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Abstract

Battery electric buses (BEBs) have been regarded as effective options to address the con-
gestion and pollution problems in the field of urban transportation. However, since the
limited driving range of BEBs brings challenges for their promotion, the accurate estima-
tion of the driving range with limited available information has become a critical issue for
public transport operators. The real-world data collected from 50 BEBs operated in two
different cities is used to develop the driving range estimation method by considering the
battery degradation effects. Firstly, the incremental capacity analysis method is introduced
to characterize the battery performance, and the battery degradation levels under differ-
ent charging modes are recognized. Afterward, four types of ensemble machine learning
(EML) methods are adopted to model the driving range estimation. The BEB driving data,
weather condition data and battery degradation levels are used to train and test the models
with consideration of 17 impact factors together with two different charging modes. The
results indicate that the ensemble machine learning methods have good performance over-
all, of which the random forest has the highest accuracy. Furthermore, the importance of
influencing factors is analysed, and the relevant insights are discussed.

1 INTRODUCTION

Traffic congestion and environmental pollution have become
the major issues experienced by many cities all over the world
with urbanization. In response to the dual pressure of con-
gestion and pollution, battery electric buses (BEBs) have been
continuously introduced to public transit systems because of
their environmental benefits, such as, zero tailpipe emission.
Unlike conventional buses that use fossil fuel, BEBs fully pow-
ered the energy stored in the battery, which can be charged by
using renewable energy sources. Therefore, system-level emis-
sions are also reduced. However, due to the technical limita-
tion of existing batteries, the driving range of BEBs is signifi-
cantly shorter than that of conventional buses. The limited driv-
ing range brings new challenges to transit system operation and
even hinders the further promotion of BEBs. In order to guar-
antee the service quality and maximize the benefit of BEB, it is
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necessary for public transport operators to attain accurate esti-
mations of the driving range and develop proper operational
strategies of BEB fleets. Meanwhile, the driving range of BEBs
is expectedly affected by the battery performance that tends
to deteriorate with aging [1]. As battery performance gradually
degrades, public transport operators need to promptly adjust
the bus scheduling and even replace the battery to eliminate the
adverse impact of battery degradation on driving range varia-
tion. Thus, the battery degradation must be considered in the
driving range estimation.

Driving range limitation is a critical problem for BEBs, which
would further impact the efficiency of public transit systems.
Focused on this issue, many efforts have been devoted to accu-
rate estimation of the driving range or related battery state for
electric vehicles (EVs) based on various methods [2]. Nonethe-
less, there are still several issues that should be concerned about
the driving range estimation of BEBs, as follows.
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1. Most of the existing methods concentrate on the driving
range estimation for passenger EVs, and neglect the unique
features deriving from the vehicle operating environment of
BEBs due to lack of data collected from real-world operated
BEBs. As a matter of fact, the mobility pattern of passenger
EVs has significant differences with the pattern of BEBs,
which often operate on the predetermined routes along bus
stations. This mobility pattern would exert influence on the
driving range of BEBs.

2. Traditional methods usually overlook the impacts of battery
degradation on the accuracy of driving range estimation. Bat-
tery performance would continuously deteriorate in a long-
time window as the vehicle accumulated mileage increases
gradually. Therefore, an effective method is needed to assess
the long-term effect of the battery performance variation,
and the results can be used to improve the driving range esti-
mation.

3. Several previous studies attempt to use data-driven methods
to investigate the impact of battery state on driving range,
whereas these methods are mainly based on the laboratory
test data and unable to reflect the real-word operating envi-
ronment of EVs, especially for the electric city buses.

In recent years, with the development of sensing technol-
ogy, a considerable amount of operation data for electric city
buses could be collected. Unlike the laboratory test data, the
real-world data has ability to embody the effects of actual com-
plex scenarios on BEB operation. To bridge the aforementioned
gaps, this study aims to use the BEB operation data collected
from two city areas in China to gain deeper insight into the bat-
tery degradation and driving range estimation. Besides the oper-
ation data of electric city buses, the data of weather conditions
would also be employed because the weather and environmen-
tal conditions have significant influence on the driving range of
EVs [3].

Specifically, the contributions of this study are as follow.
Firstly, the real-world data of 50 BEBs operating in two city
areas with different charging modes is collected to investigate
the battery performance and driving range. The driving pat-
tern and battery status during both charging and driving pro-
cesses are recorded in the dataset, and the data of weather con-
ditions is also collected to integrate environmental factors into
the investigation. The driving pattern often shows as the vehi-
cle parameters during operation, such as driving speed and its
variation. The battery status is manifested as the battery param-
eters for the duration of BEB operation, such as voltage and
current. More importantly, in contrast to the data of passenger
EVs, the BEB operation data has better capacity to reflect the
unique features of electric city buses. Thus, the driving range
estimation using BEB operation data has better adaptability to
the public transit system with electric city buses. Secondly, in
view of the battery degradation effects on driving range, a data-
based framework is developed to recognize the battery degra-
dation, which aims to consider the battery degradation levels
while estimating driving range. In this framework, the incre-
mental capacity analysis (ICA) method is introduced to char-
acterize the battery performance, and subsequently the battery

degradation levels are recognized. Finally, four types of ensem-
ble machine learning (EML) methods are adopted to model the
driving range estimation under different charging modes. Com-
bining the battery degradation levels, the data of BEB driving
processes and of weather conditions are used to train and ver-
ify the models with consideration of 17 impacting factors. Fur-
thermore, the importance of influencing factors is analysed, and
then the relevant insights are discussed.

