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Human activity recognition using 
wearable sensors, discriminant 
analysis, and long short‑term 
memory‑based neural structured 
learning
Md Zia Uddin1* & Ahmet Soylu2,3

Healthcare using body sensor data has been getting huge research attentions by a wide range of 
researchers because of its good practical applications such as smart health care systems. For instance, 
smart wearable sensor-based behavior recognition system can observe elderly people in a smart 
eldercare environment to improve their lifestyle and can also help them by warning about forthcoming 
unprecedented events such as falls or other health risk, to prolong their independent life. Although 
there are many ways of using distinguished sensors to observe behavior of people, wearable sensors 
mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In 
this paper, we propose a body sensor-based activity modeling and recognition system using time-
sequential information-based deep Neural Structured Learning (NSL), a promising deep learning 
algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several 
daily activities. Once the data is collected, the time-sequential information then go through some 
statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to 
see the better clustering of the features from different activity classes by minimizing inner-class 
scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential 
features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory 
(LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public 
dataset. It is also compared to existing different conventional machine learning methods such as 
typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural 
Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient 
explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations 
(LIME) is used to explain and check the machine learning decisions. The robust activity recognition 
system can be adopted for understanding peoples’ behavior in their daily life in different environments 
such as homes, clinics, and offices.

Body sensors have been getting popular day by day for various practical applications such as entertainment, 
security, and healthcare research fields. The wearable sensors can be actively explored applied for accurately 
recognizing people’s health status, activities, and behavior. Thus, these sensors can be promising to improve our 
life much in the same way as other regular electronic devices such as the personal computers, smart phones, etc. 
In case of commercial applications, wearable sensors have been mostly applied to trigger panic buttons to seek 
emergency whenever necessary. Such use of the sensors can be considered as a commercial success 1. In such 
cases, the users are guessed to be alert and fit enough to use the button. Also, the panic button should be designed 
as light and comfortable to wear. Wearable sensors have also attracted many researchers of medical sciences to 
observe physiological behavior of human body. In such applications, patients’ vital body signs are continuously 
observed such as heart rate, respiration, etc. 2.

Alongside other applications of the body sensors, they can be used to obtain necessary treatment at home, 
especially for chronic patients of heart-attacks, Parkinson disease, etc. For example, patients usually go under the 
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rehabilitation process after an operation where they should follow strict daily routines. In such cases, wearable 
sensor-based systems can help to monitor the health status and behaviors of the patient using the physiological 
signals. During the rehabilitation stage, the wearable sensors can also provide audio feedback or other rehabili-
tative services as well. The history of the patient’s health and behaviors can be monitored remotely by doctors, 
relatives, or caregivers etc.

For observing behavior based on wearable sensors, research is still going on these days towards developing 
smart healthcare systems such as fall detection of elderly living alone at home4–6. Also, wearable devices and 
sensors have been getting attentions for commercial purpose such as smartwatch and Google’s smart glasses. 
Thus, the wearable technologies can have an important impact in medical technologies to define doctor-patient 
relationship and saving healthcare cost. The rapid growth of the applications of wearable technologies, their 
acceptance seems to continue in many important sectors such as healthcare.

Wearable sensors-based activity recognition system handles the integration of sensing and reasoning to be 
able to better understand people’s behavior 7–9. Research in human behavior analysis has become popular in 
many areas (e.g., surveillance, context-aware systems, and ambient assistive living). In 7, the authors focused on 
important applications of activity recognition in several fields such as healthcare, wellbeing and sports systems. 
Regarding the wearable sensor-based activity recognition, they reported examples of healthcare monitoring 
and diagnosis systems; rehabilitation; child and elderly care. Besides, they also reviewed monitoring systems to 
improve the life and ensure safety and well-being of children, seniors, and people who have cognitive disorders. 
In 8, the researchers proposed activity recognition systems as links among the common diseases with the degrees 
of peoples’ physical activity 8. The authors also analyzed the systems with daily activity patterns that contributed 
well to the procedure and diagnosis of neurological disorders. In 9, the authors proposed an activity prediction 
approach based on sensors embedded in smartphones to estimate energy expenditure recognizing spontaneous 
physical activities.

