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a b s t r a c t

Monitoring of the state, performance, quality of operations and other parameters of equipment and
production processes, which is typically referred to as condition monitoring, is an important common
practice in many industries including manufacturing, oil and gas, chemical and process industry. In
the age of Industry 4.0, where the aim is a deep degree of production automation, unprecedented
amounts of data are generated by equipment and processes, and this enables adoption of Machine
Learning (ML) approaches for condition monitoring. Development of such ML models is challenging. On
the one hand, it requires collaborative work of experts from different areas, including data scientists,
engineers, process experts, and managers with asymmetric backgrounds. On the other hand, there
is high variety and diversity of data relevant for condition monitoring. Both factors hampers ML
modelling for condition monitoring. In this work, we address these challenges by empowering ML-
based condition monitoring with semantic technologies. To this end we propose a software system
SemML that allows to reuse and generalise ML pipelines for conditions monitoring by relying on
semantics. In particular, SemML has several novel components and relies on ontologies and ontology
templates for ML task negotiation and for data and ML feature annotation. SemML also allows to
instantiate parametrised ML pipelines by semantic annotation of industrial data. With SemML, users
do not need to dive into data and ML scripts when new datasets of a studied application scenario arrive.
They only need to annotate data and then ML models will be constructed through the combination of
semantic reasoning and ML modules. We demonstrate the benefits of SemML on a Bosch use-case of
electric resistance welding with very promising results.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Industry 4.0 [1] and technologies of the Internet of Things
IoT) [2] behind it lead to unprecedented growth of data gen-
rated in many industrial processes, such as manufacturing, oil
nd gas, chemical and process industries [3,4]. Indeed, modern
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machines and production systems are equipped with sensors
that constantly collect and send data and with control units
that monitor and process these data, coordinate machines and
manufacturing environment and send messages, notifications,
requests. Availability of these voluminous data has led to a large
growth of interest in data analysis for a wide range of industrial
applications [5–8], especially the use of Machine Learning (ML)
approaches for condition monitoring for manufacturing processes,
machines, oil, gas and chemical systems, and products by pre-
dicting system disturbance, machines’ down-times or the quality
of manufactured products [9]. Such approaches allow to analyse
large amount of data and gain fruitful insights for condition
monitoring.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Workflow of ML development for industrial data-driven condition monitoring with indications of challenges (C), requirements (R, see Section 1), and our
emantic components. ETL stands for Extract, Transform, Load [10].
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We summarise a typical workflow of ML-based condition
onitoring in Fig. 1. The workflow is iterative and includes
everal steps: data collection (Step 1), task negotiation, to de-
ine feasible and economic tasks (Step 2), data preparation, to
ntegrate data from different conditions and production envi-
onments (Step 3), ML analysis (Step 4), result interpretation
nd model selection (Step 5), and finally, model deployment in
roduction (Step 6).
Development of such ML approaches is a complex and costly

rocess where the following three challenges are of high impor-
ance for many companies, including Bosch, since they consume
ore than 80% of the overall time of development [11]. The first
hallenge (C1) is communication: Steps 2 and 5 of the workflow
equire collaborative work of experts from different areas, in-
luding data scientists, engineers, process experts, and managers
hat have asymmetric backgrounds, which makes communication
ime consuming and error-prone. The second challenge (C2) is
ata integration: Step 3 requires to integrate data from dozens
f sources with highly manual modification. The third challenge
C3) is generalisability of ML models: each ML model developed
n Step 4 is typically tailored to a specific dataset and one appli-
ation scenario. Thus, reuse of this ML model for other data or
cenarios requires a significant effort, while the reuse is highly
esired, considering the wide spectrum of processes, equipment,
nd locations of industrial conglomerates. In Fig. 1 we annotated
teps 2–5 with the challenges as C1–C3 for clarity.
In this work we address the C1–C3 challenges by enhancing

achine learning development for condition monitoring with
emantic technologies. Note that semantics has recently gained
considerable attention in industry in a wide range of ap-

lications and automation tasks such as modelling of indus-
rial assets [12] industrial analytics [13], integration [14–16] and
uerying [17–19] of production data, process monitoring [20]
nd equipment diagnostics [21], moreover, semantic technolo-
ies have been adopted or evaluated in a number of large high
ech production companies such as Equinor [22], Siemens [23],
esto [24], and Bosch [25,26].
In particular, we developed an ontology-based software sys-

em, called SemML, that extends the conventional ML workflow
with four semantic components that are depicted with grey
boxes in Fig. 1. These components rely on ontologies, ontology
templates, and reasoning. In particular, SemML exploits upper-
level and concrete domain ontologies and the ML-ontology that
captures machine learning tasks.The four semantic components
of SemML are:

• Ontology extender that allows domain experts to describe
domains in terms of an upper-level ontology by filling in
templates. Data scientists then also use templates to an-
notate domain terms with task-related information. Then,
they use the ontologies they jointly developed as a ‘‘lingua
franca’’ for task negotiation.

• Domain knowledge annotator that enables data integra-
tion by annotating, mapping raw data to the terms in do-
main ontologies with ontology-to-data mappings.
 g

2

• ML knowledge reasoner that uses automated reasoning to
infer ML-relevant information from ontology-to-data map-
pings and creates the mappings between feature groups in
ML ontologies and data for each raw data source.

• ML interpreter that facilitates uniform and explainable in-
spection of ML models and raw data.

Ontology extender and ML interpreter help us to address the
communication challenge, domain knowledge annotator
addresses the data integration challenge, and ML knowledge
reasoner addresses the generalisability challenge.

SemML allows to store in a catalogue a set of pre-configured
ML pipelines for condition monitoring that are described in terms
of ontologies. Then, users can (re-)use these pipelines by de-
ploying them on new datasets. This can be achieved by manu-
ally annotating raw data with domain terms and by selecting a
suitable ML pipeline from the catalogue. Then, the system will
automatically reason and construct ML models to analyse the data
for the given quality monitoring task. SemML also allows users
to extend the domain ontologies whenever needed, e.g., when
existing ontologies do not contain domain terms required for data
annotation. Thus, our ontology-based ML system SemML allows
users to do ML based condition monitoring on a specific domain
without an extensive knowledge of ML thanks to the semantic
artefacts and ML pipelines offered by the system.

We demonstrate an application scenario of SemML with a
osch use case of automatic welding during car manufactur-
ng [27,28], which is the process of connecting two pieces of
etal from car bodies together by passing high voltage electric
urrent through them. In particular, we conducted a prototype
eployment of our solution on Bosch data and conducted a user
tudy with two experiments with 14 Bosch experts, including
ata scientists, measurement experts, and domain experts from
wo welding processes: resistance spot welding (RSW) and hot-
taking (HS). For the deployment, we prepared data that was
ollected in process development phase at Bosch by a Finite-
lement-Method (FEM) simulation model and anonymised, in-
luding 13952 welding operations (estimated to be relevant to
0 cars). The data include inputs of 235 single features and 20
ime series. These data is relevant for two condition monitoring
ask: one task is to estimate the welding spot diameter, typically
sed to quantify the welding quality according to industrial stan-
ards [29,30], and the second task is to predict the quality of the
ext welding operation based on the quality of previous opera-
ions. For the user experiment, we developed a set of templates,
omain ontologies, and welding process monitoring tasks. The
sers were first asked to create their domain ontologies using
he ontology extender, and then map the variable names in raw
ata to the datatype properties of their created ontologies. After
ach task, they answered questionnaires to provide information
n subjective satisfaction. The time and accuracy of these tasks
nd the scores of the questionnaires were recorded, analysed, and
valuated with promising results.
The paper is organised as follows: in Section 2 we describe the
eneral problem of data-driven industrial condition monitoring,
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Fig. 2. An architectural overview of our semantically enhanced ML solution SemML for condition monitoring, where we overlay the welding quality monitoring
workflow of Fig. 1 and the use-case requirements. EDA: exploratory data analysis, Sem.: semantics, Eng.: engineered.
elaborate the workflow of ML development and its challenges
in each step in detail, and state the requirements of the system
to enhance the workflow. In Section 3 we introduce our solu-
tion SemML, semantically-enhanced machine learning software
system, its software architecture, working mechanism, semantic
artefacts and system implementation. In Section 4 we introduce
the Bosch use case of electric resistance welding. In Section 5
we demonstrate the application of SemML on the Bosch use case,
which exemplifies the more detailed mechanism of SemML. In
Section 6 we evaluate SemML in a user study: we first explain the
experimental settings of the user study and then give its results
and interpretation. In Section 7 we reviews some related work
and in Section 8 we summarise our lessons learned, conclude the
paper and discuss future research.

The material presented in this journal paper extends two of
our previously presented conference papers [10,31]. First, we pro-
vide an extensive description of the ML development workflow
(Section 2.2) which was only very shortly introduced in [10].
Second, we introduce a novel software architecture (Fig. 2) with
significant improvement compared to [10]. Third, we add a new
system implementation section with many details of software
structures and graphic user interface. Fourth, we present three
novel semantic artefacts, the Hot-staking ontology QMM-HS, ML
templates, and the ML Pipeline ontologies. Fifth, we demonstrate
a new mechanism of the semantic enhanced ML model construc-
tion (Fig. 10) of ‘‘Static Mode’’ that was not presented in [31].
Sixth, we elaborate on extensive detailed information of the
software components, use cases, ML pipelines, etc. Also note that
some of the aspects of SemML were also discussed in our demo,
poster, or industry track presentations [27,32,33]. A comparison
of ML methods with extensive evaluation is presented in [34].

2. Data-driven industrial condition monitoring

We now introduce data-driven condition monitoring, its work-
flow and requirements.

2.1. Condition monitoring

In industry condition monitoring refers to techniques and
methods for monitoring of some parameters of condition in pro-
duction machinery in order to identify a significant change which
3

is indicative of a developing fault. [35] In particular, two types
of condition monitoring are typically considered: (1) Machinery
monitoring [9] is about monitoring of how healthy is the current
state of an operating system or equipment; (2) Process quality
monitoring is about monitoring of how well a production process
go and its product quality.