The remaining portions of this paper are arranged as fol-
lows: In Section 2, the literature review is presented. Section 3
presents the collection and processing of the data. In Section 4,
the framework for battery degradation recognition is developed
to obtain the battery degradation levels. Section 5 introduces the
driving range estimation models and analyse the influencing fac-
tors. Lastly, the conclusions and future studies are discussed in
Section 6.

2 LITERATURE REVIEW

The limited driving range has been regarded as the main barrier
for the promotion of BEBs or other types of EVs. An effective
method to alleviate the negative effects of this problem, such as,
range anxiety, is the accurate estimation of driving range. Given
the fact that the driving range is related to the battery capacity,
there are many studies focused on the estimation of state-of-
charge (SOC) that represents the ratio of the remaining capacity
to the nominal capacity. For example, Xu et al. [4] and Shao et al.
[5] used the adaptive filter algorithms to realize SOC estimation.
Several studies adopted machine learning methods to improve
the SOC estimation [6–8]. However, driving range estimation
is a much more complex and challenging issue in comparison
with SOC estimation. This is because that the driving range
would be affected by many other internal and external factors,
besides SOC, such as driving patterns and weather conditions
[9]. Therefore, the existing methods regarding SOC estimation
are not competent to accurately estimate the driving range.

In view of the complexity of driving range estimation, a con-
siderable amount of research has been conducted to consider
more impact factors from different aspects. For example, several
studies took into account both of battery capacity and driving
speed to improve the estimation accuracy [10–12]. Yuan et al.
[13] and Vatanparvar et al. [14] further discussed the impacts of
driving patterns on driving range, and then established the mod-
els to attain the longest distance that EVs can continually run
under various environments. Moreover, with the development
of sensing techniques, more related works have put focus on
driving range estimation based on data-driven approaches with
huge amount of data. Bi et al. [15] utilized the real-world data
collected from an operated EV to conduct a study on driving
range estimation, where the SOC, speed and temperature con-
ditions would be considered as impacting factors. Lee and Wu
[16] proposed a data-based framework to estimate driving range
of EVs based on powertrain simulation and driving behaviour
analysis. Sun et al. [17] introduced a machine learning algo-
rithm to model the driving range estimation using the EV dis-
charge data coupled with weather information. Furthermore, Bi



826 WANG ET AL.

et al. [18] considered the driving range estimation as a nonlinear
system affected by battery factors and vehicle operating status
factors. Subsequently, the radial basis function neural network
was employed to model the driving range estimation. In addi-
tion, Amirkhani et al. [19] compared the performance of several
machine learning methods for the purpose of driving range esti-
mation based on the publicly available dataset. It is worth noting
that, as alluded in the aforementioned studies, most of the previ-
ous methods aimed to estimate the driving range by considering
several factors, whereas they ignored the battery aging effects. In
real-world scenarios, the battery degradation would occur as the
driving cycle increases and thus exerts influence on the driving
range of EVs [20]. For this reason, putting the battery degrada-
tion factor in driving range estimation could be regarded as a
useful approach to improve accuracy and practicability.

In the previous studies, even though less attention has been
focused on considering the battery degradation in driving range
estimation, there have existed several studies that attempt to
combine the battery aging features with SOC estimation, and
still achieve insightful findings [21–23]. In these studies, the
state-of-health (SOH) was often applied to represent the bat-
tery health condition, which refers to the aging condition of a
battery and its ability to deliver the specified performance com-
paring to the fresh one. Nevertheless, the data used for model
training was collected from the laboratory environment, which
has limited ability to reflect real-world driving and charging for
EV operation. Meanwhile, although the SOH is a commonly-
used indicator to define battery degradation, it only applies to
the methods that use the data from a special experiment. For the
data collected from real-world scenarios, such an indicator may
not be suitable for battery aging monitoring, because some spe-
cific parameters for SOH derivation could not be detected dur-
ing EV operating, such as the internal resistance. Fortunately,
the ICA has ability to identify the battery degradation by captur-
ing the peak values from IC curves. This feature makes the ICA
suitable for application in BEB operating data. In recent years,
the ICA has attracted increasing attention and several studies
have provided the ICA-based schemes to realize battery aging
monitoring [24–26]. Furthermore, He et al. [27] conducted a
comparative study with respect to the ICA-based methods and
analysed the application boundary. The results from these stud-
ies demonstrate that the ICA is an effective method for battery
aging monitoring. In addition, the research results for battery
degradation could also be applied in other fields besides driving
range estimation. For instance, Liu et al. [28] integrated the bat-
tery aging effects into charging pattern optimization. Another
study further concluded that the battery degradation has signif-
icant influence on battery charging management [29].

Overall, even though the previous studies have made fruitful
achievements in the estimation of driving range or related bat-
tery status for EVs, there are still some limitations, as mentioned
above. More importantly, most of the existing studies have put
their focus on the passenger EVs, while less attention has been
devoted to the BEBs that are applied in the urban transit system.
Unlike passenger EVs, BEBs often have their particular oper-
ating environment and driving patterns, which further brings
significant effects on the driving range estimation. Given such

TABLE 1 Specifications of the studied electric city buses

Attribute name Value (Units)

Curb weight 7300 kg

Vehicle dimensions 8005 × 2350 × 3105 mm

Maximum vehicle speed 69 km h−1

Battery nominal capacity 240 Ah

Peak motor power 100 kW

Battery cathode materials LiFePO4

limitations, the driving range estimation models coupled with
battery degradation recognition for electric city buses are devel-
oped by using the real-world data collected from two city areas
in China. The data sources used in this study include the BEB
operation data and weather condition data. The methods aim
to provide a long-term scheme for accurate estimation of BEB
driving range with consideration of the battery aging effects.