Sensor-driven systems are usually based on the collaboration between the users and technology where the 
system is aimed to provide a good support in decision support systems 10. So, there should always be enough 
balance between the rights of the users and requirements of an efficient functioning of the system. Among the 
other sensors as data sources for human behavior analysis, cameras are the very popular since the users are visu-
ally available in the display 11,12. Though they are very popular, such systems can however raise privacy issues 
of the users often. On the other side, wearable sensors sensor-based approaches for activity recognition system 
do not usually face privacy issues 13]. Figure 1 shows a schematic setup of a body sensor-based human activity 
recognition system where a user is wearing some sensors in different body parts such as chest, wrist, and ankle. 
The multimodal sensor data is transferred to a computer though wireless medium and then the data is processed 
there to perceive underlying events via deep learning.

The recent success of machine learning models has been mostly possible due to efficient deep learning algo-
rithms with hundreds of layers and millions of parameters 14–22. Among the successful deep learning algorithms, 
Deep Belief Network (DBN) was the first successful machine learning technique which was later overpowered 
by Convolutional Neural Networks (CNN), especially for image processing and computer vision applications. 
22. CNN-based deep learning is very robust for recognizing patterns in images, but it has not been much applied 
for time-sequential data. In that regard, Recurrent Neural Networks (RNNs) have been quite popular to model 
time-sequential events in data 23–28. However, general RNN consists of a problem called vanishing gradient limita-
tion that basically occurs in processing of long-term information. To overcome that, Long Short-Term Memory 

Figure 1.   A schematic setup for wearable sensor-based human activity recognition system.
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(LSTM) was developed consisted of different memory units were included 27. Though the aforementioned deep 
learning approaches are good in corresponding fields, they are still sensitive to noise hence noise in testing data 
may drop the accuracy of the overall performance of the systems.

Google’s open-source tool TensorFlow is one of the most famous tools applied among the deep learning tools 
for different event modelling such as prediction related tasks in pattern recognition areas. Neural Structured 
Learning (NSL) 29, an open-source framework inside that is one of the latest deep learning algorithms to learn 
events in data. NSL can be used to construct robust models in a wide range of research fields such as computer 
vision and natural language processing. It can be utilized for training taking the advantage of structured signals 
related to the feature inputs. NSL is a neural graph learning approach to train neural networks depending on 
graphs and structured data 30. NSL also generalizes basic adversarial learning 31 utilizing the structured data 
with good relational information among the samples. The structured signals are applied to update the learning 
parameters to train a network towards learning as accurate as possible alongside maintaining the structures of the 
inputs to the network. Hence, NSL seems to be a good choice in this activity recognition work for better activity 
modeling and testing than the other traditional deep learning approaches such as DBN, CNN, and LSTM-based 
RNN. Besides, the aforementioned traditional neural networks can be put inside an NSL framework to improve 
a system’s performance. For instance, LSTM is fed into NSL in this work to model time-sequential wearable 
sensor data for activity modeling.

In the recent time, Artificial Intelligence (AI) has reached in an extraordinary momentum. Proper control 
and exploration can bring the best of expectations of it in many practical application fields. Towards meeting the 
expectations as fast as possible, the corresponding community is now facing the barrier of explainability problem 
to open the black-box machine learning models, which is called explainable AI (i.e., XAI). XAI is a key feature 
for the applications of AI models and seems to continue its trend in future as one of the core research focuses 
of the AI research community. Among the popular state-of-the-art algorithms for XAI (e.g., Local Interpret-
able Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP)), LIME is light-wight 
to generate quick and satisfactory post-hoc explanations 32–35. Therefore, LIME seems to be a suitable choice for 
this work to apply XAI on the decision provided by the machine learning model.

In this work, a novel activity recognition method is proposed based on applying NSL on the wearable sensor 
data. At first, robust statistical features are extracted from the sensors followed by applying kernel discriminant 
analysis (KDA) to make them more robust. Then, NSL consists of LSTM inside, is applied to model the features 
for activity training and recognition. The proposed method based on NSL with LSTM inside, should yield better 
recognition performance than the traditional approaches such as DBN, CNN, and RNN. Since the approach is 
fast and efficient, it can be tried on various smart environments such as smart homes or clinics. Furthermore, 
LIME is used for post-hoc explanations of the machine learning decision of activities.

Methodology
The system starts with the processing of data obtained from different wearable sensors and take the decision 
regarding the underlying activities via feature processing and training a robust activity model using NSL. Figure 2 
shows the general flowcharts for the training and testing of the proposed method.

Sensor data processing.  In this work, a public dataset called MHEALTH 36,37 was majorly used to check 
the performances of different approaches where data was collected from different sensors worn on the body of 
different subjects. The dataset comprises vital signs and motion recordings of ten subjects of the diverse profile. 
In dataset, there were twelve activities performed by the subjects and they are: Standing still (A1), Sitting and 
relaxing (A2), Lying down (A3), Walking (A4), Climbing stairs (A5), Waist bends forward (A6), Frontal eleva-
tion of arms (A7), Knees bending (A8), Cycling (A9), Jogging (A10), Running (A11), and Jump front and back 
(A12).