Examples of industrial scenarios for condition monitoring are
numerous. For process monitoring they include quality moni-
toring of individual operations in manufacturing processes such
as welding that connects pieces of metal together. The quality
indicators of welding systems provided by Bosch are monitored
by analytic methods [31] or destructive methods [29,30]. For
machinery monitoring examples include data-driven monitoring
of trains [21] and turbines [15] in Siemens. In the Oil and Gas
industry [36], examples includes equipment and process moni-
toring in off-shore platforms and oil reservoirs at Equinor [14].
Another example is the detection and processing of disturbances
in chemical or process industry for root-cause-analysis at ABB and
INEOS [8].

As the technologies of Internet of Things [2] and Industry
4.0 [1] develop, condition monitoring often involves a large
amount of data. The core of condition monitoring is often to
estimate or forecast some categorical or numerical indicators
with intelligent data-driven methods like machine learning. A
series of steps are dedicated to this end: data need to be collected,
concrete tasks in different domains need to be determined, the
data need to prepared, analysed by ML modelling, the results of
analysis need to be interpreted, and at the end the ML models
can be deployed in industry.

2.2. Workflow of ML development

We first describe a generic workflow of the machine learn-
ing development for industrial condition monitoring without en-
hancement of semantic technologies. It is adapted from the work-
flow proposed by Fayyad [37] and Mikut [38] (Fig. 1).

Step 1, before the question is defined and data analysis is re-
quested, data are collected by some system monitoring software,
including e.g. installed sensors configured by domain experts,

or manually by the measurement experts. Data scientists will
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receive an initial historical dataset, provided as given. For each
welding operation, the collected data can contain various data
formats, e.g. sensor measurements along time, (referred to as
time series in data science), single valued quantities (referred to
as single features in data science) describing the machine condi-
tions like wearing and maintenance, the material and geometrical
properties of system components or products, etc. In a later stage,
data scientists can also request to collect further data after some
findings are revealed, indicated by the arrows pointing backwards
from the later stages in Fig. 1. Involved stakeholders in this stage
are measurement experts for design of measurement settings,
process experts for design of experiments, and data scientists
for specifying data collection request. The challenges here is the
effective and economic design of experiments and measurement
settings, and specification of data collection request.

Step 2, the process experts introduce the welding process and
uestion of quality monitoring. The measurement experts present
he initial dataset and relevant information. The managers and
ata scientists both perform an initial question evaluation to
heck if the question suits the strategic interest of the project,
hether it is feasible to solve the question with state-of-the-art
f machine learning, what adaptation is necessary, and request
urther needed resources. Involved stakeholders are all parties.
he activities in this stage include understanding of machine
earning for the managers, process experts, and measurement
xperts so that they can propose economically solvable questions,
nd understanding of the data, process, and question for the data
cientists, so that they acquire necessary domain knowledge. To
nable the understanding, all parties need to communicate very
losely; however, a challenge lies here. Practice has shown that
he communication and mutual understanding between these ex-
erts can be onerous and error-prone. Despite of using the same
ocabulary, the exact meanings conveyed by these stakeholders
an often be discrepant. The reason is the information asymme-
ry caused by their varying disciplinary backgrounds. A ‘‘lingua
ranca’’ is needed to standardise the definitions of concepts in
he domain and to organise knowledge in order to facilitate
ommunication between the stakeholders.
Step 3, data collected under different conditions, locations,

ustomers, experiment designs, measurement settings, software
ystems, recorded in different formats, measured with different
quipment need to be prepared into some uniform data format
efore they can be processed or analysed. The data may have
ifferent names for the same variables, or have some variables
issing in one source but present in another source, or mea-
ured with different sampling rate, etc. Adding to the production
ata, data collected from laboratory and simulation for process
evelopment can have more discrepancies. Extra sensors are in-
talled in the laboratory, and the simulation data are generated
ith different mechanisms, despite that they represent the same
elding process. The various data sources bring difficulty to the
ractice to analyse them. Even data collected from the same lab-
ratory or simulation, can have different versions with different
esign of experiments in different stages of process development.
t would be extremely costly and time-consuming to develop
ifferent data analysis applications for each data source or format.
better solution is to systematically organise these data and

ntegrate them in a uniform way [39]. The challenges here are
o prepare these data, by renaming of the variables, unifying
ampling rate of the time series, synchronising the starting time
tamps of time series, etc, or for short, to integrate these data
n an uniform format and store them in one data base so that
hey can be further processed by machine learning algorithms.
he data scientists or data managers need to stay in close contact
ith process experts and measurement experts, since without a

roper understanding of the data and process, it is impossible to d

4

integrate data meaningfully and facilitate the later data analysis.
Involved stakeholders are data scientists, process experts and
measurement experts.

Step 4, ML analysis includes adequate data preprocessing and
its subsequent machine learning modelling. Given a input set X
hich contains input features of data samples {x|x ∈ X } and its
utput setQ, which contains quality indicators of the correspond-
ng data samples {q|q ∈ Q} the goal of machine learning [40] is to
ind a hypothesis of statistic estimation h|P : X → Q̂ (where Q̂
s the estimation of Q ), that is to obtain P , the set of parameters
f h, by calculating

= argmin
P

LD,f (h|P) (1)

here the loss function LD,f (h|P) is defined as

D,f (h|P) = D({x : h(x|P) ̸= q}) (2)

hich is namely to minimise the likelihood of observing h(x) ̸= q,
here D(x) gives the likelihood of observing x.
How to achieve this hypothesis h|P with accurate prediction

minimum loss) is the very question machine learning study
ttempts to answer. Industrial applications often require the data
nalysis to be not only accurate, but also interpretable and can
rovide insights for process experts. According to the literature,
achine learning pipelines in manufacturing can be largely di-
ided into two schools [41]. Among which, an important school is
eature engineering, which is to generate new features by chang-
ng the representation of the data [42] to improve modelling
erformance, and render the machine learning more transparent
y make feature evaluation and interpretation possible. How-
ver, feature engineering is laborious and time-consuming [42],
ecause different domains have distinctive features, entailing dif-
erent feature engineering strategies, which is a main reason
hat the other school, featured by automatic feature learning
currently mainly deep learning) is so hailed. It is highly desired
hat the development of machine learning approaches for other
imilar manufacturing processes can learn something from con-
ucted projects and require less effort. The challenges in this
tage are therefore to develop understandable machine learning
pproaches, incorporate a-prior domain knowledge provided by
he process experts, and make the developed approaches gen-
ralisable for other similar manufacturing processes. Involved
takeholder in this stage is mainly data scientists.
Step 5, the data scientists need to present the results, and dis-

uss intensively with other stakeholders to interpret the results,
he machine learning models meaningfully, draw appropriate
onclusions. The managers need to make thoughtful decisions.
or example, is the developed approach sufficient accurate and
esponsive? Can it be implemented in the production hardware?
hat improvement is necessary? To achieve the improvement

re more data required so that a new iteration of data collection
hould be performed?
Step 6, managers then have to choose the best model to

e deployed in industry. These models will be under constant
onitoring for addressing concept drift issues.
The workflow is intrinsically iterative. At any stage this work-

low can direct backwards to any of the previous stages.

.3. Use case requirements

Summing up, the time and effort required for ML development
s heavily affected by (C1) the necessity of multiple iterations
f communication by different stakeholders, (C2) the complexity
f the data integration process, and (C3) generalisability of the
eveloped ML models to similar processes and datasets. In order
o enhance the ML workflow in a way that it addresses C1–C3 we

erived the following five system requirements:
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• R1: Uniform communication model for various stakeholders:
The system should rely on a common vocabulary, with un-
ambiguously defined relations between the terms. This vo-
cabulary should be machine-readable and minimally contro-
versial.

• R2: Uniform data format and ML vocabulary: the results of
the ETL process are the input to ML modelling. Thus, the
system should offer a uniform format for the data storage
and a uniform naming of variables.

• R3: Mechanism for generalising ML models: the system should
offer a mechanism for machine learning methods developed
on one dataset to be reused or generalised to other datasets
and manufacturing processes.

• R4: Data enrichment mechanism: the system should enable
the enrichment of data with some task-specific information
so that the integrated data can be linked to the generalisable
machine learning approaches.

• R5: Flexibility, extensibility, maintainability: the system and
its functionalities should enable accommodation of new
data sources and ML tasks.

Note that the requirements R1 and R5 address the challenge C1,
then R2 and R5 address C2, and R3–R5 address C3; we depict it
in Fig. 1 with yellow circles.

3. Semantic Solution for Data-Driven Industrial Condition
Monitoring

In this section, we present our semantically enhanced machine
earning system, SemML, its architecture, mechanism and imple-
mentation. SemML enhances Step 2 to Step 5 of the workflow
in Fig. 1. The section is organised as follows: in Section 3.1 we
present an overview of the system architecture, in Section 3.2 we
lay out stepwise details of SemML components following the steps
of the workflow in Fig. 1, in Section 3.3 we zoom into details of
SemML implementation, and finally in Section 3.4 we present the
main semantic artefacts of SemML.

.1. SemML system architecture

SemML has a modular and multilayered architecture illustrated
n Fig. 2. In order to simplify for the reader the understand-
ng of how SemML works, we overlay the architecture with the
orkflow from Fig. 1 where the steps are indicated with blue
rrows. SemML has four layers: Industry Applications Layer where
he condition monitoring, diagnostics, and quality analysis hap-
en, Dynamic Front-end Layer that presents GUI to the users to

conveniently use the software system without diving deep into
the semantic or ML knowledge, Semantic Layer that contains the
ontology database with pre-designed ontologies and templates
libraries, semantic modules that allow users to access the ontol-
ogy database and create their semantic artefacts for the specific
tasks the users want to solve, and semantic artefacts created by
the users. ML Analysis Layer that contains machine learning mod-
ules enhanced with our semantic modules and the ML database
which stores the data collected from industry and the ML models
generated by the software system.

The arrows in Fig. 2 indicate the data flow from the raw
data sources generated by the industry application of condition
monitoring, through the machine learning analysis steps, and
back to the top layer where the developed quality models are
deployed and monitored.

