
Estimating Tukey Depth Using Incremental Quantile

Estimators

Abstract

Measures of distance or how data points are positioned relative to each other

are fundamental in pattern recognition. The concept of depth measures how

deep an arbitrary point is positioned in a dataset, and is an interesting con-

cept in this regard. However, while this concept has received a lot of attention

in the statistical literature, its application within pattern recognition is still

limited.

To increase the applicability of the depth concept in pattern recogni-

tion, we address the well-known computational challenges associated with

the depth concept, by suggesting to estimate depth using incremental quan-

tile estimators. The suggested algorithm can not only estimate depth when

the dataset is known in advance, but can also track depth for dynamically

varying data streams by using recursive updates. The tracking ability of the

algorithm was demonstrated based on a real-life application associated with

detecting changes in human activity from real-time accelerometer observa-

tions. Given the flexibility of the suggested approach, it can detect virtually

any kind of changes in the distributional patterns of the observations, and

thus outperforms detection approaches based on the Mahalanobis distance.

Keywords: data stream, incremental quantile estimator, distributional

patterns, real-time analytics, Tukey depth

Preprint submitted to Pattern Recognition December 21, 2021

1. Introduction

Measures of distance or how data points are positioned relative to each

other, are fundamental in pattern recognition. For example in anomaly de-

tection (Erfani et al., 2016) e.g using auto encoders (Zavrtanik et al., 2021;

Chang et al., 2021), clustering (Huang et al., 2021; Ma et al., 2021) or clas-

sification (Rastin et al., 2021; Iwana and Uchida, 2020).

To measure distance or how data points are positioned relative to each

other, data depth is an interesting concept. Data depth measures how deep

an arbitrary point is position in a dataset. While the concept has received

a lot of attention in the statistical literature (Mosler, 2013), the application

within pattern recognition is still limited. There are however some notable

exceptions. For example Kim et al. (2018); Hubert et al. (2017); Jörnsten

(2004) applied the concept for classification and clustering. Depth has also

been applied to a wide range of disciplines such as economy (Kim et al., 2018;

Kosiorowski and Zawadzki, 2014; Hubert et al., 2017), health and biology

(Williams et al., 2008; Hubert et al., 2015), ecology (Cerdeira et al., 2018)

and hydrology (Chebana and Ouarda, 2011) to name a few.

The earliest and most popular depth measure is Tukey depth (Tukey,

1975). The Tukey depth of a point is defined as the minimum probability

mass carried by any closed halfspace containing the point. However, the

computation of Tukey depth for higher dimensions or for even moderate

amounts of data is computationally demanding which limits its applicability

(Liu et al., 2019).

The main aim of this paper is to address these aforementioned

2

computational issues, and thus increase the applicability of the

depth concept within pattern recognition. Our approach takes ad-

vantage of the following result from Kong and Mizera (2012) according to

which the authors defined halfspaces such that a specific portion of the data

points are on one side of the halfspace. They further showed that contours

with a specific Tukey depth can be estimated from the intersection of such

halfspaces over different directions. Such contours can again be used to es-

timate the depth of any point. In order to apply this result to estimate

depth in dimension p, the positions of O(cp−1), c > 1 halfspaces must be

estimated requiring estimators that are both memory and computationally

efficient. In this paper, we therefore suggest to use incremental quantile es-

timators to estimate the positions of the halfspaces (Hammer et al., 2019,

2021). These estimators only need to store a single value in memory, i.e.

O(1), and only need to perform a single operation per observation result-

ing in a computational complexity of O(n) for n observations. As opposed

to this, traditional quantile estimators have a memory requirement of O(n)

and a O(n log n) computational complexity. However, the computational ef-

ficiency comes with a price and traditional estimators provide more precise

estimates based on the same observations.

The second aim is to recursively update and even track Tukey

depth contours of streams of multivariate data in real time . A

remarkable advantage with incremental quantile estimators is that they not

only can estimate quantiles when the data is known in advance, but can

recursively update and even track quantiles of data streams. Thus, by using

incremental quantile estimators to estimate halfspaces, Tukey depth contours

3

can be tracked in real time. We are not aware of any other method that can

efficiently compute Tukey depth in real-time.

Finally, the real-world applicability of computing Tukey depth

in real-time settings is demonstrated where the developed methods are

used to detect changes in human activity in real-time from accelerometer

observations. Due the flexibility of the suggested approach, it can detect

virtually any kind of changes in the distributional patterns of the accelerom-

eter observation, and outperforms popular approaches based on Mahalanobis

distance.

The main contributions of the paper are as follows:

• We present a new, simple and computationally efficient method to com-

pute Tukey depth.

• The method can even be used to compute Tukey depth in real- time,

and is to the best of our knowledge the first method with this ability.

• The method is applied to detect changes in human activity in real-

time which demonstrates its usefulness and applicability in real-world

scenarios.

The paper is organized as follows. In Section 2, the concept of depth is

introduced including some theoretical fundamentals to compute Tukey depth.

Section 3 provides an efficient procedure to estimate Tukey depth. Section

4 presents performance metrics that will be used to evaluate the algorithm

and Sections 5 and 6 provide synthetic and real-life data experiments.

4

Figure 1: Examples of three halfspaces (blue, green, red) containing the point x. The blue

contours represent some probability distribution P .

2. The Concept of Depth

Let X = (X1, . . . , Xp)
T represent a p-dimensional stochastic vector with

probability distribution P . Let D(x, P) denote the depth function of a point

x with respect to the probability distribution P . A high (low) value of

the depth function refers to a central (outlying) point of the probability

distribution. A general depth function is defined by satisfying the natural

requirements of affine invariance, maximality at center, monotonicity relative

to deepest point and vanishing at infinity (Zuo and Serfling, 2000).

The most used depth function is Tukey depth.

Definition 1 (Tukey depth). Let U refer to the set of all vectors with unit

length. Tukey depth is the minimum probability mass carried by any closed

halfspace containing the point

D(x, P) = inf
u∈U

P
(
uTX ≤ uTx

)
(1)

Figure 1 shows three halfspaces containing the point x. The probability

mass carried by the red and blue halfspaces are larger than for the green

5

halfspace. Thus the probability mass carried by the green halfspace is closer

to the Tukey depth, which is the minimum probability mass over all half

spaces containing x. Intuitively, this is a reasonable and general measure for

the centrality of x with respect to P .

Define α-depth region, directional quantile and directional quantile half-

space.

Definition 2 (α-depth region). The α-depth region with respect to Tukey

depth, D(α), is defined as the set of points whose depth is at least α

D(α) = {x ∈ Rp : D(x, P) ≥ α} (2)

The boundary of D(α) is known as the α-depth contour.

The α-depth regions are closed, convex, and nested for increasing α.

Definition 3 (Directional quantile). For any unit directional vector u ∈ U ,

define the directional quantile as

Q(α, uTX) = F−1
uTX

(α) (3)

where F−1
uTX

(x) refers to the inverse of the univariate cumulative distribution

function of the projection of X on u.