3 DATA COLLECTION
AND PREPROCESSING

In this study, the real-time operation data of BEBs is used to
investigate the driving range and battery degradation of elec-
tric city buses. The 50 BEBs with same specifications and oper-
ated in two different cities in China (25 BEBs in each city) were
employed to carry out the research. The detailed specifications
of the studied electric city buses are listed in Table 1.

The BEBs operate together with conventional buses to sat-
isfy the daily passenger need by following the predetermined
schedules of public transport system. During May 2017 to July
2018, the data of BEBs, which contains battery status and driv-
ing patterns, was collected and transmitted to the vehicle service
centre every 10s interval.

The raw dataset for each BEB includes almost 2 million data
points and records the accumulated mileage varies from 6000
to 130,000 km. However, due to the external disturbance dur-
ing data transmission, missing value and error universally exist
in the raw dataset. To deal with such a problem, interpolation
methods are adopted to compensate the missing data points
and adjust the outliers. Moreover, according to the vehicle sta-
tus, the operation data is divided into two groups, that is, charg-
ing data and driving data. Specifically, the charging data mainly
tracks the battery status during the charging processes. Table 2
presents an example of a charging segment, which covers 20
min within a charging process. For the charging data, the driving
speed recorded in all the data points equals to zero and accumu-
lated mileage remains constant for each charging process.

Different from the charging data, the driving data mainly
tracks the driving patterns and battery status when the BEBs
operated in the road network and meanwhile the battery system
was experiencing the discharging processes. Table 3 shows an
example of a driving segment with 30 km travel distance.

Besides the operation data of BEBs, the weather data source
has also been adopted to improve the driving range estimation,
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TABLE 2 An example of charging segment in the raw charging data

Timestamp

SOC

(%)

Battery

voltage (V)

Battery

current (A)

Battery highest

temperature (◦C)

Battery lowest

temperature (◦C)

Accumulated

mileage (km)

Driving speed

(km h−1)

20171019000711 32 561.1 99 36 30 45667.1 0

20171019000721 32 561.3 98 36 30 45667.1 0

… … … … … … … …

20171019002701 47 562.3 99 38 32 45667.1 0

20171019002711 47 562.3 99 38 32 45667.1 0

TABLE 3 An example of driving segment in the raw driving data

Timestamp

SOC

(%)

Battery

voltage (V)

Battery

current (A)

Battery highest

temperature (◦C)

Battery lowest

temperature (◦C)

Accumulated

mileage (km)

Driving speed

(km h−1)

20171018214749 42 546.8 42 38 32 45637.1 50

20171018214759 42 546.9 42 38 32 45637.2 51

… … … … … … … …

20171018225609 32 549.3 6 37 31 45667.1 3

20171018225619 32 549.4 4 37 31 45667.1 0

in view of the impacts of external factors on energy consump-
tion. The weather data was acquired from the meteorological
science data centre, which records the historical information of
daily weather conditions from May 2017 to July 2018. Table 4
provides one sample of the weather records in the dataset.

In the following sections, the charging data would be
employed to capture the battery aging characteristics and recog-
nize the battery degradation levels. Afterwards, the BEB oper-
ation data were coupled with weather data to develop driving
range estimation method, which takes the battery degradation
levels into consideration. The BEB operation data is collected
from two medium-sized cities from China and the proposed
method could be generalized in other similar city areas. Fur-
thermore, the two city areas provided different charge modes
to BEB charging, which include fast charging and slow charg-
ing modes. Such a feature would be utilized to investigate the
impacts of charge modes on battery performance degradation.
Note that, the data would be further processed to build the
input-output dataset for driving range estimation model, which
would be discussed in Section 5.1.

4 BATTERY DEGRADATION
RECOGNITION

4.1 Battery performance characterization
based on incremental capacity analysis

Based on the charging data, we use the ICA method to char-
acterize the battery performance. The ICA method is an in-
situ and non-destructive electrochemical technique, which can
detect the gradual variation in battery aging behaviour through
investigating the evolution of the resulting IC curves with

cycling [30]. Usually, the battery aging assessment has been stud-
ied based on the laboratory-collected datasets obtained from
accelerated aging tests under certain well-controlled conditions,
such as, constant temperatures and low current operations [31].
However, these laboratory-based aging tests cannot sufficiently
reflect the real-world operating scenarios of BEBs and thus fail
to be used in practical driving environments. Fortunately, the
ICA method has been confirmed to be applied in the BEB’s bat-
tery packs with large current operations and real-world tempera-
ture environments [32]. An IC curve is derived by differentiating
the voltage relative to the charged capacity under the constant-
current-constant-voltage (CC-CV) regime. From the IC curve,
the IC peaks can be observed, which are directly indicative of
battery health. However, the charging current would be dis-
turbed by the external environment and exhibits the variation in
different charging events. In order to appropriately use the ICA
technique, the data points with stable charging current need to
be extracted. Accordingly, the charging current of 98–99 A and
24–25 A are selected to depict the IC curves for fast charging
and slow charging modes, respectively. That is to say, the charg-
ing current rates for the fast charging and slow charging modes
are respectively close to C/3 and C/10, which are the allowable
charging currents for the ICA application, according to the liter-
ature [33]. Moreover, to obtain the typical IC curves, the charg-
ing processes with SOC being larger than 40% are extracted
from the charging data. For example, Figure 1 presents the
charging processes for fast charging and slow charging modes,
respectively.