We now discuss the mechanism of SemML and work the reader
through the workflow with semantic enhancement.
5

3.2. Mechanism of the semantic enhanced ML

Step 2: Semantically Enhanced Task Negotiation. Once the raw
data are acquired, data scientists and process experts align their
backgrounds and specify the task of quality analysis. To this
end, we developed the module of semantic Ontology Extender,
hich can be combined with ML module of Exploratory Data
nalysis (EDA) for process and data understanding. Its graphical
ser interface (Fig. 4.1) allows experts to describe their domain in
erms of an upper-level ontology that encodes general knowledge
f manufacturing (or oil and gas, chemical and process industries,
tc.), named as Core Ontology in this work, by filling in Ontology
emplates. The users thus create domain ontologies that reflect
he specificity of the raw data and a manufacturing process. For
xample, based on the Core Ontology and templates, users create
heir domain ontologies for different welding processes, such as
sw for resistance spot welding and hs for hot-staking. Although
omain ontologies are created by the users, they are ensured to
e of very good quality since they are built strictly based on the
ore Ontology and Ontology Templates. Templates are also used
y data scientists to annotate domain terms with task-related in-
ormation. Thus, Ontology Extender, as well as the Core ontology
nd ontology Templates, addresses the R1 and R5 requirements:
he Core ontology serves as a common communication model and
he templates make the system flexible and extensible to new
ata sources.

tep 3: Semantically Enhanced ETL. Our Domain Knowledge An-
otator enables data integration via the mapping of the raw data
o the terms in the domain ontologies. For mappings, we intro-
uce a compact graphical user interface (Fig. 4.2) with browsing
unctionalities of the ontology and it is linked to the Ontology
xtender. In case when a required term is missing, the user
an switch to the Ontology Extender, and the newly introduced
erm immediately becomes available for use. A domain knowl-
dge mapping (Raw-to-DO Mapping, where DO stands for Domain
ntology) is generated by the user activities. It is then used by
he Extract-Transform-Load (ETL) module to prepare the data for
achine learning, as shown in the semantic layer of Fig. 2. For
xample, the features Strom, CurrentAmp, and CurrentCurve from
ifferent data sources of resistance spot welding (RSW) are all
apped to the term rsw:Current, and thus all will be renamed to

sw:Current. The raw data from various formats are transformed
o prepared data with uniform agreed format, and the different
eature names of different data sources in the raw data are
hanged to unified feature names. Thus, the Domain Knowledge
nnotator addresses the R2 and R5 requirements.

tep 4: Semantically Enhanced ML Model Construction. The
ata prepared after the semantically enhanced ETL go through
he ML Knowledge Reasoner module. It has a graphic user in-
erface (Fig. 4.3) to allow the user to select a ML pipeline from
he ML pipeline catalogue, which stores several ML pipelines
eveloped beforehand by ML experts and encoded in ML pipeline
ntologies. Then, the ML Knowledge Reasoner relies on the ML
ntology (referred to as ml) and an ontology reasoner to in-
er machine learning-relevant information from the Raw-to-DO
appings, that is to infer the ML feature groups (FG) for each
ource from the Raw-to-DO mapping. This step is fully auto-
ated. For example, sensor signals measured along time such as

sw:Current, rsw:Voltage and rsw:Resistance are categorised as the
L feature group ml:FG-ProcessCurves, which is of feature type
l:TimeSeries and can be processed by specific algorithms. It also
xams available feature groups in the dataset, and adjusts the
elected ML pipeline to the dataset, and results a ML pipeline
ntology tailored to the dataset. By doing so, the raw data are
ully docked with the ML pipeline that the user selects. It creates
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Fig. 3. Low-level system structure design. Core structures have light blue colour and provide the main functionalities . Support structures provide management
functionalities only and are presented with pink colour. Solid double-headed arrows represent the communication of main functionalities and dashed double-headed
arrows the communication of management functionalities.
Fig. 4. Graphical user interfaces for (1.1–1.2) Ontology Extender, (2.1–2.2) Domain Knowledge Annotator, (3.1–3.4) ML Knowledge Reasoner and (4.1–4.4) ML
Interpreter. A more detailed view of Ontology Extender and Domain Knowledge Annotator see Fig. 14.
the Data-to-FG Mapping for each raw data source. The result-
ing two kinds of mappings store different relationships. Indeed,
consider for example a sensor measurement feature named as
‘‘CurrentAmp’’ that contains a series of observations of electric
current values with time stamps. This feature will be mapped
to the domain term ‘‘operationCurveCurrentValue’’ with a Raw-
to-DO mapping and to the ML term ‘‘FG-ProcessCurves’’ with an
Data-to-FG mapping. The latter indicates that this column will
be treated as process curves, which of feature type time-series
in machine learning. Data-to-FG mappings enable the uniform
handling of the prepared data by ML algorithms in the ML Mod-
elling module. This module performs various transformations of
data categorised as feature groups and construct several machine
learning models trained on the data. Our ML Knowledge Reasoner
addresses the requirements R3–R5.

Step 5: Semantically Enhanced ML Interpretation and Visu-
alisation. In order to conduct ML interpretation, data scientists
discuss the ML models with other stake-holders through the
Visualisation & Interpretation Module. Our ML Interpreter module
(Fig. 4.4) facilitates a uniform and explainable inspection of ML
models and raw data using ontologies, and thus, addresses the
6

requirements R1 and R5. After the inspection, a selected ML
model, and insights provided by ML analysis are deployed in the
industrial applications layer.

3.3. System implementation

In the low-level design of SemML, it was decided to divide
the system into four core structures and two support structures
represented in Fig. 3. The core structures were developed in order
to provide the functionalities corresponding to the semantic com-
ponents described in Section 1. The support structures provide
functionalities required for the management of the system. The
core structures are described as following:

• S1: System database: This structure is responsible for storing
ontologies, their mappings to the raw variables, and ML
pipelines. The structure is divided into two sub-databases:
ontology database and ML database. The ontology database
contains all semantic artefacts. The ML database contains
the raw datasets and prepared datasets to be analysed and
the generated ML models.
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Fig. 5. Schematic illustration QMM-Core, QMM-RSW and Templates where prefixes such as qmm-core are omitted [10].
Fig. 6. Example to illustrate the mechanism of ontology extension based on templates by the users. In the GUI (top left) the user fills the variables of the template,
qmm-t:OperationCurve. The user input is processed by the Input Process Function and creates a Template Instance. The Tool for Expanding Instances relies on the
Template Instance and the Template, creates the class qmm-rsw:OperationCurveCurrent, and serialises the class in OWL axioms [10].
• S2: API Handler: The API handler connects all other three
structures. It is designed as a REST API handling and struc-
turing the requests and responses. This structure also man-
ages the permissions and security of the system.

• S3: ML components: This structure contains machine learning
scripts and is responsible for storing and executing machine
learning algorithms on request over the data provided via
the API Handler. The results and processed data are then
sent back as requested by the API handler.

• S4: Dynamic Front-end: This structure enables users to in-
teract with the system functionalities and data. It contains
the user interfaces required for accessing the system com-
ponents and data used during ML processes. The front-end
structure covers the following components: Ontology Ex-
tender, Domain Knowledge Annotator, ML Knowledge Rea-
soner, and ML Interpreter.

The four semantic components described earlier play a critical
ole in the overall user experience, since they require involve-
ent of the end users in the critical parts of the ML processes.

n this respect, these components require robust graphical user
nterfaces. We designed GUIs for these components as depicted
n Fig. 4. A Web based implementation, including Web technolo-
ies such as HTML, JavaScript, and CSS, is decided for the user
7

interfaces in order to provide a platform independent solution.
A widget-based approach is preferred for connecting individual
sub-interfaces providing a smooth flow and well-connected user
experience [43]. The user interfaces are described as follows:

• GUI 1: Ontology Extender: The Ontology Extender is capable
of achieving the designed tasks assigned for it in Section 1
and is illustrated in Fig. 4.1. It is possible to assign a cus-
tomised name to the process via text box in 1.1. With the
name assigned to the process the user can select the type of
the process in the drop-down list in 1.2.

• GUI 2: Domain Knowledge Annotator: This GUI component
presented in Fig. 4.2 allows the user to visualise the au-
tomatically assigned domain ontology names to the raw
variables in 2.1.

• GUI 3: ML Knowledge Reasoner: The GUI presented in Fig. 4.3
shows a selection of predefined machine learning pipelines
that can be used for the input data, visualised in 3.1. With
the feature groups by the ML Knowledge Reasoner, the
data are automatically annotated with these feature groups
and are used in the selected machine learning pipeline. A

visualisation of these assigned feature groups to be used in
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the pipeline can be seen in 3.2. The feature processing al-
gorithms (FP algorithms) and the subsequent ML algorithm
are illustrated in 3.3 and 3.4.

• GUI 4: ML Interpreter: The interface represented in Fig. 4.4
allows users to visualise and inspect the machine learning
models and the prediction results. The desired visual repre-
sentation can be selected among predefined representations
as depicted in 4.1, with the labels of X-Axis and Y-Axis
configured in 4.2. The resulting visualisation can be drawn in
the browser canvas or saved locally by clicking the buttons
in 4.3. An example of the drawn visualisation is depicted in
4.4.

In Fig. 6 we exemplify our template instantiation process
ith one template qmm-t:OperationCurve. Templates guarantee
niformity of the updates and the consistency of the updated on-
ology, as well as the relative simplicity of the ontology extension
rocess.

.4. Semantic artefacts of SemML

Semantic layer of SemML customises the system to different
omains and usage scenarios through automated reasoning. The
ore of the solution comprises the following seven semantic arte-
acts. We first list these artefacts and then explain them in detail.
ince these artefacts were developed for quality monitoring in
anufacturing, they have the prefix QMM.

