant 

difference. For example, some drivers tend to complete their trips with the travel time as less as 

possible, whereas other drivers desire to spend less monetary cost for charging events to finish their 

travels. In view of this, to analyse the influence of various trade-offs between travel time and charging 
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cost on the optimisation results, five conditions regarding the value of time at are considered in the 

numerical example, namely, at =0.2, 0.5, 1.00, 1.5 and 5.0 yuan/min. In this way, a larger value of at 

indicates the greater importance of travel time with consideration of the baseline. Specifically, the 

condition with at=0.2 indicates that the travel time is extremely more unimportant than charging 

cost; the condition with at=0.5 represents that the travel time is more unimportant than charging 

cost; the condition with at=1 indicates that the travel time has equal importance to charging cost; 

the condition with at=1.5 represents that the travel time is more important than charging cost; the 

condition with at=5 indicates that the travel time is extremely more important in comparison to 

charging cost.   

5.2. Optimal results and analysis 

As shown in Table 1, there are seven charging stations (CS 1, CS 5, CS 7, CS 9, CS 12, CS15, CS 

17) along the available route 1 and thus the charging optimisation problem on this route is considered a 

problem under seven stages based on the model. The optimal amount of charged energy in each 

charging station under different conditions is listed in Table 3.  

Table 3 

Optimal amount of charged energy in each charging station along available route 1. 

Conditions CS 1 CS 5 CS 7   CS 9  CS 12   CS 15  CS 17 

at=0.2 4 kWh 46 kWh  0 kWh 43 kWh 8 kWh  48 kWh 8 kWh 

at=0.5 4 kWh 41 kWh  0 kWh 48 kWh 8 kWh  48 kWh 8 kWh 

at=1.0 4 kWh 41 kWh  0 kWh 48 kWh 8 kWh  48 kWh 8 kWh 

at=1.5 4 kWh 41 kWh  0 kWh 48 kWh 8 kWh  37 kWh 19 kWh 

at=5.0  20 kWh 25 kWh  0 kWh 48 kWh  20 kWh  25 kWh 19 kWh 

For available route 2, the BEV passes through seven charging stations (CS 2, CS 4, CS 7, CS 9, 

CS 12, CS 15, CS 17). Therefore, the charging optimisation problem on the available route 2 is 

considered a problem under seven stages. Table 4 presents the optimal amount of charged energy in 

each charging station along available route 2.  

Table 4 

Optimal amount of charged energy in each charging station along available route 2. 

Conditions CS 2 CS 4  CS 7   CS 9  CS 12  CS 15  CS 17 

at=0.2 11 kWh 46 kWh 0 kWh 43 kWh 8 kWh 48 kWh 8 kWh 

at=0.5 11 kWh 41 kWh 0 kWh 48 kWh 8 kWh 48 kWh 8 kWh 

at=1.0 11 kWh 41 kWh 0 kWh 48 kWh 8 kWh 48 kWh 8 kWh 

at=1.5 11 kWh 41 kWh 0 kWh 48 kWh 8 kWh 37 kWh 19 kWh 

at=5.0  28 kWh 24 kWh 0 kWh 48 kWh 20 kWh 25 kWh 19 kWh 

For available route 3, there are five charging stations (CS 2, CS 4, CS 11, CS 13, CS 16) along the 

route and thus the charging optimisation problem on this route is considered a problem under five 

stages. The optimal amount of charged energy in each charging station along available route 3 is 

presented in Table 5.  

Table 5 

Optimal amount of charged energy in each charging station along available route 3. 

Conditions CS 2 CS 4  CS 11 CS 13 CS 16 

at=0.2 11 kWh 48 kWh 12 kWh 48 kWh 30 kWh 

at=0.5 11 kWh 48 kWh 12 kWh 48 kWh 30 kWh 

at=1.0 11 kWh 48 kWh 12 kWh 48 kWh 30 kWh 
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at=1.5  11 kWh 48 kWh 12 kWh 48 kWh  30 kWh 

at=5.0  28 kWh 31 kWh 12 kWh 48 kWh 30 kWh 

For available route 4, the BEV passes through five charging stations (CS 2, CS 6, CS 8, CS 10, 

CS 14). Therefore, the charging optimisation problem on the available route 4 is considered a problem 

under five stages. Table 6 presents the optimal amount of charged energy in each charging station along 

available route 4.  