During building the dataset, the sensors were placed in different places of the body of the subjects (i.e., chest, 
right wrist, and left ankle) and the data was collected with the sampling rate of 50 Hz. The multimodal record-
ing of the data allows to record different important data such as data from the heart via ECG sensors, body 
acceleration via accelerometers, tilting amount via gyroscopes, and magnetic field orientation of the body via 
magnetometers. Figure 3 shows the sensor placements on subjects’ body for the MHEALTH dataset.

The sensors are worn on different body parts i.e., the heartrate healthcare sensor on the chest provides heart 
data measurement and other sensors provide the motion-related experience of different parts of the body e.g., 
the acceleration by accelerometers, the rate of tilting by gyroscopes, and the magnetic field dynamics by the 
magnetometer. Shimmer2 sensors were used for the data collection 38. The utilization of multiple sensors allows 
the work to calculate the motion observed by different body parts such as the acceleration, turning rate, and 
magnetic field orientation. Thus, it helps better perception of the users’ body dynamics.

Feature representation.  The sensor data is organized to represent features as follows. The acceleration 
data from the chest sensor is represented as

Electrocardiogram (ECG) data from the heartrate sensor lead 1 and 2 are obtained as

Acceleration from the left-ankle is obtained as

(1)CC = (Cx ,Cy ,Cz).

(2)E = (E1,E2).
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Tilting data from the left-ankle Gyroscope sensor is obtained as

Left-ankle magnetometer data is obtained as

(3)CLA = (Lx , Ly , Lz).

(4)YLA = (Lx , L, Lz).
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Figure 2.   Flowchart of training and testing process of the proposed method.
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Figure 3.   Sensor placements for MHEALTH dataset.
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The left-wrist accelerometer data is obtained as

Titling data from the left-wrist gyroscope is obtained as

Gyroscope sensor data from the right-wrist is obtained as

Right-wrist magnetometer sensor data is obtained as

Furthermore, all the data features obtained for a specific time-period are augmented and represented as

Figure 4 shows the mean L features of twelve different activities where it can be noticed that different activi-
ties follow different structures. That indicates that a robust classification system can make them separated from 
each other. The total number of samples is 343,070 × 23 for all activities of 10 subjects. The samples are reshaped 
as 34,307 × 10 × 23 i.e., per second. Also, in the dataset, to define the gap (interval) in between the activities, the 
dataset authors included null or 0 classes. Besides, Table 1 shows the features from the individual sensors on body.

(5)MLA = (Gx ,Gy ,Gz).

(6)CRW = (Ix , Iy , Iz).

(7)YLW = (Rx ,Ry ,Rz).

(8)YRW = (Qx ,Qy ,Qz).

(9)MRW = (Tx ,Ty ,Tz).

(10)L = CC ||E||CLA||YLA||MLA||CRW ||YLW ||YRW ||MRW .

Figure 4.   Mean of the 23 raw data point (i.e., L) from twelve different activities.

Table 1.   Features from MHEALTH dataset.

Features

Chest accelerometer Cc

ECG sensor data on chest E

Left-ankle accelerometer CLA

Left-ankle gyroscope YLA

Left-ankle magnetometer MLA

Left-wrist accelerometer CRW

Left-wrist gyroscope YLW

Right-wrist gyroscope YRW
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To enhance the features, kernel-based discriminant analysis (KDA) is applied. KDA is based on an eigenvalue 
resolution problem based on a kernel to find a nonlinear space that tries to minimize the inner-class scatterings 
of the samples from different classes while maximizing the inter-class scatterings. In this work, features from 
different body sensors’ data goes through a Gaussian kernel to find out the nonlinear feature space, which is 
obtained from the maximization of the following as

where D represents discriminant features of between-class scatterings CB and within-class scatterings CW . The 
eigenvalue problem

where � represents the eigenvalue matrix. Figure 5 shows a 3-D plot of KDA features of the samples from six 
different classes where it shows a good clustering of the samples.

Human activity modelling.  Proactive machine learning systems require computational models to per-
ceive and anticipate upcoming unknown future events. These models very often need to have an internal model 
that can learn to structure the temporal phenomena. Deep artificial neural networks (ANNs) is mostly used 
in this regard to build significantly enhanced predictive technologies. ANN models are designed with various 
architectures that would be appropriate for specific machine learning task consists of specific computational 
models. Among which, recurrent neural networks (RNN) is one that can learn from sequences of data and 
convolutional neural networks (CNNs) with a capability of learning from mostly image type of data. So, LSTM 
seems appropriate over CNN due to its time-sequence modelling capability.

