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Preface

I wrote this thesis, titled “DeepSynthBody: the beginning of the end for data deficiency

in medicine,” to fulfill the requirement for completing my Ph.D. for the Ph.D. program

in Engineering Science Faculty of Technology, Art and Design, Oslo Metropolitan Uni-

versity, Oslo, Norway. The total time for thesis was around three years. I carried out

my work under the supervision of Professor Michael A. Riegler, Professor P̊al Halvorsen,

and Professor Hugo L. Hammer. I have completed the thesis in the Department of Holis-

tic Systems in Simula Metropolitan Center for Digital Engineering (SimulaMet), which

provided the infrastructure and all the financial support to this full research.

This Ph.D. time became a golden period in my life because I have been exploring the

real research world which is not limited to a thesis. As a result, I felt my research works

and perceived them, which forced me to learn new things every day until I am writing

this preface. In addition to the general responsibilities of my life, I was a responsible

person for performing quality research works in the medical domain, which is the field no

one can argue the importance of it. I was forced to be responsible for this field because

the success of our research can save human life and a fault of our research can indirectly

cause death.

I hope that you love this thesis reading.

Vajira Thambawita

May, 2021 at Oslo, Norway
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Abstract-English

Recent advancements in technology have made artificial intelligence (AI) a popular tool in

the medical domain, especially machine learning (ML) methods, which is a subset of AI.

In this context, a goal is to research and develop generalizable and well-performing ML

models to be used as the main component in computer-aided diagnosis (CAD) systems.

However, collecting and processing medical data has been identified as a major obstacle

to produce AI-based solutions in the medical domain. In addition to the focus on the

development of ML models, this thesis also aims at finding a solution to the data deficiency

problem caused by, for example, privacy concerns and the tedious medical data annotation

process.

To accomplish the goals of the thesis, we investigated case studies from three differ-

ent medical branches, namely cardiology, gastroenterology, and andrology. Using data

from these case studies, we developed ML models. Addressing the scarcity of medical

data, we collected, analyzed, and developed medical datasets and performed benchmark

analyses. A framework for generating synthetic medical data has been developed using

generative adversarial networks (GANs) as a solution to address the data deficiency prob-

lem. Our results indicate that our generated synthetic data may be a solution to the

data challenge. As an overarching concept, we introduced the DeepSynthBody as a basis

for structured and centralized synthetic medical data generation. The studies presented

in the thesis, such as generating synthetic electrocardiograms (ECGs), gastrointestinal

(GI)-tract images and videos with and without polyps, and sperm samples, showed that

DeepSynthBody can help to overcome data privacy concerns, the time-consuming and

costly data annotation process, and the data imbalance problem in the medical domain.

Our experiments showed that we can generate realistic synthetic data providing compa-

rable results to experiments using real data to tackle the identified problems. The final

DeepSynthBody framework is available as an open-source project that allows researchers,

industry, and practitioners to use the system and contribute to future developments.
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Abstract-Norwegian

Teknologiske fremskritt har gjort kunstig intelligens til et populært verktøy innen me-

disin. Spesielt metoder innen maskinlæring, en underkategori av kunstig intelligens, er

mye brukt. Et mål i denne fobindelse er å utvikle gode, generaliserbare modeller for

bruk i systemer for datamaskinassistert-diagnose, men en stor utfordring her er innsam-

ling og behandling av medisinske data p̊a grunn av for eksempel personvernhensyn og

kostbare annoteringsprosesser. Denne oppgaven fokuserer derfor b̊ade p̊a utvikling av

maskinlæringsmodeller og å finne en løsning p̊a problemet med manglende medisinske

data.

For å n̊a oppgavens mål har vi undersøkt tre forskjellige medisinske eksempler, nem-

lig kardiologi, gastroenterologi og andrologi. Ved hjelp av data fra disse medisinske

omr̊adenehar vi utviklet maskinlæringsmodeller. For å løse mangelen p̊a medisinsk data,

har vi samlet inn, analysert og utviklet medisinske datasett, og vi har utført referanseanal-

yser. I tillegg, et rammeverk for generering av syntetiske medisinske data er utviklet ved

hjelp av “generative adversarial networks” for å løse problemet med datamangel, hvor

resultatene v̊are indikerer at slike genererte data kan være en mulig løsning. Som et

overordnet konsept introduserer vi DeepSynthBody som grunnlag for strukturert og sen-

tralisert generering av syntetisk medisinsk data. Studiene presentert i oppgaven, slik

som generering av syntetiske elektrokardiogram, bilder og videoer fra tarmsystemet og

sædprøver, viser at DeepSynthBody kan bidra til å overvinne personvernproblemer, re-

dusere tid og ressursbruk innen dataanmerkingsprosessene, og utjevne problemene med

data ubalanse innen det medisinske domenet. V̊are eksperimenter viser at vi kan generere

realistiske syntetiske data som gir sammenlignbare resultater med eksperimenter hvor

man bruker reelle data. Det endelige DeepSynthBody-rammeverket er tilgjengelig som et

åpent kildekode-prosjekt som gjør det mulig for b̊ade forskere og industri å bruke systemet

og å bidra til fremtidig utvikling.
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Chapter 1

Introduction

“The data-driven world will be always on, always tracking, always monitor-

ing, always listening and always watching – because it will be always learn-

ing”(Rydning [1]).

Artificial intelligence (AI) has become a popular tool in most of the main industries,

for example, financial service [2, 3], manufacturing [4, 5], media and entertainment [6,

7], transportation [8, 9] and healthcare [10, 11]. As a result, AI interacts more closely

with the day-to-day life of people. While AI has many definitions, the main goal of AI

today is to enable faster, more reliable, and more accurate data analysis. Additionally,

AI applies to the tasks which cannot be proceeded by humans, such as operations in

space, in deep oceans, or deep underground. These AI applications are successful as a

result of improvements in machine learning (ML) algorithms [12] used in AI, particularly

deep learning (DL) [13], as well as great advances in computational hardware running

the compute-heavy ML algorithms, such as deep neural networks (DNNs). Despite such

advancements, the algorithms need data to learn. The limited availability of data to train

the ML algorithms [14, 15] is a crucial factor in developing successful AI solutions in all

domains. The interconnections between the terminology, AI, ML, and DL used in this

section are depicted in Figure 1.1.

With the success of applying AI as a tool in the main industries, using AI in the

medical domain has received more attention in the recent decade, for example, seen in the

news headings1 and quotes2 about AI and medicine presented in Figure 1.2. These news

1https://futurism.com/ai-medicine-doctor
2https://news.harvard.edu/gazette/story/2020/11/
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Chapter 1. Introduction

Machine Learning
(ML)
"Machine learning is a branch of
artificial intelligence (AI) and
computer science which focuses
on the use of data and algorithms
to imitate the way that humans
learn, gradually improving its
accuracy" 

Artificial
Intelligence (AI)
"Artificial intelligence
leverages computers and
machines to mimic the
problem-solving and
decision-making
capabilities of the human
mind"

Deep Learning
(DL)
Deep learning is a subset of
ML. They attempt to
simulate the behavior of the
human brain-allowing it to
"learn" from large amounts
of data.

Figure 1.1: Definitions [16] and relations between AI, ML and DL.

shows contradictory ideas about AI in medicine, such as some believe that AI will replace

byhuman doctors and others believe that AI will “just” become a supportive tool for

human doctors. Nevertheless, it seems like many believe that AI will become more popular

in the coming years. Thus, applying AI in medicine is important because it may directly

affect humans’ personal lives, and successful medical systems are directly correlated with

life expectancy and quality. Therefore, producing AI systems with reliability and integrity

is important in the medical domain. To understand the process of applying AI in medicine

for developing computer-aided diagnosis (CAD) systems, we should understand the full

medical AI pipeline. A simplified version of this pipeline is depicted in Figure 1.3 with four

steps: (I) collecting data, (II) annotating data using experts, (III) applying ML methods,

and (IV) final product and explainable artificial intelligence (XAI). These four steps are

discussed further in the next section.

1.1 Background and Motivation

AI-based solutions are used in the medical domain for different purposes, such as to

develop treatment protocols, drugs, personalized medicine, patient monitoring systems,

robotics, and diagnosis processes [11]. Among these, AI-based diagnosis processes or CAD

systems [17] got more attention from AI researchers. CAD systems aid doctors as the

6



1.1. Background and Motivation

Figure 1.2: Some quotes and headings about AI and medicine in news articles

“second opinion” to finalize decisions.

In this regard, we started to research ML-based solutions for CAD systems by following

the above four steps pipeline to help medical experts more correctly and efficiently detect

anomalies in medical data from real examinations to save lives ultimately . The goals were

to both address large miss-rates [18, 19, 20] and observer variations [21, 22]. The pro-

cess of researching and developing ML solutions is presented using Step III (Figure 1.3).

However, we soon realized a huge lack of medical data to develop good ML models in the

domain for various reasons, increasing the importance of the first two steps in Figure 1.3.

7



Chapter 1. Introduction

Collecting data Annotating data
using experts

Applying
machine learning

methods

Final product and
XAI

Figure 1.3: The main four steps of applying ML solution in the medical domain.

Therefore, we have studied how datasets should be collected, composed, and published

as open datasets. Within the three years of Ph.D. time, a total of seven datasets [23,

24, 25, 26, 27, 28, 29] were successfully collected and published. In these datasets, med-

ical experts labeled or annotated data (Step II), but not all the datasets because the

annotation process is costly and time-consuming. For example, our gastrointestinal (GI)-

tract dataset [23] has labeled images and pixel-wise annotated polyp images, performed

by experienced colonoscopists. However, the biggest part of the GI-tract dataset is still

unlabelled data because of the costly and time-consuming data annotation process. We

analyzed three branches in medicine, gastroenterology, andrology, and cardiology in par-

allel to the data collection process. The main motivation for choosing different domains

was to show that our methods can work on different problems (are generalizable) and to

produce ML-based CAD solutions to help experts by providing more efficient and accurate

automated assistance for their tasks.

In the gastroenterology branch, classification models [30, 31, 32, 33, 34] to classify

GI-tract findings and segmentation models [35, 36] to segment polyp regions were inves-

tigated. When producing these ML solutions, we identified that generalizability is one of

the main issues for both classification and segmentation due to the lack of labeled and

annotated data to train ML models. The classification models introduced in our stud-

ies [30, 31] showed good performance when the validation and testing data are a subset

of the same dataset used to prepare the training dataset. However, the performance of

the best models showed poor performance for completely new datasets collected from

different hospitals. The problem was caused as a result of the over-fitting [37]. In addi-

tion to the data bias problem, we also identified that an imbalanced number of images of

different classes makes less accurate ML models. Detailed discussion on this issue can be

found in [31], where we analyzed and experimented with different datasets. Similar to the

classification models, we noticed that polyp segmentation models show poor performance

due to small datasets to train segmentation models. We tried to solve the problem by

8



1.1. Background and Motivation

introducing a novel data augmentation method called PYRA3 [36] and introducing a novel

segmentation model called DivergentNets [35]. However, we had only small datasets to

train segmentation models compared to the training datasets used in classification mod-

els. Researchers or data providers usually provide only small segmentation datasets for

medical image segmentation tasks due to the time-consuming and costly pixel-wise image

annotation process. The medical image annotation process is more challenging than the

general image annotation process because experts of the specific medical domain should

perform these manual segmentations or review them, and these experts are often rare or

have not much time.

In addition to providing ML solutions in gastroenterology, we have investigated ML

solutions [38, 39, 40] to predict motility and morphology level of sperm samples which are

videos recorded using microscopic analysis. These research works are considered under the

andrology branch. The proposed models show acceptable performance, but those perfor-

mance values were insufficient to use the solution practically. By researching ML solutions

to predict motility and morphology levels of sperm samples, we noticed that our models

could be improved if we can prepare pixel-wise annotated datasets to perform segmen-

tation before predicting morphology and motility levels. However, performing pixel-wise

annotations for a sperm-like medical dataset is a complicated problem for experts because

of having hundreds of sperms in a single frame of the dataset. A possible solution is anno-

tating sperms using an unsupervised way and processing those annotated sperm samples

to find motility and morphology levels.

In cardiology, we built an electrocardiogram (ECG) analysis system [41] using ML

models to predict the properties of ECGs. This experiment used a big ECG dataset to

train the ML models and showed that the ML models could outperform expert’s analyses.

Unfortunately, the dataset used to train our models is a private dataset, and publishing

them to reproduce our solutions is not possible due to privacy concerns. In this context,

we noticed that there should be a way for omitting privacy concerns. In this ECG study,

we have presented an explainable AI mechanism called gradcam [42] to find the most

important regions for DNNs to predict the properties of ECGs. However, we could use

only the explainable methods that do not expose the real dataset to the public because

of privacy concerns. Suppose we have a method to omit and work around the privacy

3https://vlbthambawita.github.io/PYRA/
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concerns. In that case, we can use any explainable method which uses the real dataset,

for example, to explain using examples [43].

The success of AI solutions in medicine is highly dependent on the data to train the

AI algorithms. However, collecting and sharing medical data is harder than for other

general data because of reasons like the privacy restrictions attached with the medical

data. The collection of medical data (Step I) is presented using the first box in Fig-

ure 1.3. If the training data cannot provide useful information to AI algorithms, the

algorithms become less accurate and generalizable. Therefore, medical data is essential

for developing successful AI solutions. However, medical data collection and preparation

are not straightforward. The unrolled cumbersome internal process of Step I is presented

in the first seven steps depicted in Figure 1.4, as discussed by Willemink et al. [44]. How-

ever, following these steps is a complex task because of privacy concerns such as ethical

approval and data de-identification process, in addition to the data preparation process.

Medical data need post prepossessing because the raw medical data producing from med-

ical instruments are not designed for sharing. A lot of research discusses the protection

of digital data in a learning health system [45], the privacy of big medical data [46, 47,

48], and making a balance between health data access and privacy [49]. These research

discussions show the importance of considering privacy rules and regulations with health

data. As a result, the privacy restrictions applied with the medical data make the process

in Step I harder and slow down the whole pipeline depicted in Figure 1.3.

The rules and regulations for producing open access medical data vary from country

to country and region to region according to data protection regulations introduced in

the specific regions. For example, Norway should follow the rules given by the Norwe-

gian data protection authority (NDPA) [50] and enforce the personal data act [51] in

addition to following general data protection regulation (GDPR) [52], which is the com-

mon guideline for European countries. While there is no central level privacy protection

guideline in the US like GDPR in Europe, rules and regulations in the US are coming

through other US privacy laws, such as Health Insurance Portability and Accountability

Act (HIPAA) [53] and California Consumer Privacy Act (CCPA) [54]. In Asian counties,

they follow their own set of rules country-wise, such as Japan’s Act on Protection of Per-

sonal Information [55], South Korea’s Personal Information Protection Commission [56],

and the Personal Data Protection Bill in India [57]. If researchers can perform research
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Figure 1.4: Medical data preparation process as discussed in [44]
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with these privacy restrictions, the papers published are often theoretical methods only.

As a consequence, the results of those studies are not reproducible, and fair and correct

comparisons between methods are hard to achieve. All these consequences are due to a

lack of available data and sharing restrictions. Furthermore, universities or other research

institutes that use medical domain data for teaching purposes use the same medical do-

main datasets for years, which affects the quality of education. Therefore, data sharing

restrictions resulting from privacy protocols are identified as one of the main problems

and obstacles, and we have researched to address this challenge in this thesis.

In addition to the privacy concerns, the cost of medical domain experts for extracting

useful information from medical data is another obstacle to producing big datasets, which

are helpful for AI. This stage is presented as the second box in Figure 1.3 and task number

8 in Figure 1.4. For example, to train the most common supervised ML techniques, ground

truth data are needed. In other words, annotated datasets are essential. Because of this

necessity of annotated data, new companies and job opportunities are opened to perform

data annotations for datasets used to train AI algorithms [58, 59]. For example, the pricing

list in Google for annotating datasets is presented in Table 1.1. However, medical data

annotation (or producing ground truth) is not easy as making ground truth for general

datasets. Medical data annotation is more challenging than other general data annotations

because only the experts in the medical domain can perform the annotations fully trustable

in terms of correctness. If the data annotation by experts is not possible, the experts

should do at least a review process to make the annotations trustable before using them

in AI algorithms. The importance of having accurate annotations from experts for medical

data is, for example, discussed by Yu et al. [60] using a mandible segmentation dataset

of CT images. Because only the medical experts can accurately do the medical data

annotation process, the expert annotation process becomes expensive. Additionally, this

annotation process takes considerable time to produce ground truth data precisely [44],

consuming time that clinicians usually rather spend on treating patients.

The third step in Figure 1.3 represents applying ML methods after collecting medical

data and annotating the data using domain experts. However, due to privacy protocols

and the aforementioned complex data retrieval and annotation problems, researchers and

industry, who apply ML solutions for medical data, do not have access to open-access

expert-annotated datasets. Because of this limited data problem, the models become less

12
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Table 1.1: Google labelling cost (to date: 05-05-2021). [61]

Data type Objective Unit Tier 1 Tier 2

Image

Classification Image $35 $25
Bounding box Bounding box $63 $49
Segmentation Segment $870 $850
Rotated box Bounding box $86 $60
Polygon/polyline Polygon/Polyline $257 $180

Video
Classification 5sec video $86 $60
Object tracking Bounding box $86 $60
Event Event in 30sec video $214 $150

Text
Classification 50 words $129 $90
Entity extraction Entity $86 $60

reliable [31] (as a result of poor generalizability) and have fewer functionalities such as

limited interpretability [62]. These limitations and our own experience of developing ML

models for CAD systems emphasize the requirement of having an alternative fast track

to getting medical data into the third step (Step III) of applying ML.

The fourth step in Figure 1.3 represents the final stage of producing products using

ML to use in clinical settings. In this stage, explaining the prediction results (XAI) is an

important step because it is the only step in which one can convince doctors to accept

decisions made by ML solutions. Explanation by example is currently a preferred XAI

method by non-experts [63]. Privacy issues can limit these XAI functionalities, such as

explaining DL solutions by examples [64], when the example data is restricted to publish.

In summary, the problems related to collecting and processing medical data can be

identified as a major bottleneck to produce enough open-access medical data for devel-

oping well-performing ML solutions to be used with CAD systems. The privacy concerns

with the medical data and the costly and time-consuming medical data annotation pro-

cess are two reasons for the data deficiency problem. In addition, we identified that a lack

of true-positive data compared to true-negative data in the medical domain, giving large

class imbalances, is a problem for producing AI-based systems. In this regard, this thesis

focus on producing well-performing ML models for CAD systems after finding a way to

tackle the data deficiency problem by generating synthetic data using a new concept and

the framework named DeepSynthBody.

13
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1.2 Research Question and Objectives

The main overall goal of our research is to investigate and develop accurate, generalizable,

and well-performing ML models for CAD systems for biomedical applications assisting

doctors in clinical practice. In this thesis, we have a particular focus on the problems

and challenges coming from medical data. These challenges of collecting and processing

medical data, identifying that the lack of medical data due to, for example, privacy issues,

resource-consuming data annotation processes, and data imbalance problems are major

obstacles for AI-based medical technology research and development. Therefore, we focus

on researching a way to address the data deficiency problem in the medical domain while

researching and developing well-performing and generalizable ML models for CAD systems

for selected three domains as case studies. The overall research question for this study

therefore is:

What are the problems that emerge from data in computer-aided

diagnosis systems, and how can these problems be tackled?