Table 6 

Optimal amount of charged energy in each charging station along available route 4. 

Conditions   CS 2 CS 6 CS 8 CS 10 CS 14 

at=0.2  0 kWh 46 kWh  13 kWh 48 kWh 37 kWh 

at=0.5  0 kWh 43 kWh  16 kWh 48 kWh 37 kWh 

at=1.0  0 kWh 44 kWh  15 kWh 48 kWh 37 kWh 

at=1.5 28 kWh 18 kWh  13 kWh 48 kWh 37 kWh 

at=5.0 28 kWh 18 kWh  13 kWh 58 kWh 37 kWh 

For available route 5, there are five charging stations (CS 2, CS 4, CS 11, CS 10, CS 14) along the 

route and thus the charging optimisation problem on this route is considered a problem under five 

stages. The optimal amount of charged energy in each charging station along available route 5 is 

presented in Table 7.  

Table 7 

Optimal amount of charged energy in each charging station along available route 5. 

Conditions CS 2 CS 4  CS 11 CS 10 CS 14 

at=0.2 11 kWh 43 kWh 22 kWh 48 kWh 37 kWh 

at=0.5 11 kWh 43 kWh 22 kWh 48 kWh 37 kWh 

at=1.0 11 kWh 43 kWh 22 kWh 48 kWh 37 kWh 

at=1.5  11 kWh 43 kWh 22 kWh 48 kWh 37 kWh 

at=5.0  28 kWh 26 kWh 22 kWh 48 kWh 37 kWh 

For available route 6, the BEV passes through five charging stations (CS 3, CS 6, CS 8, CS 10, 

CS 14). Therefore, the charging optimisation problem on the available route 6 is considered a problem 

under five stages. The optimal amount of charged energy in each charging station under different 

conditions is listed in Table 8.  

Table 8 

Optimal amount of charged energy in each charging station along available route 6. 

Conditions CS 3 CS 6  CS 8 CS 10 CS 14 

at=0.2 10 kWh 46 kWh 15 kWh 48 kWh 37 kWh 

at=0.5 10 kWh 46 kWh 15 kWh 48 kWh 37 kWh 

at=1.0 10 kWh 46 kWh 15 kWh 48 kWh 37 kWh 

at=1.5  28 kWh 30 kWh 13 kWh 48 kWh 37 kWh 

at=5.0  18 kWh 26 kWh 17 kWh 48 kWh 37 kWh 

Fig. 5 presents the optimal travel cost components, including travel time and charging cost, for the 

six available routes under different conditions. Cases (1) and (2) respectively present the travel time 

and charging cost from the solution under different conditions. The travel time for available route 5 is 

longer than that for the other available routes, whilst available route 1 has the shortest travel time under 

all situations with different values of time at. In addition, available route 4 has the lowest charging cost, 

whereas available route 2 has the highest charging cost under all conditions. These results suggest that 
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these available routes show significant differences in their travel cost components. Moreover, for a 

specific available route, different travel cost components may have different optimality. Therefore, how 

to determine an optimal route by considering the trade-offs amongst various travel cost components 

presents a critical issue. 

     

(1) Travel time 

       

                                    (2) Charging cost 

Fig. 5. Optimal travel cost components for the six available routes under different conditions 

   To determine the optimal routes, the generalised cost is considered in the multistage charging 

optimisation model as mentioned in Section 4.2. The generalised cost derived from the solution for 

each available route under different conditions is listed in Table 9. The optimal routes for those 

conditions with different values of time at are also presented and marked in bold in the table. Available 

route 1 is selected as the optimal route for the condition at=1, which suggests that travel time and 

charging cost have equal importance, because this route has the lowest generalised cost amongst all 

routes. Meanwhile, available route 4 is deemed the optimal route for the at=0.2 and 0.5 conditions. This 

result is consistent with those presented in Fig. 5 because both values of at indicate that travel time is 

less important than charging cost and that available route 4 has the lowest charging cost amongst all 

routes. Available route 1 is considered the optimal route for the conditions with at=1.5 and 5 because 

both values of at indicate that travel time is more important than charging cost, and available route 1 

has the shortest travel time amongst all routes.  
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Table 9  