It can be observed from Figure 1 that the charged capacity
increases as the terminal voltage raises, and there exist the sharp
rises in charged capacity between the narrow intervals of termi-
nal voltage. The terminal voltages in such intervals are defined
as the voltage platforms, as highlighted in Figure 1, which is
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TABLE 4 Record sample of a weather data point

Date

Average air

temperature (◦C)

Humidity

(%)

Wind speed

(m s−1)

Wind

direction (i)

Visibility

(km)

Cloud amount

(%)

Air pressure

(hPa)

Rain

(mm)

2017-6-1 29.5 76 3.6 183.3 20.9 80 994 0

FIGURE 1 Example charging processes. (a) An example charging process
under fast charging mode. (b) An example charging process under slow
charging mode

an inherent attribute of Li-ion batteries and able to be used to
analyse the battery aging features. By using the ICA method,
the curves of charged capacity versus terminal voltage can be
transformed into the IC curves that illustrate the relationship
between incremental capacity and terminal voltage. Mathemat-
ically, the incremental capacity is the ratio of the increment of
charged capacity to the fixed increment of terminal voltage, as
shown in Equation (1).

ICn =
ΔQn

ΔV
=

Qn − Qn−1

ΔV
, (1)

where, ICn denotes the incremental capacity at the voltage step
n; Qn and Qn-1 represent the battery capacity at the voltage steps
n and n-1, respectively;ΔV denotes the fixed increment of the
terminal voltage; and,ΔQnrepresents the charged capacity at the
voltage steps n. Moreover, based on the charging current avail-
able in the dataset, the battery capacity Q can be computed by
Equation (2).

Q=∫
T

0
I (t )dt , (2)

where, Q denotes the charged capacity; and, I(t) denotes the
charging current recorded in the data.

FIGURE 2 Example IC curves. (a) Example IC curves under the fast
charging mode. (b) Example IC curves under the slow charging mode

Specifically, to obtain the incremental capacity through the
charging data, the data points with consecutive and identical ter-
minal voltages for each charging event are aggregated into one
data point, and the corresponding charged capacity is accumu-
lated. By tracking the incremental capacity associated with the
voltage steps, the IC curve is generated. To improve the inter-
pretability of the IC curve and better capture the IC peak values,
the cubic smoothing spline is employed to smooth the IC curves
[34]. Figure 2 illustrates the example IC curves under fast and
slow charging modes, respectively. Three IC curves with differ-
ent aging statuses are presented for each charging mode, and the
approximate accumulated mileages are employed to reflect the
aging statuses in the figures, according to the fact that the BEB’s
battery ages as the accumulated mileage increases.

Depending on the terminal voltage profile, the incremental
capacity presents similar changing trends for both fast and slow
charging modes, and two main peak values could be observed
in the IC curves, as shown in Figure 2. In this study, the second
IC peaks are analysed, because they have close relation with the
loss of lithium inventory that is considered as the primary cause
of LiFePO4 battery degradation [35]. The reason for generat-
ing IC peaks is that the voltage steps from voltage platforms
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may result in larger capacity increments than the ones result-
ing from other voltage steps according to the CC-CV regime,
as expected from the Equation (1). Meanwhile, from the per-
spective of battery system, IC peaks are the consequence of
the convolution of the electrochemical reactions in the active
positive and negative electrode materials. With the battery aging
process, the IC peak values would decrease gradually, and thus
can be used to assess the battery degradation, as highlighted in
Figure 2. Besides IC peak values, voltage platforms also have a
certain ability to reflect the battery degradation. This is because
the voltage platforms corresponding to the IC peaks tend to
increase due to the resistance variation resulting from battery
aging. Consequently, the IC peak values and corresponding volt-
age platforms from 3506 charging processes are obtained based
on the dataset of the fast charging mode. And, 2981 IC peak val-
ues and corresponding voltage platforms are attained through
the dataset of the slow charging mode.

4.2 Recognition of battery degradation
levels

Based on the data obtained through ICA method, the unsuper-
vised machine learning methods are used to recognize the bat-
tery degradation levels with consideration of the accumulated
mileage. In this way, the data points with similar battery per-
formance are organized into the same cluster, while the data
points belonging to different clusters are distinctive, accompa-
nied with the variation of accumulated mileage. As one of the
classical unsupervised machine learning methods, k-means clus-
tering algorithm has been widely used in different fields due
to its advantages on iterative optimization and computational
complexity [36]. This algorithm classifies the data without labels
into k different clusters considering the dissimilarity among data
points, which is suitable to mine the ICA-based data, and thus
employed to deal with the battery degradation recognition. Note
that, the battery performance is generally characterized by the
capacity, which would decease as the battery ages. However,
the battery capacity cannot be directly measured through BEB
operation data. For a BEB, the battery degradation occurs as the
accumulated mileage increases to a certain degree. Therefore,
this study concentrates on the battery degradation levels based
on the IC peak values with various accumulated mileages. The
specific capacity with battery aging is not the focus in this study.
Moreover, due to the dimension difference among the related
variables, the standardized processing is applied in the dataset.
Let vector space X{x1,…, xi,…, xm} denote the dataset, where
the element xi represents the ith data point that includes three
sub-elements: IC peak value pi, voltage platform vi, and accu-
mulated mileage li. Equation (3) presents the mathematics for
standardization by taking the IC peak value as an example.

po
i =

pi − min(p)
max(p) − min(p)