After identifying the research question, we have defined the objectives of this thesis

as follows:

• Main objective: Research and develop ML models which are the main component

of CAD systems for different medical applications with a focus on the problems of

limited availability of biomedical data.

• Sub-objective I: Research and develop ML models for CAD systems to assist

doctors.

• Sub-objective II: Collect, research and develop datasets to be used for developing

ML models for CAD systems for biomedical applications.

• Sub-objective III: Research and develop benchmark analysis with the medical

datasets to identify the problems for producing well-performing ML solution in

medical domain.

• Sub-objective IV: Research and develop deep generative adversarial networks

(GANs) which can produce synthetic data to address the data deficiency problem

which is the major obstacle for developing medical AI-based solutions.

14



1.3. Scope and Limitations

This thesis has used three different medical case studies for Sub-objective I, Sub-

objective III, and Sub-objective IV. The medical fields chosen are cardiology, gastroen-

terology, and andrology. We chose these three domains since they are diverse from each

other in terms of data. In Sub-objective II, we have introduced additional datasets in ad-

dition to the main three case studies as its main goal is collecting and developing medical

datasets.

1.3 Scope and Limitations

This research was started to developing well-performing and generalizable ML models for

CAD systems to assist doctors. However, the early identification that the medical data

is a major obstacle for developing ML models, solving the data deficiency problem in

the medical domain became another objective of this thesis. Therefore, in this thesis,

two major development streams can be seen. One is developing ML models for CAD

systems, and one is researching and developing GANs to overcome the data deficiency

problem. As the main finding of this thesis, we could introduce a novel concept and the

framework based on GANs to tackle the data deficiency problem. The framework has

been demonstrated with a few selected case studies as a proof of concept. However, the

novel concept and the framework are not limited to the presented case studies. All other

possible research areas using our concept and framework are discussed in the future work

section.

In this thesis, three types of datasets were used. In particular, we have used ECG

signals, GI images, and a sperm video dataset as case studies that cover three different

medicine branches: gastroenterology, andrology, and cardiology. These three datasets

were selected because they were the initial studies used to develop ML models for CAD

systems. Additionally, the same datasets were used as proof of concept to demonstrate

the potentials of the new concept, and the framework introduces as a solution to the

data deficiency problem in the medical domain. It is worth mentioning that the new

concept is also developed as a big open-source project planning to have contributions

worldwide. Therefore, all the case studies and experiments were performed just to prove

the new concept. The ECG dataset covers biomedical signal data in the selected case

studies, while the GI image datasets cover biomedical images. The sperm dataset is
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related to medical video data as well as medical images. In addition to time restriction,

the scope of this study is limited to selected data formats such as one-dimensional (1-D),

two-dimensional (2-D), and three-dimensional (3-D) because of limited access to other

types of medical data such as magnetic resonance imaging (MRI) which are considered

four-dimensional (4-D) with a temporal dimension.

The proposed concept consists of a four-step pipeline. These are collecting real data

and analysis, developing generative models, generating synthetic data, and explainable

DeepSynth AI and DeepSynth Explainable AI. While the thesis covers the first three,

the most important steps, data handling, applying GANs, and producing synthetic data

via the end functionalities, the last step of researching explainability is not investigated

under this thesis due to time limitations and is regarded as an important future research

direction. Additionally, we have published an online platform for the concept. This online

platform will be changed in the future as a result of improvements over time.

1.4 Research Methodology

In computer science, it is harder to practice traditional research methodology followed

by classic sciences as described by Dodig-Crnkovic [65] because computer science can be

identified as a combination of various scientific disciplines. In sciences, we can identify

three paradigms, theory, abstraction, and design [66]. Generally, the theory is for math-

ematical sciences. The abstraction or modeling is for natural sciences. The design or

experimentation is for engineering. However, it is not easy to explicitly map computer

science for one of these three paradigms. While these three are inseparable from computer

science, they are distinct from each other. Therefore, we define this thesis work in each

of the above paradigms as follows.

• Theory: Major elements of the theory of the concept introduced in this thesis

consist of the major theories related to AI introduced in the report [66] produced by

the task force of ACM and IEEE. This report has introduced four steps to developing

a coherent, valid theory in any science. They are:

1. Characterize objects of study (definition).

2. Hypothesize possible relationships among them (theorem).
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3. Determine whether the relationships are true (proof).

4. Interpret results.

In this regard, we have introduced our main objective and four sub-objectives to

research ML models for CAD systems in the medical domain and a novel concept to

overcome the data deficiency problem. We hypothesize that generative models can

generate synthetic data to overcome the data deficiency problem of developing ML

models in the medical domain. Using three different case studies, we have presented

the performance of our ML models. Moreover, using the same case studies, we

proved how to use GAN-generated synthetic data to solve the data obstacles in the

medical domain.

• Abstraction (modeling): is defined based on the experimental scientific meth-

ods. In the ACM report, they have described four stages for investigations of phe-

nomenons such as:

1. Form a hypothesis.

2. Conduct a model and make a prediction.

3. Design an experiment and collect data.

4. Analyze results.

According to this modeling paradigm, deep generative models can be identified as

the main component of modeling our hypothesis. Under different medical data

formats, we analyzed generative models and collected synthetic data. To find the

best generative models for generating synthetic data, we have studied them qualita-

tively and quantitatively using experimental prototypes. Not only deep generative

models, but we have also experimented with baseline experiments and benchmark

experiments, which were performed to develop experimental prototype ML models

for CAD systems.

• Design: In this paradigm, four stages can also be identified to build a system to

solve a specific problem. They are

1. State requirements.

2. State specifications.
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3. Design and implements the system.

4. Test the system.

The medical data was identified as a key requirement to research and design well-

performing ML models for CAD systems. Therefore, real medical datasets and

synthetic medical datasets were collected and developed. Then, we designed ML

models using the real medical datasets and synthetic medical datasets. Moreover,

a complete framework to generate synthetic data in the medical domain was intro-

duced and implemented. We have tested our ML models, and GANs introduced in

the framework using three different case studies.

1.5 Contributions

The research in this thesis contributes to the area of medical AI technology aimed to

assist clinicians in their daily work, improving the quality of the health care systems. We

started to research and develop ML models for CAD systems using small existing datasets

and collecting our medical datasets, where the developed models performed very well.

However, the major challenge identified was the data deficiency problem, where dataset

development was cumbersome due to various reasons. This challenge then becomes the

major challenge addressed in this thesis while still developing ML models.

In particular, in this thesis, four sub-objectives were introduced to accomplish the

main objective, which aims to develop ML models for CAD systems to assist doctors in

improving the efficiency of diagnosis. These four sub-objectives were initiated to develop

well-performing ML models and solve the data deficiency problem of the current applied

machine learning pipeline used in the medical domain, as depicted in Figure 1.3. We

started researching and developing ML models for CAD systems to achieve Sub-objective

I. Then, in Sub-objective II, collecting data was initiated after finding that data is an im-

portant factor for achieving Sub-objective I. Then, the performing benchmark experiments

are mainly used to achieve Sub-objective III to study the medical datasets to understand

the related problems to research and address in Sub-objective IV. Sub-objective IV was

achieved by experimenting and investigating GANs to generate synthetic data to overcome

the data deficiency problem in the medical domain. Figure 1.5 shows all the contributions

via these four sub-objectives and the main-objective. Some of the contributions can be
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Paper I
Paper II
Paper III
Paper IV
Paper V
Paper VI
Paper VII

Paper VIII
Paper IX
Paper X
Paper XI
Paper XII
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Paper XIV
Paper XV

Paper XVIII
Paper XIX

Paper XXIV
Paper XXVIII

Sub-objective I Sub-objective II Sub-objective III Sub-objective IVMain-objective

Paper XVI
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Paper XXII
Paper XXIII
Paper XXVI
Paper XXVII

Paper XX
Paper XXI

Paper XXV

Figure 1.5: Paper-wise contribution to all objectives.

identified through two or more objectives, while all the contributions are directly attached

to achieve the main objective.

The following bullet points show all contributions to sub-objectives and the main ob-

jective. Within these contributions, dataset papers, ML-based CAD models or benchmark

papers, and GAN-related papers can be found. The dataset paper, HyperKvasir [23]4,

got much attention from the research community within a short period because of the

richness of data diversity. Not only that, the results of most benchmark papers were

within the top 5%. For example, we won the 1st place for the EndoCV grand challenge5

2021. Similarly, GAN-based experiments also became popular within a short period in

the research community because of the competitiveness of the presented qualitative and

quantitative results of novel methods used to generate synthetic data. For example, The

DeepFake ECG paper was read by many people within a few days after publishing the

4https://www.nature.com/articles/s41597-020-00622-y/metrics
5https://endocv2021.grand-challenge.org/
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pre-print, and it became a part of news heading about recent developments of interests

in cardiovascular medicine6. The following section discusses all the contributions toward

the objectives of this thesis. The main objective is discussed at the end of the following

list to emphasize how sub-objectives contribute to accomplishing the main objective.

• Sub-objective I: The main focus of this sub-objective is to research and develop

well-performing ML models for CAD systems to assist doctors. As case studies, we

have selected three branches of medicine. These are cardiology, gastroenterology,

and andrology. In gastroenterology, images collected from colonoscopies were the

main data stream to apply ML algorithms which are the core algorithms in CAD

systems. Several classification models [30, 31] and segmentation models [35, 36]

were researched and implemented for the gastroenterology branch under this thesis

in different timeline stages. In addition to real data, we used synthetic data with seg-

mentation models [67] used to predict polyps in GI-tract data. Similarly, ML-based

regression models were investigated and developed for the andrology branch [38, 39,

40, 68]. For the cardiology branch, an ML-based ECG analysis system [41] was re-

searched and implemented. Moreover, all the dataset papers [23, 24, 25, 26, 27, 28,

29] introduced ML models as baseline experiments which can be considered initial

models for developing CAD systems.

• Sub-objective II: The main task of this sub-objective is to collect and produce

medical datasets, which is identified as the main bottleneck for developing ML-

based CAD systems. Moreover, these datasets are the main assets for initiating

the novel concept and the corresponding framework, DeepSynthBody, introduced in

this thesis. Different types of real medical datasets [23, 24, 25, 26, 27, 28, 29] were

collected and published to the research community with the baseline experiments

under this thesis to accomplish the sub-objective I,. All the datasets contribute

to designing ML models for CAD systems (sub-objective I) because of the baseline

experiments introduced in every dataset paper.

In addition to our datasets, two additional datasets were used from outside of the

dataset contributions. One is an ECG dataset, which is a private medical signal

dataset. The second one is a sperm dataset [69] which represents sperm video data.

6https://www.medpagetoday.com/cardiology/
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The additional datasets were selected to design ML models for CAD systems in

completely two different branches: cardiology and andrology. At the end of the

thesis, we showed using synthetic datasets to overcome the data deficiency problem.

These synthetic datasets, which consist of a synthetic ECG dataset [70], a synthetic

GI-tract landmark dataset [71] and, a synthetic polyp dataset [67] generated using

the GAN models introduced as a result of our new concept and the corresponding

framework.

• Sub-objective III: Initially, we focused on designing generalizable ML models,

which are the core of CAD systems to achieve Sub-objective I. Later, we identified

that the medical data deficiency in training ML models should be tackled. We have

performed benchmark analyses with selected three medical datasets to investigate

the data-related problems and investigate them. As a result, a set of benchmark

articles for the selected datasets as case studies were published to achieve the bench-

mark analysis objective (Sub-objective III). These benchmark analyses helped to

identify the problems of designing ML models. Additionally, these benchmark ex-

periments give preliminary knowledge about medical datasets, which we will use to

generate synthetic data to achieve Sub-objective IV. Different types of quality con-

trol benchmark analysis with the GI-tract data [32, 33] were performed to support

this objective. Moreover, we can consider the ML models [30, 31, 36, 35] introduced

in Sub-objective I as benchmark analysis studies for Sub-objective III because they

are correlated with each other. Similarly, the ECG analysis [41] and sperm anal-

yses [38, 39, 40, 68] experiments were considered benchmark analyses to identify

data-related problems to address using synthetic data. Without having benchmark

analysis or baseline experiments, it is not recommended to researching GANs for

the new framework because data problems related to a medical dataset cannot be

identified without benchmark analysis. We have also performed benchmark analysis

with synthetic data [67, 72, 73] to identify the usability of synthetic data instead of

real medical data.

• Sub-objective IV: Research and developing GANs is the core of the DeepSynth-

Body concept [71] (www.deepsynthbody.org) proposed as a solution to the data

deficiency problem identified and investigated in this thesis. We started investigat-

ing possibilities of using GANs with GI-tract data such as prepossessing GI tract
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images using a GAN [72, 73] to fill blank regions and to predict blurry pill cam video

frames using a GAN [74], which can predict the future frames for given input frames

to solve the data problems of developing ML models. These experiments gave the

basic understanding of how GANs use in the medical domain and how hard it of

producing synthetic data in the medical domain. Then, an advanced GAN exper-

iment, namely Pulse2pulse [70], which can generate synthetic 12-leads 10-seconds

ECG indistinguishable from real ECGs was introduced to overcome the data sharing

problem as a result of privacy issues. Ultimately, we proved that our synthetic ECG

dataset shows very close characteristics to the real data distribution [70].

Moreover, to address the costly and time-consuming expert’s data annotation pro-

cess, we experimented and introduced novel pipelines [75] of GAN architectures

using GI-tract dataset to generate synthetic polyp data from the clean colon to

overcome data imbalance problems in the medical domain, such as having more true-

negative samples compared to true positive samples. Furthermore, we researched

and presented a new pipeline to generate synthetic polyp data with the correspond-

ing mask from a single polyp image [67], namely SinGAN-Seg, and showed that

generated synthetic medical data is a solution to overcome data problems in the

medical domain. Additionally, we investigated the usability of GANs to produce

synthetic sperm data [76] instead of blurry-looking sperm video samples to have

a better quality data stream for training AI-based sperm analysis systems in the

future. To get active contributions of performing GAN-related research to produce

synthetic data from non-computer science people, we have proposed a tool [77] to

run GAN experiments without writing a single line of code.

• Main-objective: The final objective was to connect these all together and produce

well-performing and more accurate ML models for CAD systems to assist doctors for

efficient diagnosis by addressing the data deficiency problem. The initial ML models

designed to achieve the Sub-objective I showed the effects of the data deficiency

problem in the medical domain. Then, we collected, researched, and developed

datasets (real and synthetic) to develop ML models for biomedical applications. In

Sub-objective III, benchmark analyses were performed to identify the data problem

to be addressed. We proposed the new concept and the corresponding framework,

DeepSynthBody, based on GANs as a solution to the data deficiency problem in the
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medical domain (Sub-objective IV). Finally, we published our solution as an open-

source project for getting more collaborations worldwide at www.deepsynthbody.

org.

As described above, our research addresses the stated objectives. Then, regarding the

overall research question, what problems emerge from data in computer-aided diagnosis

systems, and how can these problems be tackled? We first identified the problems and

proposed the DeepSynthBody concept to tackle them. As the problems, we could iden-

tify that data to train ML models in the medical domain is lacking due to several data

preparation problems, such as privacy concerns and the costly and time-consuming data

annotation process. Then, this data deficiency problem causes generalisability issues and

performance issues for ML models, which are the core algorithms used in CAD systems.

To answer the data deficiency problem, we have experimented and developed synthetic

data and showed that generated synthetic data could solve the data deficiency problem in

the medical domain because synthetic data can address some of the restrictions emerging

from privacy issues coming with sensitive data. We also show that synthetic data is an

alternative way to prepare data and corresponding segmentation masks for the costly and

time-consuming real data annotation process.

In addition to the main contributions aligning to this thesis work, the author con-

tributed as a development team member of the Norwegian “Smittestopp” app, which was

developed to trace Covid-19 contacts. Algorithms to find contacted regions of interest

using GPS coordinates were investigated under this Covid-19 app development project.

Moreover, several master students were supervised, and they successfully completed their

master’s degrees with good grades and publications [24, 72, 73, 74], which were great

contributions to the GAN development stage of DeepSynthBody. Not only these, the

author contributed to a research study [78], which was focused on detecting soccer events

from video clips, but this study is out of the scope of the thesis.

1.6 Outline

Our initial contributions were focused on designing ML models for CAD systems to aid

doctors by achieving the Sub-objectives I and II. However, the data-related problems of

the current pipeline of applying ML motivated us to find a new way to overcome the data
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deficiency problem in the medical domain. Therefore, this thesis mainly focuses on de-

signing a novel concept, DeepSynthBody, and the corresponding framework introduced to

bypass the data-related problems such as privacy-related problems with medical data and

resource-consuming medical data annotation process. To discuss, research, and present

the DeepSynthBody concept, we organized the thesis as follows:

• Chapter 2: Related Work - gives more required background knowledge to follow this

thesis. In this chapter, the basic knowledge about ML concepts and corresponding

references used in designing CAD systems are given. Then, deep generative models

and the state-of-the-art GANs are discussed with greater details to give enough

knowledge to understand the new concept introduced in this thesis. Additionally,

similar frameworks to DeepSynthBody and other studies about synthetic medical

data generations are discussed.

• Chapter 3: DeepSynthBody - In this chapter, the DeepSynthBody concept, which is

the new concept introduced in this thesis to overcome the data deficiency problem,

is formalized by developing the corresponding framework. The theoretical behavior

of the framework is discussed in this chapter with four main sections, which are

collecting real data and analysis, developing GANs, producing DeepSynth data, and

explainable DeepSynth AI and DeepSynth explainable AI of this framework. The

first three sections are explained using three case studies of ECG data, GI-tract data,

and sperm data. These use cases are discussed with the significant findings, which

were identified as the most influenced results for the success of DeepSynthBody.

Under the collecting of real data and analysis, data collection procedures and analy-

sis procedures are discussed. Then, the core of this framework, GAN development, is

discussed in developing GANs. In the same section, a novel tool, namely GANEx,

used to performing GAN experiments, is introduced. The process of producing

Python package index (PyPI) packages is explained using the use case studies in

the same section. The website www.deepsynthbody.org, which is the online plat-

form of this concept, is introduced in the third section. Finally, the optional step,

explainable DeepSynth AI and DeepSynth explainable AI, are discussed theoreti-

cally.

• Chapter 4: Discussion and Conclusion - discusses limitations, other advanced func-
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tionalities, which can be researched with DeepSynthBody as future directions, and

the conclusion about how the DeepSynthBody concept and its formal DeepSyn-

thBody framework help to overcome the data deficiency problem related to the

development process of ML models for CAD systems.

• Appendix A: All the papers counted as contributed under this thesis are listed here

with the publication details and corresponding contribution statements.
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Chapter 2

Related Work

This chapter covers the basic concepts of this thesis and a literature review to discuss

similar research directions and their limitations. We give appropriate knowledge to un-

derstand the development of ML models forCAD systems with limited medical data. The

first section provides an overview of medical datasets. Then, the common ML solutions

used in medicine are discussed with the corresponding evaluation criteria because they

are the basics for developing CAD systems. Afterward, GANs are introduced with their

theoretical background because GAN is the basic model used to generate synthetic data

to overcome the data deficiency problem, which is identified as a major problem in the

medical domain. Finally, a review and discussion about previous studies, which use a

similar direction to DeepSynthBody to address the lack of medical data, is provided.