1. QMM-Core Ontology, the upper-level ontology for quality
monitoring in manufacturing, encoding general knowledge
of manufacturing;

2. QMM-Templates, the library of ontology templates for do-
main knowledge encoding;

3. Domain Ontologies, specific ontologies for different do-
mains, constructed by the users based on QMM-Core and
QMM-Templates;

4. QMM-ML Ontology, the task ontology for machine learning
that powers the ML components of the system;

5. ML-Templates, the library of ontology templates for ML
knowledge encoding;

6. ML Pipeline Catalogue, which stores a set of ML solutions
developed by ML experts beforehand and encoded in ML
pipeline ontology;

7. ML Pipeline Ontologies, which contain concrete ML solu-
tions for specific datasets. The selected ML pipeline ontol-
ogy from the ML Pipeline Catalogue by the user will be
adjusted to the dataset by SemML.

e now describe these semantic artefacts and show how tem-
lates enable the construction of domain ontologies and the
eusability of ML pipeline descriptions.

QMM-Core Ontology has been developed through a series of

orkshops, taking inputs from various Bosch experts of engineer-
ng and machine learning. It reflects the consensus terminology
or a common base of discussion. QMM-Core Ontology is an
WL 2 ontology and can be expressed in the Description Logics
(D). With its 1170 axioms, which define 95 classes, 70 object
roperties and 122 datatype properties, it models the processes of
iscrete manufacturing with an emphasis on quality analysis. The
eft part of Fig. 5 displays the main classes and relations between
hem.

QMM-Core takes an operation-centred perspective: all classes
escribing the context of the operation, equipment and prod-
ct are linked to the class qmm-core:Operation. This orientation
aturally follows from the analytical task of quality prediction
escribed in Section 2.1. In particular, a qmm-core:Operation is
erformed by a qmm-core:Machine on a qmm-core:RawProduct.
8

t results in a qmm-core:OperationProduct. Sensor observations
re stored as qmm-core:OperationCurves and represent series of
bservation results with their corresponding timestamps. This
lass is our lightweight adaptation of ssn-ext:ObservationCollection
rom the proposed extensions to the Semantic Sensor Network
ntology [44]. We thus align QMM-Core with the established
ay to model and query sensor observations — the SOSA/SSN
ntology [45].
QMM-Core presents the detailed modelling of the manufactur-

ng equipment and the context of the operation through domain
nd range axioms of the object properties. The important group
f object properties encodes part-whole relationships between
lasses: e.g. qmm-core:hasPart links qmm-core:Machine and qmm-
ore:MachinePart as well as two or more qmm-core:MachineParts.
his allows to describe complex machines and product assem-
lies. Meronymic properties are defined as transitive. We make
se of data properties to encode the characteristics of entities
hrough the same domain-range axiom mechanism.

Classes and properties of the QMM-Core Ontology define the
ey modelling patterns for the domain ontologies of different
anufacturing processes. Patterns capture repetitive structures

n the linked classes and their associated properties and can be
nstantiated via the ontology templates.

QMM-Templates. Ontology templates can be seen as

arametrised ontologies. Users of templates create ontology ele-
ents by providing values to these parameters. The values can
e named classes, object and data properties, individuals, and
lain literals. A template is instantiated by the replacement of
ts parameters by the provided values. Instances of templates are
xpanded to OWL 2 axioms. To record templates we rely on the
easonable Ontology Templates (OTTR) framework [46] and we
se the template processor tool Lutra.2
For our use cases, we created 30 templates that rely on the

lasses and relationships of the QMM-Core ontology. In the fol-
owing, we refer to this template library as QMM-Templates.

omain Ontologies are created by the users based on the QMM-
ore by filling the templates. They share the same knowledge
atterns in the QMM-Core and the templates. For example, in
ig. 5.b the QMM-RSW mimics the knowledge pattern in the
MM-Core, but encodes the particularities of resistance spot
elding. In particular, a qmm-rsw:RSWOperation is performed
y a qmm-rsw:WeldingStation on a qmm-rsw:ChassisPart. It re-
ults in a qmm-rsw:WeldNugget. Sensor observations are qmm-
sw:OperationCurveCurrent and qmm-rsw:OperationCurveVoltage,
hich are sub-classes of qmm-core:OperationCurve. With this
xample, it can be clearly seen that the common knowledge
atterns can be emphasised across domain ontologies.
All classes created by the same ontology template share the

orresponding super-classes from the QMM-Core Ontology and a
et of related properties, linked to the QMM-Core Ontology by the
dfs:subPropertyOf axioms. The users of SemML annotate datasets
ith domain classes and properties, and the mentioned linkage
llows to automated the handling of these elements at a higher
bstraction level, namely at the level of groups of features, in the
L Modelling modules of SemML.

MM-ML Ontology has classes to categorise features as qmm-
l:FeatureGroups: time series, categorical features, identifiers, etc.

t also encodes various preprocessing, feature engineering, and
L algorithms. QMM-ML is partially depicted in Fig. 7. It contains
2 classes, 4 object properties, 2 datatype properties as well as
10 axioms and 122 annotation assertions; it can be expressed
sing ALH(D) Description Logics.

2 https://gitlab.com/ottr/lutra/lutra.

https://gitlab.com/ottr/lutra/lutra


B. Zhou, Y. Svetashova, A. Gusmao et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100664

i
f
t
q

e
o
R
a
t
r
i
a

e

h
b

Fig. 7. A fragment of the QMM-ML ontology, which gives examples of feature groups, preprocessing and feature engineering algorithms and engineered features [10].
QMM-ML Ontology is used to enhance the dataset described
n the Domain Knowledge Annotator with the ML-relevant in-
ormation on the feature level. This is done via reasoning and
he reasoning results are stored as Data-to-FG mappings store
mm-ml:FeatureGroups for all columns in the prepared data.
The ML Modelling module of SemML, in turn, has generic op-

rations and algorithms with the behaviour specified on the level
f qmm-ml:FeatureGroups of QMM-ML. Thus, the ML Knowledge
easoner can retrieve the pre-processing and feature engineering
lgorithms for each group of features and automatically derive
he types and the names of the engineered features. To this end, it
elies on the corresponding class definitions in the QMM-ML. For
nstance, the pre-processing algorithm for time series is defined
s follows:3

(1) Class: qmm-ml:TimeSeriesPreprocessingAlgorithm

(2) SubClassOf: qmm-ml:isPreprocessingAlgorithmOf only qmm-ml:
TimeSeries

The ML Modelling module contains the implementation for
ach of the algorithm’s subclasses: qmm-ml:Interpolation, qmm-

ml:Segmentation and qmm-ml:Sorting.
The feature engineering algorithm for time series is defined

analogously:

(3) Class: qmm-ml:TimeSeriesFeatureEngineerAlgorithm

(4) SubClassOf: qmm-ml:isFeatureEngineerAlgorithmOf only qmm-
ml:TimeSeries

Its subclasses, in turn, are related to the corresponding engi-
neered features, and the ML Modelling module will have the
implementation for all of them. For example, based on the def-
inition:

(5) Class: qmm-ml:GetMaximum

(6) SubClassOf: qmm-ml:TimeSeriesFeatureEngineer-Algorithm

(7) SubClassOf: qmm-ml:hasDerivedFeature only qmm-ml:Maximum

The ML Modelling module will apply the implemented Get-
Maximum algorithm to all time series features and generate new
features with the token ‘‘Maximum’’ in their name for all of them.

In ML terms, the way how our semantically enhanced ML
Modelling module works is: h : X

M
−→

{
{FG1} · · · {FGN}

} QMM−ML
−−−−→

3 We use the Manchester Syntax of OWL 2 [47], where classes and properties
ave prefixes qmm-rsw:, qmm-core:, qmm-ml: that indicate the ontologies they
elong to.
9

{
{FPG1} · · · {FPGK }

}
→ Q̂I, where h is a hypothesis that maps

raw input features X into an estimation Q̂I of a welding qual-
ity indicator QI. This mapping has two intermediate steps: (1)
using Data-to-FG Mapping M it fetches a set of standardised
Feature Groups FGs and (2) using QMM-ML it turns them into a
set of Feature Processed Groups FPGs (EngineeredFeatureGroup is
a subclass of FPG). This makes the developed ML approaches
easily extendable to similar tasks and datasets. Moreover, this
enables non-ML-experts to better understand the ML approaches,
and even to modify the ML approaches with minimal training of
ML expertise. Note that a classical ML Modelling module starts
with X and may develop different ad hoc feature processing
strategies for different tasks and data sources to estimate Q̂I, or
schematically: h : X → Q̂I.

ML-Templates. This library essentially contains three groups of
templates: (1) templates that describe the meta-information,
e.g. relationship between datasets and entries; (2) templates that
connect the annotation input by the users as domain terms to
the QMM-Core and to the QMM-ML; (3) templates that can be
used to construct ML pipeline ontologies, e.g. the structure of
ML pipelines from starting layer (prepared data layer), to feature
processing layer (data preprocessing), to ML modelling layer,
and to the end layer (ML models layer), the general pattern of
input-algorithm-output.

ML Pipeline Catalogue. ML solutions are developed beforehand
by ML experts and encoded as ontologies in the catalogue. These
ML solutions are developed in a general manner, that is to say,
for example, their performance is relatively insensitive to hyper-
parameter changes, or they can cover a quite broad range of
application scenarios. Since ML solutions often consist of a series
of steps, taking prepared data as input, with many modules of
data preprocessing and ML modelling, and outputting ML models
at the end, they are referred to as ML pipelines in this work.