LSTM RNNs are basically applied to sequences of information in a one-at-a-time way i.e., the model predicts 
mostly the very next element of the sequence. So, a little variation in the input data (e.g., noise) may cause wrong 
perceptions by the model. Hence, this work focuses on the variations of temporality in a time-sequential data-
based system that should allow us to a come up with a better activity model. That is why, the proposed approach 
goes for LSTM inside Neural Structured Learning (NSL) for robust activity modelling.

Neural Structured Learning (NSL) is a machine learning approach that is targeted on training the neural 
networks by taking the advantages of structured signals combined with features from the inputs 25. In NSL, the 
structured signals are accustomed to regularizing working out of a neural network that has the strong target to 
understand accurate predictions with the aid of minimizing supervised loss. Simultaneously, it tries to steadfastly 
keep up structural similarity of the input by emphasizing the minimization of the neighbour. The generalized 
neighbour loss equation could be represented as bellow.

Thus, NSL basically generalizes the network using two different ways. The first one is by using neural graph 
learning where neighbors are connected by a graph. The second one is by utilizing adversarial learning where the 
neighbors are induced by the adversarial perturbation 30. The overall workflow of an LSTM-based NSL model 

(11)D =
|DTCWD|

|DTCBD|
,

(12)CBD = �CWD,

(13)neighbour_loss =
∑W

k=0
L(yi,ŷi)+ ∝

∑W

k=0
L
(
yi,xi,N(xi)

)
.

Figure 5.   Discriminant analysis projection plot of the samples from six activities.
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for human activities, is depicted in Fig. 6. In the figure, the black arrows show the flow how training is done and 
in the same figure, the red arrows depict how the learning takes the advantage of structured signals. In NSL, the 
training data is represented by augmentation of the structured signals. When the structured signals are not pos-
sible to obtain, in that case the signals are usually constructed by process of adversarial learning. Once the train-
ing samples are augmented, which consists of original and neighbouring samples, they are applied on an LSTM 
neural network first that consists of several memory units to calculate the samples’ embeddings. In the LSTM 
depicted in the Fig. 6, L is the input to the LSTM sequential units and N is the final output. Then, the neighbour 
loss is calculated by finding the distance between the embedding of a sample and neighbour itself, i.e., regulari-
zation which is later added to the final loss. While regularizing the neighbour-based process, the layers in the 
neural network of NSL can be used to calculate the loss. For adversarial-based (i.e., induced) regularization, the 
neighbour loss is computed based on the distance between the ground truth and predicted output of the adver-
sarial neighbors. Table 2 shows the NSL model summary consisting of layers and parameters used in this work.

Results and discussion
Ten-fold cross validations (i.e., leave-one-subject-out) is applied for the experiments of twelve activities per-
formed by ten subjects. The leave-one-subject-out validation basically repeatedly splits the dataset according to 
the number of subjects. One subject is selected at a time for the testing purposes while the others are used for 
training the machine learning model. This process is repeated until all the subjects have been used as testing 
part. Finally, overall accuracy is calculated based on all the folds of the subjects to show the performance of the 
approach. The proposed NSL-based approach that achieved the mean recognition performance of 99% as shown 
in Table 3. Figure 7 shows the loss and accuracy of the ten-fold LSTM-based NSL model applied in this work. The 
confusion matrices of the folds from the ten-fold cross-validation are reported in Figs. 8 and 9. To compare the 
proposed approach with other traditional approaches such as typical DBN, CNN, and RNN-based experiments 
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Figure 6.   An LSTM-based neural structured learning model for human activities.

Table 2.   The NSL models used in this work.

Layer Output shape Number of parameters

LSTM 50 14,800

Dense-1 128 6528

Dense 2 12 1548

Total parameters 22,876
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39 were done. However, they achieved a maximum mean recognition rate of 94%. Figure 10 also depicts that the 
NSL-based proposed approach overpowers three other state-of-the-art approaches. The applied training and 
testing NSL method is quite fast, can be applied real-time. To avoid the overfitting problem, minimum number 
of epochs were considered that achieved the constant accuracy of on the testing results.