, (3)

where, po
i represents the standardized IC peak value recoded in

ith data point. min(x ) and max(x ), respectively, denote the max-

imum and minimum values of IC peak. By this way, the origi-
nal data points are transformed into the nondimensional ones.
Afterward, these standardized data points would be used to rec-
ognize battery degradation levels using k-means clustering algo-
rithm. Let vector space C{c1,…, cj,…, ck} be the cluster centres,
where the element cj represents the jth cluster centre that has
three corresponding child elements regarding to IC peak value
pc

j , voltage platform vc
j and accumulated mileage l c

j . Given the
predetermined number of clusters k, the objective function of
the k-means clustering algorithm for battery degradation recog-
nition is

J (Z ,C ) =
k∑

j=1

m∑
i=1

zi j

[(
po

i − pc
j

)2
+
(

vo
i − vc

j

)2
+
(

l o
i − l c

j

)2]
,

(4)
where zij is a binary variable (i.e. zi j ∈ {0, 1}) that equals to 1 if
the ith data point belongs to jth cluster; otherwise, it equals to
0. Z indicates the set of zij. The k-means clustering algorithm
aims to minimize the objective functionJ (Z ,C ), and the cluster
centres are updated through iterative optimization. The detailed
principles and procedures of k-means clustering algorithm is
referenced in related literature [37].

Note that, for the k-means clustering algorithm, how to
determine the number of clusters k is a critical issue. That is,
how many significant variations of battery performance occur
during the battery aging process? In this section, the gap statistic
approach is introduced to obtain the optimal number of clus-
ters k, which is an effective method for estimating the num-
ber of clusters and applicable to virtually any kinds of clustering
approaches. Mathematically, let Dj denote the sum of pairwise
gap for all the data points that belong to the cluster j, which is
obtained as shown in Equation (5)

D j =
∑

xi ,xi′∈c j

[(
po

i − po
i′

)2
+
(
vo
i − vo

i′

)2
+
(
l o
i − l o

i′

)2]
. (5)

Subsequently, standardize the sum of pairwise gaps under a
specific number of cluster k, as given in Equation (6).

Wk =

k∑
j=1

1
2m j

D j , (6)

where Wk represents the standardized result for Dj under the
number of cluster k, and mj denotes the number of data points
belonging to the cluster j. Based on the results, the gap statis-
tic approach aims to compare the log (Wk) with its expectation
under a reference distribution of data, as shown in Equation (7),
and search the value of k for which the log (Wk) has the farthest
decline.

Gap(k) = E {log(Wk )} − log(Wk ), (7)

where, E {log(Wk )} represents the expectation of log (Wk), and
Gap(k) is the gap statistic value for k. Furthermore, a specific
inequation is used to effectively determine the optimal value of
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FIGURE 3 Optimal number of clusters k. (a) Optimal number of clusters
k under fast charging mode. (b) Optimal number of clusters k under slow
charging mode

k, as shown in Equation (8), and the value of k which fits the
inequation for the first time is regarded as optimal one.

Gap(k) ≥ Gap(k + 1) − 𝜎k+1, (8)

where 𝜎k+1 denotes the unbiased standard deviation for Wk+1.
More detailed procedures with respect to the gap statistic
approach is referenced in related literature [38].

In view of the data characteristics, the framework, which
comprises of k-means clustering algorithm and gap statistic
approach, is employed to recognize battery degradation levels
under different charging modes. Figure 3 illustrates the opti-
mal number of clusters k under two different charging modes,
obtained by the gap statistic approach. In the figure, the selec-
tion criteria for k is the difference of gap statistic value, and the
optimal number of clusters k corresponds to the selection crite-
ria value that is greater than zero for the first time, according to
Equation (8). Obviously, the number of clusters k is respectively
equal to 4 and 3 under the fast and slow charging modes. Such
a result indicates that the fast and slow charging modes bring
different effects on the battery performance.

Based on the optimal number of clusters k, the k-means clus-
tering algorithm is applied to recognize the battery degradation,
and the recognition results are presented in Figure 4. In the fig-
ure, the levels of battery degradation under fast and slow charg-
ing modes are respectively denoted as “FDL x” and “SDL x.”
For instance, the FDL 1 represents the level 1 of battery degra-

FIGURE 4 Battery degradation levels from recognition results under
different charging modes. (a) Battery degradation levels under fast charging
mode. (b) Battery degradation levels under slow charging mode

dation under fast charging mode, and the SDL 1 denotes the
level 1 of battery degradation under slow charging mode. The
higher level indicates the deeper degree of battery degradation
for the corresponding charging mode. The recognition results
aim to provide support to monitor the battery performance
variations and improve the accuracy of driving range estima-
tion. Note that, as the battery degradation levels are considered,
the implied temporal evolution of the input-output variables is
involved in the driving range estimation. This is because the bat-
tery capacity degrades over time, which affects the initial state
of related input variables and further influences corresponding
output variables.

5 DRIVING RANGE ESTIMATION
MODELS

5.1 Methodology

The battery degradation levels, driving data, and weather data
are combined to model the driving range estimation for BEBs.
The experimental data has been processed to realise the research
goal. Figure 5 illustrates the flowchart of processes for the data
used in driving range estimation.