Definition 4 (Directional quantile halfspace). The directional quantile half-

space is defined as

H(α, u) =
{
x ∈ Rp : uTx ≥ Q(α, uTX)

}
(4)

which is bounded away from the origin at distance Q(α, uTX) by the hyper-

plane with normal vector u.

6

Consequently P (X ∈ H(α, u)) = 1− α for any u ∈ U .

The estimation procedures in this paper builds on the following theorem

from Kong and Mizera (2012).

Theorem 1. The α-depth region in (2) equals the directional quantile enve-

lope

D(α) =
⋂
u∈U

H(α, u) (5)

Tukey depth may not be defined for depths above some threshold and the

intersection becomes empty.

3. Efficient Estimation of Tukey Depth

Given a multivariate dataset, in this section we suggest a simple procedure

to estimate whether an arbitrary point is within or outside an α-depth region.

The procedure uses Theorem 1, and consists of three parts.

1. Unit length directional vectors. The generation of uniformly dis-

tributed directional vectors is simple: Let Z1, . . . , Zp be independent stan-

dard normally distributed stochastic variables and define Z = (Z1, . . . , Zp)
T .

Then U = Z/‖Z‖2 will be uniformly distributed on the unit sphere, where

‖ · ‖2 refers to the Euclidean norm. This is the procedure used in most of

the experiments in this paper. However, intuitively, using directional vectors

that are more equidistantly spread on the unit sphere would be more efficient.

We thus also considered the following approach according to which we gen-

erate many uniformly distributed directional vectors, Nu, and secondly filter

out directional vectors that are closer than some threshold. The approach is

however computationally demanding, O(N2
up

2). There are other algorithms

7

to generate fairly equidistantly spread direction vectors, see e.g spiral algo-

rithms (Saff and Kuijlaars, 1997). We have not evaluated the potential of

these algorithms.

2. Directional quantiles estimates. The next part is to estimate

directional quantiles for each directional vector generated above. As pointed

out in the introduction, we use incremental quantile estimators. A promi-

nent example is the DUMIQE algorithm which recursively updates direc-

tional quantile estimates as follows for every observation uTi xj−1 (Yazidi and

Hammer, 2017)

Q̂(α, uTi Xj)← (1 + λα)Q̂(α, uTi Xj−1), if uTi xj > Q̂(α, uTi Xj−1)

Q̂(α, uTi Xj)← (1− λ(1− α))Q̂(α, uTi Xj−1), if uTi xj < Q̂(α, uTi Xj−1)
(6)

The update is quite intuitive. If the sample uTi xj is above (respectively

below) the current estimate, increase (respectively reduce) the corresponding

directional quantile estimate. The tuning parameter λ > 0 controls the

update size. If the data is known beforehand or it comes in the form of a

stationary data stream, it makes sense to let the value of λ be reduced with

time. For non-stationary data streams a constant value of λ is more suitable

to gradually forget old and outdated data (Yazidi and Hammer, 2017). The

procedure is detailed in Algorithm 1.

3. Compute if a point w is within the α-depth region. The

directional quantile estimates from Algorithm 1 can be used to compute if

w is within all the directional quantile halfspaces and thus, according to

Theorem 1, being within the α-depth region. The procedure is detailed in

Algorithm 2. The condition in line 2 is based on Equation (4) and checks if

w is outside of the estimated directional quantile halfspace.

8

Algorithm 1 Estimating directional quantiles.
Input:

u1, . . . , unu // Unit length directional vectors

x1, x2, . . . , xn // Dataset

α, λ

Q̂(α, uTi X0) // Initial value

Method:

1: for j ∈ 1, 2, . . . , n do

2: for i ∈ 1, 2, . . . nu do

3: if uTi xj > Q̂(α, uTi Xj−1) then

4: Q̂(α, uTi Xj)← (1 + λα)Q̂(α, uTi Xj−1)

5: else

6: Q̂(α, uTi Xj)← (1− λ(1− α))Q̂(α, uTi Xj−1)

7: end if

8: end for

9: end for

Convergence. The procedure consists of two approximations 1) the fi-

nite number of directional vectors and 2) the estimates of the true directional

quantiles. To ensure convergence, the directional vector selection procedure

must cover the unit sphere when the number of directional vectors goes to

infinity and, secondly, the directional quantile estimates must converge to the

true directional quantiles, when the number of observations goes to infinity.

By using the simple procedure above to select uniformly distributed direc-

tional vectors, the first requirement is satisfied. Further, Yazidi and Hammer

(2017) and Hammer et al. (2021) prove the second requirement.

9

Algorithm 2 Compute if a point w is within the α-depth region.
Input:

Q̂(α, uTi Xn), i = 1, . . . , nu // Dir. quantile estimates from Algorithm 1.

w, i = 1

InAlphaDepthRegion = True // True (False) if w is within (outside) the α-

depth region

Method:

1: while InAlphaDepthRegion and i ≤ nu do

2: if uTi w < Q̂(α, uTi Xn) then

3: InAlphaDepthRegion = False

4: end if

5: i← i+ 1

6: end while

7: Print(”Point w in α-depth region?”, InAlphaDepthRegion)

4. Performance Metrics

We suggest to measure error along lines li, i = 1, . . . , nv going through the

center of the true distribution and outward in uniformly distributed directions

vi, i = 1, . . . , nv (Figure 2). This approach scales well with dimension p. We

suggest two error measures:

Depth error: Let w̃i,k denote the point of intercept between the line,

li, and the envelope and compute the true depth at this point, D(w̃i,k, P).

The error is computed using mean absolute depth error (MADE) over all the

10

Figure 2: Figure illustrating the approach to measure α-depth contour estimation error.

The black and blue curves show the true α-depth regions and the envelope estimate. The

lines with directions vi, i = 1, . . . , nv are shown in red.

lines li, i = 1, . . . , nv

MADEk =
1

nv

nv∑
i=1

|αk −D(w̃i,k, P)|

and again average over envelopes

MADE =
1

K

K∑
k=1

MADEk (7)

To compute MADE for higher dimensions, the true depth must be computed

for a large set of points w̃i,k. For non-elliptic distributions this is computa-

tionally demanding and was limited to p ≤ 6 in the experiments. For elliptic

distributions, and in particular multivariate normal distributions, the true

depth of any point can be computed analytically and thus MADE was com-

puted up to dimension p = 10 in the experiments. Details are given in

supplementary material S.1. Obviously, if we knew that the observations

were multivariate normally distributed, other depth measures such as Maha-

11

lanobis depth would be more natural, but the computations are only used to

evaluate the performance of the algorithm for high dimensions.

Euclidean distance: Along each line, li, compute the point of intercept

between the line and the true α-depth contour of depth αk, denoted wi,k.

Compute the error as the average Euclidean distance (ED)

EDk =
1

nv

nv∑
i=1

‖wi,k − w̃i,k‖2

where w̃i,k still refers to the intercept between line li and the envelope. Fur-

ther take the average over envelopes

ED =
1

K

K∑
k=1

EDk (8)

5. Synthetic Experiments

In this section, the performance of the algorithms in Section 3 are evalu-

ated in several synthetic experiments. The experiments focus on streaming

data, except in Section 5.2. In Section 6, the algorithms are demonstrated

in a real-life data example.