Optimal routes for each value of time at 

Conditions Available routes Generalized cost (yuan) 

at=0.2 Available route 1 515.24 

Available route 2 538.29 

Available route 3 494.29 

 Available route 4 481.17 

 Available route 5 518.97 

 Available route 6 507.97 

at=0.5 Available route 1 792.98 

Available route 2 829.61 

Available route 3 800.065 

 Available route 4 789.36 

 Available route 5 839.24 

 Available route 6 821.41 

at=1 Available route 1 1255.9 

Available route 2 1315.1 

Available route 3 1309.7 

 Available route 4 1303.0 

 Available route 5 1373.0 

 Available route 6 1343.8 

at=1.5 Available route 1 1718.6 

Available route 2 1800.5 

Available route 3 1819.3 

 Available route 4 1816.0 

 Available route 5 1906.8 

 Available route 6 1865.8 

at=5 Available route 1 4931.0 

Available route 2 5170.4 

Available route 3 5372.2 

Available route 4 5387.0 

Available route 5 5628.8 

Available route 6 5506.8 

As shown in Table 9, the value of time at significantly affects route choice because the preferences 

of drivers regarding the travel cost components will affect the cost structure of optimal routes. To 

further explore the impacts of the value of time at on the travel cost components obtained from the 

solution, we use Pareto curves to illustrate the travel time and charging cost of the optimal routes and 

the corresponding cumulative percentages under each condition as shown in Fig. 6.  
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(1) Pareto curve of travel time 

 

(2) Pareto curve of charging cost 

Fig. 6. Pareto curves of travel cost components under five conditions with different values of time at. 

In Fig. 6, case (1) compares the travel time of the optimal routes for the numerical example under 

conditions with different values of time at. Travel time generally demonstrates a downward trend as the 

value of time at increases, and the conditions with at=0.2 and 0.5 report an equivalent travel time. The 

gap between the minimum and maximum values of travel time under these conditions is equal to 

110.05 min. The cumulative percentages indicate that the travel time under the five conditions exhibits 

moderate changes. Meanwhile, case (2) presents the charging cost of the optimal routes under 

conditions with different values of at. Charging cost generally shows a downward trend as the value of 

time at decreases, whilst the conditions with at=0.2 and 0.5 report an equivalent charging cost. The gap 

between the minimum and maximum values of charging cost under these conditions is equal to 69.05 

yuan. The cumulative percentages indicate that charging cost shows moderate changes except for a 

relatively sharp change between the adjacent conditions with at=0.5 and 1.0. 

Notably, in the previous studies and practical travel experiences, a commonly-used charging 

strategy is to fully charge the battery after the BEV’s arrival at the charging station, namely, the 

fully-charged strategy, and accordingly the corresponding BEV travel problems are solved by the 

conventional global optimisation algorithms (i.e. Kobayashi et al., 2011; Sun and Zhou, 2016; Shao et 
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al., 2017). For the fully-charged strategy, it is often assumed that the charging actions take place as the 

residual energy is lower than a certain battery level and the battery is full after charging. To further 

verify the multistage optimisation model, the fully-charged strategy is performed on the numerical 

example for the purpose of comparison. Likewise, in this experiment, we also assume that the 

minimum required residual energy before arriving at each charging station is equal to 20% of the 

nominal capacity E. In other words, if the current residual energy cannot support the BEV to reach the 

next charging station while the residual energy is no less than 20% of the nominal capacity E before 

arrival, the BEV is charged in the current charging station; otherwise, the BEV is not charged in the 

current charging station. Based on such a strategy, the amount of charged energy in each charging 

station and corresponding travel cost components for each available route are obtained, as listed in 

Table 10. Note that, the amount of charged energy driving from the fully-charged strategy is unaffected 

by the driver’s preferences for travel cost components, namely, the value of time at. Nevertheless, the 

driver’s preferences still have the impacts on the route choice, because the generalized cost would 

change with the different value of time at.  