2.1 Medical Data

Data is the most important factor for developing AI solutions [79, 80, 81], and it cannot

be separated from the field of AI. In this regard, medical datasets are the key to develop

successful ML solutions in the medical domain for CAD systems. Therefore, AI researchers

try to collect as much as possible medical data from data providers such as hospitals or

medical research institutions. As a result, many public repositories are available for

medical data, and a few of them are shown in Table 2.1. As we can see in the table,

some medical repositories have a specific type of medical data like NITRC, while some

collect all types of data, such as the UC Irvine machine learning repository. However,

most datasets in these repositories are smaller than general datasets such as Imagenet [82]
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Table 2.1: Sample data repositories with various medical data. Some of the data reposito-
ries have specific type of data. Some of them have data collections from multiple domains
including the medical domain.

Repository Link to access Description

The cancer
imaging archive
(TCIA)

https://www.

cancerimagingarchive.

net/

A large archive of medical images of
cancers.

NeuroMorpho NeuroMorpho.Org Digitally reconstructed neurons
from vaiours animal types. Human
is included as one type.

NeuroImaging
Tools and
Resource Col-
laboratory
(NITRC)

https://www.nitrc.

org/

Neuroinformatics data, from MR,
PET/SPECT, CT, EEG/MEG, op-
tical imaging, clinical neuroimaging.

OpenNEURO https://openneuro.

org/

Sharing MRI, MEG, EEG, iEEG,
ECoG, and ASL data.

PhysioNet https://physionet.

org/

A repository for Physiologic Signals.

OSF.io https://osf.io/ Open datasets from all the domains
including the medical domain.

The UC Irvine
Machine Learn-
ing Repository

https://archive.ics.

uci.edu

Open access datasets from many do-
mains including the medical domain.

Registry of
Open Data on
AWS

https://registry.

opendata.aws/

Open access datasets from many do-
mains including the medical domain.

IEEE DataPort https://

ieee-dataport.org/

Datasets from different domains
around 25 categories defined by
IEEE DataPort such as Biomedi-
cal and Health Sciences , Biophysi-
ological Signals, Environmental and
more other general categories includ-
ing health data.

because, for example, collecting medical datasets should follow specific protocols to avoid

privacy restrictions, and annotating medical data is costly and time-consuming.

Medical data have different formats, which vary from a simple single value to advanced

multi-dimensional data types such as two-dimensional (2-D), three-dimensional (3-D), and

four-dimensional (4-D). Multi-dimensional data has more than one value to represent a

single data point. Visual representations of sample biomedical data with various data

formats are depicted in Figure 2.1. Figure 2.1(A) represents a simple 1-D ECG signal,

and Figure 2.1(B) shows an image (2-D) taken from an endoscopy. Some medical data
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Real ECG

(A) - An ECG signal [41] (B) - An endoscopy image [23]

(C) - An MRI representation [83] (D) - A digitally reconstructed neuron [84]

Figure 2.1: Visual representations of different types of biomedical data.

cannot be simply presented in a 2-D plane and need software tools to get actual 3-D

visualizations such as an MRI as depicted in Figure 2.1(C), and a digitally reconstructed

neuron depicted in Figure 2.1(D). Therefore, considering data formats is important in

developing ML solutions, such as deep generative models, which will be discussed in later

sections.

Medical datasets, which can be either public or private, are the foundation for devel-

oping ML models for CAD systems to assist doctors. Therefore, collecting medical data

is identified as a key step for the thesis. As a result, several datasets [23, 24, 25, 26, 27,

28, 29] were published. More details about these datasets are discussed in Section 3.1.1.

In DeepSynthBody, which is the novel concept introduced to overcome the data-related
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Table 2.2: Sample datasets for the 11 categories of the biological anatomy classification.
These datasets were selected randomly using Google search. These datasets are selected
from the outside of the dataset contributions introducing under this DeepSynthBody
study.

Data class Sample datasets

Cardiovascular Cardiac MRI dataset [88], ECG data [89]
Digestive Endoscopy dataset [90, 91], Capsule endoscopy [92]
Endocrine Hyperspectral imaging [93], Thyroid ultrasound image [94]

Integumentary Skin lesions [95], Skin image dataset (melanomas) [96]
Lymphatic CT lymph nodes [97], Lymphography Data Set [98]
Muscular MRI of muscles of the hand [99], Full body data with muscle [100]
Nervous Brain activity fMRI data [101], PET-MR Dataset [102]
Urinary Kidney dataset [103], CI images kidney stones [104]

Reproductive Human sperm images [105], Embryo dataset [106]
Respiratory Chest X-ray data [107], Chest CT datast [108]

Skeletal Bone X-ray dataset [109], Knee MRIs [110]

problems faced during the development stage of ML solutions, all the medical datasets

had to be categorized to make a clear data organization process for the contributors and

the end-users of the framework. For this, a biological anatomy classification [85] (11

categories) was used to classify most of the medical datasets (except genome data [86,

87] which is related to the full human body. The genome data will be considered for the

DeepSynthBody framework in the future. Table 2.2 presents the 11 classes selected as our

classification and corresponding example open-access datasets. These example datasets

indicate that most of the data can be classified into these 11 categories.

Even if publicly available, medical datasets can come with other challenges that need

to be taken into account. One challenge is the sizes and distributions of medical datasets.

If the sizes of these datasets are limited, such as having few data samples, then it directly

affects the final performance of ML models. Similarly, if a dataset is imbalanced such

as one class has more data and another class is lacking data, then it also affects the

performance of the ML models [111, 112, 113, 114]. Despite these problems, privacy

concerns of the medical data [115], containing information about patients, is another

problem. These privacy concerns directly cause problems for publishing the medical data

because medical dataset publishers should follow all the protocols related to publishing

medical datasets, as discussed in Section 1.1. In addition to the privacy concerns, making

the ground truth data for the medical data is costly and time-consuming. In the medical

domain, experts (medical doctors) should perform the data annotation process. Therefore,
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one of the goals of this thesis is to overcome the data annotation problem and introduce

an efficient way to produce medical datasets with ground truth to train ML solutions,

i.e., both reducing the need for medical experts to produce ground truths and bypassing

the privacy challenges.

2.2 Machine Learning in Medicine

Different types of ML algorithms are applied to medical data. When researchers and other

medical data providers publish datasets to train ML models, they have intended goals to

achieve using the datasets. For example, when GI-tract polyp datasets are published

with the corresponding ground truth masks [116, 117, 118], the main goal of the datasets

is to train ML models to perform polyp segmentation tasks. Therefore, baseline exper-

iments (experimental results coming with dataset papers) and benchmark experiments

(experiments performing to achieve the best results compared to the state-of-the-art per-

formance) of a particular dataset are essential to know the capabilities of the ML models

trained using the dataset and identify the related practical problems, for example, the

generalizability issue of an ML model trained using a single dataset. The baseline and

benchmark results coming from ML models can be used to identify the limitations of

datasets. For example, suppose every machine learning model shows poor performance

for a specific class of a data classification problem. In that case, the problem might be

with the data of the particular class. In this regard, this thesis discuss baseline exper-

iments and benchmark experiments. The baseline experiments are discussed with our

dataset papers [23, 24, 25, 26, 27, 28, 29], and the benchmark experiments are discussed

in our benchmark articles [30, 38, 39, 40, 68, 41, 36, 32, 33, 35, 34].

Most of the ML models trained with medical data can be classified into a regression

task [119, 120, 121], classification task [122, 123], detection task [124, 125] or segmentation

task [126, 127]. These tasks depend on medical datasets and their intended purposes. ML

models trained to solve regression tasks want to predict continuous values (parameters)

for a given input data such as numerical input, images, or video inputs. For example,

predicting motility or morphology level, which are percentage values, of a sperm sample

given as a video is a regression model. In the classification task, ML models need to

predict class labels of input data, such as predicting the GI-tract landmark for a given
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image captured from an endoscopy. In detection tasks, ML modules focus on predicting

bounding boxes for regions of interest on images or videos (normally, videos are processed

frame by frame, and this video processing also can be considered as image processing),

i.e., predicting polyps in an image of GI-tract. Advanced segmentation tasks perform

pixel-wise predictions to mark the region of interest, and this task gives greater details

than all other three tasks, for example, predicting the exact regions of polyps using the

pixel-wise classification of a GI-tract image. These ML methods have specific evaluation

methods based on the objectives.

Evaluating ML models have to be performed properly, which means evaluation pro-

cesses should reflect the real performance of ML models. For example, data leakage

problems [128] should be avoided, the generalizability of ML models should be tested

using cross-dataset evaluations, and multiple evaluation metrics should be calculated to

show the performance from different perspectives. Otherwise, researchers may produce

inefficient solutions which cannot be applied in practical scenarios. According to the

type of the ML task, the evaluation methods should be selected. A summary of these

evaluation methods is presented in Table 2.3.

One of our studies [31] discusses the importance of evaluating ML models with multi-

ple evaluation metrics and cross datasets for producing better generalizable ML solutions.

In addition to the cross dataset evaluations, we have discussed problems of current ar-

ticles with incomplete evaluation metrics using a literature review of polyp classification

as a case study [33]. To overcome this incompleteness of the evaluation results, we have

introduced an online tool called MediMetric1, which can be used to get complete evalu-

ation metrics from the incomplete evaluation metrics for binary classification tasks. The

evaluation performance of ML models can be found in baseline experiments, which come

with dataset papers, and benchmark papers, which aim to produce state-of-the-art results

for a particular dataset. In this thesis, these baseline results and benchmark results are

essentials to develop ML solutions to achieve our Sub-objective I and develop DeepSyn-

thBody, which is the main solution introduced in this thesis to achieve Sub-objective IV.

Therefore, contributions of ML methods with corresponding evaluations are presented in

our series of benchmark articles [30, 38, 39, 40, 68, 41, 36, 32, 33, 35, 34] in addition to

the evaluations presented in our dataset publications [23, 24, 25, 26, 27, 28, 29].

1https://medimetrics.no/
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Machine learning (ML) type Evaluation method

Regression R Squared (Coefficient of Determination), mean square
error (MSE) or root-mean-squared error (RMSE), mean
absolute error (MAE)

Classification Accuracy, F1, Recall (sensitivity), Precision, Matthews
correlation coefficient (MCC)

Detection Intersection over union (IOU), Precision, Recall
Segmentation IOU(Jaccard index) , F1-score (dice coefficient)

Table 2.3: Example evaluation methods using for the most common ML methods applied
with medical data.

2.3 Generative Adversarial Networks

In the above section, regression, classification, detection, and segmentation models known

as discriminative models were discussed. As a mathematical definition, the discriminative

models capture the conditional probability, for example, p(Y |X), in which X represents

data instances and Y represents a set of corresponding labels. In this section, genera-

tive models are discussed. These generative models are the most important ML model

used in DeepSynthBody, which is introduced as a solution to overcome the data defi-

ciency problem. Generative models learn joint probability distribution compared to the

conditional probability of discriminative models. In the formal definition of generative

models, they capture the joint probability p(X, Y ) if both data instances (X) and labels

(Y ) exist. Otherwise, the generative models capture only data distribution p(X). There

are several types of generative models. Autoregressive models, variational autoencoders

(VAEs), Latent Dirichlet Allocation (LDA), Hidden Markov Model, Gaussian Mixture

Model, Bayesian Network, VAE, and generative adversarial network (GAN) are a few of

them. Among these generative models, two deep generative models, namely VAE [129]

and GAN [130], have become popular in the recent research studies [131, 132, 133] of

generating synthetic data.

VAE [129] consists of two networks, namely encoder and decoder networks. The basic

architecture diagram is illustrated in Figure 2.2 with the basic elements. In the training

stage, the encoder converts input data into a latent space represented using mean (µx) and

standard deviation (σx). Then, in the inference stage, only the decoder generates data

by sampling the latent vector from the latent space. However, the main disadvantage

of using VAEs to generate synthetic data is generating blurry output [134]. In synthetic
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μx
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X - input data

Sampling

X' - generated data

Encoder (e) Decoder (d)

Figure 2.2: Basic architecture of a VAE.

medical data generations, every feature is essential. Therefore, GANs were selected to

use as the main generative models to generate synthetic data in this thesis because of

high-quality feature-rich generation capabilities. In contrast, GANs are harder to train

than VAEs [135].

The basic GAN architecture introduced in 2014 by Ian et al. [130] consists of two

DNNs. One is called the generator, and the second one is called the discriminator. The

generator’s main task is to generate synthetic data by taking a random noise vector as

input. The noise vector can be sampled from any statistical distribution, such as nor-

mal distribution or Gaussian distribution. Then, the discriminator learns to distinguish

generated data from the real data, used to train the GAN architecture. In the training

process, the generator and the discriminator are leaning together, which results in a Nash

equilibrium [136] problem. If successfully trained, the generator can generate realistic

synthetic data samples, which can fool the discriminator. This process is illustrated in

Figure 2.3. The objective function (loss function) used in this vanilla GAN architecture is

presented in Equation 2.1. However, not every GAN architecture uses the same objective

function to optimize the training process. The most common loss functions are summa-

rized in a large study about GAN architectures done by Lucic et al. [137]. Using the most

appropriate loss function to generate realistic synthetic data with a stable training process

or investigating novel loss functions for a GAN is another important factor in generating

realistic synthetic data. Therefore, studying and having comprehensive knowledge about

GANs and the corresponding loss functions is essential before developing GANs to gen-

erate synthetic data. Otherwise, synthetic data generated from GANs will not cover the

real distribution of the training data [138], or the mode collapse behavior [139] of GANs
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Figure 2.3: A simple representation of the vanila GAN architecture.

may cause.

minGmaxDV (D,G) = Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

After the vanilla GAN, it became one of the trending fields in DL, and different

GAN versions for different purposes were published. A summary of the most popular

GAN architectures is shown in Table 2.4. For producing better quality synthetic medical

data for the DeepSynthBody, the contributors should use the most appropriate GAN

architecture. A literature review or preliminary experiments should be conducted to

determine the best fitting GAN architecture for a given problem. Good knowledge about

the state-of-the-art GANs methods is important for finding a better GAN model for

generating synthetic data. In this thesis, novel GANs [70, 75, 67] and modified versions of

different GAN architectures [72, 73, 74, 76] were researched and developed. More details

about these GANs are presented in Chapter 3.

Not only the designing and implementation of GANs is essential, but also evaluating

them. Evaluation of GANs is an active research area by itself. GAN evaluation is not

well-defined in terms of how to measure the quality of the generated synthetic data.

Theoretically, GANs should produce synthetic data which looks like real data from the

whole distribution of the real data used to train the GANs. To measure the performance of

GANs, qualitative and quantitative evaluation metrics were introduced in several research

papers. Table 2.5 shows standard GAN evaluation metrics presented in the paper [150].

In the synthetic data generation process, the evaluation process plays a significant role

in finding suitable GANs to produce synthetic data to replace the real medical data. For

example, evaluation metrics can compare two or more GAN models developed for the

35



Chapter 2. Related Work

Table 2.4: A little from the most popular GAN architectures and their main functionali-
ties. More about other GAN architectures can be found in [140, 141, 142]

GAN name Description

Vanila GAN architecture [143] This is the first GAN architecture introduced in 2014.
This is capable of generating low resolution images
but they are noisy.

Pix2pix [144] This is a conditional GAN GAN architecture. This
model convert an input image from one domain to
an output image in another domain. The training
process need paired images from two domain which
have one to one mapping.

CycleGAN [145] This paper present a similar mechanism to the
Pix2pix implementation. However, the CycleGAN
does not need paired training data, then the model
can be train using unpaired two datasets from two
different domains. Cycle consistency loss was intro-
duced in this study.

StyleGAN, StyleGANv2 [146] This GAN architecture is capable of generating re-
alistic high-resolution images and the GAN can be
controlled to change high-end features as well as fine
features. The major drawback of this GAN is, a large
training dataset is required to train the model. How-
ever, recent advancements introduced to data aug-
mentation method [147] with GANs shows that lim-
ited datasets are enough to train new GAN models.

BigGAN [148] This is another GAN architecture which can gener-
ate high-resolution images with high fidelity. A large
dataset is required to train BigGAN also, but the
quality of generated samples are high.

SinGAN [149] This GAN architecture is trained using a single im-
age and then, synthetic data is generated similar to
the local and global features of training images but
different from the training images. As use cases, gen-
erating high-resolution images, image editing , har-
monization and making animations are focused.

same purpose. However, evaluating GAN models developed by different developers is

not an easy task until a common reference calculates evaluation metrics. Therefore, in

this thesis, we recommend using qualitative and quantitative criteria to understand the

quality of the generated synthetic data.
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Table 2.5: A few of GAN evaluation metrics. The complete list of these evaluation metrics
and corresponding details with the original references can be found in [150]

GAN evaluation type Metircs

Qualitative
Average Log-likelihood
Coverage Metric
Inception Score (IS)
Modified Inception Score (m-IS)
Mode Score (MS)
AM Score
Fréchet Inception Distance (FID)
Maximum Mean Discrepancy (MMD)
The Wasserstein Critic

Quantitative
Nearest Neighbors
Rapid Scene Categorization
Preference Judgment
Mode Drop and Collapse
Network Internals

2.4 Synthetic Data in Medicine

Researchers have experimented with GAN in the medical domain for different purposes.

In most cases, GAN models have been used as augmentation techniques to increase the

size of the medical datasets [151, 152, 153]. Some of them have focused on improving

classification [151], detection [154, 155], or segmentation [156] performance using synthetic

data generated by GANs. Besides increasing or augmenting data, special types of GANs

can perform medical segmentation tasks [157, 158] and generate super-resolution images

to make a precise medical diagnosis [159]. AsynDGAN [160], introduced by Chang et

al., is another GAN architecture focusing on solving privacy concerns by distributing

discriminator networks among data providers to train a GAN architecture.

To the best of our knowledge, there is no other similar concept proposed like the Deep-

SynthBody concept, which focuses on producing synthetic medical data for the whole

human body to solve the data deficiency problem in the medical domain by addressing,

for example, privacy concerns and overcome costly and time-consuming medical data an-

notation processes. However, few studies developed frameworks to solve privacy concerns

of the medical data. The closest framework similar to DeepSynthBody is Synthea2 [161]

which was developed to generate synthetic electronic health records (EHR). Synthea is

2https://synthetichealth.github.io/synthea/#technology-landing
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also running as an open-source project to get contributions from other researchers. This

framework focus on generating synthetic EHR to free the medical data from legal, privacy,

security, and intellectual property restrictions. Although Synthea focuses its primary

goal on producing privacy restriction-free synthetic EHR, which is one of the primary

goals of DeepSynthBody, significant differences can be found between Synthea and Deep-

SynthBody. For example, DeepSynthBody focuses on building a synthetic human body

model, while Synthea focuses on making synthetic patient records using synthetic EHRs,

which are text-based medical records. Pre-generated records can be downloaded from the

Synthea website3. The DeepSynthBody concept is not targeting text-based EHR gener-

ations like Synthea. Our main focus is on generating realistic medical data similar to

the medical data collected from medical instruments used to examine patients, such as

biomedical signals and biomedical images.