ML Pipeline Ontology. An ML Pipeline Ontology is an executable
description of a concrete ML pipeline configuration. It adopts
a layer-wise structure, which always starts from the qmm-ml:
PreparedDataLayer, goes a series of qmm-ml:FeatureProcessing
Layer, ends qmm-ml:MLModellingLayer. These are the three types
of layers. The layers are connected with the object property qmm-
ml:hasNextLayer. Each qmm-ml:FeatureProcessingLayer or qmm-
ml:MLModellingLayer has a structure of qmm-ml:Input, qmm-ml:
Algorithm, and qmm-ml:Output. A piece of the ML pipeline ontol-
ogy looks like this:

(8) Individual: qmm-ml-i:p1
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(9) Types: qmm-ml:Pipeline

(10) Facts: qmm-ml:hasNextLayer qmm-ml-i:l1

(11) Individual: qmm-ml-i:l1

(12) Types: qmm-ml:FeatureProcessingLayer

(13) Facts: qmm-ml:hasNextLayer qmm-ml-i:l2,

:hasInputOutputCombination io1, io2

(14) Individual: qmm-ml-i:io1

(15) Types: qmm-ml:InputOutputCombination

(16) Facts: qmm-ml:hasInput :FG-SingleFeature,

qmm-ml:hasAlgorithm qmm-ml:Maintain,

qmm-ml:hasOutput :FG-SingleFeatureMaintained

(17) Individual: qmm-ml-i:io2

(18) Types: qmm-ml:InputOutputCombination

(19) Facts: qmm-ml:hasInput :FG-ProcessCurve,

qmm-ml:hasAlgorithm qmm-ml:GetStats,

qmm-ml:hasOutput qmm-ml:FG-TSStats

We show the ML Pipeline ontology for the simplest pipeline
chematically in Fig. 9. Note that all ML Pipeline ontologies are
uilt by using ML-Templates: qmm-t:Pipeline, qmm-t:Layer, qmm-
:Input-Output, and qmm-t:Target. The latter template allows to
ark a variable in a dataset as a predicted variable for ML.

. Bosch use case: Quality monitoring in electric resistance
elding

We now discuss the Bosch welding process quality monitoring
se case, the collected data and problem definition.

.1. Bosch welding process quality monitoring

Bosch is one of the global manufacturing leaders in the au-
omotive industry. Welding is heavily used in industry for nu-
erous applications including car production. Indeed, a typical
ar body can contain up to 6000 welding spots [48] where pieces
f metal are connected. Bosch welding solutions include welding
quipment (Fig. 8 for RSW) software, service, development sup-
ort, etc. These solutions are used in Bosch plants and many cus-
omers worldwide, e.g. Daimler, BMW, Volkswagen, Audi, Ford.
nabled by the abundant data and computing resources behind
he IoT technologies, Bosch is developing ML methods to predict
he welding quality of next spots, before the actual welding hap-
ens. In the workflow illustrated in Fig. 8, the ML solutions should
e able to predict the quality of the 6th welding spot, based on
ata of previous welded spots, including sensor measurements,
elding configurations, past spot quality, etc. This allows to take
ecessary measures beforehand, like automatic adjustment of
elding parameters, to improve the expected welding quality and
void potential quality failure.

.2. Bosch welding data

The welding quality is quantified by a quality indicator: Q-
alue. It is developed empirically by Bosch Rexroth with long-
ime experience and engineering know-how. The optimal value
f Q-Value is 1, indicating perfect quality. A Q-Value larger than 1
ndicates too much energy is spend on the welding spot, while Q-
alue smaller than 1 often means quality deficiency. Q-Values are
ypically computed on datasets collected from production lines.
he data we collected for the use case consist of:
10
Fig. 8. Resistance Spot Welding (RSW) [31].

four types of automatically generated protocols that contain
descriptive information of the actual welding processes:
– main protocol: with data recorded by the welding software

systems, includes available welding quality, control informa-
tion, system component status; has 164 fields, 40.5 million
records,

– error protocol: with minor errors relevant to possible quality
deterioration or inefficiency; has 10 fields, 1 million records,

– failure protocol: with more severe quality failures, has 24
fields, 168 thousand records,

– change protocol: with recorded manual interference by oper-
ators; has 16 fields, 272 thousand records.

• feedback curves database: with sensor data of resistance, pulse
width modulation, force, etc., measured per millisecond during
the welding process; has 14 fields, 2.7 million records.

• reference process curves database: with the target feedback
curves prescribed by welding programs; has 14 fields, 196
groups corresponding to 2.7 million records of the feedback
curves.

• meta settings database: with general configurations of welding
sheet material, geometry, adhesive, etc.; has 23 fields, 196
groups corresponding to 40.5 million records.
These raw data has various formats, including SQL database,

Excel tables, text files, RUI-files and can have many discrepancies
in variable names and data formats. Thus, we merged different
protocols, databases, etc., unified data formats, variable names,
and transformed them into one uniform data format. This process
of data preparation and integration was time-consuming and
resulted in 263 fields, 53.2 million records, and 1.4 billion items
in total.

Our next step was to understand what data is more important.
We organised several workshops with welding process experts
and selected and prepared fragments of data that correspond
to two representative welding machines, Welding Machine 1
(WM1) and 2 (WM2) that perform two and four welding pro-
grams respectively. These integrated data correspond to 2.74 mil-
lion records and 44.61 million items and capture 1998 and 3996
welding operations of WM1 and WM2 respectively.

These data are comprised of features in two levels:
• Data on the welding time level, which contain 4 meaningful

Process Curves, including electric current (I), voltage (U), resis-
tance (R), pulse width modulation (PWM). They are measured
per millisecond, and are of different lengths, ranging from 400
to more than 1000 samples, depending on the actual welding
time. These process curves form Time Series (TS) on the welding
time level.

• Data on welding operation level, which contain 188 meaningful
Single Features (SF). They are constants for each single welding
spot. The consecutive single features form time series on the
welding operation level. More precisely, these single features
are:
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Fig. 9. Schematic illustration of examples of HS ontology and ML pipeline ontology. Some object properties and classes are omitted for simplicity. The rectangles
with dashed border indicate that the named individuals of InputOutputCombination are connected to instances of the classes in the rectangles.
– Program Numbers (ProgNo) are nominal numbers of the weld-
ing programs, each prescribing a set of welding configura-
tions.

– Count Features, includingWearCount, which records the num-
ber of welded spots since last dressing,4 DressCount, which
records the number of dressings performed since last cap
change, and CapCount, which records the number of cap
changes.

– Status, describing the operating or control status of the weld-
ing operation, e.g. System Component Status, Monitor Status,
and Control Status.

– Process Curve Means, which are the average values of the
process curves during their welding stages, calculated by the
welding software system.

– Quality Indicators, which are categorical or numerical values
describing the quality of the welding operations, e.g. Process
Stability Factor, HasSpatter, and the output feature Q-Value.

.3. Problem definition

The quality monitoring task is to maintain the Q-Value as
lose to 1 as possible for all welding spots during manufacturing.
n practice, we would like to do it by learning estimations of
-Values before the actual welding happens and then to take
reventive actions if the predicted value is too low: change pa-
ameters of welding machines, replace welding caps, etc. More
ormally, we need an estimation function f mapping manufac-
uring data to the Q-Value of the next welding operation Qnext as:
next = f (X1, . . . , Xprev−1, Xprev, SF∗

next ), where X1, . . . , Xprev−1, Xprev
include data (single features and time series) of previous welding
operations and known features of the next welding operation
(SF∗

next , e.g. welding program).

5. Demonstration of the semantic software on the use case

We now demonstrate how SemML is applied on the use case,
including the domain ontologies, ML pipeline ontology, detailed
mechanism of semantic enhanced ML and a short introduction of
the ML pipelines in the use case.

5.1. Domain and application ontologies

We now present two domain ontologies and several applica-
tion ontologies that were used in our use case.

QMM-Resistance Spot Welding Ontology. By applying our tem-
plates, Bosch domain specialists created the QMM-RSW – ontolo-
gies for the resistance spot welding process. QMM-RSW created

4 Dressing is a type of maintenance operation in RSW, that is to remove a
very thin layer of the electrode cap surface to restore the surface condition of
the cap to a starting condition that is more suitable for welding.
11
by different users for different datasets differ in small details. A
typical example ontology features 1542 axioms, which define 84
classes, 123 object properties and 246 datatype properties and
can be expressed using SH(D) Description Logics. An example of
QMM-RSW and its relationship to templates are partially shown in
the right part of Fig. 5.

QMM-Hot-Staking Ontology. Bosch domain specialists also cre-
ated ontologies for the hot-staking welding process. Similar to
QMM-RSW, QMM-HS ontologies created by different users differ in
details. Still, all of them can be expressed using SH(D) Descrip-
tion Logics. Templates guarantee that new domain ontologies
will not exceed the desired expressivity. An example QMM-HS
ontology features 1491 axioms, which define 64 classes, 90 ob-
ject properties and 182 datatype properties. QMM-HS and tem-
plates are partially shown in the left part of Fig. 9. Hot staking
bears resemblance to the RSW process: a qmm-hs:HSOperation
is performed by a qmm-hs:HSMachine on a qmm-hs:WireForkPair.
It results in a qmm-hs:WeldedWireForkPair. For the hot staking
process, qmm-hs:GDGResistance and qmm-hs:ElectrodeCount are
established quality indicators. The qmm-hs:WeldingControl unit
of the qmm-hs:HSMachine monitors multiple operation curves.
Ontologies for HS showed that users can successfully apply QMM-
Templates to create ontologies for similar manufacturing pro-
cesses. Moreover, for hot staking we could largely reuse the
modelling of operation curves from the RSW process.

QMM-ML Pipeline Catalogue. Four ML pipelines were developed
beforehand and encoded in ontologies (details see Section 5.3
and Figs. 9 and 11). These ML pipelines differ in their layered ar-
chitecture, preprocessing and feature engineering strategies, ML
algorithms used and the expected input data. QMM-ML Pipeline
catalogue stores the configurations corresponding to each ML
pipeline as ontologies.

QMM-ML-Pipeline Ontology. The four ML pipelines are encoded
in ML pipeline ontologies and can be tailored to specific datasets
by SemML. In the right part of Fig. 9, we present an example
ML-Pipeline Ontology, which encodes the simplest ML pipeline
Base-LR (Section 5.3). We omit the PreparedDataLayer, which only
contains three feature groups, FG-SingleFeature, FG-ProcessCurve
and QualityIndicator. These 3 groups must be present in the
dataset for the pipeline to guarantee a good performance. Fig. 9
exemplifies a series of FeatureProcessingLayers and ends with
MLModellingLayer. Each layer has input, output, and the algorithm
to be applied to the input. It also points to the next layer to be
executed. Often, the output of the previous layer becomes the
input to the next layer.