Local explanations in machine learning models handle explainability by dividing the model’s complex solu-
tions space into several less complex solution subspaces that are relevant for the model. These explanations can 
adopt some techniques with the differentiating property to interpret the model to some extent. Local explanations 
are one within that category as simplified machine learning models are sometimes just representative of some 
specific sections of a model. Most of the methods of model simplification are basically based on rule extraction 
techniques. However, the most popular contributions for local explanation are based on the approach called 
Local Interpretable Model-Agnostic Explanations (LIME) 32–35. LIME usually generates locally linear models 
for the predictions of a machine learning model to explain it. Explanations by simplification in LIME builds a 
whole new system based on the trained model to be explained. Then, the new simplified model usually tries to 
optimize its resemblance to its predecessor model functions while reducing the complexity and keeping a similar 
performance at the same time.

Thus, we tried LIME in this work to explain our trained model. Figure 11 shows the LIME explanation on 
the LSTM-based trained model for a sample walking test sample from the dataset. In each subfigure om the 
figure, the right side (i.e., green bars) represents the weights for that activity and other side (i.e., red bars) for 
other activities. The bars from top to bottom in the subfigures represent the features 1 to 23, respectively. As 
can be noticed there, the collective weights of walking activity are quite larger than that of the other activities, 
compared to similar local explanations in case of other activities. This indicates that, the test sample belongs to 
walking activity that also matches the ground truth as well as model predictions for the sample. Figure 12 also 
shows further explanations consisting of the prediction probabilities of the activities and feature range as well 
as probabilities of walking versus other activities, for a test sample from walking activity. Thus, the Figs. 11 and 
12 justify and explain the sample to be in the walking activity.

Though collecting data and sharing it most of the time improves the services provided to the users, it may 
however increase the risk of the data protection right of the users. Hence, data is recommended to be preserved 
well. So, it should be logical to point out that on one side, technology may bring threats to the user’s personal 

Table 3.   The mean recall rates of different activities using different approaches.

Activity/Model DBN CNN RNN NSL

Standing still (A1) 0.92 1.00 1.00 1.00

Sitting and relaxing (A2) 0.91 0.90 0.92 1.00

Lying down (A3) 0.84 0.85 0.91 0.99

Walking (A4) 0.92 1.00 1.00 1.00

Climbing stairs (A5) 0.93 0.91 0.94 0.99

Waist bends forward (A6) 0.90 0.93 1.00 1.00

Frontal elevation of arms (A7) 0.89 0.94 0.90 1.00

Knees bending (A8) 0.88 0.89 0.92 1.00

Cycling (A9) 0.92 0.90 1.00 1.00

Jogging (A10) 0.94 0.92 0.91 0.99

Running (A11) 0.93 0.92 0.97 0.99

Jump front and back (A12) 0.87 0.89 0.92 1.00

Mean 0.90 0.92 0.94 0.99

Figure 7.   (a) Loss and (b) accuracy of the NSL model for 50 epochs and 10 folds.
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Figure 8.   Confusion matrices of fold 1–6 from (a) to (f) using NSL.
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rights regarding privacy and data protection. Nevertheless, technologies can be adopted to solve the problems 
they create while enhancing their uses in compliance with the requirements of privacy, by choosing the data 
sources as much anonymous as possible if required such as body sensor data over cameras for monitoring of 
the users. Most of the smart services provided in a smart environment such as smart homes/ clinics include 
observing residents’ or users’ activities to analyse patterns of their daily activities to improve their health and 
lifestyles. Some services focus one detecting emergency (e.g., falls or heart attacks) which needs urgent medical 
attention. Though a lot of research has been done in this regard, a significant amount of research is still needed 
to develop robust algorithms for such activity pattern analysis where there would as less false alarms as possible. 
Wearable sensors basically provide reliable data for activity recognition. However, the main drawbacks of such 
sensors are intrusiveness and the necessity of frequent recharging of batteries. Besides, wearing such sensors 
may not be possible always such as by the elderly or the people with memory problems. Though cameras do not 
generate such drawbacks, they may generate a high risk of privacy since the data is quite visually interpretable 
most of the time. Thus, wearable sensors seem to be a good choice to generate robust activity recognition model 
to observe the users’ behaviour.

Humans are usually restrained to accept methods that are not interpretable i.e., trustworthy, pushes the 
demand for ethical machine learning to increase 40–49. Focusing only on performance of the models rather than 
explaining how the decision is taken, gradually pushes the systems towards unacceptance. Though there is a 
trade-off between the performance and interpretability in machine learning, improvements via explainability can 
however lead to the correction of the models’ deficiencies. Therefore, the machine learning research should focus 

Figure 9.   Confusion matrices of fold 7–10 from (g) to (j) using NSL.
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Figure 10.   Mean of the recalls of the activities using four different approaches.