Firstly, the driving data points are aggregated according to
the battery discharge periods. For a single discharge period, it
starts as a BEB leaves the charging station and ends as the
bus becomes recharged, which covers the itinerary between two
charging events in the city transit network. In this way, the
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FIGURE 5 Flowchart of the processes for the data used in driving range
estimation

incremental depth-of-discharge (△DOD) and driving range
for each itinerary could be extracted based on the driving data.
Note that, in general, the DOD is defined as the SOC dis-
charged from 100%SOC and experiments in the literature mea-
suring the DOD often start at 100%SOC [39]. However, in
BEBs, the SOC is rarely 100% and a driving cycle may start
at various SOCs, and thus it is difficult to obtain the DOD
information from the BEB operating data. Unlike the DOD,
the△DOD represents the difference in SOC from the initial
and final SOCs before a BEB battery is recharged, which has
better ability to adapt the battery working state of BEBs. There-
fore, the△DOD will be used instead of DOD. Besides, the
average speed, speed deviation, average voltage, average battery
temperature and average current during each discharge period
are further obtained. Furthermore, the time-of-day for each
itinerary is processed into hours to indirectly reflect the impacts
of time-varying traffic status, that is, peak and off-peak hours.
In total, 52962 and 47346 itineraries of discharge period are
obtained for the BEBs operating in the city areas under fast
and slow charging modes, respectively. Secondly, the weather
data is merged into the driving data according to the timestamp
recorded in the datasets. Before data merging, the day of the
week is added in the weather data, which could be used to inves-
tigate the week effects, that is, workday and weekend. Thirdly,
the battery degradation levels are combined with the driving
data based on the accumulated mileage recorded in the datasets.
Finally, it is worth noting that the data imbalance regarding
△DOD is existed in the driving data, and most of the itineraries
have the relatively low △DOD. This problem would bring neg-
ative effects to the generalization ability of driving range estima-
tion models. Concerning the imbalance of driving data, the syn-
thetic minority oversampling technique is introduced to com-
pensate the minority data points. The SOMTE is a k-nearest
neighbours (KNN)-based oversampling algorithm, which ran-
domly generates the complementary data points for any origi-
nal minority instance in the directions of its KNN [40]. By this

FIGURE 6 Model structure for driving range estimation

way, the experimental data is expanded to 109928 and 90608
itineraries under fast and slow charging modes, respectively.

After data processing, the EML methods are leveraged to
establish the models for driving range estimation. The pri-
mary idea behind these methods is the combination of basic
models to obtain a composite estimation model [41]. In this
study, four types of EML methods, including adaptive boosting
(AdaBoost), gradient boosting decision tree (GBDT), eXtreme
gradient boosting (XGBoost) and random forest (RF), are intro-
duced to model the driving range estimation. The reason for
choosing such four EML methods lies in their relatively high
computational efficiency and good adaptability for estimation
operation with large-scale datasets, as compared to other EML
methods, such as, Bayes-based approaches. The characteristics
of the four methods are summarised as follows: AdaBoost
tandemly trains the basic models and adjusting the weights of
data points iteratively; GBDT trains the basic models in a tan-
dem way through reducing the residuals obtained by the previ-
ous estimator; XGBoost is a scalable ensemble method based
on GBDT, and trains the basic models by further introduc-
ing the regular terms and sampling strategy; RF trains multiple
basic models in a parallel way by considering both the dimen-
sions of data points and features, and alleviates the over-fitting
problem through integrating the estimating results from basic
models. During the last decades, the four types of EML meth-
ods has gained a significant attention due to their advantages,
and more detailed principles and procedures of them are refer-
enced in related studies [42–45]. In addition, the classification
and regression tree is chosen as the basic model due to its high
computational efficiency and good performance on estimation
problems [46].

5.2 Model training and verification

Based on the processed datasets, the AdaBoost, GBDT,
XGBoost and RF are employed to model the driving range esti-
mation with consideration of 17 impacting factors that include
the △DOD, average speed, speed deviation, average current,
average voltage, average battery temperature, battery degrada-
tion levels, hours, week, average air temperature, air pressure,
wind direction, visibility, wind speed, cloud amount, humid-
ity and rain, as show in Figure 6. The parameters for each
method are determined based on the grid search approach with
cross-validation test [47]. In this way, the optimal parameters
which contribute to the best performance are obtained for each
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TABLE 5 Key parameters for the EML models

Methods Learning_rate n_estimators max_depth

AdaBoost 0.35 60 80

GBDT 0.05 300 5

XGBoost 0.05 1060 5

RF 0.35 60 80

TABLE 6 Metric values for the evaluation of the EML models

Charging modes Methods RMSE MAE

Fast charging AdaBoost 3.6636 2.4368

GBDT 3.9194 2.8166

XGBoost 4.0718 2.9319

RF 3.5704 2.3631

Slow charging AdaBoost 3.0518 2.0784

GBDT 3.4742 2.5209

XGBoost 3.1642 2.2960

RF 2.9281 1.9662

EML method. The key parameters for the methods are listed in
Table 5. In the table, the “learning_rate” represents the learning
rate of the model iteration; “n_estimators” denotes the number
of the basic models; “max_depth” is the maximum depth for
each basic model.

Moreover, the data points are divided into two groups,
namely training group and test group, and all the models would
be established based on the same datasets. For each charging
mode, 75% of the data points are randomly selected as the train-
ing group, while the remaining 25 % of them are used as test
group to verify the performance of the trained models. Further-
more, we introduce the root mean square error (RMSE) and
mean absolute error (MAE) as the metrics to evaluate the per-
formance and accuracy of the models. RMSE is a commonly-
used measurement that can exhibit the differences between esti-
mating results and true values observed in actual data, as given
in Equation (9).