5.2. Semantically-enhanced machine learning

We now explain how we semantically enhanced ML with on-
tologies and novel processing modules by following the workflow
in Fig. 10, where the Step 2 and Step 3 are illustrated in detail.
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Fig. 10. Mechanism of semantic enhanced ML model construction in ‘‘Static Mode’’: data preparation and ML pipeline selection from a catalogue without dynamically
hanging the ML pipeline structures.
Fig. 11. Visualisation of ML pipelines of Base and Advanced Feature Engineering (FE). LR: linear regression, LSTM: long short-term memory network, TSFE: time series
eatures engineered, SF: single features, EngSF: engineered single features, EngF_Prog: engineered features with respect to program numbers.
f
a

In the raw data layer, several example features in the raw data
n ML database are shown, e.g. QV, Wear, Tipdresscount (Fig. 10).
he raw data are first annotated by users with domain terms,
enerating the Raw-to-DO (raw to domain) mapping. Using this
apping, the data are processed by the ETL module and turned

nto the prepared data (prepared data layer). The feature names
re changed to unified feature names, e.g. Q-Value, WearCount,
ressCount. Since all features are connected to domain ontologies
hrough the domain term annotation, they are also connected to
MM-Core, because domain ontologies are constructed based on

QMM-Core. Then, these features are also connected to the ML on-
tology. Through the ML Knowledge Reasoner, the Feature Groups
FG) can be automatically reasoned and used as annotations for
he features (Feature Group Annotated Data Layer in Fig. 10).

We now illustrate this reasoning with an example:

(18) Class: qmm-rsw:ElectrodeCap

(19) SubClassOf: qmm-core:SystemComponent

(20) SubClassOf: qmm-rsw:hasElectrodeCapStatus

only qmm-rsw:WearCount

(21) Class: qmm-rsw:WearCount

(22) SubClassOf: qmm-core:ToolWearingStatus

(23) Class: qmm-core:ToolWearingStatus
12
(24) SubClassOf: qmm-core:Status

(25) SubClassOf: qmm-core:hasMLFeatureGroup only
qmm-ml:FG-Wear

Axiom 20 defines that (the elements of the class) qmm-rsw:
ElectrodeCap can only have the status parameter qmm-rsw:
WearCount. The latter has a superclass qmm-core:ToolWearingStatus
rom the Core ontology (Axiom 22), which is assigned the only
ssociated machine learning feature group qmm-ml:FG-Wear (ax-

iom 25). Observe that from Axioms (22) and (25) one can derive
using reasoning that qmm-rsw:WearCount ’s only feature group is
also qmm-ml:FG-Wear, formally:

(9) Class: qmm-rsw:WearCount

(10) SubClassOf: qmm-core:hasMLFeatureGroup only
qmm-ml:FG-Wear

The users then view the available ML pipelines and select
one pipeline that he thinks suitable to solve the ML task. In the
ML pipeline catalogue in Fig. 10, on the left hand side four ML
pipelines are illustrated for users to select. The user selects ML
Pipeline 2. On the right hand side, ML Pipeline 2 (Base-LR, see
Section 5.3) is schematically illustrated, where FG-QualityIndicator
is used as output of linear regression (LR) modelling, and the
FG-SingleFeature and FG-ProcessCurve are processed by a series
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of steps and in the end used as input for the ML modelling.
Depending on the ML pipelines, a series of LR models or LSTM
models can be generated.

To activate the ML pipeline selected by the user, the fea-
ure group annotations are used by the ML knowledge reasoner
o automatically map features in the ML database to Feature
Groups in the ML pipeline ontology that corresponds to the se-
lected ML pipeline. The selected ML pipeline ontology is then
preprocessed by the ML knowledge reasoner to be adjusted to
the feature groups available in the ML database. For example,
if there exist only single features in the ML database, but the
selected ML pipeline also contains feature processing steps for
FG-ProcessCurve, then these steps relevant to FG-ProcessCurve will
e trimmed. The adjusted ML pipeline ontology then is used to
ctivate the parametrised ML pipeline. The ML pipeline is a set of
L scripts with interface open to feature groups (input to the ML
ipeline) and ML models (output of the ML pipeline). By feeding
he features in the ML database to the ML pipeline and activating
he interface of feature groups, ML models are trained and output
o the ML database (ML Models Layer in Fig. 10).

.3. Four ML pipelines for the use case

In the use case, four ML pipelines were developed beforehand
nd stored in a catalogue for users’ selection. They have been
esigned in a general manner and evaluated with a large dataset
ollected from resistance spot welding (RSW) plants [31]. In the
ollowing, we first briefly introduce the four ML pipelines, and
hen present subjective evaluation of semantic enhanced machine
earning.

The ML pipelines adopt the classic ML school of feature engi-
eering and modelling [41]. Feature engineering is to manually
esign some strategies to extract new features from the raw
eatures (named as engineered features) [42]. ML models are
hen trained on the engineered features. The combinations of two
eature engineering strategies, Base feature engineering and Ad-
anced feature engineering, and two ML models, linear regression
nd LSTM result in four ML pipelines. Therefore, the four ML
ipelines can be denoted as Base-LR, Base-LSTM, Advanced-LR,
nd Advanced-LSTM.

ase Feature Engineering. As illustrated in Fig. 11.a, Time series
eatures (TS) of different lengths are first padded with different
alues that are physically meaningful. Current, voltage and pulse
idth modulation are padded with zero, since after welding they
re de facto zero, while resistance is padded with the last value,
or resistance is the intrinsic property of matter and does not
isappear after welding. After that, eight statistic features, includ-
ng minimum, maximum, minimum position, maximum posi-
ion, mean, median, standard deviation, and length, are extracted
rom the time series (named as time series features engineered,
SFE). These features are then concatenated with single features.
he concatenated features are then reshaped to take the certain
ook-back length of previous welding data for forecasting future
elding quality.

dvanced Feature Engineering. As illustrated in Fig. 11.b, three
ew features are engineered based on single features (named as
ngineered single features, EngSF): 1) WearDiff is calculated as
he difference between WearCount of two consecutive welding
perations, characterising the degree of change of wearing effect;
2) NewDress will be ONE after each dressing, and ZERO other-
wise; (3)NewCap will be ONE after each Cap Change, and ZERO
therwise. The EngSF are concatenated with RawSF and TSFE,
nd further processed by Decomposition with respect to ProgNo,
esulting in engineered features with respect to program numbers

EngF_Prog). The EngF_Prog incorporate information of program

13
Table 1
Model performance tested on test sets.
Data preprocessing Modelling mape (WM1) mape (WM2)

Benchmark: Q̂next = Qprev 3.19% 7.74%

Base feature engineering LR 2.38% 2.50%
LSTM 2.35% 2.27%

Advanced feature engineering LR 1.61% 2.10%
LSTM 2.04% 1.94%

numbers by decomposing the concatenated RawSF, EngSF and
TSFE, which form time series on the welding operation level,
to sub-time-series with respect to ProgNo (Fig. 12.a). Each sub-
time-series only belongs to one ProgNo. The EngF_Prog include
RawSF_Prog, EngSF_Prog, and TSFE_Prog. After that, the RawSF,
EngSF, EngF_Prog and TSFE are then again concatenated and
reshaped.

ML Modelling. Following the feature engineering, two ML meth-
ods are used for ML modelling. (1) The reshaped features needed
to be flattened, and reduced by feature selection. After that, they
can modelled by linear regression (LR). LR is selected to demon-
strate that even simple ML algorithm can have great performance
with meaningfully engineered features. Least squares method is
usually used for solving LR modelling. (2) The reshaped features
can be directly modelled by LSTM networks. LSTM is an artifi-
cial recurrent neural network (RNN) architecture. It is especially
suitable for modelling data with temporal dependencies [49].

Hyper-parameter Tuning. The datasets were split into training,
validation and test set. The four types of ML models on the
training set and the hyper-parameters were selected based on the
performance on the validation set. The number of selected features
and look-back length were first selected with Advanced-LR with
the performance metric mean absolute percentage error, mape,
omputed as 1

N

∑N
i=1 |Qi − Q̂i|/Qi × 100%. They are then fixed

for other pipelines. The number of selected features and look-back
length will influence the amount of data delivered to ML models.
They are therefore first selected with Advanced-LR and then fixed
for other pipelines, for making a fair comparison, emphasising
influence of feature quality, rather than of data volume caused by
these two features. Besides, to make the ML pipelines general for
more datasets, these hyper-parameters should provide relatively
good performance (not necessarily the best performance), avoid
overfitting, and ideally model performance should be insensitive
to the hyper-parameters. Several hyper-parameters of the LSTM
neural networks are selected after a series of experiments and
then fixed because they generally show better performance than
their alternatives: Adeldelta optimiser, with data shuffling, state-
less LSTM, and saving the best model strategy for determining
iteration. The number of layers and number of neurons in each
layer were selected with limited grid search 12. It can be clearly
seen from Fig. 12.b that after around 12 of selected features and
a look-back length of 5, the performance of models reaches a
plateau (or basin in sense of mape). We have chosen a look-back
length of 10 and 20 selected features, for in this area the models
are rather insensitive to hyper-parameters.

Performance of Prediction Accuracy. The results for the four
models are summarised in Table 1. The performance of the ML
pipelines is better than the benchmark, indicating effectiveness of
feature engineering. The model performance improves from Base
to Advanced as expected: the higher level of feature engineering
brings improvements. The best model for WM1 is Advanced-LR
(1.61%), while for WM2 Advanced-LSTM (1.94%). Advanced-LR
outperforms Advanced-LSTM for WM1, while for WM2 it is the
other way around. We postulate that the reason is that WM1 has
less complex data than WM2.
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Fig. 12. (a) Generating EngF_Prog by decomposing RawSF, EngSF and TSFE to sub-time-series on the welding operation level; (b) Selecting the look-back length and
Selected features using mape on validation set; (c) Selecting the #Neurons of LSTM [31].
Fig. 13. Prediction results of Advanced-LR for WM1 in (a) line and (c) scatter plots and for WM2 in (b) line and (d) scatter plots [31].
The best prediction results for WM1 are by Advanced-LR and
for WM2 are by Advanced-LSTM. Their prediction results are
illustrated in Fig. 13 with line and scatter plots.