Table 10  

Amount of charged energy and travel cost components deriving from the fully-charged strategy.  

Available route Amount of charged energy in each charging station  Travel time   

(min) 

Charging cost 

(yuan) 

Available route 1 20 kWh (CS 1)→32 kWh (CS 5)→0 kWh (CS 7)→41 kWh (CS 

9)→20 kWh (CS 12)→36 kWh (CS 15)→37 kWh (CS 17) 

936.25 428.61 

Available route 2 28 kWh (CS 2)→31 kWh (CS 4)→0 kWh (CS 7)→41 kWh (CS 

9)→20 kWh (CS 12)→36 kWh (CS 15)→37 kWh (CS 17) 

981.25 443.01 

Available route 3 28 kWh (CS 2)→31 kWh (CS 4)→30 kWh (CS 11)→30 kWh (CS 

13)→40 kWh (CS 16) 

1024.50 357.10 

Available route 4 0 kWh (CS 2)→46 kWh (CS 6)→26 kWh (CS 8)→35kWh (CS 

10)→45 kWh (CS 14) 

1036.50 297.15 

Available route 5 28 kWh (CS 2)→31 kWh (CS 4)→30 kWh (CS 11)→35 kWh (CS 

10)→45 kWh (CS 14) 

1072.50 333.45 

Available route 6 28 kWh (CS 3)→30 kWh (CS 6)→26 kWh (CS 8)→35kWh (CS 

10)→ 45 kWh (CS 14) 

1059.50 326.75 

To have a better comparison, the optimal travel cost components obtained from the fully-charged 

strategy and proposed optimal charging strategy are presented in Fig. 7. As can be seen from the figure, 

the travel time from the fully-charged strategy is longer than that from the proposed charging strategy. 

Meanwhile, the charging cost from the fully-charged strategy is significantly higher than that from the 

proposed optimal charging strategy. The comparison results indicate that the multistage optimal 

charging strategy has a better ability to reduce the travel costs for BEV-based intercity travels, 

including both travel time and charging cost, as compared to the conventional fully-charged strategy. 
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(1) Travel time 

 

(2) Charging cost 

Fig. 7. Optimal travel cost components obtained from the fully-charged strategy and proposed optimal 

charging strategy  

    According to the travel cost components derived from the fully-charged strategy, the 

corresponding generalized costs under the five conditions with different value of time at are obtained, 

as shown in Table 11. The optimal routes for those conditions are presented and marked in bold in the 

table. Obviously, the optimal generalized costs under all the conditions from the fully-charged strategy 

are higher than that from the proposed optimal charging strategy (listed in Table 9). The fully-charged 

strategy results in an average increase of 4.10 % in the optimal generalized costs compared with the 

multistage optimal charging strategy. The results further indicate that the proposed optimal charging 

strategy can improve the travel efficiency for BEV-based intercity trips. 

Table 11  

Optimal routes and generalized costs based on the fully-charged strategy.  

Conditions Available routes Generalized cost (yuan) 
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at=0.2 Available route 1 615.86 

Available route 2 639.26 

Available route 3 562.00 

 Available route 4 504.45 

 Available route 5 547.95 

 Available route 6 538.65 

at=0.5 Available route 1 896.74 

Available route 2 933.64 

Available route 3 869.35 

 Available route 4 815.40 

 Available route 5 869.70 

 Available route 6 856.50 

at=1 Available route 1 1364.86 

Available route 2 1424.26 

Available route 3 1381.60 

 Available route 4 1333.65 

 Available route 5 1405.95 

 Available route 6 1386.25 

at=1.5 Available route 1 1832.99 

Available route 2 1914.89 

Available route 3 1893.85 

 Available route 4 1851.90 

 Available route 5 1942.20 

 Available route 6 1916.00 

at=5 Available route 1 5109.86 

Available route 2 5349.26 

Available route 3 5479.60 

 Available route 4 5479.65 

 Available route 5 5695.95 

 Available route 6 5624.25 

5.3. Impact analysis of residual energy at destination  

In the numerical example, the residual energy at destination ed is set to 12 kWh, which equals to 