All computations were run on a Dell PowerEdge R815 server with 64

1.8 GHz AMD CPU processors and Linux Ubuntu operating system ver-

sion 16.04. The experiments were implemented in R (R Core Team, 2021),

but with the most computer intensive parts in C++ integrated using Rcpp

(Eddelbuettel and François, 2011; Eddelbuettel, 2013).

12

5.1. Synthetic Experiments - Static Data Stream

Figures 3 show results of estimating the α = 0.1 depth contour for a

multivariate normally distributed data stream with parameters

µ =

0

0

 , Σ =

 1 0.82

0.82 1

 (9)

Directional quantiles were estimated using DUMIQE with decreasing values

of the tuning parameter, λn = 1/n. We see that a fairly good estimate is

achieved with 200 observations and that the error is minimal with 2000 ob-

servations. A similar visualization for the highly non-elliptical and heavy

tailed lognormal distribution is shown in Figure 7 in supplementary material

S.2. Due to the flexibility of the depth concept, the method performs equally

well for such a distribution. Further, in supplementary material S.2, a few

examples of joint estimation of multiple α-depth regions using the ShiftQ

algorithm are shown. The results show that multiple depth regions can effi-

ciently be estimated for both Gaussian and non-Gaussian distributions.

Considered now joint estimation of α-depth regions for α = 0.05, 0.2 and

0.4 and for p > 2. Table 1 shows results for standard multivariate normally

distributed observation. More detailed results are given in Figures 12 and 13

in supplementary material S.2. CPU time refers to the computational time

needed per α-depth region to obtain estimates with a given precision using

a single CPU core. The number of directional vectors (and thus CPU time)

increases with p and estimation precision. The algorithm performs very well.

For example, for dimension p = 10, MADE less than 0.02 is obtained in

about 1.5 seconds. MADE < 0.01 could be reached in shorter CPU time

than what is shown in Table 1 using a higher number of directional vectors,

13

Figure 3: Multivariate normal distribution case. Estimation of α-depth region for α = 0.1

using nu = 50 directional vectors. The rows from top to bottom show the estimates for

20, 200 and 2000 observations. The left and right column show all the half planes and the

resulting envelopes in blue, respectively. The black curves show the true α-depth contour.

14

MADE < 0.05 MADE < 0.02 MADE < 0.01

CPU time nu CPU time nu CPU time nu

p = 2 0.00013 8 0.00174 12 0.00942 18

p = 3 0.00023 12 0.00429 27 0.04488 40

p = 4 0.00023 16 0.00958 81 0.11631 122

p = 5 0.00043 20 0.02991 153 0.35146 345

p = 6 0.00054 24 0.07419 274 0.90636 1386

p = 8 0.00334 72 0.34695 1228 9.83845 9324

p = 10 0.01361 90 1.54246 3450 104.45206 88412

Table 1: Multivariate standard normal distribution case: The second and third columns

show the CPU time (in seconds) and the number of directional vectors used to obtain

MADE less than 0.05. The other columns show the same to obtain MADE less than 0.02

and 0.01, respectively.

but this is not explored.

Now, assume that X = (X1, . . . , Xp)
T is a multivariate normally dis-

tributed variable with zero expectation vector and strong dependencies

Cov(Xi, Xj) = exp(−0.2|i− j|), i, j = 1, . . . , p (10)

The results are shown in Table 2. More detailed results are given in Figures

14 and 15 in supplementary material S.2. By comparing Tables 1 and 2, we

see that the number of directional vectors and CPU time needed increase

when the variables of X are dependent.

Let X still represent the multivariate normally distributed variable with

covariances (10). Table 3 shows results for the multivariate lognormal dis-

tribution Y = exp(X). More detailed results are given in Figures 16 and 17

15

MADE < 0.05 MADE < 0.02 MADE < 0.01

CPU time nu CPU time nu CPU time nu

p = 2 0.00034 18 0.00622 40 0.03734 40

p = 3 0.00095 27 0.03003 135 1.38903 135

p = 4 0.00238 54 0.13145 274 7.47343 616

p = 5 0.01275 102 0.43698 777 8.47334 3936

p = 6 0.03603 183 1.81652 3118 45.88106 15786

p = 8 0.17285 819 23.21460 20979 988.12085 358438

p = 10 0.68053 2300 245.91893 198927 - -

Table 2: Multivariate normal distribution case: The second and third columns show the

CPU time (in seconds) and the number of directional vectors used to obtain a mean

absolute depth error (MADE) less than 0.05, respectively.

in supplementary material S.2. Tables 2 and 3 show that a specific level of

MADE < 0.05 MADE < 0.02 MADE < 0.01

CPU time nu CPU time nu CPU time nu

p = 2 0.00013 8 0.00957 27 0.11169 40

p = 3 0.00024 27 0.01533 135 0.56418 202

p = 4 0.00021 24 0.03214 274 1.64312 924

p = 5 0.00043 45 0.14592 1166 6.16044 3936

p = 6 0.00053 54 0.27431 2079 9.30407 15786

Table 3: Multivariate lognormal distribution case: The second and third columns shows

the CPU time (in seconds) and the number of directional vectors used to obtain a mean

absolute depth error (MADE) less than 0.05, respectively. The fourth and fifth and the

sixth and seventh columns show the same to obtain MADE less than 0.02 and 0.01,

respectively.

16

MADE is reached faster for the lognormal distribution than for the multivari-

ate distribution documenting that the procedure efficiently can characterize

non-Gaussian distributions.

To the best of our knowledge, the algorithm by Liu et al. (2019) is the

most efficient algorithm in the literature to estimate Tukey α-depth regions.

The authors focus on estimating exact trimmed α-depth regions resulting

in complex combinatorial algorithms and the computation burden explodes

with the number of samples. In comparison, the computational complexity

of our algorithm increases linearly with the number of samples. The authors

can document estimation results up to dimension p = 9, but only when the

number of samples are restricted to less than 80. The algorithm by Liu et al.

(2019) is not constructed to handle streaming data.

5.2. Synthetic Experiments - Offline Setting

In this section, we compare the performance of the incremental quantile

estimator, DUMIQE, with state-of-the-art offline quantile estimators to esti-

mate α-depth regions when data is known in advance. State-of-the-art offline

quantile estimators are based on using weighted averages of consecutive order

statistics

Q(α) = (1− δ)y[j] + δy[j + 1]

where j−m
N
≤ α < j−m+1

N
, y[j] is the jth order statistic of the sample, m a

constant and N the sample size. We use m = α+1
3

and δ = Nα+m− j and

define α[k] = k−1/3
N+1/3

. The sample quantiles can be read from a linear inter-

polation between the points (α[k], y[k]), k = 1, . . . , N . The resulting quantile

estimates are approximately median-unbiased regardless of the distribution

17

of the data. This is the method referred to as Type 8 in the quantile

function in R and is the one recommended by Hyndman and Fan (1996).