Moreover, DeepSynthBody provides an advanced well-defined flow from data collection

to the end of synthetic data generations focusing on much more advanced additional

objectives. These additional objectives provide synthetic data with annotations, define

a novel model for the human body, and provide a restriction-free GAN repository for

generating synthetic medical data. Additionally, the DeepSynthBody concept publishes

GAN models instead of pre-generated synthetic data for the end-users.

Anonymization through data synthesis using generative adversarial networks (ADS-

GAN) [162] is another framework to generate synthetic EHR datasets. This framework

provides pre-trained GANs to generate synthetic EHR records. Their generation method

is based on conditional-GAN, which means to generate synthetic data, real data values

should be available. Therefore, they propose to have a trusted intermediate partner to

generate synthetic EHR data from real data records. In comparison, DeepSynthBody

does not need any intermediate partner because of the in-house GAN training capability

introduced in the framework with the corresponding tools. In addition, DeepSynthBody

focuses on diverse, complex medical data types compared to normal EHR data considered

in the ADS-GAN study.

SynSigGAN [163] was developed by Hazra and Byun to generate privacy restriction-

free biomedical signals. However, despite the results in the paper, the GAN is not avail-

able in public to generate synthetic data. Similarly, different generative models for dif-

3https://synthea.mitre.org/downloads
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ferent types of medical datasets can be found, such as synthetic embryo images [164]

and COVID-19 X-ray images [165]. The study of synthesis of COVID-19 chest X-rays

shows improvement for ML models used to detect Covid-19 when this synthetic data is

used with real data to train the ML model. They also discuss how GAN is used for

anonymization. The improvement achieved for the performance motivated us to make a

formal framework for synthetic data in the medical domain. DeepSynthBody provides a

framework and infrastructure that can share these anonymized data generators compared

to the above solutions.

2.5 Summary

Medical data is the key to apply AI solutions in medicine. Therefore, there are many

public repositories, which are collecting medical data and share them with researchers.

These medical data have different formats. However, the sizes of the datasets are not

enough to train a generalizable and well-performing ML model. The sizes of datasets are

limited in the medical domain due to, for example, privacy restrictions and the costly and

time-consuming data annotation process. These data deficiency problem motivated us

to find a solution to tackle the problems. Identifying the correct organ system, the data

source, and the medical data formats are essential for developing ML models for CAD

systems, such as deep generative models used in our DeepSynthBody concept.

Applying ML techniques and finding suitable models to get better predictions are

the main tasks for developing AI-based CAD systems for medical scenarios. The main

ML methods include regression, classification, detection, and segmentation. Different ML

methods have implicit evaluation techniques, and following them strictly to evaluate ML

models is required to find accurate and generalizable AI solutions. Producing ML solu-

tions for baseline experiments or benchmark analyses can give a first idea about a medical

dataset and the quality of dataset’s content. Additionally, baseline experiments are nec-

essary for analyzing the quality of synthetic data, which will be be used as alternatives.

To generate synthetic data, we selected GANs as the core generative model in this

thesis because of the ability of GANs to generate synthetic data with rich features. How-

ever, training GANs is more challenging than training other generative models. Therefore,

having a good understanding of GAN types and their evaluation methods are important
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factors in implementing good generators that can produce synthetic data for solving the

data deficiency problem associated with developing ML models for medical CAD systems.

Our proposed DeepSynthBody is a novel concept and a framework addressing the

data deficiency problem identified while developing ML models for CAD systems to assist

doctors. In this chapter, existing frameworks were explored with similar directions as

DeepSynthBody. Most of the solutions focus on text-based EHRs. Our solution, namely

DeepSynthBody is designed to generate all the medical data coming through medical in-

struments except text-based medical data. While some solutions need a third-party data

handler to maintain privacy concerns, the DeepSynthBody concept proposes a mecha-

nism to design GANs in-house of the medical data providers. In the next chapter, the

DeepSynthBody concept and the corresponding framework are introduced with three case

studies.
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DeepSynthBody

In this section, the flow of the DeepSynthBody concept [71], which is the main solution

discussed in this thesis to overcome the data deficiency problem, is introduced. The whole

framework is discussed under four major steps: collecting real data and analysis, devel-

oping generative models, creating DeepSynth data, and explainable DeepSynth AI and

DeepSynth Explainable AI. The first section is further divided into two, collecting real

data and analyzing real data to discuss the real data collection process and the process of

analyzing them, respectively. Under the second step, namely developing generative mod-

els, three sub-section are discussed. These are designing generative models and evaluation,

publishing deep generative models, and developing a tool called GANEx to perform GAN

experiments. In the third section, creating DeepSynth Data is discussed. At the end

of the chapter, explainable DeepSynth AI and DeepSynth explainable AI is presented,

followed by a summary.

We have developed this framework to tackle the data deficiency problem identified

as a major bottleneck to develop AI-based CAD systems in medicine. The main focus

of the DeepSynthBody concept is producing synthetic medical data to overcome barriers

attached with medical data, such as privacy concerns, the costly and time-consuming

medical data annotation process, and the data imbalance problem in the medical domain.

The DeepSynthBody concept is not limited to achieve the primary objectives, but it

opens new research directions such as finding a synthetic model to define the human

body. Additionally, DeepSynthBody can be considered a modern repository to store

medical data without any privacy concerns. It can be used as a medical data compression

method to store big datasets in limited spaces.
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Figure 3.1: Complete framework of DeepSynthBody. Reference for the figure: [71]

An overview of the DeepSynthBody framework is shown in Figure 3.1. There are four

major steps namely:

I. collecting real data and analysis.

II. developing generative models.

III. producing deep synthetic data.

IV. explainable DeepSynth AI and DeepSynth explainable AI.

The right-side top arrow in Figure 3.1, Restricted access, represents the flow having

privacy-related restrictions. The Open access arrow represents the open access flow of

synthetic data generated to replace real private datasets. These steps are discussed in

detail in the following sections.

3.1 Step I: Collecting Real Data and Analysis

Step I in Figure 3.1 is collecting real data and analysis. In this step, real medical data are

collected and analyzed for the later steps in DeepSynthBody. Real medical data can be

either public or private. If data is private, this Step I should be completed by authorized

data providers. If data is public, anyone who wants to contribute to this framework can

complete this step. The three sub-processes, data classification, annotation and labeling,

and analysis, are discussed separately to simplify the process of the step. The two types
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3.1. Step I: Collecting Real Data and Analysis

of research contributions can be identified in this step. They are publishing open access

medical datasets with baseline experiments and performing benchmark experiments of

medical data.

3.1.1 Collecting Real Data

Medical datasets are the key to initiate the DeepSynthBody framework. Hospital and

medical research institutions are the sources for collecting real medical data. These med-

ical data come from different sources, such as ECG machines [166], X-ray machines [167],

endoscopy machines [168], MRI machines [169], and various other advanced types of ma-

chinery collecting human body data. In this thesis, the medical data collection process

was performed continuously to achieve Sub-objective II, which also contributes to the

data collection process of DeepSynthBody. As a result, seven open datasets were pub-

lished. The datasets collected in this thesis are tabulated in Table 3.1 with additional

two datasets used as case studies. These additional two datasets were not published as

dataset papers of this thesis, but we have used them to have different case studies in the

later stages of this thesis.

The first three datasets presented using bolded text in Table 3.1 were the selected three

datasets. The first dataset is an ECG dataset, but it is restricted for public use because

of privacy restrictions. HyperKvasir [23] is the largest public GI-tract dataset consisting

of images and videos collected from real endoscopy examinations. This GI-tract dataset

consists of polyp images with the corresponding annotations done by experts, unlabelled

images, and a set of images belongs to 23 classes. VISEM [69] (sperm video data) was not

collected as a part of the thesis, but the dataset is considered as one of the case studies.

We have selected this dataset to represent the video data type in our experiments.

The fifth and the sixth in Table 3.1 are two other GI-tract datasets related to Hyper-

Kvasir. These are the Kvasir-Capsule [27] and Kvasir-instruments [29] datasets. Kvasir-

Capsule consists of images and video data collected from capsule endoscopy. This dataset

has 47, 238 labeled images, 43 labeled videos, 4, 694, 266 unlabeled images and, 74 un-

labeled videos. By comparing the number of labeled and unlabeled images and videos,

we understand the capabilities of this dataset for supervised and unsupervised machine

learning techniques. However, this dataset does not have any segmented GI-tract images.

In contrast to this, Kvasir-instruments is a segmentation dataset with manually annotated
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segmentation masks of endoscopic tools. The dataset has 590 images with corresponding

mask images of the segmented tools. Providing fewer images with this dataset indicates

how hard it is to prepare this type of segmentation dataset with the help of medical

experts. So, finding an alternative way to prepare segmentation datasets with medical

datasets is important.

The PMData [25] dataset contains general life-logging data and sport activity data.

Fitbit versa 2 fitness smartwatch was used to collect sensory data for this dataset. There-

fore, the participants of this data collection process were encouraged to wear the watch as

much as possible. In addition to this sensor data, all the participants were asked to record

their daily activities and fitness levels, such as sleep hours, the mood of the person, etc., in

PMSys sports logging app1. Furthermore, a Google form was used to collect another set

of data: demographic data, food images including drinking, and weights. While this type

of data collection is not directly connected with any pure medical data, such as collecting

images and signals of the human body using medical instruments, these data are impor-

tant to know the relationship between daily life and health problems. However, collecting

these types of daily activities is challenging, and careful de-identification is needed before

publishing data to the public.

PSYKOSE [26] is a motor activity dataset collected from 22 schizophrenia patients

and 32 healthy control persons. All the motor activities were collected for an average

of 12.7 days using a wrist-worn actigraph device2. In addition to the motor activity

data, demographic data and the data about medical assessments are given. This kind of

detests is essential for predicting the health states and performance outcome of a person.

However, motor activity data and the corresponding demographic data are susceptible to

privacy. Additionally, collecting health data with multiple sources for the same person

is important because finding correlations among health data and other factors such as

motor activity can lead researchers to discover hidden behaviors of our human body.

HTAD [28] presents a dataset with wrist-accelerometer data and sound data for the

four most common daily activities of human life. These activities are sweeping, brushing

teeth, washing hands, and watching TV. Fining the pattern of these kinds of activities

can lead to finding new research directions such as assistive technology for older people.

Not only as assistive technology, identifying unique patterns of sensor data corresponding

1https://forzasys.com/pmsys.html
2Actiwatch, Cambridge Neurotechnology Ltd, England, model AW4
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to specific health conditions such as mental disorders can lead to treat such patients.

However, collecting data about daily routines has a significant impact on privacy concerns.

Therefore, these kinds of datasets are scarce, and publishing them needs a careful de-

identification process. Otherwise, reaching a way to produce similar synthetic data can

lead to share data without privacy concerns.

Toadstool [24] dataset has sensor data collected through an Empatica E4 wristband

while a set of people are playing Super Mario Bros. In addition to the sensor data, videos

captured during the playtime of the game were included. The data was collected from 10

participants of different ages, sex, and different experience levels. Toadstool looks like a

non-medical dataset. However, finding correlations between sensor data and game playing

patterns will encourage researchers for new areas like health conditions and game playing.

Monitored heart rate and facial expression captured during the playtime can be used to

find hidden correlations. While many people can collect this data type, data sharing is not

as straightforward as a lack of privacy-preserving data sharing mechanisms. Therefore,

we made this dataset to perform research to find suitable data sharing techniques and find

a way to produce synthetic data alternatives to replace these advanced data collection

processes.

The raw medical data should be classified using data classification methods introduced

in DeepSynthBody. First, we have to identify the organ systems which we use as a

biological classification method.
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3.1. Step I: Collecting Real Data and Analysis

Biological Data Classification

The second row and the third row of Figure 3.1 represent the data classification methods.

First, all medical data are classified into 11 categories [85] based on the anatomy of the

human body, as presented in the second row of the figure. Then, all data are classified

using data formats as represented in the third row. This biological classification was

introduced to sort the data in a biological way to identify data using the organ systems

of the human body. Then, the data format classification is applied as a supporting

classification layer for developers who contribute to developing GANs to generate synthetic

data.

The biological categories are cardiovascular, digestive, endocrine, integumentary, lym-

phatic, muscular, nervous, urinary, reproductive, respiratory, and skeletal. All the input

medical data from various sources are considered through one of these categories (see the

second column of Table 3.1). For example, ECG data, GI-tract data, and sperm data can

be classified under the cardiovascular, digestive, and reproductive categories, respectively

(the first three datasets in Table 3.1). If data cannot be considered for only one cate-

gory, then the data can be classified under several categories. For example, PMData [25],

PSYKOSE [26], and Toadstool [24] are classified as multi-classes according to biological

categories in Table 3.1. It is essential to identify the correct biological class for data

coming from various data sources to find the final categories in DeepSynthBody.

Data Dimension Classification

In addition to the biological classification, the medical data can be further classified using

data dimensionality [170, 171]. In this classification, all data formats are classified into

four classes, 1-D, 2-D, 3-D, and N-dimensional (N-D), for where N > 3. In the Deep-

SynthBody framework, data dimensionality means data dimensions coming through data

sources (medical devices), but not the data dimensions used in data processing techniques.

The third column of Table 3.1 presents this classification for our dataset contributions.

Considering the dimensionality of real data is important because the dimensions of the

real data increase the complexity of generative models (GANs) implementing in later sec-

tions (Step II) to generate synthetic representations for the real data. Additionally, data

dimensionality decides which GAN architectures to use in Step II: developing generative

models.
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Chapter 3. DeepSynthBody

For the 1-D data format, biosignals (biomedical signals) collected from the human

body are considered in this framework. Well-known biosignals are Electroencephalogram

(EEG), Electrocardiogram (ECG), Electromyogram (EMG), Mechanomyogram (MMG),

Electrooculography (EOG), Galvanic skin response (GSR), and Magnetoencephalogram

(MEG). The ECG dataset, PSYKOSE [26] dataset, and HTAD dataset [28] are identified

as the datasets with 1-D data format in our dataset contributions in Table 3.1.

On the other hand, medical imaging techniques [172, 173, 174] are commonly used to

visualize human body organs, functions, and states for assisted diagnosis and treatment

suggestions. Radiography, magnetic resonance imaging, nuclear medicine, ultrasound,

elastography, photoacoustic imaging, tomography, functional near-infrared spectroscopy,

and magnetic particle imaging are few examples of medical imaging data. Various tech-

nologies produce different types of medical images. In DeepSynthBody, medical imaging

data is considered under three data format categories: 2-D, 3-D, and N-D, based on the

dimensionality of the data obtained. For example, images collected from video cameras

can be considered under the 2-D data type. Similarly, videos can be identified as a 3-D

data type when the time (represented as consecutive video frames) is considered as the

third dimension. However, some data sources produce 3-D data in a spatial domain, e.g.,

MRI data. However, this type of 3-D data can be classified into 4-D (into N-D because

N > 3) when the source produces a series of 3-D data points along the time. In addition

to 4-D data, some data sources have 5-D data [175], which are considered under the N-D

data category. For example, dynamic MRI data with additional information layers such

as tracking information has a 5-D data format. Under this definition, all real data sources

are identified through 1-D, 2-D, 3-D, or N-D classes.

The data format classifications for the datasets collected under this thesis are presented

in the third column of Table 3.1. In this table, multiple data format classifications can

be seen for some datasets when the datasets have different types of data. The ECG

dataset, which is not public, has the 1-D data format per channel as they received from

the data source, and one sample has eight channels in total. While the original data

format is 1-D, these ECG samples can be processed as 2-D as well by combining multiple

channels together. However, we consider the data format of the original data source as the

data format classification to simply this classification. In contrast to this ECG dataset,

HyperKvasir [23], Kvasir-Capsule [27] have two different types of data formats. They are
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3.1. Step I: Collecting Real Data and Analysis

2-D and 3-D. The images collected from endoscopy or capsule endoscopy are considered

as 2-D data format. The videos collected from the same instruments are classified as 3-D.

These data formats are important to process the data in later steps.

For example, designing image generators are easier than designing video generative

models because video generators should consider temporal features compared to consid-

ering spatial features of images in the image generators. VISEM [69] dataset has only

video data as the main data format, while ground truth data is presented using tabular

data. On the other hand, PMData [26] and HTAD [28] data were considered as 1-D data

because the main data format coming from the data collection instruments are signals.

Toadstool dataset [24] has signals and videos, which means 1-D and 3-D data. Data

coming from the Empatica E4 wristband, which was used to collect the players’ physi-

ological data streams, is considered 1-D data. The videos recorded from the computer

which was used to play the game are considered as the 3-D data format. However, these

are the format of raw data. In contrast to raw data formats, one can process these data

with a different format; for example, video data can be processed as images if temporal

information is unimportant.

The data format classification is done for only the development purpose. This format

classification is important only for developers to find proper ML models such as classi-

fication, detection, segmentation, and generative models, which are compatible with the

dataset.

Data Annotation Classification

After collecting medical data and classifying them according to DeepSynthBody classifica-

tion, the data can be further categorized into two categories: (i) data without annotations

(or labels) and (ii) data with annotations. This classification is represented in the fourth

row of Figure 3.1. In this step, whether the data was labeled by experts or not is con-

sidered. Generally, most of the data coming from medical systems do not have expert

annotations or labels, which are essential to training supervised ML algorithms. Advanced

deep generative models such as conditional generative models [175] can be developed if

the medical datasets have ground-truth data annotated by medical experts. The con-

ditional generative models take labels (or other kinds of annotations such as pixel-wise

classification) as input parameters and produce synthetic data conditioning on the input
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annotations. While one of the primary objectives of DeepSynthBody is to reduce an-

notation cost and time required from experts, conditional GANs should be investigated.

Therefore, producing annotated medical data by experts in this stage can help to train

deep generative models to overcome the problem of medical data annotations.

Annotations or labels of medical data are different from dataset to dataset. Gener-

ally, medical datasets have continuous numerical values, discrete numerical values, class

labels, coordinates such as bounding boxes or pixel-wise classifications (e.g., segmented

mask). Medical experts can use different kinds of tools for annotating different types of

ground truths. These tools may vary from simple image viewers to advanced AI-aided

image mask generation tools or expensive medical data analysis tools [176, 177, 178].

However, an expert in the medical domain must operate these tools. While some tools

can suggest or predict similar types of annotations, the experts should confirm the final

annotations, which will be used as ground truth data for ML algorithms. This expert

annotation process needs the medical experts’ valuable time, which is costly. Therefore,

the DeepSynthBody framework targets handling this problem also.

As explained above, if experts annotations are available, the annotations can be used

to train advanced generative models such as conditional GANs. Therefore, experts’ anno-

tations were collected for most of the data sets tabulated in Table 3.1. The HyperKvasir

dataset [23] consists of image labels and pixels-wise annotations (segmentation masks)

for a part of this big dataset. Providing image labels is easier than providing segmen-

tation masks, which represent pixel-wise annotations. Experts’ knowledge was used in

both annotation processes, but the segmentation annotation process took more time as

expected than classifying into the labels. The HyperKvasir dataset consists of unlabeled

data, images and videos also. In this context, this dataset can be classified as a dataset

with and without data annotations.