the 20% of the nominal capacity of the BEV battery. Without loss of generality, we consider the 20% of 

the nominal capacity as the minimum requirement for the residual energy at destination ed. However, 

some BEV drivers may tend to reserve more battery energy upon reaching their destinations (Bi et al., 

2015; Bi et al., 2019). The travel cost components increase along with ed due to the additional charging 

time and charging cost resulting from ed. The availability of routes also changes as the value of ed 

increases because the additional energy resulting from ed increases the required amount of energy to 

traverse the routes, and such energy requirements may exceed the maximum energy that a BEV can use 

when traveling along these routes. Therefore, the residual energy at destination ed can affect the travel 

cost and even the travel safety of BEVs.  

With regard to the impact of the residual energy at destination ed on the travel cost components, 

we conduct several simulations to explore the trends of travel time and charging cost with different 
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values of ed for each available route based on the example scenario. Specifically, the residual energy at 

destination ed is set to different values between 12 kWh and 60 kWh at 4 kWh intervals. Fig. 8 presents 

the optimal travel time and charging cost under different ed values for each available route. For those 

situations where the available route becomes unavailable, the corresponding travel time and charging 

cost are equal to 0.  

    

(1) Optimal travel time  

  

(2) Optimal charging cost  

Fig. 8. Optimal travel cost components under different values of ed for each available route. 

In Fig. 8, cases (1) and (2) indicate the optimal travel time and charging cost under different 

values of ed for each available route. In case (1), the optimal travel time for each available route 

demonstrates an upward trend as the value of ed increases. Case (2) also exhibits a rising trend in 

charging cost along with an increasing value of ed. Both cases (1) and (2) show that as the value of 

ed increases to 24 kWh, the available routes 3-6 becomes unavailable, whereas the other two 

available routes still be used. However, when ed reaches 44 kWh, available routes 1 and 2 also 

become unavailable, thereby leaving no available route in the network. Therefore, the residual 

energy at the destination significantly influences the travel cost components and the availability of 

routes in a road network. Given that the residual energy at the destination is one of the most important 

travel demand components for BEV drivers, such energy should be considered when formulating 
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charging strategies. 

6. Conclusions and policy implications 

This study investigates the charging and traveling problem of BEVs in intercity travels. A 

multistage optimisation model that considers multiple charging events during a trip is proposed to 

explore this problem. Before modelling, an available route searching method is designed to determine 

those routes that can be used by a BEV to reach its destination in the road network. This method 

considers the impacts of charging station locations and limited driving range and obtains a set of 

available routes that can be regarded as candidate routes for the intercity travels of BEVs. A multistage 

optimisation model is also developed to determine the optimal charging strategy for each available 

route. In this model, the number of optimisation stages depends on the number of charging stations 

along the route. This model jointly minimises travel time and charging cost by introducing generalised 

cost. A dynamic programming method is also designed to obtain the optimal solution by considering 

the characteristics of the proposed model, which provides the optimal amount of charged energy in 

each charging station.  

A numerical example is performed to demonstrate the feasibility of the proposed model and 

solution method, where 17 charging stations and six available routes are considered. The optimal 

amount of charged energy on each charging station along the available routes and the corresponding 

travel cost components are obtained in consideration of five conditions, and then the charging strategy 

with the lowest generalised cost amongst all available routes is selected as the optimal solution for a 

specified condition. The numerical example demonstrates that the proposed charging optimisation 

model can help BEV drivers complete their intercity travels and reduce their travel costs regardless of 

their preferences. The effects of residual energy at the destination on the charging strategy for intercity 

travels are also explored by performing several simulations, which results indicate that the residual 

energy at the destination significantly influences the travel cost components and the availability of 

routes in a road network. Based on these findings, BEV drivers should reserve a safety margin of 

battery energy to avoid situations where no available routes can be used for intercity travels. Moreover, 

the research results can also contribute to the BEV-based intercity travel policy proposal to attract more 

drivers with different preferences to utilize BEVs. Some of the policy implications are drawn as 

follows: 