We consider the multivariate normal distribution case with covariance

matrix as given in (10), sample sizes N = 500, 2000, 104 and 5 · 104 and

dimensions p = 2 and p = 3. For p = 2 and p = 3, we used 1500 and

7500 directional vectors, respectively, which were sufficiently many to obtain

satisfactory performance.

p = 2 p = 3

N Method MADE ED CPU MADE ED CPU

500
Offline 14.9 43.1 0.291 16.9 40.5 1.634

DUMIQE 25.1 63.9 0.045 34.9 69.7 0.288

2000
Offline 7.0 20.7 1.421 7.2 18.2 9.489

DUMIQE 10.6 28.5 0.182 12.2 26.5 1.154

104
Offline 3.0 9.0 8.761 3.0 7.7 55.12

DUMIQE 4.4 12.1 0.908 4.6 10.6 5.769

5 · 104
Offline 1.3 4.0 52.32 1.3 3.5 326.0

DUMIQE 1.8 5.4 4.542 2.0 4.7 28.84

Table 4: Offline experiment: Comparison of the DUMIQE estimator and the estimator

recommended in Hyndman and Fan (1996) to estimate α-depth contours for α = 0.05, 0.2

and 0.4. MADE, ED and CPU refers to the error measures in (7) and (8) (multiplied by

103) and CPU time used (in seconds), respectively. N refers to the sample size.

The results are shown in Table 4. We see that the estimation errors using

DUMIQE are about 1.5 time that of the offline estimator. If fewer directional

vectors were used, the differences in estimation error were substantially re-

duced. Further, the computational time of the offline estimator is about ten

18

times larger than the DUMIQE estimator. In other words, if computational

time or memory usage are not an issue, the offline estimator combined with a

large amount of directional vectors will give the most precise estimates from

the samples. Otherwise, incremental quantile estimators are preferable even

for offline settings.

5.3. Synthetic Experiments - Dynamically Changing Data Streams

In this section, we consider the problem of tracking α-depth regions of

dynamically varying data streams. Figure 4 illustrates the problem. In

each panel, the expectation vector of the data stream distribution moved

from the bottom left to the upper right. At the same time the correlation,

changed from strongly positive, 0.8, to strongly negative, −0.8. For the 103

samples case (first row), the algorithm was able to track the α-depth regions

satisfactory. With 104 samples, the estimates improve significantly and with

105 observations, the estimates are very close to the true contours. With 104

and 105 samples, 50 directional vectors give better and smoother estimates

than 10 directional vectors.

Evaluation for p > 2 is given below. Due to the computational burden

of evaluating estimation error of non-elliptic distributions, the analysis was

restricted to Gaussian distributions. Let Xn = (Xn,1, . . . , Xn,p)
T be multi-

variate normally distributed with

µn,i = E(Xn,i) = sin

(
2π

T
n+ ψi

)
, i = 1, . . . , p (11)

where ψi, i = 1, . . . , p are independent uniformly distributed variables on

the interval [0, 2π] ensuring that the marginal expectations are out of phase.

19

Figure 4: Tracking of α-depth contours for α = 0.05, 0.2 and 0.4: In each panel the gray

dots are outcomes from the data stream. The first observations from the data stream are

shown in dark gray and the dots become lighter gray as time progresses. The left and

right column show cases with nu = 10 and 50 directional vectors, respectively. The rows

from top to bottom show cases with a total for 103, 104 and 105 observations, respectively.

20

Covariance between Xn,i and Xn,j is

Cov(Xn,i, Xn,j) =

(
0.4 sin

(
2π

T
n+ ψ

)
+ 0.4

)|i−j|
(12)

where ψ is uniformly distributed on the interval [0, 2π].

Tables 5 to 6 show results tracking α-depth regions for α = 0.05, 0.2 and

0.4 for periods T = 103 and T = 104 under optimal choices of the tuning

parameter1. More detailed results are given in Figures 18 and 19 in supple-

mentary material S.3. For T = 103, MADE is around 0.05 and the estimation

error does not decrease with increasing number of directional vectors which

may seem surprising. The reason is that if the quantile estimates are poor,

the intersections of the resulting halfspaces do not necessarily become bet-

ter by adding more halfspaces. For T = 104 MADE is between 0.02 and

0.03. The optimal number of halfspaces increases with dimension, but not

dramatically.

The algorithm is computationally very efficient. For dimension p = 5 the

algorithm can optimally process 104 to 105 observations from a data stream

every second on a single CPU processor.

By using more equidistant directional vectors, we expect reduction in the

tracking error. Consider the dynamic case above except that the directional

vectors are chosen more equidistantly. Directional vectors were generated

using the filtering procedure in Section 3 with Nu = 10nu.

The results are shown in Table 7 and more detailed results are given

1In a practical situation, the history of the data stream can be used to estimate (or

track) optimal values of the tuning parameters. We are currently working on such proce-

dures.

21

p = 2 p = 3 p = 4 p = 5

nu MADE Freq MADE Freq MADE Freq MADE Freq

5 0.0559 972.7 − − − − − −

10 0.0475 478.9 0.0577 486.7 − − − −

25 0.0445 189.2 0.0457 189.7 0.0510 184.7 − −

50 0.0474 95.2 0.0467 95.1 0.0492 93.3 0.0521 92.4

100 0.0504 47.9 0.0502 47.4 0.0514 46.8 0.0523 46.4

200 − − 0.0536 23.4 0.0546 22.6 0.0541 22.7

500 − − − − 0.0590 9.1 0.0576 8.9

1000 − − − − − − 0.0604 4.5

Table 5: Tracking of α-depth regions for α = 0.05, 0.2 and 0.4 for the distribution char-

acterized by (11) and (12) with a period T = 103. The columns ’Freq’ refer to how many

times per millisecond the algorithm can update an α-depth region when running on a

single 1.8 GHz CPU processor.

in Figure 21 in supplementary material S.3. By comparing Tables 5 and 6

with 7, we see that for T = 103 and T = 104, minimum MADE is reduced

from 0.045 to 0.040 and from 0.0226 to 0.0216, respectively. However, more

importantly, by using equidistant vectors, the best results are obtained us-

ing fewer directional vectors. For both T = 103 and T = 104, the optimal

number of vectors are reduced from 25 to 10. Finally, we observe significant

improvement if only five directional vectors were used. Using equidistant

directional vectors adds an additional computational cost in the initializa-

tion of the algorithm, but results into gained peak performance and fewer

directional vectors, and thus less computation time and memory are needed

during tracking.