6. Evaluation with user study

For evaluation of the Ontology Extender and Domain Knowl-
edge Annotator, we conducted a user study with 14 Bosch ex-
perts. These two components essentially addresses the challenges
C1 on communication and C2 on data integration by. Since the
SemML runs in a ‘‘Static Mode’’ for ML construction, the users only
need to select ML pipelines without dynamically changing the ML
pipelines, and this will not affect the ML prediction performance.
Therefore, we could only evaluate the ML Knowledge Reasoner
and ML Interpreter in a subjective manner. More extensive evalu-
ation remains our future work. These two components address C1
on communication and C3 on ML generalisability. In the subjec-
tive evaluation, users gave positive feedbacks on reduced time for
process and data understanding. The meetings required for un-
derstanding new datasets were reduced from approximately 18
meetings to 8 meetings. They comment that when new datasets
arrive, they do not need to dive into the data level and repeat the
complete ML construction process again. Instead, they only need
to annotate new datasets with domain ontologies, or extend the
domain ontologies if needed.

To the end of evaluation of Ontology Extender and Domain
Knowledge Annotator, we organised a workshop with three parts.
First, we organised a thirty-minutes crash course to explain the
ontology QMM-Core and templates. Then, we conducted two ex-
periments: Experiment 1 on Ontology Extension, where the users
ere asked to describe their domains in terms of QMM-Core
y filling in the proposed templates, and Experiment 2 on Data
apping, where the users were asked to map the variables in the
aw data sources to the datatype properties in the ontologies they
reated. Note that our experiments do not aim at comprehensive
overage of the welding domains and data sources relevant for
elding quality: in our evaluation tasks we tried to balance the
overage and the time required to accomplish them.
14
6.1. Design of experiments

We give further details on experiments and participants.

Users. Two target user groups (with the roles of domain ex-
perts and data scientists) participated in the experiments with
two welding processes: resistance spot welding (RSW) and hot-
staking (HS). The users could choose to participate only in Exper-
iment 1 or in both. Some of them took part in the experiments
with more than one domain or role. This is the case, e.g., for
users who are domain experts both for RSW and HS, and some
users who are domain experts but are learning data analysis
or vice versa. In total, from 14 participants 25 result instances
were collected in Experiment 1, and 19 instances in Experiment
2. Before the experiments, the participants rated their domain
expertise (E1), experience with semantic technologies (E2) and
experience with data mapping tools (E3) on a Likert scale (1:
Beginner, 2: Developing, 3: Competent, 4: Advanced, 5: Expert).

Experiment 1: Ontology Extension. The users were asked to use
Ontology Extender to create their ontologies. As illustrated in
Fig. 14.1.1, for each term highlighted with the blue background
in the short descriptions for the welding processes on the left
side, the users selected a template on the right side, and then
made choices to link the created class to its dependencies (drop-
down list in Fig. 14.1.2). The resulting ontology terms (classes and
properties) were then visualised (Fig. 14.1.3). Note that domain
experts and data scientists did their tasks sequentially: the former
created an ontology, and then the latter inspected their ontologies
and extended them with quality indicators.

Experiment 2: Data Mapping. As illustrated in Fig. 14.2, the users
were asked to use Domain Knowledge Annotator to map data. For
each term in the column of raw variable names on the left side,
they clicked the group of classes from the right top panel, selected
a class, and then chose the datatype properties where the class is
a domain from a drop-down list (in the right bottom panel).
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Fig. 14. Graphical user interfaces for (1.1–1.3) Ontology Extension and (2) Data Mapping [10].
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.2. Evaluation metrics

According to ISO 9241-11 system usability has 3 dimensions:
ffectiveness, efficiency, and satisfaction [50]. We rely on them and
heir correlations with user expertise.

ffectiveness shows to which extent the intended goal is
chieved [50]. We use correctness, the percentage of successfully
ompleted tasks, as the metric for it. We are fully aware that there
s no absolute correctness for these tasks because the domains or
ata can be understood in different ways. This issue is however
ot critical in our experiments since we carefully designed the
asks so that the answers are minimally controversial across the
xperts. In Experiment 1, the correctness is defined as the per-
entage of correctly chosen templates for a given term (Template
orrectness, TC), the percentage of correct choices linking the
ependencies between classes (Choice Correctness, ChC), and the
ercentage of fully correctly created classes, for which the correct
emplate is chosen and all dependencies are correctly specified
Final Correctness, FC). In Experiment 2, the correctness is defined
s the percentage of correctly chosen classes (Class Correctness,
lC) and the percentage of correctly mapped datatype properties
or each item of raw variable names (Item Correctness, IC).

fficiency corresponds to ‘‘the resources (such as time or effort)
eeded by users to achieve their goals" [50]. We use time spent
n tasks as the metric of efficiency.

atisfaction was evaluated with the questionnaires after each
xperiment on 6 dimensions (see Table 2): [D1] User Friend-
iness: the system is easy to use; [D2] Self-Explainability: the
ystem does not require extra knowledge or support; [D3] Con-
istency: the system is consistent in format, workflow, wording,
tc.; [D4] Completeness: the system covers the domain/data to

describe/understand; [D5] Descriptive Power: the system allows
o describe the domain/data effectively, clearly; [D6] Communi-
ation Easiness: the system eases the communication between
xperts. The questions are presented in Table 2 where the first
ive are inspired by System Usability Scale (SUS). Questions 1–
(and the corresponding Dimensions 1–3) target the usability
f the graphical user interface. They are identical for all roles
nd experiments. Questions 6–10 (Dimensions 4–6) address more
pecific issues and differ slightly with respect to the role or the
xperiment. The users were asked to give scores ranging from
to 5 with a Likert scale (1: Strongly disagree, 2: Disagree,
15
3: Neither agree or disagree, 4: Agree, 5: Strongly agree). Note
that Questions 2–5 are negatively formulated. Their scores are
reversed in the later analysis to make the representation of the
results more intuitive and consistent. E.g. if a user scores Q2 with
1, which means the user strongly disagrees that the system is
complex, the corresponding score is reversed to 5, indicating the
system is not complex.

6.3. Evaluation results and discussion

The results of the Effectiveness and Efficiency metrics are sum-
marised in Fig. 15, which shows the user performance on Ontol-
ogy Extender (Fig. 15.1– 15.3) and Domain Knowledge Annotator
(Fig. 15.4).

Results for Experiment 1: Ontology Extension. Domain experts
in RSW created 14 terms and those in HS created 15 terms. Data
scientists created 2 terms for both processes. On average, the
users needed about 50 s to create a new term. Note that the de-
scription of one term adds from 4 to 25 classes and properties to
the ontology (see the process exemplified in Fig. 6 of Section 3.4).

Some users needed extra time for the terms WeldingMachine,
apWearCount and CapDressCount (with high standard deviation
hown in the figures). The potential reasons are that the users
eeded to understand the complex structure of machine and its
ultiple parts; for the latter two terms (both are created by the
ystemComponentStatus template in Fig. 15.3) the users speci-
ied two dependencies, which is one more than the normal case
f one choice. Another reason could be that the users moved to
new template group, which increased the cognitive complexity
f the task and thus, the time spent on the task. In line with this
endency, we observe a gradual decline in time for subsequent
erms created with the same or similar templates. For example,
eldingRobot and WeldingGun are machine parts directly fol-

owing the WeldingMachine, and CapDressCount directly follows
apWearCount. This strongly supports the learnability of the sys-
em: having experience with a template increases efficiency and
ffectiveness.
The average correctness for applying a template is 93%, for

aking choices of the dependencies is 92%, and for both (final
orrectness) is 90%. The terms, e.g. CapWearCount, that required
ore time to create often have a relatively low correctness ratio.
he high average correctness strongly demonstrates the usability
nd the error prevention potential of the system.
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Fig. 15. 1 and 2: User performance of time and correctness for RSW in 1 and for HS in 2, aggregated on template groups for both in 3. Time and correctness for
data mapping in 4 [10].
Fig. 16. Heatmaps of correlation coefficients between the usability metrics and self-accessed expertise. E1: Domain expertise, E2: Experience with semantic
technologies, E3: Experience with data mapping tools [10].
One of the goals of Ontology Extender was to serve as the com-
unication platform between domain experts and data scientists.

n our experimental setup, the data scientists were supposed to
1) inspect the domain ontologies created by the domain experts
16
and (2) add the terms relevant for quality analysis. In particular,

they had to add or find a term, and characterise it as a quality in-

dicator. We separate these two parts by the vertical dashed lines
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Table 2
Satisfaction metrics: Questionnaires and aggregated quality dimensions.
Experiment 1: Ontology extension Experiment 2: Data mapping Dimension

Domain experts Data scientists Domain experts Data scientists

Q1: I felt very confident using the system D1: User friendlinessQ2: I found the system unnecessarily complex

Q3: I needed to learn many things before I became productive with this system D2: Self-explainabilityQ4: I needed support of a technical person to be able to use this system

Q5: I thought there was too much inconsistency in this system D3: Consistency

Q6: I think the system covers most of my fundamental requirements for the * D4: Completeness
* Description of the
process

* Understanding of the
process

* Description of the data * Understanding of the
data

Q7: I think the system/resulting model allows me to unambiguously *

D5: Descriptive power* Describe the process * Understand the process * Describe the data * Understand the data

Q8: I think the relevant aspects of process quality are well presented in the * I think the mapping system saves me effort of *

* System * System and the
resulting model

* Describing the data * Understanding and
completing the data
mapping

Q9: I think the resulting ontology/mapping would be very easy to understand for *
D6: Communication
easiness

* Data scientists * Domain experts * Data scientists * Domain experts

Q10: I think the resulting ontology/mapping provides a good common base for discussion with *

* Data scientists * Domain experts * Data scientists * Domain experts
Fig. 17. Radar charts of questionnaires scores on 10 questions (1–6) and aggregated to 6 dimensions (7–13) defined in Table 2. Std is standard deviation. The blue
lines indicate the mean scores, the light blue shadow the mean + std, and the dark blue shadow the mean - std. [10]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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in Fig. 15.1– 15.3. All data scientists achieved 100% correctness
with an average time of 39 s.