Figure 11.   Explanation results using LIME on a test sample of walking activity.
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on generating more explainable models while upholding the high level of accuracies. Lots of research is happen-
ing these days on the explainability of machine learning models alongside generating the highly accurate models. 
Hence, the target here is to focus on extending our activity recognition research to generate a transparent model.

Results on PUC‑Rio dataset.  To check the robustness of the proposed method, we applied it on a second 
dataset named PUC-Rio behavior recognition dataset 50. During recording the dataset, a total of four accelerom-
eter sensors were placed in four body positions i.e., left thigh, waist, right ankle, and right arm. The sensors were 
calibrated before actual data recording. To calibrate the sensors in a standard way, they were placed on a flat table 
in the same spot. Then, the data collection was done once the sensors were placed on the bodies of the subjects. 
The database has five activities: sitting, sitting down, standing, standing up and walking. A total of 165,632 differ-
ent samples are available from the five activities and a two-fold cross validation was applied for the experiments 
on them. Figure 13 shows the normalized confusion matrices for the two different folds where average accuracy 
is 99%. However, the traditional approaches such as DBN, CNN could not yield more than 93%. Figure 14 shows 
error plot during the epochs for training the models for the two folds. Thus, the proposed approach shows its 
robustness by good performance on the PUC-Rio dataset as well.

Conclusions
In this work, a multimodal robust human activity recognition system has been investigated using wearable body 
sensors and robust deep learning method, NSL based on time-sequential data model LSTM inside it. The body 
sensor data has been analyzed and extracted efficient features based on nonlinear generalized discriminant 
analysis. The features have been applied to train a deep activity NSL to model twelve different human activities. 
Finally, the trained model has been applied for recognizing the underlying activity in testing sensor data. Using 
the proposed approach, maximum mean recall rate of 0.99 has been achieved on MHEALTH activity dataset 
whereas, the traditional approaches yielded maximum 0.94. The proposed approach also showed 99% accuracy 
on PUC-Rio behavior recognition dataset whereas, the traditional approaches could not cross 93%. Thus, the 
experimental results indicated the robustness of the proposed approach. Besides, the fast XAI algorithm LIME 
has also been tried to justify the decision taken by the machine learning model. The NSL-based multimodal 

Figure 12.   Prediction probabilities of the activities and feature range as well as probabilities of walking versus 
others, for a test sample of walking activity.
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system can be applied or adopted in any health care service for real-time recognition of human activity recogni-
tion for better life care of the users, especially the elderly or disabled people to improve their lifestyle and pro-
long their independent living. While the overall system of monitoring peoples’ behavior is important and at the 
same time technically challenging. There is also an issue of privacy where the users may appreciate the increase 
safety and data privacy that smart monitoring system can provide. Also, the users may hesitate to be monitored 
always by any kind of sensors, non-camera-based approaches are acceptable to some extent though. Thus, one 
of the key challenges here is to determine an acceptable trade-off between privacy intrusion and efficient system.

Received: 24 February 2021; Accepted: 2 August 2021

References
	 1.	 Edwards, J. Wireless sensors relay medical insight to patients and caregivers [special reports]. IEEE Signal Process. Mag. 29(3), 

8–12 (2012).
	 2.	 Malhi, K., Mukhopadhyay, S. C., Schnepper, J., Haefke, M. & Ewald, H. A Zigbee-based wearable physiological parameters moni-

toring system. IEEE Sensors J. 12(3), 423–430 (2012).
	 3.	 Castillejo, P., Martínez, J. F., Rodríguez-Molina, J. & Cuerva, A. Integration of wearable devices in a wireless sensor network for 

an E-health application. IEEE Wireless Commun. 20(4), 38–49 (2013).

Figure 13.   NSL-model performance on (a) fold-1 and (b) fold-2 of PUC-Rio dataset.

Figure 14.   NSL-model error on (a) fold-1 and (b) fold-2 of PUC-Rio dataset for 100 epochs.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16455  | https://doi.org/10.1038/s41598-021-95947-y

www.nature.com/scientificreports/

	 4.	 Aziz, O. & Robinovitch, S. N. An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans. IEEE 
Trans. Neural Syst. Rehabil. Eng. 19(6), 670–676 (2011).

	 5.	 Ranhotigmage, C. Human activities and posture recognition: Innovative algorithm for highly accurate detection rate. http://​mro.​
massey.​ac.​nz/​handle/​10179/​4339 (Dept. Eng. Electron. Comput. Syst. Eng., M.S. thesis, Massey Univ., 2013).