22

p = 2 p = 3 p = 4 p = 5

nu MADE Freq MADE Freq MADE Freq MADE Freq

5 0.0439 976.3 − − − − − −

10 0.0305 480.1 0.0499 484.3 − − − −

25 0.0226 189.2 0.0318 188.5 0.0429 184.7 − −

50 0.0227 95.4 0.0277 94.3 0.0342 93.6 0.0395 91.1

100 0.0236 48.0 0.0275 47.3 0.0306 47.0 0.0337 46.1

200 − − 0.0289 23.3 0.0299 22.7 0.0312 22.6

500 − − − − 0.0307 9.1 0.0309 9.0

1000 − − − − − − 0.0316 4.5

Table 6: Tracking of α-depth regions for α = 0.05, 0.2 and 0.4 for the distribution char-

acterized by (11) and (12) with a period T = 104. The columns ’Freq’ refer to how many

times per millisecond the algorithm can update an α-depth region when running on a

single 1.8 GHz CPU processor.

nu T = 103 T = 104

5 0.0465 0.0303

10 0.0400 0.0216

25 0.0440 0.0217

50 0.0477 0.0226

100 0.0505 0.0236

Table 7: Tracking of α-depth regions for α = 0.05, 0.2 and 0.4 for the distribution char-

acterized by (11) and (12) using fairly equidistant directional vectors. Tracking error is

measured using MADE. The left and right columns show results for T = 103 and 104,

respectively. Dimension is p = 2.

23

6. Real-life Data Examples

In this section, we use the algorithm on a real-life dataset related to

activity change detection. A second real-life data example related to real-

time event detection using Twitter data is given in supplementary material

S.4.

We demonstrate how the algorithm can be used to detect outliers and

events and perform classifications in dynamic settings. For example, related

to event detection, by characterizing a data stream distribution with multiple

depth contours, in practice any change in the data stream distribution can

be detected. Not only changes in common properties such as expectation

and covariance structure, but also changes in shape such as a change from

an elliptic to a non-elliptic distribution.

6.1. Activity Change Detection

Activity recognition is a highly active field of research where sensory in-

formation is used to automatically detect and identify activities of users. Ac-

tivity recognition can help for example detect sedentary lifestyle and prompt

the user to perform healthy exercises.

We consider an accelerometer dataset from the WISDM (Wireless Sensor

Data Mining) project (Kwapisz et al., 2011). Accelerations in x, y and z

directions were observed, with a frequency of 20 observations per second,

while users were performing the activities walking, jogging, walking up a

stairway and walking down a stairway. A total of 36 users were observed and

the dataset contains a total of 989 875 observations.

Current research focuses on supervised approaches where historic and

24

Figure 5: The gray dots show accelerometer observations for an arbitrary user. The red

lines show when the user changes activity.

annotated activity observations are used to train an activity classification

model. E.g. Kwapisz et al. (2011) trained models such as decision trees

and neural networks. However, such an approach is highly sensitive to any

temporal changes in the data, e.g. if the user switches to an activity that is

not part of the training material as a consequence for example of becoming

fitter, sick etc. In this example we rather take an unsupervised approach and

the goal is to detect whenever the user changes activity. Since we receive

20 accelerometer observations per second, it is important that the streaming

approach is computationally efficient.

25

Figure 5 shows in gray x, y and z acceleration for an arbitrary user. The

red lines show when the user changed activity. Acceleration distributions

are fairly stationary within an activity, but with some gradual and abrupt

changes. The users changed activities in many cases as often as every 30

seconds making this a challenging tracking and change detection problem.

Figure 6 shows scatter plots for two arbitrary sessions with minimal tem-

poral trend. The simultaneous acceleration distributions vary substantially

between sessions and are often far from being elliptical. Further, even though

the distributions are different, the mean and covariances are often quite sim-

ilar making the change detection task based on elliptic distributions (Ma-

halanobis distance) challenging. We thus suggest the following depth based

change detection procedure:

1. Track α-depth contours of the simultaneous acceleration distribution

by tracking nu directional quantiles using the DUMIQE algorithm with

tuning parameter λ.

2. Compute the Euclidean distance between the current α-depth contours

and the contours h seconds back in time using Equation (8), denoted

EDt at time t.

3. Track the expectation and standard deviation of EDt distribution using

exponential moving average

E(EDt) = (1− δ)E(EDt−1) + δEDt

E(ED2
t) = (1− δ)E(ED2

t−1) + δED2
t

SD(EDt) =

√
E(EDt)2 − E(ED2

t)

4. When the user changes activity, we expect EDt to rapidly increase. A

26

new activity is detected when EDt is more than η standard deviations

higher then E(EDt), i.e. EDt ≥ E(EDt) + η SD(EDt).

5. When a new activity is detected, restart the tracking of the α-depth

contours and go back to step 1.

This approach is elegant since by virtue of measuring difference in depth

contours, it can detect virtually any kind of change in the shape of the

simultaneous acceleration distribution, for example a change from an elliptic

to a non-elliptic distribution. Given the properties of the observations in this

application, this flexibility is important.

We compare the approach against an identical approach except that in

the first part of the algorithm the mean and covariance structure (and not

depth contours) were tracked using multivariate exponentially weighted mov-

ing average (MEWMA) (Lowry et al., 1992).

We measured the performance of the depth and the MEWMA approaches

for a wide range of values for the tuning parameters. As several sessions

lasted for only 30 seconds, it was thus important for the tracking algorithms

to rapidly adapt to a session before a new change of activity took place. In

the first step of the procedures, we thus chose decreasing values of the tuning

parameters, but with a minimum value to take into account the dynamic

changes in accelerations within a session, λt = max{1/t, λmin}, and tried

the values 0.1, 0.05 and 0.01 for λmin
2. This performed better than using

constant values of the tuning parameter. We further tried the values 0.1,

2For MEWMA, λt refers to the moving average tuning parameter and λt = 1/t is thus

equivalent to the sample mean.

27

Figure 6: The first and the second row show scatterplot of accelerometer observations for

two activity sessions.

0.05 and 0.01 for δ, 2.5, 5 and 10 seconds for h and 2, 5 and 8 for η. Further,

for the depth approach we used three depth contours with α equal to 0.2,

0.05 and 0.01 and tried nu = 20 or 50 directional vectors. We ran the two

change detection approaches for the whole dataset for all the combinations

of the parameters. This resulted in a total of 162 and 81 experiments for the

depth and the MEWMA approaches, respectively.

28

Precision, recall and the F1 score were used to measure performance

(Sokolova and Lapalme, 2009). If the approach detects more than one change

between two true changes, we characterize the first change as a correct de-

tection and the others as false detections and define

Precision =
No. of correct detections

No. of detections

Recall =
No. of correct detections

No. true changes

F1 score =
2 · Precision · Recall

Precision + Recall

Tables 8 and 9 show the top ten results with respect to the F1 score. The

depth approach outperforms the MEWMA with respect to the F1 score and

in addition detects the true changes more rapidly. The performance of the

depth approach does not seem to be particularly sensitive to the number of

directional quantiles used.