The Kvasir-Capsule dataset [27] has labels for the images and the videos. However, in

the current version of this dataset, there is not data with pixel-wise annotations. However,

classification labels assigned by experts are used to prepare the labeled data. In addition to

these labeled images and videos, the rest of the unlabeled images and videos were included

without ground truth data because labeling them all is the costly and time-consuming

task. If an alternative way to prepare labeled or annotated datasets automatically can be

researched, then the expensive and time-consuming medical data annotation process can
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be avoided.

In addition to the above GI-tract datasets, the Kvasir-instrument [29] dataset consists

of only pixel-wise segmented images, which include instruments used in the colonoscopy

examinations and operations. Therefore, this dataset can be identified as a dataset with

annotated data. On the other hand, datasets [24, 25, 26, 28] collected through smart

watch sensors or special wearable sensors can be considered datasets with annotations

because manually identified events were reported in these datasets.

Selecting Case Studies

From the datasets presented in Table 3.1, only three different medical datasets were

selected for case studies in this thesis, i.e., representing the various data types supported

by our framework. They are an ECG signal dataset, a GI-tract image dataset, and a

sperm video dataset. The ECG dataset is not published as a dataset paper. Therefore,

this restricted ECG dataset is a perfect example for our Sub-objective IV, which focuses on

generating synthetic data instead of the real dataset. On the other hand, the GI-tract [23]

dataset is the largest image dataset published under this thesis, and this dataset represents

biomedical images. The third dataset is an open-access video dataset [69]. This sperm

dataset was selected because of the video data format, and the dataset represents another

organ of the human body, while this dataset was not published as a contribution of this

thesis. In this section, we discuss the three case studies with comprehensive details.

The ECG dataset is restricted, and only authorized people can access it. As a

result, a dataset paper cannot be published. This dataset represents the biomedical

signal data format which is considered under cardiovascular class and 1-D data format in

DeepSynthBody. In this dataset, each ECG signal consists of readings from eight channels

called in the cardiovascular context as channels I, II, V1, V2, V3, V4, V5, V6 for 10-

sec long duration. The eight readings can be converted to 12-leads ECGs mathematically

by calculating missing leads III, aVR, aVL, and aVF using the following equations 3.1.

The sample rate is 500 per ECG sample. Then, there are 5000 data points per lead. A
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Figure 3.2: A sample of 12-leads 10-sec real ECG. Figure reference: [41]

sample from this dataset is depicted in Figure 3.2.

III = II − I

aV R = −0.5× (I + II)

aV L = I − 0.5× II

aV F = II − 0.5× I

(3.1)

These ECG signals have been collected from two populations. One population is

the Danish General Suburban Population Study (GESUS) [179] which consists of 8, 939

samples, and the other one is the Inter99 study [180] (CT00289237, ClinicalTrials.gov)

consists of 6, 667 samples. In total, there are 15, 606 ECG samples. All the collected ECGs

were analyzed using a well know ECG analysis system named MUSE [181]. These MUSE

reports are used as ground truth for this ECG dataset, and the reports contain important

characteristics of ECG signals. The important characteristics of a single ECG pulse are

depicted in Figure 3.3. According to the MUSE reports, all the ECGs are classified under

four main classes as tabulated in Table 3.2. Other important ECG properties collected

from the MUSE system are discussed in the benchmark paper [41].

The HyperKvasir dataset [23] consists of labeled images, segmented polyp images,

and unlabelled images and videos. The labeled images consist of 10, 662 images under 23

classes. In the segmented polyp images, there are 1000 polyp images and corresponding

ground truth masks annotated by experts. The unlabelled images have 99, 417 images,

and there are 374 videos with 30 different classes. This dataset represents the biomedical
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Figure 3.3: The common ECG characteristics. Reference for the image: [182]

Table 3.2: Different classes identified using the MUSE system analysis. Bold numbers
represent “Normal” category ECGs which are going to be used as training data for GAN
models used in later stages of DeepSynthBody. Reference for the table: [70]

Category GESUS dataset int99 dataset Total

Normal 3558 3675 7233
Otherwise Normal 2370 1536 3906
Abnormal ECG 2118 905 3023
Borderline ECG 893 526 1419

Total 8939 6642 15581

imaging data format considered under digestive class and 2-D and 3-D data formats in

DeepSynthBody. However, the labeled images, the segmented images, and the unlabelled

53



Chapter 3. DeepSynthBody

932
999

764

41 53

403

260

1009

391

9

1028

35

201

11

443

28
133

6

1002 989

646

1148

131

0

200

400

600

800

1000

1200

Z-l
ine

Pylo
rus

Retr
ofle

x s
tomach

Barr
ett

's

Barr
ett

's, 
sh

ort s
egm

en
t

Eso
pha

git
is g

rad
e A

Eso
pha

git
is g

rad
e B-D

Cecu
m

Retr
ofle

x r
ectu

m

Te
rm

inal I
leu

m
Poly

ps

Ulce
rat

ive
 co

liti
s g

rad
e 0-1

Ulce
rat

ive
 co

liti
s g

rad
e 1

Ulce
rat

ive
 co

liti
s g

rad
e-1-2

Ulce
rat

ive
 co

liti
s g

rad
e 2

Ulce
rat

ive
 co

liti
s g

rad
e 2-3

Ulce
rat

ive
 co

liti
s g

rad
e 3

Hem
orrh

oid
s

Dye
d lif

ted p
olyp

s

Dye
d re

sec
tio

n m
arg

ins

BBPS
 0-

1

BBPS
 2-

3

Im
pact

ed
 st

oo
l

#images per class for the labeled images

Figure 3.4: The 23 classes of the HyperKvasir dataset and the number of iamges per
class. The light blue bars represent classes under upper GI-tract and the dark blue bars
represent lower GI-tract images. Reference for the plot: [23]

Figure 3.5: Sample images from unlabelled folder from HyperKvasir dataset. Reference
for the image: [23].

images are used as case studies in this thesis, and it means, only 2-D data format is

considered.

The labeled 23 classes and the number of images per class are illustrated in the graph in

Figure 3.4. These images and corresponding class labels were used in baseline experiments

performed for the dataset paper [23]. Then, unlabelled GI-tract images of the HyperKvasir

dataset, as depicted in Figure 3.5, were used to train a GAN in developing generative

models of DeepSynthBody. Polyp images and corresponding masks from the segmentation

data folder are illustrated in Figure 3.6. The polyp data was used to train a GAN model,

which was developed to show the possibility of using GANs as an alternative method

for the costly and time-consuming data annotation process performed by domain experts.

More details about the whole HyperKvasir dataset are presented in our dataset paper [23].

The VISEM dataset introduced by Haugen et al. [69] has 85 sperm videos recorded

from sperm samples collected from different participants. The sperm video dataset con-
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Figure 3.6: Sample images and corresponding masks from HyperKvasir dataset. Reference
for the image: [23]

Figure 3.7: Sample frames extracted from different sperm videos from the sperm dataset
(VISEM) [69].

sists of analysis data reports produced by experts in the domain of sperm analysis. The

sperm dataset is classified under the reproductive system, and it covers the 3-D data

format. Example frames extracted from the videos of this dataset are illustrated in Fig-

ure 3.7. Different density amounts of sperm counts are shown in this figure from left

to right with low-density to high-density, respectively. The collected analysis reports at-

tached with the sperm dataset give information about the morphology and motility level

of the 85 sperm samples. Figure 3.8 shows the common quality measurements performing

in sperm analysis. They are counting sperms, finding abnormal sperms (sperm morphol-

ogy level), and finding abnormal movements of sperms (motility level), as illustrated in

Figure 3.8 from left to right. Then, the main goal of this dataset is to predict the values

in the analysis report automatically using ML techniques. More details about the sperm

dataset can be found in the original dataset paper [69].

3.1.2 Analysis of Real Data

Performing benchmark analysis of real medical data is an important step in the Deep-

SynthBody framework because it gives the initial understanding and inherited challenges

about the datasets incoming to use the framework. Generally, baseline experiments and
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Figure 3.8: An illustration showing important sperm quality measurements. Reference
for the figure: [183].

corresponding results are presented through dataset papers. However, benchmark exper-

iments are the only source to know statistics about the private medical datasets when

publishing dataset papers are not allowed because of privacy restrictions. Moreover,

advanced analyses are performed in benchmark studies that focus on developing ML

solutions rather than publishing datasets. Therefore, this section discusses benchmark

analysis details of the selected datasets. The selected datasets are the ECG dataset [41],

HyperKvasir dataset [23] and sperm dataset [69].

Electrocardiogram (ECG) Signal Analysis

The ECG benchmark analysis study [41] conducted under this thesis has two objectives.

One is to predict ECG properties (see Figure 3.3), namely QT-interval, PR-interval, QRS-

duration, heart-rate, J-point elevation, T-wave amplitude, and R-peak amplitude using

regression ML methods. The second objective is to predict a person’s sex (gender) from

ECG signals using ML methods used for classification.

Using 12-leads 10-sec format or median ECGs produced from 12-leads ECGs can be

used to predict regression values of the ECGs. The median ECG is a normalized single

beat version of the long ECGs. Therefore, both types of input formats, 12-leads 10-

sec, and the median format were evaluated as inputs to our ML models used to predict

the properties of the ECGs. For each property of ECGs, separate ML models were

implemented using convolutional neural network (CNN) techniques. On the other hand, to
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predict the sex, only the median ECGs were used because we needed to find the correlation

between interval-specific features. Medical people are not interested in rhythm-based sex

prediction.

All the CNNs were trained and evaluated using five-fold cross-validation to perform

a better generalizable evaluation. Quantitative evaluations have been done using MAE

and RMSE. In addition to evaluating models’ predictions, the GradCAM [42] approach

was applied to explain the predictions from CNNs. More details about this ECG analysis

and benchmark results can be found in the full article [41]. Referring to this benchmark

analysis is the only way to understand this dataset because of the restrictions on sharing

the real dataset. However, the methods are not reproducible because the dataset is

restricted. The capabilities of DeepSynthBody to solve such privacy issues are discussed

in later sections.

Gastrointestinal-tract Image Analysis

For GI-tract benchmark analysis, several experiments were performed for two different

types of tasks, classification and segmentation. Under the initial objectives, we performed

these experiments to develop ML models for CAD systems to assist doctors. However,

under DeepSynthBody, the main goal of these experiments was changed to benchmark

analysis. The summary of all the GI-tract analyses performed for the thesis is tabulated

in Table 3.3. Some of the GI-tract analyses [30, 36, 35] have been performed as a part

of competitions such as MedicoTask [184] and EndoCV-20213 grand challenge, which has

used similar GI-tract data to HyperKvasir data [23] used in this thesis. Participating in

competitions and solving the tasks given by the organizers helps to make benchmarks and

analyze them globally with other participants of the competitions. Our initial objective

was to produce well-performing ML models for CAD systems to assist doctors. However,

the participating competitions and providing well-performing solutions such as the win-

ning solution [35] provided to the EndoCV-2021 make them popular and get researchers’

awareness to enhance them.

Moreover, the cross-data evaluations performed in our paper [31] show the data-bias

problem occurred due to training ML models using a single training dataset. This gen-

eralizability issue occurs due to the lack of diverse medical datasets. This medical data

3https://endocv2021.grand-challenge.org/
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shortage is identified as the main research question of this thesis. Additionally, in this

study, the requirement of fair evaluations using multiple metrics such as accuracy, recall,

precision, F1, MCC, and specificity were discussed when the cross dataset evaluations are

performed as proof of generalizability.

Not only producing benchmark results, but proper evaluation criteria used to analyze

them are essential. Therefore, an online calculator4 [33] to calculate proper evaluation

metrics for binary classification models was implemented with given proper guidelines

using the GI-tract images classification as a case study. Using this tool, researchers (or

other users of this tool) can calculate evaluation metrics for their studies and calculate

missing metrics of other relevant studies that need to be compared. This tool makes a

common platform for comparing studies fairly.

The performance of an ML model can depend on the resolution of input images to

CNNs. Therefore, another investigation [32] was conducted to find the correlations be-

tween input resolutions and output performance using GI-tract images. Two different

CNNs models (ResNet-152 [185] and Densenet-161 [186]) to classify 23 classes of the

labeled folder in the HyperKvasir dataset [23] were investigated and presented the impor-

tance of having high resolutions images for CNNs.

A total of six benchmark analyses have been performed in this thesis to achieve Sub-

objective III using the GI-tract datasets. The six models consists of four classifications [30,

31, 36, 32, 33], and two segmentation tasks [36, 35]. However, in this section, we considered

all these implementations as benchmark analyses because our Sub-objective III is not

producing ML models for CAD systems but investigate the data-related problems. These

benchmark evaluations and corresponding results using the GI-tract data can be found

in original articles tabulated in Table 3.3.

Sperm Video Analysis

According to the data and ground truth provided in the sperm dataset [69], the intended

research work is to predict the morphology and motility level of the sperm samples in the

dataset. The prediction of morphology and motility levels were identified as regression

problems. The summary of all the studies conducted using this sperm dataset for this

thesis is tabulated in Table 3.4.

4https://medimetrics.no/medimetrics/
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Table 3.3: GI-tract analysis done for producing baseline results and benchmark results.
Two-type of analysis and different type of ways to produce baseline and benchmark results
are tabulated here. These analysis results are relevant to the layer of collecting real data
and analysis of DeepSynthBody.

Study Analysis type Description

[30] Classification Two CNNs are presented in this study to classify 16
classes of GI-tract finding given in the dataset of Medi-
coTask 2018 [184].

[31] Classification This study shows the importance of performing cross-
dataset evaluations because training ML models using
small datasets shows the data-bias behaviours [187].

[33] Classification Importance of fair evaluations of the predictions from
ML solutions is discussed in this study. Therefore, an
online tool to produce proper evaluation results is pre-
sented and published with this paper. The tool can help
researchers to evaluate classification models. The study
was validated using a review of studies of GI-tract anal-
ysis.

[32] Classification These studies show the effect of the resolutions of the in-
put images using with CNNs. The importance of having
high-resolution medical images is emphasised in these
studing using GI-tract images as case study data.

[36] Segmentation The data augmentation method (PYRA) introduced in
this study discuss how grid-like augmentation can im-
prove the generalizability of polyp segmentation. This
the segmentation solution proposed to the benchmark
challenge in the Medico task at MediaEval 2020 [188].

[35] Segmentation The winning solution of EndoCV2021 is presented in
this paper. Participating competitions and producing
ML solutions for them help to figure out limitations and
challenges of real medical data sources.

We have performed three studies [38, 39, 40] using different pre-processing techniques

and various types of CNNs. The main objective was to predict the morphology and

motility levels of the sperm videos, which contain recorded videos of microscopic sperm

analyses. Dense-optical flow [189] and Lucas-Kanade’s algorithm [191] to predict sparse

optical flow were investigated as pre-processing techniques for the study [38]. In addition

to the optical flow extractions, stacked gray-scale video frames as input were tested.

Moreover, video frames were reshaped to vertical frames and stacked to prepare new data

structures to compress multiple video frames into one. This new structured data were

also investigated in the study [38].

The dense-optical flow extractions with different amounts of frame strides were in-
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Table 3.4: Summary of real sperm data analysis. Predicting motility and morphology
is the main research problem with this dataset. The analysis type of this dataset is
regression.

Study Analysis type Description

[38] Regression Four type of pre-processing techniques were experi-
mented to predict morphology and motility level of the
sperm videos.

[39] Regression Using the Dense-optical flow [189] algorithm, the videos
were pre-processed before passing them into CNN ar-
chitectures to predict morphology and motility levels.
This implementation was submitted to MedicoTask-
2019 [190].

[40] Regression Auto-encoders were used to extract temporal features
into 2D spatial domain and the featured were anal-
ysed using CNNs tp predict morphology and motility
levels of perm samples. The solution was proposed for
MedicoTask-2019 [190].

[68] Regression A challenge named BioMedia organised for the ACM
Multimedia grand challenge 2020. Participants were
asked to develop ML solutions to predict morphology
and motility levels automatically.

vestigated in our study [39] for the sperm benchmark analysis problem in MedicoTask

2019 [190]. The stride amount is the gap between video frames extracted to calculate the

dense-optical flow. The three-fold cross-validation with ResNet-34 [185] was performed to

evaluate the models. For the same task, an auto-encoder-based solution was presented as

a new submission [40]. In the second solution, auto-encoders were used to extract tempo-

ral information from stacked input video frames. The extracted temporal features act as

images to CNNs to predict morphology and motility levels of the sperm videos. The ex-

tracted features are not readable to humans. However, CNNs trained using these features

could learn to predict the morphology and the motility levels of the sperm samples.

These benchmark results show how difficult to predict the motility and morphology

levels only using a small dataset. The results of these experiments reflect the quality of

the dataset and also the requirements to improve it. More details about these benchmark

analyses performed for the sperm dataset can be accessed from the original papers [38,

39, 40].
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3.2 Step II: Developing Generative Models

Step II is the core step of the DeepSynthBody framework. This step is two folds. First one

is designing generative models and finding the best models using evaluation processes. The

second is publishing the best generative models to the end-users who need synthetic data.

Different GAN types and the evaluation methods used to evaluate deep generative models

are discussed followed by the methods for publishing GAN models in the DeepSynthBody

framework for the end-users.

3.2.1 Generative Model Design and Evaluation

Designing and evaluating GANs for generating synthetic data is the first process in Step II,

developing generative models. After collecting and analyzing real medical datasets in Step

I, GANs should be investigated to generate synthetic data to achieve the sub-objective

III. Sub-objective III focuses on generating synthetic data to overcome the medical data

deficiency problem which is the major obstacle for developing AI-based solutions in the

medical domain.

The three datasets, analyzed in the data analysis stage, the ECG dataset, the GI-tract

dataset, and the sperm dataset, were used as case studies. Comprehensive details of the

designing GANs are discussed in this section because the GAN designing and getting

state-of-the-art performances are essential for DeepSynthBody as it is the core of this

framework. In addition to the GANs design methodology, a novel tool named “GANEx”,

a graphical user interface (GUI)-based GAN training tool, was introduced. A summary

of all GAN-related studies performed for this thesis is summarized in Table 3.5.

Generating Synthetic electrocardiogram Signals

The ECG dataset discussed in our benchmark paper [41] would be a popular dataset for

the people doing ECG analysis if it is not a private dataset. Unfortunately, many datasets

like this are hidden from researchers as a result of privacy concerns. Therefore, GANs for

generating synthetic ECGs were developed in this thesis to generate synthetic ECG data

to share public instead of the restricted real dataset.

The first GAN architecture to generate synthetic ECG data was inspired by the Wave-

GAN [192] architecture introduced by Donahue, McAuley, and Puckette. The original
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Study Task of GANs Description

[70] Generate syn-
thetic ECG

A novel GAN architecture called Pulse2pulse was intro-
duced to generate synthetic 10s long ECGs with eight-
leads to overcome privacy issues of the real dataset.