	 6.	 Shany, T., Redmond, S. J., Narayanan, M. R. & Lovell, N. H. Sensors based wearable systems for monitoring of human movement 
and falls. IEEE Sensors J. 12(3), 658–670 (2012).

	 7.	 Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R. & Havinga, P. Activity recognition using inertial sensing for healthcare, 
wellbeing and sports applications: A survey. in Proceedings of the 23rd International Conference on Architecture of Computing 
Systems, Hannover, Germany, 22–25 February 2010. 1–10 (2010).

	 8.	 Preece, S. J. et al. Activity identification using body-mounted sensors-a review of classification techniques. Physiol. Meas. 30, 1–33 
(2009).

	 9.	 Guidoux, R. et al. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living 
conditions. J. Biomed. Inform. 52, 271–278 (2014).

	10.	 Costa, A., Andrade, F. & Novais, P. Privacy and Data Protection towards Elderly Healthcare. Handbook of Research on ICTs for 
Human-Centered Healthcare and Social Care Services. 330–346 (2013).

	11.	 Shoaib, M., Bosch, S., Incel, O. D., Scholten, H. & Havinga, P. J. A survey of online activity recognition using mobile phones. Sen-
sors 15, 2059–2085 (2015).

	12.	 Vishwakarma, S. & Agrawal, A. A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 
29, 983–1009 (2013).

	13.	 Chen, L., Hoey, J., Nugent, C. D., Cook, D. J. & Yu, Z. Sensor-based activity recognition. IEEE Trans. Syst. Man. Cybern. C Appl. 
Rev. 42, 790–808 (2012).

	14.	 Castelvecchi, D. Can we open the black box of AI?. Nat. News 538(7623), 20 (2016).
	15.	 Preece, A., Harborne, D., Braines, D., Tomsett, R. & Chakraborty, S. Stakeholders in Explainable AI (2018). arXiv:1810.00184.
	16.	 Gunning, D. Explainable artificial intelligence (xAI). in Technical Reports (Defense Advanced Research Projects Agency (DARPA), 

2017).
	17.	 Tjoa, E., & Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI (2019). arXiv:1907.07374.
	18.	 Zhu, J., Liapis, A., Risi, S., Bidarra, R., & Youngblood, G. M. Explainable AI for designers: A humancentered perspective on mixed-

initiative co-creation. in 2018 IEEE Conference on Computational Intelligence and Games (CIG). 1–8 (2018).
	19.	 Uddin, M. Z., Hassan, M., Alsanad, A. & Savaglio, C. A body sensor data fusion and deep recurrent neural network-based behavior 

recognition approach for robust healthcare. Inf. Fus. https://​doi.​org/​10.​1016/j.​inffus.​2019.​08.​004 (2020).
	20.	 Kiranyaz, S., Ince, T. & Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE 

Trans. Biomed. Eng. 63(3), 664–675 (2016).
	21.	 Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006).
	22.	 Deboeverie, F., Roegiers, S., Allebosch, G., Veelaert, P. & Philips, W. Human gesture classification by brute-force machine learning 

for exergaming in physiotherapy. in Proceedings of IEEE Conference on Computational Intelligence and Games (CIG), Santorini. 
1–7 (2016).

	23.	 Graves, A., Mohamed, A., & Hinton, G. Speech recognition with deep recurrent neural networks. in 2013 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). 6645–6649. (IEEE, 2013).

	24.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).
	25.	 Zaremba, W., Sutskever, I., & Vinyals, O. Recurrent Neural Network Regularization. arXiv preprint arXiv:1409.2329 (2014).
	26.	 Gers, F. A., Schraudolph, N. N. & Schmidhuber, J. Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3, 

115–143 (2003).
	27.	 Sak, H., Senior, A. W. & Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic 

modeling. INTERSPEECH 2014, 338–342 (2014).
	28.	 Williams, R. J. & Peng, J. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural 

Comput. 2(4), 490–501 (1990).
	29.	 Neural Structured Learning: Training with Structured Signals. Tensorflow. (Online). https://​www.​tenso​rflow.​org/​neural_​struc​tured_​

learn​ing/. Accessed 01 Feb 2021 (2021).
	30.	 Bui, T. D., Ravi, S. & Ramavajjala, V. Neural graph learning. in Proceedings of the Eleventh ACM International Conference on Web 

Search and Data Mining-WSDM ’18 (2018).
	31.	 Aghdam, H. H., Heravi, E. J. & Puig, D. Explaining adversarial examples by local properties of convolutional neural networks. in 

Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 
(2017).