7. Closing Remarks

In this paper we have presented a computationally and memory efficient

procedure to estimate and track Tukey α-depth contours using incremental

quantile estimators. The algorithms use the results by Kong and Mizera

(2012) according to which the α-depth region equals the directional quantile

envelope. We further demonstrated how incremental quantile estimators can

be used to efficiently estimate the directional quantile envelope. By using

incremental quantile estimators, we are able to recursively estimate and track

α-depth contours, and to the best of our knowledge, it is the first method

in the literature with this ability. However, as shown in Section 5.2, if the

29

λmin δmin h η nu Precision Recall F1 score Det. delay (sec)

0.01 0.01 100 8 20 0.796 0.497 0.612 1.325

0.01 0.01 100 8 50 0.781 0.486 0.599 1.150

0.01 0.05 200 8 20 0.532 0.682 0.597 1.415

0.01 0.05 50 8 50 0.613 0.564 0.587 1.876

0.01 0.01 200 8 20 0.735 0.488 0.587 1.202

0.01 0.05 200 8 50 0.510 0.673 0.580 1.482

0.01 0.01 200 8 50 0.719 0.480 0.575 1.219

0.01 0.05 100 8 20 0.538 0.618 0.575 1.010

0.05 0.10 200 8 20 0.539 0.616 0.575 1.903

0.01 0.05 50 8 20 0.613 0.532 0.570 1.894

Table 8: Change detection example. Results for the depth approach.

amount of data is limited, it is better to estimate α-depth contours using

traditional offline quantile estimators.

The algorithms estimated Tukey depth contours equally well for both

elliptic (Gaussian) and non-elliptic distributions. The performance, how-

ever, depends on the degree of curvature for the true depth contours being

closely related to the degree of dependency between variables. For static data

streams, the algorithm estimated a depth contour of dimension p = 10 with

a mean absolute error in Tukey depth less than 0.01 in 1.2 and 125 minutes

for independent and strongly dependent variables, respectively, on a single

CPU processor. For dynamically changing data streams, even for dimensions

as high as p = 5, the algorithm was able to process tens of thousands of ob-

servations per second and track depth contours with high precision. We have

30

λmin δmin h η Precision Recall F1 score Det. delay (sec)

0.01 0.01 200 8 0.454 0.697 0.550 1.553

0.05 0.01 200 8 0.447 0.697 0.545 1.691

0.05 0.01 50 8 0.438 0.699 0.539 2.249

0.01 0.01 50 8 0.421 0.711 0.529 1.736

0.01 0.01 100 8 0.398 0.737 0.517 1.293

0.05 0.01 100 8 0.388 0.711 0.502 1.747

0.05 0.05 200 8 0.353 0.760 0.483 1.525

0.05 0.05 50 8 0.336 0.818 0.476 1.832

0.05 0.10 200 8 0.336 0.803 0.474 1.522

0.01 0.05 200 8 0.330 0.777 0.463 1.281

Table 9: Change detection example. Results for the MEWMA approach.

not found any studies that have been able to estimate depth contours of such

a high dimension and for such a large of amount of data, which documents

the efficiency of the algorithm.

The real-life data examples demonstrate that the procedure is useful to

track and detect changes in complex distributional patterns.

To estimate α-depth contours, the number of directional vectors, nu, and

values of tuning parameters in the incremental quantile tracking algorithms

must be chosen. We are currently working on procedures that use information

from the history of the data stream to recursively update such values. Tukey

depth is best suited to account for convex features of the distribution of

interest. However, there exist other modified depth measures that better

account for non-convex features (Chernozhukov et al., 2017). In the future,

31

we plan to extend the method in this paper in order to also be applied to

these depth measures.

Alkhamees, N., Fasli, M., 2016. Event detection from social network streams

using frequent pattern mining with dynamic support values. In: Big Data

(Big Data), 2016 IEEE International Conference on. IEEE, pp. 1670–1679.

Atefeh, F., Khreich, W., 2015. A survey of techniques for event detection in

twitter. Computational Intelligence 31 (1), 132–164.

Cerdeira, J. O., Monteiro-Henriques, T., Martins, M. J., Silva, P. C., Ala-

gador, D., Franco, A. M., Campagnolo, M. L., Arsénio, P., Aguiar, F. C.,

Cabeza, M., 2018. Revisiting niche fundamentals with tukey depth. Meth-

ods in Ecology and Evolution 9 (12), 2349–2361.

Chang, Y., Tu, Z., Xie, W., Luo, B., Zhang, S., Sui, H., Yuan, J., 2021. Video

anomaly detection with spatio-temporal dissociation. Pattern Recognition,

108213.

Chebana, F., Ouarda, T. B., 2011. Depth-based multivariate descriptive

statistics with hydrological applications. Journal of Geophysical Research:

Atmospheres 116 (D10).

Chernozhukov, V., Galichon, A., Hallin, M., Henry, M., et al., 2017. Monge–

kantorovich depth, quantiles, ranks and signs. Annals of Statistics 45 (1),

223–256.

Eddelbuettel, D., 2013. Seamless R and C++ Integration with Rcpp.

Springer, New York, iSBN 978-1-4614-6867-7.

32

Eddelbuettel, D., François, R., 2011. Rcpp: Seamless R and C++ integration.

Journal of Statistical Software 40 (8), 1–18.

URL http://www.jstatsoft.org/v40/i08/

Erfani, S. M., Rajasegarar, S., Karunasekera, S., Leckie, C., 2016. High-

dimensional and large-scale anomaly detection using a linear one-class svm

with deep learning. Pattern Recognition 58, 121–134.

Hammer, H. L., Yazidi, A., Rue, H., 2019. A new quantile tracking algorithm

using a generalized exponentially weighted average of observations. Applied

Intelligence 49 (4), 1406–1420.

Hammer, H. L., Yazidi, A., Rue, H., 2021. Joint tracking of multiple quantiles

through conditional quantiles. Information Sciences 563, 40–58.

Hasan, M., Orgun, M. A., Schwitter, R., 2017. A survey on real-time event

detection from the twitter data stream. Journal of Information Science,

0165551517698564.

Huang, S., Kang, Z., Xu, Z., Liu, Q., 2021. Robust deep k-means: An effective

and simple method for data clustering. Pattern Recognition 117, 107996.

Hubert, M., Rousseeuw, P., Segaert, P., 2017. Multivariate and functional

classification using depth and distance. Advances in Data Analysis and

Classification 11 (3), 445–466.

Hubert, M., Rousseeuw, P. J., Segaert, P., 2015. Multivariate functional

outlier detection. Statistical Methods & Applications 24 (2), 177–202.

33

Hyndman, R. J., Fan, Y., 1996. Sample quantiles in statistical packages. The

American Statistician 50 (4), 361–365.

Iwana, B. K., Uchida, S., 2020. Time series classification using local distance-

based features in multi-modal fusion networks. Pattern Recognition 97,

107024.

Jörnsten, R., 2004. Clustering and classification based on the l1 data depth.

Journal of Multivariate Analysis 90 (1), 67–89.

Kim, S., Mun, B. M., Bae, S. J., 2018. Data depth based support vector

machines for predicting corporate bankruptcy. Applied Intelligence 48 (3),

791–804.

Kong, L., Mizera, I., 2012. Quantile tomography: using quantiles with mul-

tivariate data. Statistica Sinica, 1589–1610.

Kosiorowski, D., Zawadzki, Z., 2014. Depthproc an r package for robust

exploration of multidimensional economic phenomena. arXiv preprint

arXiv:1408.4542.