[72, 73] Pre-process
input data

GAN architectures were experimented to fill a part of
GI-tract images, which is the green box appeared at
the bottom right corner of the images in HyperKvasir
dataset [23].

[74] Generate syn-
thetic video
frames

A GAN architecture named Vid2pix with a 3D CNN
were investigated to generate synthetic Pilcam video
frames [27] for time step t+1 conditioning on time steps
t, t− 1, t− 2.

[67, 75] Generate syn-
thetic images
with corre-
sponding ground
truth mask

GAN architectures were experimented to generate syn-
thetic polyp images and corresponding ground truth
mask as proof of concepts to solve privacy issues and
medical data annotation cost problem.

[76] Generate syn-
thetic painting
to sperm video
frames

A GAN model was experimented to generate a painting
like spots instead of sperms in a sperm video frame.
This study was focused to generate sperm locations in
a synthetic paintings for simple sperm analysis.

[77] A tool to pre-
from GAN ex-
periment

GANEx is a tool with a GUI to perform series of GAN
experiments for non-computer science people who want
to produce data to DeepSynthBody.

Table 3.5: Summary of GAN-related experiments preformed under this thesis.

WaveGAN was developed to generate synthetic music. Therefore, in the first stage, the

WaveGAN architecture was modified to generate ECG signals having a shape of 8×5000,

which is the shape of eight-leads 10s long ECG samples of the dataset, and it was named

WaveGAN*. Then, generated samples from WaveGAN* were analyzed qualitatively and

quantitatively. The qualitative analysis was done by inspecting 12-leads plots, and for

quantitative analysis, the evaluation reports collected from the MUSE system were used.

According to the results, WaveGAN* had to be improved further to get better synthetic

ECGs. Therefore, a novel architecture named Pulse2pulse [70], inspired by the UNet

architecture [193], was introduced for the DeepSynthBody framework in this thesis.

ECGs from the Normal ECG category of the dataset were used to train both GAN

architectures because the Normal ECG category is the biggest population of the dataset

(refer the Table 3.2). The discriminator used for both GAN architectures was adapted

from the discriminator introduced in WaveGAN [192]. The modified WaveGAN generator,

Pulse2pulse generator, and discriminator used for both GAN networks are illustrated in
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(a) WaveGAN* generator.
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(c) Architecture of the discriminator used for both generators.

Figure 3.9: Model architectures of the generators and the discriminator used to generate
synthetic ECGs. WaveGAN* uses a 1D noise vector with 100 points. Pulse2Pulse uses a
2D noise vector with size of 8× 5000. Reference for the figure: [70].

Figure 3.9. The complete architecture details are discussed in the full paper [70].

For both models, WaveGAN* and Pulse2Pulse, the best checkpoints were found us-

ing MUSE analysis reports collected from generated 10, 000 ECGs per checkpoint from

every 500 epochs. Then, the two best checkpoints of WaveGAN* and Pluse2pluse were

evaluated further for better understanding before publishing them to the end-users of

DeepSynthBody. Five main properties of an ECG, namely RR, P duration, QT interval,

QRS duration, and PR interval, were selected to compare the distributions of the selected

best checkpoints. The distribution plots are illustrated in Figure 3.10. The blue color

dots represent real normal ECG samples, and orange color dots represent generated ECG

samples from WaveGAN* and Pulse2pulse.

Comparing distributions of ECG properties, WaveGAN* shows less accurate distribu-

tion overlaps with the distributions of real data compared to Pulse2Pulse. This difference
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(a) From WaveGAN*. (b) From Pulse2pulse.

Figure 3.10: Comparisons of MUSE predictions using characteristic distribution plots.
Blue color plots represent real normal ECG distributions. Orange color plots represents
distribution of fake ECGs generated by WaveGAN* and Pulse2pulse respectively in Figure
3.10a and Figure 3.10b. The “nan” values of the selected five features of “Normal ECG”s
were converted into 0 to identify predicted “nan” values by the MUSE system.

can easily be noticed from the row presenting correlations between PR interval and other

properties. Also, WavGAN* generated faulty synthetic ECG samples making more “nan”

values in the MUSE analysis report than Pulse2Pulse. The MUSE algorithms give “nan”

values when the algorithm cannot predict the specific property of an ECG. These statis-

tical comparisons are discussed in our full paper [70].

After finding that the novel Pulse2Pulse architecture can generate better quality syn-

thetic ECGs than WaveGAN*, a large synthetic ECG dataset with 150, 000 samples was

generated using the best checkpoint of Pulse2Pulse. Then, the synthetic dataset was an-

alyzed using the MUSE system to predict the properties of the ECGs. From the MUSE

analysis report, the most important nine properties, namely RR, Ventricular Rate, pdur,

QT interval, QRS duration, PR interval STJ V5, RPeakAmp V5, and TPeakAmp V5,

were further analyzed statistically, and the collected results are tabulated in Table 3.6 to

compare with the real Normal ECG data statistics.

Table 3.6 presents statistics collected from three datasets for the selected parameters.

First, statistics about the real ECG data (filtered “Normal” ECGs), used to train the

GAN models are tabulated. Then, statistics about all the generated 150, 000 ECGs and
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Table 3.6: Comparison of MUSE analysis reports’ statistics for selected ECG properties.

Real 150k All Normal (121977)

Mean Std 2.5% 97.5% Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

RR 866 90 670 1000 870 91 667 1000 870 87 682 1000
VentricularRate 70 8 60 90 70 8 60 90 70 8 60 88
pdur 105 12 82 130 118 17 84 152 117 17 86 152
Q TInterval 395 21 352 436 395 21 354 436 395 20 354 434
QRSDuration 90 9 74 110 93 10 78 114 92 9 78 112
P RInterval 156 19 120 198 159 18 124 194 158 17 124 192
STJ V5 2 27 -44 58 16 36 -54 92 18 33 -44 87
RPeakAmp V5 1287 402 600 2163 1272 404 561 2114 1276 370 615 2031
TPeakAmp V5 343 137 126 664 360 141 141 678 364 134 151 668

statistics about filtered “Normal” ECGs (121977) from 150, 000 ECGs were tabulated. To

achieve sub-objectives II and IV, collecting and developing medical data and developing

generative models to generate synthetic data, the synthetic ECGs should have similar

characteristics as real ECGs. According to the results presented in Table 3.6, the synthetic

ECGs show similar statistical properties to real ECGs, such as equal or very close mean

and std values for ventricular rate and QT interval. To present the qualitative properties

of synthetic ECGs generated from Pulse2pulse, Figure 3.11 shows two synthetic ECG

samples identified as “Normal” according to the MUSE report. Additionally, the 150, 000

synthetic ECG dataset and the filtered 121977 “Normal” ECGs can be downloaded with

the corresponding MUSE reports from https://osf.io/6hved/.

In summary, we could see that our Pulse2Pulse generates realistic synthetic data with

very close properties to the real dataset. Then, these generated synthetic ECGs can be

used to share to the public instead of the real dataset with privacy concerns.

Generating Synthetic gastrointestinal-tract Images

The HyperKvasir dataset [23] is used as the main case study to experiment with GANs

for GI-tract data. Additionally, the Kvasir-Capsule [27] dataset is used. Using these

datasets, several GANs were developed to investigate how GANs can generate synthetic

medical image data, in this case, GI-tract images.

Several preliminary experiments were performed to use GANs to fill missing parts

of GI-tract images [72, 73] and predict future frames of the Pilcam videos of GI-tract

videos [74]. The studies [72, 73] focused on removing green boxes that appeared in GI-tract

images by generating synthetic filling using GANs. Sample GI-tract images with green

boxes are presented in Figure 3.16. The green box removing process is a preprocessing
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Figure 3.11: 12-leads plots of fake ECG samples from the novel ECG generator introduced
in this study: Pulse2pulse.

step to prepare GI-tract images for other ML models. Then, the main goal of this study

is to find the effect of removing green boxes that appeared in the GI-tract images on the

HyperKvasir dataset by replacing the green box with a generated realistic replacement.

In the preliminary experiment [74], a GAN was researched and developed to generate

synthetic video frames for capsule endoscopy (pill cam) videos [27]. The GAN architecture

experimented for the video generations process has used 3D CNN to predict future frames

of the videos to extend the available real dataset to improve the dataset. Then, the goal

of improving data is to improve the performance of other machine learning algorithms

which use extended synthetic videos.

The generative models discussed with the preliminary experiments have given the

foundation to build other GANs discussing in this section. However, quantitative and

qualitative analyses show that the performance of these preliminary experiments was not

enough for solving Sub-objective II by generating synthetic medical data. Still, exper-
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GAN for GI tract

To solve privacy issues
(sub-objective III)

To reduce annotation cost
(sub-objective IV)

GI-StyleGAN SinGAN-polyp-augmentation Polyp-inpainting

Figure 3.12: Different type of GANs for generating synthetic GI-tract findings for different
purpose.

iments discussed in studies [72, 73] are contributed to Sub-objective III of this thesis.

Therefore, those GAN architectures were excluded from the final DeepSynthBody plat-

form until improving these using future research works.

Another three advanced GAN architectures were investigated with the HyperKvasir

dataset after the foundation analysis from preliminary studies [72, 73, 74]. These three

studies, namely GI-StyleGAN [71], SinGAN-polyp-augmentation [67], and Polyp-inpainting [75],

were conducted as proof of concepts to mainly address Sub-objective IV, which focus on

generating synthetic medical data to solve the data deficiency problem in the medical

domain. These three studies and corresponding contributions to the sub-objectives are

depicted in Figure 3.12.

The GI-StyleGAN experiment presented in the concept paper of this thesis [71]

used StyleGAN-v2 introduced by Karras et al. [194] with the unlabelled data folder of the

HyperKvasir dataset to generate synthetic GI-tract images. The main objective of this

experiment was to achieve Sub-objective II and IV, which are collecting and developing

medical datasets and researching and developing GANs to generate synthetic data. All the

unlabelled images (around 100, 000) from HyperKvasir were used to train the StyleGAN-

v2 model because the model is prone to a large training dataset. Pytorch implementation

of StyleGAN-v25 was trained 10, 000, 000 steps for more than eight days to get good out-

put. In this training process, checkpoints were saved after every 1000, 000 steps (not using

5https://github.com/lucidrains/stylegan2-pytorch
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Table 3.7: FID scores calculated from different checkpoints of StyleGAN trained for gen-
erating GI-tract findings.

chk point FID 64 FID 192 FID 768 FID 2048

0 39.1090 189.4938 2.6159 342.0751
100 1.7710 8.3480 0.3030 58.9490
200 1.6616 8.0271 0.2977 59.7215
300 1.6575 7.8310 0.2671 52.6597
400 1.2801 6.1183 0.2429 48.5694
500 1.2262 5.8759 0.2372 49.3512
600 1.5974 7.4586 0.2626 52.9441
700 1.3826 6.5063 0.2363 46.2668
800 1.1938 5.9112 0.2312 46.7931
900 0.6537 3.0260 0.2017 44.3310

1000 0.8736 4.2926 0.1980 41.2039

epochs) to check the progress of the quality of generated GI images and Frechet incep-

tion distance (FID) values introduced by Heusel et al. [195] were calculated to find the

best checkpoint. The calculated FID values from different feature layers, namely 64: first

max-pooling features, 192: second max-pooling features, 768: preaux classifier features,

and 2048: final average pooling features, are tabulated in Table 3.7. Randomly picked

synthetic colon images are presented in Figure 3.13. The presented images show that the

StyleGAN implementation is capable of generating realistic synthetic colon images. This

colon StyleGAN is not only for generating random images, but it can generate interpo-

lated images between two randomly generated images, as depicted in Figure 3.14. This

functionality introduced in the vanilla implementation of StyleGAN [196] can generate

synthetic data as needed for end-users. This particular generative model can be used

to achieve the sub-objective II and IV, aiming to develop medical datasets and solve

privacy concerns by generating synthetic medical data.

Generating synthetic data with corresponding ground truth is challenging than gen-

erating random synthetic data samples solely. However, generating both synthetic data

and ground truth is essential to overcome the data deficiency problem to achieve sub-

objectives II and IV. We can use synthetic data to replace the costly and time-consuming

medical data annotation process, which is identified as one of the reasons causing the data

deficiency problem. We can generate both synthetic data and the corresponding ground

truth using GANs to solve the problem.

The polyp inpainting GAN [75], capable of generating synthetic polyps on clean
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Figure 3.13: Style-GAN generated random gastrointestinal-tract findings.

Figure 3.14: First five samples generated with 200 interpolation steps for two different
random seeds. First and second row represent the two different random seeds. [71]

colon images, is another study performed with GI data. This gan was researched and

developed as the first solution to overcome the data annotation problem, as presented

using the third leaf node of Figure 3.12. In this experiment, image inpainting using

generative multi-column CNN presented by Wang et al. [197] was studied, researched, and

developed to do polyps inpainting for non-polyp images using given masks that represent

regions of interest to have polyps. However, the available polyp data in the polyp datasets

are not enough to train the GAN from scratch. Therefore, the inpainting GAN model

was trained from clean colon image folders as the first step. The clean colon image folders

have enough images identified as non-disease images by experts to train a DL model.

After training with the clean colon data, the model was retrained using polyp data and
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Figure 3.15: Steps of the polyp inpainting training process as discussed in [75]. Generative
multi-column convolutional neural networks (GMCNN) [197] is the core network in this
process.

corresponding masks using the transfer learning mechanism [198] to generate polyps on

clean colon images for given masks. This training process is illustrated in Figure 3.15

according to the steps discussed in the original publication [75].

After the training process, the polyp inpainting GAN can convert clean colon images

into corresponding polyp images using given masks. Therefore, this inpainting GAN

can generate synthetic polyp datasets with the masks of the polyp regions. Then, the

inpainting GAN can be used as a solution to achieve Sub-objective IV by producing

synthetic data as alternatives to the resource-consuming medical data annotation process.

The inpainting GAN can generate synthetic polyps for given random polyp masks without

any aid from experts. Therefore, we can use this type of GANs to generate synthetic true

positive data from true negative data, which are common and easy to find. We showed

that synthetic polyps show visual properties also indistinguishable from real samples for

the domain experts.

A qualitative analysis was done using a survey with medical experts to evaluate the

quality of the synthetic polyps generated from the polyp inpainting GAN. Using the polyp

inpainting GAN, synthetic polyps were generated and analyzed by domain experts. The

experts analyzed five synthetic and five real polyps samples. The samples used for a
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Figure 3.16: Polyp inpainted samples from polyp inpainting gan. The first row illustrates
input images. The images in the second row represent input masks used with input
images. The third row represents the output images from the polyp inpanting GAN.

questionnaire are presented in Figure 3.16. In this questionnaire, experts were asked to

discriminate synthetic polyps from real polyps and give a confidence score for the particu-

lar selection. Two experts, three non-experts and three internal medicine residents (total

is eight) have participated in this questionnaire. The summary of the results collected

from this questionnaire is presented in Table 3.8. Finally, the proposed GAN architecture

can generate synthetic polyp image conditioned on a clean colon image and a random

mask representing a polyp region. The polyp inpainting GAN shows that modified GAN

architectures can generate synthetic data with corresponding masks, usually prepared by

experts manually, which is a costly and time-consuming task. More details about this

polyp inpainting GAN can be found in our original paper [75]. However, this inpainting

GAN is not suitable for a privacy-preserving data sharing technique because the non-polyp

regions are identical to the real clean colon images.

SinGAN-Seg [67] was investigated in this thesis to achieve sub-objectives III and

IV. The SinGAN-Seg implementation was inspired by the original SinGAN introduced

by Rott Shaham, Dekel, and Michaeli [149]. The vanilla SinGAN learns from a single

image and generates synthetic samples similar to the pixel distribution of the image used

to train it. The original paper presents different applications such as paint to image,
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Table 3.8: Overview of obtained results from all 8 readers (2 experts - EE and 3 non-
experts - NE, 3 internal medicine residents - IM) for discriminating real and inpainted
polyps.

Reader TP FN FP TN Accuracy

EE1 3 4 2 1 0.4
EE2 3 5 2 0 0.3
NE1 2 1 3 4 0.6
NE2 3 2 2 3 0.6
NE3 4 2 1 3 0.7
IM1 4 2 1 3 0.7
IM2 4 3 1 2 0.6
IM3 4 1 1 4 0.8
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Figure 3.17: A representation of the four-channels SinGAN training step.

super-resolution, editing images, harmonization, and generating animations using a single

image. In our SinGAN study [67], the original SinGAN was changed to input four channels

containing the input image and its ground truth mask. Then, the modified SinGAN was

named SinGAN-Seg because it has a generated synthetic image and its ground truth

mask (segmentation mask). So, SinGAN-Seg is a modified version of SinGAN to perform

the novel application that generates random images and the corresponding segmentation

masks. This SinGAN-Seg was introduced in this thesis to address the sub-objectives III

and IV. The complete training process of SinGAN-Seg is depicted in Figure 3.17.

The SinGAN-Seg architectures were trained using the 1000 polyps images of the Hy-

perKvasir dataset. Then, 1000 different checkpoints were generated to replace the 1000

polyp images to demonstrate the capabilities of novel sinGAN-Seg to solve privacy con-

cerns and resource-consuming medical data augmentation process. Synthetic polyp images

and corresponding ground truth masks generated automatically using SinGAN-Seg are
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depicted in Figure 3.18. The first column of the figure presents real images and corre-

sponding masks of polyp regions, annotated by experts manually. Other columns present

generated synthetic polyps and generated masks from SinGAN-Seg learned from the in-

put image of the first column. While the training data consists of only polyp images,

SinGAN-Seg can generate non-polyp images as presented in the 3rd and 4th rows in Fig-

ure 3.18. This novel SinGAN-Seg implementation contributed to sub-objectives I, II, III,

and IV by presenting a well-performing polyp segmentation model, generating realistic

synthetic polyps and corresponding ground truth masks to replace private medical data,

and tackling costly and time-consuming medical data annotation process.

After generating synthetic polyp images and corresponding maks using our SinGAN-

seg, the global features of the synthetic images look awkward because of the unrealistic

texture of synthetic images (see Figure 3.18). As a solution to this, the style-transfer

algorithm [199] was used to transfer styles from the training image to generated synthetic

images. More details about this style-transfer method can be seen in our paper [67].

In summary, we could generate realistic synthetic GI tract images in three ways. The

StyleGAN model can generate random synthetic GI-tract landmarks that are indistin-

guishable from real samples. The polyp inpainting GAN can generate synthetic polyp

images by converting a true-negative sample into a true positive sample. The qualitative

analysis shows that domain experts also cannot differentiate between real and synthetic

samples generated from this polyp inpainting GAN. Synthetic data generated from polyp

inpainting GAN addresses data imbalance problems. SinGAN-Seg is another GAN ar-

chitecture that is capable of generating synthetic polyps and ground truth masks. This

GAN can be used to overcome the costly and time-consuming medical image annotation

process, which experts usually do.

Generating Synthetic Sperm Video

Synthetic sperm data generation is another area considered as a case study. However,

limited data and time constraints were barriers to producing successful GAN architectures

that can be plugged in to the DeepSynthBody framework. However, we performed several

experiments using SinGAN to generate painting-like sperm video frames [76] to represent

the real sperm data because SinGAN learns from a single image it does not need large

datasets.