We now analyse the correlations between the self-reported
expertise of our users and their performance. Fig. 16.1 shows a
strong negative correlation between domain expertise (E1) and
time t and relatively strong positive correlation between E1 and
the three types of correctness (template, choice and final). Not
surprisingly, the users with higher domain expertise provided
more correct modelling solutions and were faster than the be-
ginners. The figure also suggests insignificant correlation between
the performance of users and their experience in semantic tech-
nologies and mapping tools. This is encouraging since it suggests
that the usage of our system requires no or little prior training in
these disciplines and activities.

Results for Experiment 2: Data Mapping. The majority of users
correctly mapped column names in the suggested files to the
newly introduced terms, achieving 100% correctness (Fig. 15.4).
The average time they spent for each term is about 50 s. The
correlations in Fig. 16.2 support the idea that domain expertise

will ease the work and the other two parameters, including the s

17
self-accessed experience with mapping tools, have almost no
effect. We interpret it as the evidence that the system is able
to serve as a solution for both tasks – data modelling and data
mapping – and does not require any prior experience with similar
technologies. We complement our analysis with the results of the
satisfaction questionnaires in the following section.

Satisfaction. We report the satisfaction results in the radar charts
in Fig. 17 separately for data scientists and domain experts,
and aggregated for all users. The charts in Figs. 17.1 and 17.4
represent the average scores for both user groups. These scores
are higher than 4, which indicates a general good impression of
users. The mean scores on Questions 4, 9 and 10 are very high (>
.5): The users evaluate the tool as easy to use without support
f a technical person, and they think their working results will
e easy to understand for other experts. This supports our vision
hat an ontology can serve as a good communication base.

The comparison of the scores on questions by the domain
xperts and data scientists (Figs. 17.2 vs. 17.3, 17.5 vs. 17.6),
eveals that the data scientists evaluate the system with higher

cores in average, and smaller standard deviation. This indicates



B. Zhou, Y. Svetashova, A. Gusmao et al. Web Semantics: Science, Services and Agents on the World Wide Web 71 (2021) 100664

t
T
s
u
D
h
t
h
s

f
h
h
t

7

g
i
b
i
t
w
a
i
u
r
I
f
f
s
o
m
i
t
l
s
m
G
t
t
t
s
c
v
e
i
t

f
M
l
t
e
a
d
d
t

that the data scientists have better and more uniform opinions
on the system, while users taking the role of domain experts have
more diverse opinions. One reason for that could be that the tasks
for data scientists were only related to quality indicators and thus
more clearly defined, while the tasks for domain experts who
needed to describe complicated processes were more demanding.

In Figs. 17.7–17.12 the scores on questions are aggregated
o six dimensions (see the meanings of dimensions in Table 2).
his aggregation makes it easier to draw conclusions. Firstly, all
ix dimensions have average scores over 4, which means the
sers are satisfied with the system in general. The scores for
6 (communication easiness) and D5 (descriptive power) are the
ighest, indicating the users appreciate the ease of communica-
ion. Dimensions more related to the system usability (D1–D3)
ave scores around four, which means there is improvement
pace for the user interface.
Correlations in Figs. 16.3 and 16.4 reveal similar results as

or the performance analysis: domain expertise correlates with
igh satisfaction scores, while the other two areas of expertise
ave little effect, which supports that the tool requires little prior
raining.

. Related work

Survey [51] extensively covers the usage of semantic technolo-
ies in data mining and knowledge discovery, and in particular
n the facilitation of machine learning workflows. Still, to the
est of our knowledge, existent approaches and system solutions,
ncluding the recent developments of digital twins for manufac-
uring [52], only partially meet our requirements R1–R5. Thus
e had to develop our own ontologies and templates as well
s ontology-based, highly customised and configurable solution,
ntegrated into the workflow to support quality analysis in man-
facturing. The users of our system are the different experts
esponsible for the task of developing machine learning methods.
ndeed, none of the ontologies for manufacturing (e.g., [53–58])
ully serve as the communication model for our use cases and suf-
iciently cover our domains. The mapping-based data integration
olutions like Ontop [59] are not particularly targeted towards
ur aim of minimising the involvement of ontologists into the
odel maintenance processes. Moreover, the role of mappings

n our context is not limited to the transformation of data into
he RDF format. Firstly, we integrate data sources for machine
earning, secondly and in line with these tools, we transform
ome parts of it to RDF to explore the data. In the metadata
anagement solutions for data lakes like Constance [60] and
EMMS [61], the metadata descriptions are used to integrate
he raw sources. As the mapping-based data integration solu-
ions, these systems lack the extensibility aspect. We found that
he existing tools for ontology extension, e.g. template-driven
ystems (Webulous [62], TermGenie [63], Ontorat [64]) required
onsiderable adjustments (including but not limited to the de-
elopment of the new graphical user interface) and could not be
asily integrated with the machine learning workflow and our
nfrastructure. Thus, we developed our own ontology extension
ooling.

Machine learning for quality monitoring in RSW has been
ocusing on estimating the spot diameters after welding [65,66].
ost previous approaches analysed data collected from limited

aboratory experiments [67,68]. Ontology in welding has studied
he incoherence of standards [69], or was used for ML mod-
lling with semantics [66]. Other works relating ontology to data
nalysis have discussed improving data understanding [70], or
atabase access with annotations [14,15]. A closer work [71]
iscussed domain integration and explainability. Many studies
ried to combine ML and semantic technologies. The work [72]
18
attempted to combine ontologies and ML by relying on the topic
categories that regulate the emission of disclosures to improve
the ML classifiers. Another work [73] combines ML and semantic
orientation with a voting system based on the majority rule
for classifying opinions to positive or negative. A review [74]
summarises common approaches of combining semantic web
technologies and ML, such as mapping network inputs or neu-
rons in supervised learning to classes in ontologies or entities
in knowledge graphs [75,76], creating explainable knowledge
embeddings to increase explainability for unsupervised learn-
ing [77,78], relying on an ontology with extra information to
create rules which limit the number of recommended actions in
reinforcement learning [79]. None of these works addressed gen-
eralisability and extensibility to new domains and the application
of ontologies for feature engineering.

8. Lessons learned, conclusion, and outlook

Lessons Learned. First, an ontology as a formal language can
be very effective to provide a lingua franca for communication
between experts with different knowledge backgrounds. The pro-
cess of developing the Core model was onerous, time-consuming
and cognitively demanding at the initial phase. After that, we
had a basis of core model and a set of templates. It revealed the
development process became much easier because the developed
ontologies facilitated communication. Second, the technology of
templates enables non-ontologists to describe their domains and
data in a machine-readable and unambiguous way. In contrast
to the simple, tabular interfaces which exist for the template-
based ontology construction, we needed to address the new re-
quirements for our use case. In the use case, the users need to
generalise a series of classes, while the later generated classes
have dependencies on the older ones. This has two require-
ments: (1) the newly generated classes need to be accessible to
later generated classes; (2) sequences of templates need to be
applied in a particular order because the later classes presup-
pose the existence of their depending classes. Furthermore, the
users need assistance like drop-down lists and visualisation of
changes. Third, the users that are unfamiliar with the domains
will need more time for some tasks and yield lower correctness.
This indicates that we need to split the iterative process of task
negotiation to smaller units so that different experts can digest
each other’s information more smoothly.

Conclusion. In this work we presented a ontology-based soft-
ware architecture SemML that enhances ML analysis for condition
monitoring with semantic technologies. SemML addresses three
challenges and five requirements, and enhances four steps of
the workflow of ML analysis for condition monitoring. SemML
allows users with minimal knowledge in semantics and machine
learning to construct ML models by presenting the users a set
of ML pipelines developed beforehand and automatically adjust
the user-selected ML pipeline with smart semantic reasoning. The
users only need to do data annotation with the GUI provided by
our software. SemML also allows users to extend the ontologies
for their domains with good quality, if the datasets require so.
SemML consists of four semantic components: Ontology Extender,
Domain Knowledge Annotator, Machine Learning Reasoner, and
Ontology Interpreter. We implemented the software architecture
as the SemML system. We then evaluated SemML on a Bosch use
case of welding quality monitoring, focusing on the first two
semantic modules. To this end, we conducted a user study with
14 Bosch experts. The evaluations show promising results: SemML
can indeed help in addressing the challenges of communication
and data integration.

Outlook. We plan to evaluate SemML’s third and fourth semantic
module with a user study. We also plan to extend SemML to
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a ‘‘Dynamic Mode’’, where users will be able to dynamically
configure the ML pipelines stored in the ML pipeline catalogue
with a GUI even when the users only have minimal knowledge
of machine learning. It is in development and under extensive
evaluation. An automatic hyper-parameter tuning function mod-
ule will be added to SemML to further improve the generalisability
of ML pipelines. SemML has been deployed in a Bosch evaluation
environment, and we plan to further evaluate and strengthen it
to eventually push it into the production; moreover, we envision
to generalise it over wider range of industries, e.g. oil industry.
This in particular requires to show the benefits of SemML with
ore users and in other use cases. This also requires to further

mprove the usability of SemML with more advanced services such
s access control as well as with various ontology visualisation
odules. In particular, we envision to improve the usability
y exploring keyword-[80–82] and faceted-search [83–86] over
atalogues of ML pipe-lines, as well as with summarisation tech-
iques for ontologies, Knowledge Graphs, and semantically rep-
esented ML-pipelines [87–89] and possibly auto-generated text
nhancements for ML-pipelines [90,91]. We also consider a pos-
ibility to offer dataset search accompanying SemML to help users
o select the most appropriate datasets for concrete ML tasks [92–
5]. Moreover, we consider developing further visual paradigms
nd interfaces to improve users experience when interacting with
emML [17,18,96,97]. Finally, we are planning to enhance SemML
ith semi-automatic support for data annotation [98,99].
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