Kwapisz, J. R., Weiss, G. M., Moore, S. A., 2011. Activity recognition using

cell phone accelerometers. ACM SigKDD Explorations Newsletter 12 (2),

74–82.

Liu, X., Mosler, K., Mozharovskyi, P., 2019. Fast computation of tukey

trimmed regions and median in dimension p > 2. Journal of Computa-

tional and Graphical Statistics, 1–31.

34

Lowry, C. A., Woodall, W. H., Champ, C. W., Rigdon, S. E., 1992. A multi-

variate exponentially weighted moving average control chart. Technomet-

rics 34 (1), 46–53.

Ma, J., Zhang, Y., Zhang, L., 2021. Discriminative subspace matrix factor-

ization for multiview data clustering. Pattern Recognition 111, 107676.

Massé, J.-C., 2004. Asymptotics for the tukey depth process, with an appli-

cation to a multivariate trimmed mean. Bernoulli, 397–419.

Mosler, K., 2013. Depth statistics. In: Robustness and complex data struc-

tures. Springer, pp. 17–34.

R Core Team, 2021. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria.

URL https://www.R-project.org/

Rastin, N., Jahromi, M. Z., Taheri, M., 2021. A generalized weighted dis-

tance k-nearest neighbor for multi-label problems. Pattern Recognition

114, 107526.

Saff, E. B., Kuijlaars, A. B., 1997. Distributing many points on a sphere.

The mathematical intelligencer 19 (1), 5–11.

Sokolova, M., Lapalme, G., 2009. A systematic analysis of performance mea-

sures for classification tasks. Information Processing & Management 45 (4),

427–437.

Tukey, J. W., 1975. Mathematics and the picturing of data. In: Proceedings

of the international congress of mathematicians. Vol. 2. pp. 523–531.

35

Williams, B., Toussaint, M., Storkey, A. J., 2008. Modelling motion primi-

tives and their timing in biologically executed movements. In: Advances

in neural information processing systems. pp. 1609–1616.

Yazidi, A., Hammer, H., 2017. Multiplicative update methods for incremental

quantile estimation. IEEE transactions on cybernetics 49 (3), 746–756.

Zavrtanik, V., Kristan, M., Skočaj, D., 2021. Reconstruction by inpainting

for visual anomaly detection. Pattern Recognition 112, 107706.

Zuo, Y., Serfling, R., 2000. General notions of statistical depth function.

Annals of statistics, 461–482.

36

Supplementary Material

S.1. Computation of Depth Error for Elliptic Distributions

For elliptic distributions, the α-depth contours coincide with the contours

of the distribution and, secondly, the Tukey halfplanes are tangent planes to

the contours (Kong and Mizera, 2012). For a multivariate normal distribution

with expectation vector µ and covariance matrix Σ, the depth of any point w

can be found analytically. First, find the inward pointing unit length normal

vector to the tangent plane at w:

tang (w) = − Σ−1(w − µ)

‖Σ−1(w − µ)‖2

and then compute the depth as the probability to be within the tangent plane

halfspace defined by tang (w)

D(w,P) = Φ
(

tang (w)Tw; tang (w)Tµ,
√

tang (w)TΣ−1tang (w)
)

where Φ(· ;m, s) refers to the cumulative distribution function of the uni-

variate normal distribution with expectation m and standard deviation s.

S.2. Synthetic Experiments - Static Data Streams - Additional Results

Let X refer to a multivariate normal distribution defined and define the

lognormal distribution Y = exp(X). Y is both highly unsymmetrical and

highly heavy tailed. The results are shown in Figure 7. Due to the flexibil-

ity of the depth concept, the method performs equally well for non-elliptic

distributions.

Recall the multivariate normal and lognormal static data streams consid-

ered in Section 5.1. Figures 8 to 11 show results using the ShiftQ algorithm

37

Figure 7: Multivariate lognormal distribution case. Estimation of α-depth region for

α = 0.1 using nu = 50 directional vectors. The rows from top to bottom show estimates

for 20, 200 and 2000 observations. The left and right column show all the half planes

and the resulting envelopes in blue, respectively. The black curves show the true α-depth

contour.

38

with λn = 1/n to estimate α-depth regions for α = 0.05, 0.2 and 0.4. We

see that the algorithm converges well for both Gaussian and non-Gaussian

distributions. For the non-Gaussian case, we see that the true α-depth con-

tours (black) are not smooth which may seem surprising. However, it is only

for elliptic distributions that the α-depth regions guaranteed are smooth, see

Kong and Mizera (2012) and Massé (2004) for details and more examples.

Figure 12 and 13 show the results where P was the standard multivariate

normal distribution, i.e. X was a vector of independent standard normally

distributed stochastic variables. The CPU time refers to the time to estimate

one α-depth region to the given precision running on a single CPU core. To

remove Monte Carlo error from the results, the computations were run for

a total of 3 · 106 iterations and in the computation of MADE and ED in

(7) and (8) a total of nv = 4p lines where used. From the figures, we see

that with a given number of directional vectors, the estimation precision

reaches a limit after some time and more directional vectors are necessary to

get an estimate with higher precision. For most practical purposes, a mean

absolute depth error of 0.01 is satisfactory and from Figure 12, we see that

the number of directional vectors and the resulting CPU time to reach this

precision depends strongly on the dimension p. E.g. for p = 2, p = 4 and

p = 10, we reached this precision in 0.02 seconds, 0.1 second and 1.2 minutes,

respectively. Reaching this precision in a little over one minute for dimension

p = 10 is quite impressive.

We now present results for the multivariate normal distribution case with

strong dependencies as given by Equation 10. The results are shown in

Figures 14 and 15. By comparing Figures 12 and 13 with 14 and 15, we

39

Figure 8: Multivariate normal distribution case. Simultaneous estimation of α-depth

regions for α = 0.05, 0.2 and 0.4 using nu = 10 directional vectors. The panels from top

left to bottom right show the estimation when 100, 500, 2500 and 104 observations were

received from the data stream. The black and blue curves show the true depth contours

and the envelope estimates, respectively.

40

Figure 9: Multivariate normal distribution case. Simultaneous estimation of α-depth

regions for α = 0.05, 0.2 and 0.4 using nu = 50 directional vectors. The panels from top

left to bottom right show the estimation when 100, 500, 2500 and 104 observations were

received from the data stream. The black and blue curves show the true depth contours

and the envelope estimates, respectively.

41

Figure 10: Multivariate lognormal distribution case. Simultaneous estimation of α-depth

regions for α = 0.05, 0.2 and 0.4 using nu = 10 directional vectors. The panels from top

left to bottom right show the estimation when 100, 500, 2500 and 104 observations were

received from the data stream. The black and blue curves show the true depth contours

and the envelope estimates, respectively.

42

Figure 11: Multivariate lognormal distribution case. Simultaneous estimation of α-depth

regions for α = 0.05, 0.2 and 0.4 using nu = 50 directional vectors. The panels from top

left to bottom right show the estimation when 100, 500, 2500 and 104 observations were

received from the data stream. The black and blue curves show the true depth contours

and the envelope estimates, respectively.