	32.	 Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. in IEEE Transactions on Neural 
Networks and Learning Systems. https://​doi.​org/​10.​1109/​TNNLS.​2020.​30273​14.

	33.	 Mishra, S., Sturm, B. L. & Dixon, S. Local interpretable model-agnostic explanations for music content analysis. in ISMIR. 537–543 
(2017).

	34.	 Ribeiro, M. T., Singh, S., & Guestrin, C. Nothing else matters: Model-agnostic explanations by identifying prediction invariance 
(2016). arXiv:1611.05817.

	35.	 Ribeiro, M. T., Singh, S., & Guestrin, C. Why should I trust you?: Explaining the predictions of any classifier. in ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining. 1135–1144 (ACM, 2016).

	36.	 Banos, O., Garcia, R., Holgado, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., Villalonga, C. mHealthDroid: A novel framework 
for agile development of mobile health applications. in Proceedings of the 6th International Work-conference on Ambient Assisted 
Living an Active Ageing (IWAAL 2014), Belfast, December 2–5 (2014).

	37.	 Banos, O. et al. Design, implementation and validation of a novel open framework for agile development of mobile health applica-
tions. BioMed. Eng Online 14(S2:S6), 1–20 (2015).

	38.	 Burns, A. et al. Shimmer: A wireless sensor platform for noninvasive biomedical research. IEEE Sensors J. 10(9), 1527–1534 (2010).
	39.	 Kutlay, M. A. & Gagula-Palalic, S. Application of machine learning in healthcare: Analysis on MHEALTH dataset. Southeast Eur. 

J. Soft Comput. 4(2), 17 (2016).
	40.	 Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Interpretable Machine Learning: Definitions, Methods, and Applica-

tions (2019). arXiv:1901.04592.
	41.	 Chander, A., Srinivasan, R., Chelian, S., Wang, J. & Uchino, K.Working with beliefs: AI transparency in the enterprise. in Workshops 

of the ACM Conference on Intelligent User Interfaces (2018).
	42.	 Chouldechova, A. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data 5(2), 

153–163 (2017).
	43.	 Kim, M., Reingold, O., & Rothblum, G. Fairness through computationally-bounded awareness. in Advances in Neural Information 

Processing Systems. 4842–4852 (2018).
	44.	 Tan, S., Caruana, R., Hooker, G. & Lou, Y.Distill-and-compare: Auditing black-box models using transparent model distillation. 

in AAAI/ACM Conference on AI, Ethics, and Society. 303–310 (ACM, 2018).
	45.	 Gajane, P. & Pechenizkiy, M. On Formalizing Fairness in Prediction with Machine Learning (2017). arXiv:1710.03184.
	46.	 Dwork, C. & Ilvento, C. Composition of Fairsystems (2018). arXiv:1806.06122.

http://mro.massey.ac.nz/handle/10179/4339
http://mro.massey.ac.nz/handle/10179/4339
https://doi.org/10.1016/j.inffus.2019.08.004
https://www.tensorflow.org/neural_structured_learning/
https://www.tensorflow.org/neural_structured_learning/
https://doi.org/10.1109/TNNLS.2020.3027314


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16455  | https://doi.org/10.1038/s41598-021-95947-y

www.nature.com/scientificreports/

	47.	 Barocas, S., Hardt, M. & Narayanan, A. Fairness and Machine Learning, fairmlbook.org. http://​www.​fairm​lbook.​org (2019).
	48.	 Burns, K., Hendricks, L. A., Saenko, K., Darrell, T., & Rohrbach, A. Women also Snowboard: Overcoming Bias in Captioning Models 

(2018). arXiv:1803.09797.
	49.	 Bennetot, A., Laurent, J.-L., Chatila, R. & D´ıaz-Rodr´ıguez, N. Towards explainable neural-symbolic visual reasoning, in NeSy 

Workshop IJCAI 2019, Macau, China (2019).
	50.	 Palumbo, F., Gallicchio, C., Pucci, R. & Micheli, A. Human activity recognition using multisensor data fusion based on reservoir 

computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016).

Acknowledgements
The authors thank Erik G. Nilsson for his support on this work. He is a senior scientist at SINTEF Digital, Oslo, 
Norway.

Author contributions
Most of the work has been conducted by the first author M.Z.U. A.S. has given a lot of support on editing the 
paper and organizing the concept.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.Z.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://www.fairmlbook.org
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning
	Methodology
	Sensor data processing. 
	Feature representation. 
	Human activity modelling. 

	Results and discussion
	Results on PUC-Rio dataset. 

	Conclusions
	References
	Acknowledgements