RMSE =

√√√√ 1
m

m∑
i=1

(ŷi − yi )
2
. (9)

Moreover, MAE is an arithmetic average of absolute errors,
which has better capacity to reflect the true error of estimating
results, as shown in Equation (10).

MAE =
1
m

m∑
i=1

||ŷi − yi
||. (10)

Table 6 lists the metric values with respect to the RMSE
and MAE for the EML models. It is observed that the
values of RMSE and MAE exhibit the similar comparison
among the four types of EML models, where RF obtains the
lowest errors regarding both the metrics. Given the characteris-

TABLE 7 Metric values for the evaluation of the non-EML models and
RF

Charging modes Methods RMSE MAE

Fast charging LASSO 8.3226 5.9898

KNN 7.3218 5.4178

SVR 6.0664 4.0072

RF 3.5704 2.3631

Slow charging LASSO 8.5139 6.3778

KNN 6.7832 5.0373

SVR 5.1717 3.5763

RF 2.9281 1.9662

tics of the EML methods and datasets used for model training,
the underlying reasons for such results mainly lie in the follow-
ing two points. For one thing, the RF has better ability to deal
with high-dimensional data, and thus the RF-based models have
better generalization ability than other ones. For another, the RF
can parallelly train the basic models, which improves the train-
ing efficiency for complex data. This unique advantage makes
the RF more suitable to handle the experimental data, which is
fused by driving data, weather data and battery degradation lev-
els, than other EML methods. Note that, even though the RF
model has the best accuracy as compared to other EML models,
the gap of the metric values between RF and other ones is not
distinguishable significantly. In a word, the results indicate that
all the EML models have good performance on driving range
estimation, while the RF has the best accuracy as compared to
other ones. In view of this, the RF is selected as the representa-
tive of the EML models.

To further compare the performance of EML models with
non-EML models, three types of non-EML models, includ-
ing least absolute shrinkage and selection operator, KNN and
support vector regression, are applied to estimate the driving
range using the same datasets. These three methods have been
widely used, and their principles and procedures are referenced
in related literature [48–50]. The optimal parameters for the
non-EML models are also determined based on the grid search
approach with cross-validation test, which ensures the best per-
formance for each non-EML model. The metric values regard-
ing RMSE and MAE for the non-EML models are presented in
Table 7. Moreover, for the sake of comparison, the metric values
of RF are also added in the table.

As shown in Table 7, all the values of RMSE and MAE
exhibit the significant gap between RF and non-EML models.
Such a result indicates that the non-EML models would con-
tribute to larger errors for driving range estimation as compared
to the RF model, and thus the EML models has better perfor-
mance than the non-EML models.

5.3 Analysis and discussion of influencing
factors

In the RF-based models, 17 impacting factors are considered to
estimate the driving range of BEBs. Generally, the accuracy of
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TABLE 8 Metric values for the evaluation of the RF-△DOD and RF-16
factors models

Model types Charging modes RMSE MAE

RF-DOD models Fast charging mode 9.7718 6.7948

Slow charging mode 11.4667 7.8968

RF-16 factors models Fast charging mode 20.1903 13.6469

Slow charging mode 16.3300 10.8788

an estimation model is increased as the related impacting factors
increases [51]. However, more factors considered in the model
needs more data sources, and the costs for data collection
would be gradually increased to use more data sensors. Some
data sources may not even be available in real-world case. As
a matter of fact, different influencing factors have different
impact degrees to the driving range estimation. In the practical
application, how to save the data collection costs or deal with
limited data sources also attracts the attention of bus operators,
besides the estimating accuracy of driving range. Therefore, the
importance of influencing factors is analysed and discussed in
this section.

Note that, the existing studies demonstrated that the
△DOD has dominated impacts on the driving range [52].
Inspired by these research achievements, we first investigate
the relationship between driving range and △DOD. Firstly, the
data that only records the △DOD is applied to train and test
the RF models under two different charging modes. Moreover,
to further explore the impact degrees of other 16 influencing
factors, we subsequently adopt the data without △DOD to
train and test the RF model. The RMSE and MAE for the eval-
uation of the RF models with only consideration of △DOD
(RF-△DOD) and with consideration of other 16 factors (RF-
16 factors) are listed in Table 8. The output variable provided
by the models of RF-△DOD and RF-16 factors is the driving
range estimation.

In comparison to the original RF models as mentioned
in Section 5.2, the RMSE and MAE deriving from the RF-
△DOD models are increased as compared to that of the orig-
inal RF models, which indicates that the other 16 influencing
factors have positive effects to improve the estimating accu-
racy. Expectedly, the △DOD has a linear relationship with the
driving range estimation as other inputs are equal, regardless
of the initial SOC, because the energy output from the same
△DOD under the identical battery degradation level is equal
[12]. Moreover, by comparing the metric values of RF-△DOD
models with that of RF-16 factors models, it is observed that,
the RMSE and MAE values also indicate that the estimating
errors increase as the △DOD is removed from impacting fac-
tors. These results demonstrate that the model with the other
16 factors can cover most of the information explained by RF-
△DOD model. Therefore, RF-16 factors model would be able
to provide reasonable estimated when the △DOD information
is not available.

Furthermore, based on the trained RF-16 factor models, the
relative importance of influencing factors is investigated to pro-

FIGURE 7 Relative importance of the impacting factors for driving range
estimation. (a) Fast charging mode. (b) Slow charging mode

vide insight into the impact degrees of them. Specifically, the
Gini importance is adopted to determine the relative impor-
tance of each factor due to its high computational efficiency
[53]. Furthermore, the computational results are normalized to
obtain the score of each factor. Figure 7 illustrates the relative
importance of the influencing factors, where more important
factors are endowed with higher scores.