43

Figure 12: Multivariate standard normal distribution case: Each panel shows mean abso-

lute depth error, Equation (7), as a function of CPU time for different number of directional

vectors.

44

Figure 13: Multivariate standard normal distribution case: Each panel shows Euclidean

distance error, Equation (8), as a function of CPU time for different number of directional

vectors.

45

Figure 14: Multivariate normal distribution case: Each panel shows mean absolute depth

error, Equation (7), as a function of CPU time for different number of directional vectors.

46

Figure 15: Multivariate normal distribution case: Each panel shows Euclidean distance

error, Equation (8), as a function of CPU time for different number of directional vectors.

47

Figure 16: Multivariate lognormal distribution case: Each panel shows mean absolute

depth error, Equation (7), as a function of CPU time for different number of directional

vectors.

see that the number of directional vectors and CPU time needed depend

strongly on the dependence structure of X. E.g. for dimensions p = 2, 4 and

10, the computation time to reach a MADE of 0.01 goes from 0.02 to 0.03

seconds, from 0.1 to 0.8 seconds and from 1.2 to 125 minutes by just going

from independence to dependence between the variables.

Figures 16 and 17 present results for the multivariate lognormal distribu-

tion, Y = exp(X), where X is a multivariate normally distributed variable

with zero expectation vector and covariances as given in (10).

48

Figure 17: Multivariate lognormal distribution case: Each panel shows Euclidean distance

error, Equation (8), as a function of CPU time for different number of directional vectors.

49

S.3. Synthetic Experiments - Dynamic Data Streams - Additional Results

Recall the systematic dynamic experiments leading to Tables 5 and 6.

Figures 18 and 19 show tracking error for every choice of the tuning parameter

λ (and γ = λ). For a period of T = 103, an optimal value of λ is about 0.01.

For a period of T = 104, an optimal value of λ is about 0.025. Generally,

the performance of the algorithm is fairly robust with respect to the value

of λ. Further, Hammer et al. (2021) documents that the performance of the

ShiftQ algorithm is highly robust on the choice of the tuning parameter γ.

Recall the systematic dynamic experiments with equidistantly distributed

directional vectors leading to Table 7. Figure 20 shows tracking error for

every choice of the tuning parameter λ (and γ = λ).

S.4. Real-life Data Example - Twitter Event Detection

A lot of research has been devoted to resort to Twitter messages (tweets)

to detect events in the real world, see Atefeh and Khreich (2015) and Hasan

et al. (2017) for recent surveys.

On July 22 2011 Norway was hit by a horrific terrorist attack initiated

by a bomb going of in Oslo at 3:25 p.m local time. The upper panel in

Figure 21 shows the number of new tweets and retweets posted every minute

by Norwegian twitter users in the hours before and after the attack. The

bottom panel shows the portions of tweets being retweets. As expected, the

number of posted tweets increased rapidly after the attack, but an interesting

observation is that the number of posted retweets increased even more rapidly

than the number of new tweets. Before the attack the portion of posted

tweets being retweets were less than 10% and jumped to about 25% after the

attack. A popular approach to detect and characterize real-world events is

50

Figure 18: Tracking of α-depth regions for α = 0.05, 0.2 and 0.4 for the distribution

characterized by (11) and (12). Tracking error is measured using MADE. The left and

right column show results for T = 103 T = 104, respectively. Rows from top to bottom

represent dimensions p = 2, 3, 4 and 5, respectively. The number of iterations per msec,

refers to how many times per millisecond we can update the estimate of one α-depth

region.

51

Figure 19: Tracking of α-depth regions for α = 0.05, 0.2 and 0.4 for the distribution

characterized by (11) and (12). Tracking error is measured using ED. The left and right

column show results for T = 103 T = 104, respectively. Rows from top to bottom represent

dimensions p = 2, 3, 4 and 5, respectively. The number of iterations per msec, refers to

how many times per millisecond we can update the estimate of one α-depth region.

52

Figure 20: Tracking of α-depth regions for α = 0.05, 0.2 and 0.4 for the distribution

characterized by (11) and (12) using fairly equidistant directional vectors. The upper and

lower panels show MADE and ED tracking errors, respectively. The left and right panels

show results for T = 103 and 104, respectively. Dimension is p = 2.

53

Figure 21: Upper panel: Number of new tweets (blue dots) and retweets (black dots)

posted by Norwegian twitter user every minute on July 22 2011 from 08:00 a.m to 11:00

p.m. Bottom panel: Portion of posted tweets being retweets.

54

to monitor the number of posted tweets (Alkhamees and Fasli, 2016). Figure

21 suggests a generalization of this by studying the simultaneous distribution

of the number of new tweets and retweets posted.

If the data stream distribution suddenly changes, the α-depth contour

tracking algorithm naturally will need some time to adjust to these changes.

This can be used to develop efficient event detection methods. LetXn1, . . . , Xnp

represent the possible outcomes from the p dimensional data stream distri-

bution at time n. Define θ(Xn) as the medians of the marginal distributions,

i.e. θ(Xn) = (Q(α = 0.5, Xn1), . . . , Q(α = 0.5, Xnp)), representing the center

of the data stream distribution. Further, let c(α,w) define the intersection

between the ray going through θ(Xn) and some point w and D(α). Define

the Tukey depth distance as the Euclidean distance between θ(Xn) and w

relative to the distance between θ(Xn) and D(α)

d(w,Xn, α) =
‖w − θ(Xn)‖2

‖c(α,w)− θ(Xn)‖2
(13)

The distance measure is similar to what Hubert et al. (2017) defined as bag

distance and account for both the center and dispersion of the multivariate

distribution and is affine invariant. One may consider generalizations of the

distance measure based on multiple α-depth regions, but is not explored in

this example.

When an event occurs, we expect the portion of received samples being

inside D(α) to change until the tracking procedure adjusts to these changes.

Consequently, we expect the distances d(w,Xn, α) to change rapidly until

the tracking procedure adjusts.

Since D(α) characterizes the tweet retweet distribution in a very flexible

way this event detection procedure can in practice detect any change in the

55

distribution.

We tracked the medians and the α-depth contour for α = 0.01 of the dis-

tribution. nu = 10 directional quantiles were estimated using DUMIQE with

λ = 0.05. For every received sample (number of new tweets and retweets),

we computed the Tukey depth distance, d(w,Xn, α), using the current esti-

mates of the medians and the α-depth contour. With α = 0.01, we expect

the distances to be less than one for almost all samples except if an event

has happened.

Figure 22 shows the measured distance for every received sample, in the

days before and after the terror attack. The tracking procedure tracks the

daily changes in the distribution in the days before the attack very well and

most of the observed Tukey depth distances were, as expected, below one.

After the terror attack, the distances instantly increased rapidly.

56

Figure 22: Upper panel: Number of new tweets (blue dots) and retweets (black dots)

posted by Norwegian twitter user every minute in the days before and after the terror

attack. Bottom panel: Tukey depth distance (13) of every received sample. The red line

shows depth distance equal to one.

57