73



Chapter 3. DeepSynthBody

Figure 3.18: Sample real images and corresponding SinGAN generated synthetic GI-tract
images with corresponding masks. The first column is illustrated with real images and
masks. All other columns represent randomly generated synthetic data from SinGANs
which were trained from the image on the first column.
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Figure 3.19: Sperm like paintings used to train SinGANs to generate sperm tracking. The
last two images have same dot patterns except the background colour.

We used vanilla SinGAN [149] to experiment with the sperm dataset to perform unsu-

pervised sperm segmentation to achieve Sub-objective IV. In this case, the data deficiency

problem will be solved by reducing the annotation cost of medical data. In this task, Sin-

GAN was used to track the locations of sperms in an unsupervised way. The complement

operation of the paint-to-image operation introduced in the original SinGAN, image-to-

paint, was investigated to generate sperm sample-like paintings to represent sperm loca-

tions with a clear background. To achieve this, the SinGAN model was trained from a

sperm-like picture. Sample training images investigated to train SinGANs are depicted in

Figure 3.19. Then, video frames were input into the pre-trained SinGAN using different

scale levels as introduced in the original SinGAN implementation. Results were analyzed

qualitatively with different input scales. Generated sperm-like paintings from real sperm

images can be used to identify sperm locations using this method.

Sample synthetic sperm paintings to represent real sperm sample images are depicted

in Figure 3.20. However, the quality of synthetic sperm video frames generated from

our SinGAN is not enough for publishing in DeepSynthBody. The results implies that

future experiments are required with different GAN architectures and high-quality sperm

datasets. A successful GAN architecture to produce sperm like painting can be used

to overcome the Sub-objective IV because synthetic sperm like painting can be used for

sharing data when privacy concerns are there and, the synthetic sperm like painting is

an alternative representation for real sperm video frames which are hard to analyze by

experts.
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In summary, we developed a GAN architecture, based on the SinGAN architecture

to generate synthetic sperm data to replace real data. We have generated painting-like

sperm images that can measure the quality of the sperm sample. Moreover, this GAN

could tract sperm locations using white dots in an unsupervised way. Therefore, usual

image processing techniques (without DL) can be used to analyze the sperm samples

easily.

3.2.2 Publishing Deep Generative Models

After researching and developing GANs which can generate synthetic data to overcome

privacy issues and the costly and time-consuming medical data annotation process, these

deep generative models should be published to the end-users. Therefore, the contributors

who are developing GANs in DeepSynthBody should have a common platform to share

them. As a platform to share the final GAN models with the end-user in this initial stage,

the PyPI was selected. Therefore, all the developments were done in the most popular

programming language, Python [200], because PyPI is for Python.

The joy of coding Python should be in seeing short, concise, readable classes

that express a lot of action in a small amount of clear code, not in reams of

trivial code that bores the reader to death. – Guido van Rossum (creator of

Python)

First, the contributors who develop GANs can publish their work as an individual

package in PyPI. Then, the PyPI package can be included as a sub-module in the main

PyPI called deepsynthbody. In cases where PyPI does not work, authors of GAN models,

which will be connected with our framework, can share the checkpoints of their deep

generative models with corresponding source codes with the main contributors of the

framework. If any of these options do not work, researchers can publish only synthetic

data in any public data repository, and the corresponding links can be connected to the

DeepSynthBody. However, in the latter case, the end-users cannot control the synthetic

data generation process.

The flow of PyPI packages is depicted in Figure 3.21. The figure shows how individual

PyPI packages are contributing to the main Python package, deepsynthbody. First, GAN

developers should produce python packages for individual GAN trained for a specific real
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pip install deepsynth-gitract pip install deepsynth-{}

pip install deepsynthbody

deepsynthbody.digestive.gitract.{functions}(*param)

deepsynthbody.{system}.{sub-system}.{functions}(*param)

Figure 3.21: The flow of python packages which act as sub-modules of DeepSynthBody
framework. The figure reference: [71]

dataset. After training a GAN to produce realistic synthetic data, the GAN can be used

as a replacement to the real dataset used to train the GAN. Then, a python package with

functionalities to generate synthetic data and the best checkpoints of the GAN model

should be packaged into a python package independently. This individual independent

python package development process was introduced to reduce the development overhead

of the main python package. Finally, these individual packages are connected to the main

deepsynthbody package according to the human body categorization introduced in Step

IV of the framework (see Figure 3.1).

As a proof of concept, two Python packages were developed following the above

criteria. First, a python package named deepfake-ecg6 (pip install deepfake-ecg)

was published to generate synthetic data from the best checkpoint of the pre-trained

Pulse2Pulse [70] ECG GAN. Second, for generating synthetic GI-tract images using

the StyleGAN implementation introduced in the paper [71], a python package called

deepsynth-gitract7 was published. These packages were developed independently from

the deepsynthbody package. After publishing the individual packages, they have been

connected to the deepsynthbody8 main package.

6https://pypi.org/project/deepfake-ecg/
7https://pypi.org/project/deepsynth-gitract/
8https://pypi.org/project/deepsynthbody/
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3.2.3 A Tool to Experiment with Generative Adversarial Net-

works: GANEx

The DeepSynthBody framework should interact with medical data providers to collect

deep generative models,. However, the main challenge is all medical data providers do not

have ML programmers who can perform GAN experiments to produce generative models.

Additionally, data providers may not have the authority to share the data with interme-

diate partners to develop GANs. In this context, GANEx (GAN Experimenter) [77] is

a tool introduced in this thesis to overcome the barrier of performing GAN experiments

by one who does not have a deep understanding of ML or DL. This tool makes a bridge

between DeepSyntBody and multi-disciplinary medical data providers.

GANEx consists of two main components: a FastGAN library and a GUI. The Fast-

GAN library is a high-level GAN library, which provides functionalities to create pre-

defined GANs, train GANs and analyze them through a high-end abstract layer called

FastGAN Runner, as depicted in Figure 3.22. Using this FastGAN library as the backend,

the GUI has been developed to interact with the backend. The GUI of GANEx provides

functionalities to create GAN projects, experiments using a predefined collection of GANs

provided from the FastGAN library. Then, using the same GUI, users can run and ana-

lyze series of GANs using their datasets without writing a single line of code. The whole

process of the GUI is illustrated as a flow diagram in Figure 3.23. After completing the

GAN training process, the users have GAN checkpoints, which can be shared to generate

synthetic data without any privacy concerns.

The sample screenshots of the tool are presented in Figure 3.24. Training progress, a

setting page of hyperparameters, and generated sample synthetic data from the CelebA

dataset [201] are given in the figure. The given screenshots show how the tool manages

every GAN training step without programming (coding). GANEx was developed as a sup-

porting tool to achieve the main objective, which focusing on combing all sub-objectives

together to make the functional full framework DeepSynthBody. In addition to this GAN

tool, deepsynthbody.org is hosted as the main website to achieve the main objective.

The website is for both contributors and end-users of the DeepSynthBody framework.
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Figure 3.22: The FastGAN library [77] introduced to connect multi-disciplinary user to
DeepSynthBody framework.

3.3 Step III: Producing DeepSynth Data

Producing DeepSynth data in Step III is presented in the big picture of DeepSynthBody

in Figure 3.1. In other words, this is the layer for the end-users who want to generate

synthetic data. This Step III has a flow similar to Step I, but the objectives are slightly

different. In Step I, the categorization is used to classify input data, while Step III uses

the same categorization to generate synthetic data. The data annotation layer presented

in Step I was replaced with two new data generation processes: unconditional and con-

ditional. As the final layer of Step III, synthetic data generation functionalities are used

instead of the real data analysis in Step I.

We use the same 11 categories in Step III as used in Step I to generate synthetic data

for the end-users. Step III is the output layer of the DeepSynthBody pipeline. We further

split the 11 categories into four categories based on the data dimensionality (1-D, 2-D,
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Figure 3.23: GUI flow of GANEx which is a tool to handle GAN experiments for non
computer science users of DeepSynthBody.

3-D, and N-D) as discussed in Section 3.1.1. The data dimension layer decides the data

output format when there are multiple data formats to generate synthetic data. For ex-

ample, MRI data can be generated as images (2-D) or volume data (3-D) if both formats

are available at DeepSynthBody. In addition, the end-users can decide that the genera-
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Figure 3.24: Sample screenshots of the GANEx GUI showing user friendly GUI design
which can be handled by non computer science multi-disciplinary people. Top-left: is
showing a screenshot of GAN project management window which shows the summary
of all experiments saved in GANEx. Top-middle: is showing a screen shot taken from
real-time analysis of a GAN experiment using generator loss and discriminator loss. Top-
right: is showing the window of GANEx which gives functionalities to users to change
configuraions of GANs. Bottom: is showing GAN generated sample analyser which has
functionalities to produce histogram and heat maps of images.
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Figure 3.25: Sample screenshots of deepsynthbody.org.

tion process is either unconditional or conditional if both options are available. Several

generative models can exist in this framework for a specific generative task (e.g., two

different conditional GAN models to generate synthetic ECGs). If more than one model

exists, the end-users can choose one for their specific application based on the benchmark

reports or using their own qualitative and quantitative comparisons. Similarly, multiple

GANs can be used together to generate diverse data distributions because different GAN

models may have different data distributions based on the training data used to train

them. The website named deepyynthbody.org is an online platform for providing all the

information about functionalities and their usage to the end-users of the DeepSynthBody

concept [71].

The website deepsynthbody.org links the researchers and the end-users. The main

purpose of this online platform is to connect everything to achieve the main objective.

Sample screenshots of the current website are given in Figure 3.25. This site provides

the necessary information to contributing to DeepSynthBody and the end-users of this

concept. However, the content of this site is subject to change based on new contributions

and user experiences. Like the contents, the functional flow of the site is also subject to

change to give better user experiences in the future. At the moment, two functionalities

to generate synthetic data are presented on the website. One is for generating synthetic

ECGs, and others for generating synthetic GI-tract data.

Abstract functions to generate synthetic ECGs were implemented as presented in
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import deepsynthbody

deepsynthbody.cardiovascular.ecg.generate

("number of ECG to generate",

"Path to generate",

"start file ids from this number",

"device to run")

Listing 1: The generative function to generate synthetic ECGs that are 10s long and
having 8-leads.

Listing 1. Using this generation function, the end-users of DeepSynthBody can generate

an unlimited number of 8-leads 10-sec long ECGs, which are convertible to 12-leads ECGs.

However, this ECG generative model does not generate ground truth properties such as

PR interval, QT interval, heart rate, and other properties discussed in the ECG analysis

paper [41]. Suppose the end-users are interested in pre-analyzed ECGs. In that case, the

generated ECGs can be analyzed using the MUSE system or the pre-generated dataset

from the best checkpoint of Pulse2Pulse, and the corresponding MUSE analysis report can

be downloaded here: https://osf.io/6hved/ as presented in our ECG GAN paper [70].

Similarly, the end-users can generate an unlimited number of GI-tract images us-

ing the function presented in Listing 2. In addition to the main generation function,

an additional generation function, originally discussed in the vanilla implementation of

StyleGANv2 [194], was presented to generate intermediate generations using interpola-

tions between two random points of synthetic generations. This function is presented in

Listing 3.

3.4 Step IV: Explainable DeepSynth AI and Deep-

Synth Explainable AI

Step IV in the framework, namely explainable DeepSynth AI and DeepSynth XAI, is

introduced to embed explainability and transparency into all other layers. This layer

covers an essential concept to explain our deep generative models to increase trust and

enable deeper failure analysis. Additionally, it allows another way to explain other ML

methods using synthetic examples when the data restrictions are applied with real medical

data.

If additional explanations are available to explain the synthetic data generation pro-
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import deepsynthbody.digestive.gitract as gi

>> help(gi.generate)

'''

Help on function generate in module

deepsynthbody.digestive.gitract.functions:

generate(name, result_dir, checkpoint_dir, num_img_per_tile,

num_of_outputs, trunc_psi=0.75, **kwargs)

Generate deepfake Gastrointestinal tract images.

Keyword arguments:

name -- Any name to keep trac of generations

result_dir -- A directory to save output

checkpoint_dir -- A directory to download pre-trained checkpoints

num_img_per_tile -- Number of images per dimenstion of the grid

num_of_outputs -- Number of outputs to generate

trunc_psi -- value between 0.5 and 1.0 (default 0.75)

'''

>> gi.generate("test_data", "./result_dir", "./checkpoints",

num_img_per_tile = 1,

num_of_outputs= 10, trunc_psi=0.75)

Listing 2: Random GI-tract image generation function using StyleGAN.
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import deepsynthbody.digestive.gitract as gi

>> help(gi.generate_interpolation)

'''

Help on function generate_interpolation in module

deepsynthbody.digestive.gitract.functions:

generate_interpolation(name, result_dir, checkpoint_dir,

num_img_per_tile, num_of_outputs, num_of_steps_to_interpolate,

save_frames, trunc_psi=0.75, **kwargs)

Generate deepfake Gastrointestinal tract images.

Keyword arguments:

name -- Any name to keep trac of generations

result_dir -- A directory to save output

checkpoint_dir -- A directory to download pre-trained checkpoints

num_img_per_tile -- Number of images per dimenstion of the grid

num_of_outputs -- Number of outputs to generate

num_of_steps_to_interpolate -- Number of step between

two random points

save_frames -- True if you want frame by frame,

otherwise .gif will be generated

trunc_psi -- value between 0.5 and 1.0 (default 0.75)

'''

>> gi.generate_interpolation("test_data", "./result_dir",

"./checkpoints",

num_img_per_tile=1,

num_of_outputs=1,

save_frames=True,

num_of_steps_to_interpolate=100,seed=100)

Listing 3: The interpolation function to generate random images between two points of
generation.
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cess before using the synthetic data to replace real medical data, the trust of the end-users

to use synthetic data can be improved. Therefore, DeepSynthBody introduces eXplain-

able DeepSynth Artificial Intelligence (XSAI). XSAI’s primary goal is to explain deep

generative models [202, 203] to increase understanding of the generative process and the

quality of the generated data.

On the other hand, in the medical domain, XAI should be applied in increasing trust

to accept solutions from ML models that generally perform classification, detection, and

segmentation. While XSAI discusses the explainability of generative models, deep syn-

thetic data can be used to support the XAI of other ML models. This functionality is

discussed under DeepSynth XAI (SXAI). In this context, the main goal is not to explain

the deep generative models but rather to explain other ML models used to classify, detect

and segment medical data using synthetic data as examples. This DeepSynth XAI can

overcome the privacy issues occurring when real data is used to explain ML models. For

example, when researchers cannot explain their ML models by examples because the real

data is restricted to share, they can use synthetic examples to explain their models with

less concern about the privacy restrictions.

Both XSAI and SXAI concepts are discussed in the theoretical model. However, this

explainable layer is a value-added layer to the DeepSynthBody framework. Therefore,

Step IV is an optional step, and as a result, the DeepSynthBody framework functions

without these XSAI and SXAI implementations. In this regard, we keep these options for

future research works.

3.5 Summary

The DeepSynthBody concept was introduced in this thesis as the main solution to the data

deficiency problem, which was identified during researching and developing ML models

for CAD systems to assist doctors (Sub-objective I). The concept and the corresponding

framework were discussed in four steps. These are, collecting real data and analysis,

developing generative models, producing deep synthetic data, and explainable DeepSynth

AI and DeepSynth explainable AI. In this chapter, these four steps were discussed one by

one with the corresponding contributions.

Medical data is the core of any ML solution. Therefore, we successfully collected and

87



Chapter 3. DeepSynthBody

published seven dataset papers [23, 24, 25, 26, 27, 28, 29] to achieve Sub-objective II.

Additionally, these datasets are required data to initiate DeepSynthBody. The datasets

were classified according to the novel classification protocol introduced using the biological

organ classification and the data dimension classification. Since analyzing the four steps

with all types of medical data is impractical, an ECG signal dataset, a GI-tract image

dataset, and a sperm video dataset were analyzed as case studies.

The ECG dataset is private, and it is not shareable. Therefore, this dataset was used

as a case study to show how synthetic data is shared instead of a real dataset, which

has privacy restrictions to share. A benchmark experiment was performed to understand

the ECG dataset and implemented a novel GAN architecture, Pulse2Pluse, to generate

realistic synthetic data. The Pulse2Pulse can generate synthetic 12-leads, 10-sec ECGs

as alternative data to represent the restricted ECG data. The results show that synthetic

ECGs generated from Pulse2Pulse are preserving the quality of the real dataset.

The GI-tract dataset was used as case studies to implement synthetic image genera-

tors to demonstrate synthetic medical image data sharing to avoid privacy concerns and

present the capabilities of using synthetic data to solve the costly and time-consuming

medical data annotation process. The deepsynth-gi generator using StyleGAN-v2 was im-

plemented to generate synthetic GI-tract data. Additionally, the image inpainting GAN

and SinGAN-Seg were demonstrated as solutions to the resource-consuming medical data

annotation process.

The sperm dataset was analyzed, and SinGAN was investigated to perform an un-

supervised medical video annotation process. The SinGAN functionality of converting

paint-to-image was reversed and used as image-to-paint to accomplish this unsupervised

sperm localization mechanism to use as another implementation to prove the capability of

DeepSynthBody to use as an alternative data provider for the costly and time-consuming

medical data annotation process. These sperm analysis experiments are in the early

stage. Therefore final version of synthetic sperm generations will not be available at

deepsynthbody.org until the GAN can produce quality output that can be published

for the end-users of DeepSynthBody. Other than this synthetic sperm generator, the

end-users of the DeepSynthBody can access both the synthetic ECG generator and the

GI-tract image generator via deepsynthbody.org.

Overall, we could generate synthetic data using three different case studies represent-
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ing other data formats, such as signals, images, and videos. In most cases, we have

generated realistic-looking synthetic data that can be replaced for real data with privacy

restrictions. Moreover, we showed that GANs could generate synthetic data with ground

truths to overcome the costly and time-consuming data annotation process. Furthermore,

we presented how to convert true negative data into true positive data using GANs to ad-

dress the data imbalance problem. Presented qualitative and quantitative analyses imply

that synthetic data can overcome the data deficiency problem in the medical domain.

Explainable DeepSynth AI and DeepSynth explainable AI were introduced as an op-

tional step in this framework, and therefore, contributors can decide that they are fol-

lowing this step or not. This functionality was kept for future research. However, adding

explainability to generative models used in this framework can improve the trust of the

end-users to use the synthetic data.
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Chapter 4

Discussion and Conclusion

The main objective of this thesis is to research and develop generalizable, accurate and

well-performing ML models which can be used in CAD systems to aid doctors by detecting

more anomalies to save lives ultimately. However, we identified that the lack of medical

data is a major problem in the current pipeline of applying ML methods in the medical

domain. Therefore, we have defined several objectives to find a way to overcome the

data deficiency problem in applying ML solutions in the medical domain. As a result, we

introduced a novel concept and the corresponding framework, DeepSynthBody, to bypass

the data deficiency problem.