Note that, the 16 influencing factors can be broadly classified
into four categories, which include battery status (average
voltage, average current, average battery temperature, battery
degradation), driving pattern (average speed, speed deviation),
weather condition (average air temperature, air pressure, wind
direction, visibility, wind speed, cloud amount, humidity and
rain) and time factors (hours and week). It can be seen from
Figure 7, most of the battery status factors have relatively
high impact degrees on driving range, and the driving pattern
also has a considerable influence which basically follows the
battery status. Thereinto, the average voltage has the highest
impact degree among all the factors, because it closely relates
to the battery energy output. By comparison, the factors from
weather condition have relatively less effective because these
factors exert influence on the driving range through indirectly
affecting the battery status or driving pattern. For example, the
average air temperature has a certain degree of influence on
the battery temperature and use of air conditioner; the visibility
may make drivers raise concerns about safety and thus affects
the driving speed. Note that, in contrast to the visibility, the
wind speed, cloud amount, rain and humidity have the relatively
limited impacts on the driving speed, and thus get the lower
scores. In addition, for the time factors, the factor of hours has
a relatively high impact degree. It is because the time-of-day has
a close relation to the traffic condition and thus takes significant
effects on both battery status and driving pattern. For example,
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BEB drivers have to frequently adjust the vehicle speed during
peak hours, whereas they can maintain a relatively constant
vehicle speed during off-peak hours. By contrast, the factor of
week has a relatively low impact degree, which implies that the
difference of the passenger load between workday and weekend
has limited effect on energy consumption. This is because the
BEB often has a limited carriage capacity, while its curb weight
is much larger than the containable passenger load. Based on
the results, it is recommended that public transport operators
should give priority to the battery status and driving pattern
factors for driving range estimation. Besides, even though the
weather condition factors have a relatively low impact, they also
have ability to improve the estimation accuracy. If the higher
accuracy is required, the data sources of weather condition
should be acquired, which would increase the operating costs.
Therefore, public transport operators need to make a trade-off
between estimation accuracy and operating cost, and then
determine suitable strategies by considering both accuracy
requirements and cost budget.

Moreover, when it comes to the influence of battery degra-
dation on driving range estimation, there exists a significant dif-
ference between fast and slow charging modes when comparing
the case (a) and (b) from Figure 6. It is observed that the impact
degree of battery degradation for fast charging mode is higher
than that for slow charging mode. Such a comparative result
indicates that the fast charging mode contributes to more effects
on battery degradation than the slow charging mode. In other
words, the battery performance degrades slower under the slow
charging mode than that under the fast charging mode. Never-
theless, compared with the fast charging mode, the slow charg-
ing mode spends a longer time in charging events, which may
affect the efficiency of transit operation. By integrating battery
degradation with driving range estimation, accurate estimations
of the BEB driving range can be provided considering differ-
ent charging modes and available operation information. Conse-
quently, public transport operators can develop proper schedul-
ing and dispatching strategies.

6 CONCLUSION

This study investigates the driving range estimation coupled
with battery degradation recognition for electric city buses using
real-world data. The ICA method is used to characterize the bat-
tery aging performance based on the charging data, and sub-
sequently, the framework comprising the k-means clustering
algorithm and gap statistic approach is employed to recognize
battery degradation levels. Afterward, four types of EML meth-
ods, including AdaBoost, GBDT, XGBOOST and RF, are intro-
duced to model the driving range estimation, in which 17 influ-
encing factors together with two different charging modes are
considered. The results show that the EML methods have a
good performance on driving range estimation while RF has the
highest accuracy among them, which also performs a much bet-
ter estimation accuracy than that of the non-EML models. This
work provides insights for driving range estimation with battery
degradation recognition based on real-world data. Furthermore,

the importance of influencing factors is analysed and consid-
ered to develop different models. The results indicate that most
battery status factors have relatively high impact degrees, fol-
lowed by the driving pattern factors. The weather condition fac-
tors have relatively low impact degrees while also being able to
improve estimation accuracy. In addition, the models consider-
ing limited available information are developed and discussed to
indicate that relatively accurate estimation can be achieved when
some important factor is not available. The results show that
the battery degradation under different charging modes has dif-
ferent importance on driving range estimation. The developed
models could be used by bus operators to accurately estimate
driving range of BEBs using on-line operating data and accord-
ingly scheme the vehicle routing. Besides, the models could also
be used to determine data sources according to the specific
demand of estimation accuracy and save the associate opera-
tional cost.

Notably, according to the analysis of influencing factors, we
provide the recommendation that public transport operators
should consider the accuracy requirements and cost budget to
select suitable data sensors, as mentioned in Section 5.3. How-
ever, an in-depth investigation regarding the trade-off between
estimation accuracy and operational costs is not carried out,
because such an issue is outside the scope of this work. Built
upon the proposed models, we will explore the correlations
between estimation accuracy and operational costs in the future
study, and then provide a comprehensive scheme for transit
system operation. In addition, this study considers 17 impact-
ing factors, some of which may have correlations. These cor-
relations may have influence on driving range estimation of
BEBs. Recently, several machine learning approaches with reli-
able interpretability have been proposed to quantify the fea-
ture importance and correlations in the fields of production,
such as the lithium-ion battery manufacturing [54] and elec-
trode production [55]. These advanced methods also have ref-
erence significance in driving range estimation and thus will be
utilized to improve the estimation performance in our future
work.
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