(1) The results from the study indicate that the charging time accounts for 10.32%-13.48% of the 

travel time. In general, it is difficult to reconstruct the highway network to decrease the driving time for 

intercity travels. Therefore, this is necessary to reduce the charging time by adopting high power 

chargers along highways to improve the travel efficiency and then attract more drivers, especially the 

drivers with relatively high value of time, to complete intercity travels using BEVs.   

(2) As the primary monetary cost for BEV-based intercity travels, the charging cost has significant 

impacts on the drivers’ acceptance for BEVs. The results from the study implies that the service cost 

accounts for 47.77%-54.46% of the charging cost. Thus, reducing reasonably the unit service cost is an 

effective means to improve the attraction of BEVs for intercity travels, especially for the drivers with 

relatively low value of time. Moreover, by adjusting the unit service cost, BEV drivers can be guided to 

choose suitable routes, and meanwhile the traffic equilibrium on highway networks would be realized, 

which is a critical issue when large-scale BEVs are adopted for intercity travels. Such a problem will be 

explored in our future work.  

(3) Considering the conservative drivers who tend to reserve relatively high level of residual 

energy at destinations, additional charging stations should be constructed along highways to attract 
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these drivers to utilize BEVs for intercity travels. Meanwhile, this is essential to take the BEV driving 

range into account when determining the location of charging stations. In this way, more available 

routes would be generated and then more drivers would be attracted to use BEVs.  

The energy consumption and driving time spent to traverse each link are assumed as constants in 

this study. Such assumption can reduce the model complexity yet leaves out the potential effects of 

traffic conditions on the operating state of vehicles. Traffic conditions may show time-varying 

characteristics, which may lead to similar energy consumption and driving time characteristics. 

Therefore, built upon the multistage optimisation model, BEV intercity travels should be examined in 

future research whilst taking time-varying characteristics into account. In addition, the road grade has 

impacts on the required energy. In the future work, we will adopt data-driven methods to investigate the 

relationship between road grade and required energy. The optimal charging strategy is projected to 

become increasingly accurate and practical by considering these factors.  
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Appendix. Notation 

 

 Sets 

R  

R     

 

Set of the candidate routes between the O-D pair,  r R   

Set of the available routes between the O-D pair and R R ,  r R  

 Parameters     

 E  

rE

 

Nominal capacity of the BEV 

Maximum energy that the BEV can use in the  route r , r R   

 oe  Initial energy when the BEV has a charging demand.  

 rc

 

rc  

l

kt  

k  

k  

e

k  

s

k  

Number of the charging stations along the candidate route r , r R    

Number of the charging stations along the available route r , r R   

Driving time from kth charging station to the k+1 th charging station 

Charging time spent on per unit amount of charged energy in the kth 

charging station  

Charging cost spent on per unit amount of charged energy in the kth 

charging station              

Electricity price spent on per unit amount of charged energy in the kth 

charging station 

Service cost spent on per unit amount of charged energy in the kth 

charging station 
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kh  

ta  

0

lt  

0  

j  

de  

Variables 

kx  

kh  

Functions 

( )k kT x  

( )k kC x  

Residual energy as the BEV arrives at the kth charging station, k=1 

Value of time 

Driving time from the origin to the IACS 

Energy consumption from the origin to the IACS 

Energy consumption during the jth stage, 1j   

Residual energy as the BEV reaches its destination 

 

Decision variable, amount of charged energy in the kth charging station 

Residual energy as the BEV arrives at the kth charging station, 1k   

 

Travel time during the kth stage with respect to the charging amount 
kx  

Charging cost in the kth charging station with respect to the charging 

amount 
kx  

 ( )k kf h  Minimum generalized cost from the kth charging station to the destination 

with the value of 
kh  
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