In this thesis, the main research question stated was “What are the problems that

emerge from data in computer-aided diagnosis systems, and how can these

problems be tackled?”. To address the research question, we have researched and ana-

lyzed ML models used in CAD systems. To support it, we collected and investigated the

real medical datasets, researched and developed benchmark analysis to identify the data

problems to be addressed. We could identify that data deficiency is the main problem

in the medical domain. This problem has occurred due to privacy concerns, the time-

consuming and costly data annotation, and the data imbalance problem in the medical

domain. To overcome these problems, we researched and developed a GAN-based concept

and a framework to tackle the data deficiency problem in the medical domain, namely

DeepSynthBody. In the DeepSynthBody solution, the main focus is to overcome the data

deficiency problems using synthetic medical data. We show that synthetic data can over-

come the data deficiency problem by omitting privacy concerns, generating synthetic data

with ground truth and generating synthetic data to overcome data imbalance problems
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by converting true negatives to true positives.

To achieve the main objective, seven datasets [23, 24, 25, 26, 27, 28, 29], 12 bench-

mark analysis studies and ML models to use with CAD systems [30, 31, 38, 39,

40, 68, 41, 36, 32, 33, 35, 34] and eight GAN studies [72, 73, 77, 74, 70, 67, 75, 76,

71] were published to cover all the sub-objectives and finally achieve the main objective

and answer the research question. Some of these papers contribute to multiple objec-

tives, while others contribute to only a single objective. These contribution overlaps are

illustrated in Figure 1.5 in Section 1.5.

4.1 Contributions and Discussions

The main focus of our research, in general, is to find generalizable and well-performing ML

models, which are the main component of CAD systems to assist doctors, and this thesis

address several of the challenges arising in this context. In particular, we have focused

on researching ML models for CAD systems with special attention to the challenges

medical data scarcity introduces. To accomplish this, Sub-objective I was introduced.

However, the data deficiency problem was identified as a significant barrier to achieve

the sub-objective I. Therefore, this thesis also introduced sub-objectives II, III, and IV to

research and develop medical datasets, research and establish benchmarks to identify the

data problems, and research and develop GAN-based frameworks to generate synthetic

data as the solution. Sub-objective I and Sub-objective III are overlapped greatly because

designing ML models for CAD systems consists of implicit benchmark analysis and vice-

versa. Finally, we achieved Sub-objective IV by introducing the novel DeepSynthBody

concept and the corresponding framework. Three different medical branches, gastroen-

terology, andrology, and cardiology, were used as the case studies for sub-objectives I, II,

III, and IV:

• Sub-objective I: The main focus of this sub-objective is to research and develop

well-performing ML models for CAD systems to assist doctors. As case studies, we

have selected three branches of medicine. In gastroenterology, images collected from

colonoscopies were the main data stream to apply ML algorithms which are the core

algorithms in CAD systems. Several classification models [30, 31] and segmentation

models [35, 36] were researched and implemented for the gastroenterology branch
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under this thesis in different stages of the timeline. Not only using real data, but

also synthetic data was used with segmentation models [67] used to predict polyps

in GI-tract data. Similarly, ML-based regression models were investigated and de-

veloped for the andrology branch [38, 39, 40, 68]. For the cardiology branch, an

ML-based ECG analysis system [41] was researched and implemented. Moreover,

all the dataset papers [23, 24, 25, 26, 27, 28, 29] introduced ML models as baseline

experiments considered as initial models for developing CAD systems.

• Sub-objective II: The main task of this sub-objective is to collect and produce

medical datasets. Collecting medical data and producing baseline results to under-

stand the data is the first step of developing CAD systems. Therefore, different

types of medical datasets [23, 24, 25, 26, 27, 28, 29] representing different types

of human body organs were collected and published with the baseline experiments.

While all the datasets contribute to the main objective, the GI-tract dataset [23]

was selected to use as one of the case studies for other sub-objectives because of the

data diversity and a large amount of data. Despite our dataset contributions, two

additional datasets were used as the case studies. They are an ECG dataset, which

is a private medical dataset representing biomedical signal, and a sperm dataset rep-

resenting video data. The additional datasets were selected to research and develop

ML models for CAD systems in the initial stage. Later, these additional dataset

were used to maintain the diversity of the case studies used as proof of concepts.

From the perspective of DeepSynthBody, which is the solution introduced in this

thesis to overcome the data deficiency problem, this data processing step is an in-

house step if the datasets are private. In this thesis, one private dataset and two

public datasets were used to prove the concept of DeepSynthBody. For further

investigating the concept’s possibilities, experimenting with new medical data types

can be started with public datasets with other data types, which were not covered

in this thesis. At the end of the successful implementation of DeepSynthBody, we

could introduce synthetic datasets, such as synthetic ECGs, synthetic polyps, and

the corresponding ground truth masks, and randomly generated synthetic GI-tract

landmarks to support the main objective.

• Sub-objective III: The selected datasets were used to design generalizable and
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well-performing ML models for CAD systems in our Sub-objective I. However, af-

ter identifying the data problems of the ML-based CAD system designing process,

we re-analyzed the process of designing ML models as benchmark analysis to in-

vestigate the data deficiency problem to be addressed in Sub-objective IV. Under

Sub-objective I, different types of ML solutions for CAD systems were investigated

under the three different selected medical branches, gastroenterology [30, 31, 36, 32,

33, 35], andrology [38, 39, 40, 68], and cardiology [41]. However, all findings were

considered as benchmark articles under new Sub-objective III as well because these

studies reflect the real problems associated with the medical data.

A set of benchmark articles for the selected datasets as case studies were published to

achieve the benchmark analysis objective (Sub-objective III). While all the datasets

should have benchmark analysis results, we chose the same three datasets selected

in Sub-objective I, as case studies to achieving Sub-objective III. They are the ECG

data, the GI-tract dataset, and the sperm dataset. Then, different types of bench-

mark analysis experiments done for developing ML models for CAD systems in

Sub-objective I with the GI-tract data [30, 31, 36, 32, 33, 35] were re-considered

to support this objective. Similarly, the ECG analysis [41] and sperm analysis [38,

39, 40, 68] experiments were investigated again as benchmark analyses for identi-

fying the data-related problems to address experimenting GANs. Without having

benchmark analysis, it is not recommended to research GANs under this DeepSyn-

thBody framework because the end-user of the DeepSynthBody framework will not

have results to compare the quality of synthetic data coming from this framework in

addition to understanding the data-related problems. In these benchmark analyses,

we contributed to organizing a competition, namely BioMedia 2020 [68], and partic-

ipated in a competition, namely EndoCV 2021 [35], to maintain higher standards for

the benchmark results. A detailed analysis of GI tract landmark classification was

performed within the benchmark analyses to introduce proper generalizable analyses

using cross datasets of GI data [31]. As a result of the cross dataset evaluation, we

further discussed proper evaluation mechanisms and guidelines for binary classifica-

tion of medical data in our Medimetrics1 [33], an open-access tool for fair evaluations

among different research findings. Furthermore, the effect of image resolution [32]

1https://medimetrics.no/medimetrics/
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was investigated to show that high-resolution data can improve the performance of

ML models using the GI-tract data as the case study.

• Sub-objective IV: In this sub-objective, the main purpose is to generate synthetic

medical data to overcome privacy-related problems, the time-consuming and costly

medical data annotation process, the data bias problem in the medical domain, and

the medical data imbalance problem. Before studying synthetic data generation

experiments, we investigated possible use cases of GANs with GI-tract data. One

study has investigated to preprocessing GI tract images using a GAN [72, 73] to

fill green regions of endoscopic images. Another study was performed to predicting

blurry pill cam video frames using a GAN [74]. The later GAN experiment shows

that the GAN can predict the fifth frame for the given four input frames of a pill

cam endoscopic video. These experiments helped us to get a basic understanding

of GANs in the medical domain.

Then, advanced GAN experiments to overcome the privacy issues were researched

and developed. The privacy concerns were identified as one of the major issues

that caused the data deficiency problem in the medical domain. The private ECG

dataset was investigated and successfully published a novel GAN architecture called

Pulse2Pulse [70], which can generate synthetic 12-leads 10-seconds long ECGs indis-

tinguishable from real ECGs. Not only this ECG generation GAN, we investigated a

GI-tract image generation in the concept paper [71], which introduced the DeepSyn-

thBody concept. The synthetic GI-tract data generator introduced in the concept

paper showed how to generate controllable synthetic data as an alternative to real

medical image data if the real datasets have privacy concerns.

Not only privacy concerns, but the results collected from the ECG generation and

GI-tract image generation experiments show that synthetic data can represent the

real data distributions. Remarkably, the synthetic ECGs clearly show the exact dis-

tribution of the properties of the real dataset used to train the Pulse2Pulse GAN.

Besides generating the synthetic samples within the distribution, the generated syn-

thetic data can cover untouched regions of the real data distribution. For more

information about the distribution overlap between the real and the synthetic data,

refer to the original article of Pulse2Pulse [70]. Similar to the synthetic ECGs, the

synthetic GI-tract images shows realistic GI-tract landmark within the generated
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images. Then, these GANs are an indication that synthetic data can be used to

generate uniform data distributions or missing data.

Furthermore, under this objective, to introduce an alternative method for the costly

and time-consuming expert’s data annotation process, we researched and developed

novel pipelines of GAN architectures using two case studies, the GI-tract dataset [23]

and the sperm dataset [69]. In one study, the GI-tract dataset was used to train

a GAN to generate synthetic polyp data from clean colon images [75]. This study

also contributed to the data imbalance problem in the medical domain because the

pipeline introduced in this study converts a real clean colon image (true-negative

sample) into a synthetic polyp image (true-positive sample). In another study,

SinGAN-Seg, synthetic polyp data were generated with the corresponding mask

from a single polyp image [67]. In the SinGAN-Seg study, an unlimited number

of synthetic samples can be generated with the corresponding segmentation masks

of polyps. This GAN can solve the time-consuming and costly data annotation

process by generating synthetic data and the corresponding segmentation masks

automatically. Moreover, we show that generated synthetic samples can improve

the performance of polyp segmentation algorithms used in CAD systems when the

manually annotated dataset is small. Additionally, we have investigated the usabil-

ity of GANs to produce synthetic sperm data [76] instead of blurry-looking sperm

video samples to have better quality assessments.

In this thesis, we researched an unsupervised way to segment sperms using a GAN-

based model. The results showed promising directions of converting real sperm

video frames into synthetic clear video frames with sperm locations, which can be

used to analyze the sperm samples in future studies. This sperm study also a proof

for using GANs to overcome the time-consuming and costly data annotation process

in the medical domain.

In addition to generating synthetic data with segmentation masks representing the

most advanced ground truth type, which is pixel-wise classification, all other ground

truth generations, such as continuous values, class labels, and bounding boxes, can

be explored and considered to overcome the data deficiency problem using GANs as

explored under Sub-objective IV. For example, conditional GANs generating syn-

thetic medical data using simple numerical values as input conditions can make
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synthetic datasets with numerical ground truth data. Similarly, using class labels

as input to GANs can produce synthetic datasets with the corresponding class la-

bels. Moreover, bound box ground truth, one of the famous medical image analysis

techniques, can be made using similar conditional GANs.

Finally, we formalized the GAN development process using the novel concept and

the framework called DeepSynthBody to overcome the data deficiency problem. In

this framework, we pipeline the synthetic data generation process in the medical

domain using four steps. Developers who are researching GANs and end-users who

need synthetic data can use our framework via www.deepsynthbody.org. In this

framework, we encouraged to publish generative models as PyPI package instead of

publishing pre-generated billions of synthetic data samples. This encouragement is

a trade-off because it has advantages and disadvantages. Pre-trained GAN models

need less space than publishing pre-generated data is an advantage. If pre-trained

GANs are conditional GANs, then the end-users can generate synthetic data as they

needed. This custom data generation is another advantage. The main disadvantage

of using pre-trained models instead of pre-generated synthetic data is the repro-

ducibility of research works performed using privately generate synthetic datasets.

However, publishing the synthetic datasets used to perform the research in other

public data repositories can solve this problem. Therefore, overall we recommend

publishing pre-generated GAN models instead of pre-generated datasets.

• Main-objective: The final objective was to connect all sub-objectives to produce

well-performing and more accurate ML models for CAD systems to assist doctors in

efficient diagnoses by addressing the data deficiency problem. The initial ML models

designed to achieve the Sub-objective I showed the effects of data deficiency problems

in the medical domain. Then, we collected, researched, and developed datasets

(real and synthetic) for developing ML models for CAD systems for biomedical

applications. In Sub-objective III, benchmark analyses were performed to identify

the data problem to be addressed using GANs. Then, we proposed DeepSynthBody,

which is based on GANs to address the data deficiency problem in the medical

domain (Sub-objective IV). Finally, we published our solution as an open-source

project for getting more collaborations worldwide at www.deepsynthbody.org.

Generated synthetic ECG data show that our concept can avoid the privacy concerns
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in the medical domain. We proved the usability of synthetic ECG data qualitatively

and quantitatively in our DeepFake ECG paper [70]. Moreover, synthetic polyp

generation studies [67, 75] showed that the data imbalance problem and the time-

consuming and costly data annotation problem can be solved using synthetic data.

Additionally, SinGAN-Seg [67] showed performance improvements when synthetic

datasets are used instead of small real datasets. Ultimately, we could show that

the main-objective is achievable using the novel concept and the corresponding

framework, namely DeepSynthBody, introduced in Sub-objective IV and achieving

other three sub-objectives I, II, and III.

By achieving the four sub-objectives, we reached our main objective: research and

develop ML models for CAD systems for different medical applications focusing on the

problems of limited availability of biomedical data. Finally, we showed that the research

question, “What are the problems that emerge from data in computer-aided

diagnosis systems, and how can these problems be tackled?” could be answered

using our novel concept called DeepSynthBody. Now the concept is public. All the

necessary infrastructure of the DeepSynthBody framework is ready for contributions from

researchers who can provide deep generative models to this framework to make a fully

functional open-source DeepSynthBody. This concept will open a new era for open science

in the medical domain. For contributions, researchers can visit our online platform:

www.deepsynthbody.org.

4.2 Ethical Consideration

Medical data collected from one patient, one hospital, one region, or one human race

to train and develop ML models used in CAD systems can lead to ethical problems

because the models based on this data can make biased predictions. Therefore, researchers

should pay more attention to this problem in their research. For example, when an ML

model is trained from a patient’s data, then the model should consider the patient’s

anonymity and confidentiality. In this regard, we have maintained all the participants’

anonymity and privacy for our data collections by de-identifying data samples, thus,

making it impossible to connect the data to real persons. Furthermore, we combined

data collected from several hospitals to avoid patient bias problems and hospital bias
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problems. However, to avoid the race and country bias problems, a more extensive data

collection should be performed. Collecting data in the medical domain is challenging due

to privacy concerns, the costly and timely medical data annotation process, and data

bias problems. The DeepSynthBody concept can address these problems by omitting

anonymization and confidentiality concerns (privacy concerns) by generating synthetic

data with ground truths, and generating synthetic data by converting true negatives to

true positives.

Although DeepSynthBody is created to solve the data problems in the medical domain,

the ethics of synthetic data, which is the core of the concept, is a critical topic. Deep

Fakes [204], a popular topic in synthetic data generation, can fool people by generating

realistic-looking face images and videos. In this context, Deep Fakes are sometimes used

to make fake news about famous people. While some of these Deep Fakes are used to

entertain society, others are purposely harming both people and the society.

The same problems may happen with synthetic data in the medical domain. Some

possibilities are that someone can generate fake medical reports with generated realistic-

looking medical images and videos, etc. People may use these fake reports to cheat their

companies to get social benefits such as additional money. This kind of circumstance

cannot be avoided, and making a fully secure link with hospitals to get approval can be

a solution. Another ethical issue arises with converting true negatives into true positives.

Somebody can argue that this is not an ethical procedure because one converts healthy

medical data to unhealthy data. However, if true positives are not identified using a real

name, we believe that this conversion is ethical.

In sum, we believe that the possible negative effects of synthetic data in the medical

domain are outweighed by the positive aspects. We presented in this thesis how to use

synthetic data to share private datasets in order to avoid privacy concerns. Furthermore,

we showed that synthetic data is a possible solution to overcome the data bias problems.

For example, we converted non-polyp images into polyp images. In other words, we

converted true negative samples into true positives. A similar mechanism can overcome

the data imbalance problems by converting data from one racial background to another

racial background to avoid ethical issues related to imbalanced data. Moreover, ground

truth data in the medical domain can raise ethical issues due to differences from an expert

to another expert who performs the ground truth preparation process. These differences
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affect the final performance of the ML models trained from the data. The ML models,

in some way, reflect the skills of the person who prepared the ground truth data. In

this context, we have proposed a way to generate synthetic data with the corresponding

ground truth. Therefore, experts’ knowledge can be used to verify the ground truth rather

than preparing ground truths which have differences from one expert to another. Overall,

we can see that synthetic data in medicine can rather help to solve ethical issues than

producing new ones. Nevertheless, like for all research where humans are involved, one

needs to be very careful and sensitive in addressing ethical questions for each specific

medical application area where synthetic data might be used.

4.3 Future Works

Our solution, DeepSynthBody, which was introduced to tackle the data deficiency problem

for developing ML models for CAD systems in the medical domain, can be improved in

different ways from Step I to Step IV. In Step I, many datasets from different organ

systems have been collected. However, in this thesis, only one dataset from the data

collection was investigated with additional two datasets from the outside of our data

collection. Therefore, benchmark studies and GAN experiments should be performed with

the rest [24, 25, 26, 27, 28, 29] of our data collection. In addition to the collected datasets,

other open-access datasets can be used as case studies, such as, MRI datasets representing

4-D datatype, which was not considered in this thesis. In Step II, the evaluation process

of benchmark results can be improved by introducing a common guideline to measure the

performance of detection and segmentation ML models such as MediMetrics [33], which

was introduced to improve the quality of evaluations used with binary classifications.

The GAN models used for the three case studies, which used ECG dataset, GI-tract

dataset, and sperm dataset as main data sources, can be further improved. For example,

Pulse2Pulse [70] can be enhanced by adding conditional input such as ECG properties.

Additionally, continuous ECG pulse generation can be researched with a modified version

of the Pulse2Pulse generator by conditioning on the first half of ECGs as input to the

generator. Moreover, GI-tract style GAN [71] can be improved using conditional-GANs

of GI-tract images to generate specific landmarks of GI-tract. However, the main chal-

lenge for training conditional GANs for generating synthetic GI-tract images is a lack of
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labeled GI-tract images. In this case, researchers can experiment with transfer learning

mechanisms for GAN training [205, 206]. Further investigations with SinGAN-Seg and

polyp inpainting GANs can improve the quality of the synthetic data generated from

these GANs, i.e., adding super-resolution GAN [207] to the pipeline of synthetic polyp

image generation. In the end, we have considered three branches of medicine, cardiology,

gastroenterology, and andrology. Other branches of medicine should be considered in fu-

ture research to build the complete DeepSynthBody, and ML models for CAD systems to

assist doctors.

The GANEx [77] tool can be further improved with several functionalities. For

GANEx, we can introduce functionalities to publish checkpoints of trained GAN archi-

tectures directly into the DeepSynthBody framework. In this functionality, the submitted

checkpoint can be reviewed by computer science experts of the future community of the

framework before merging them into the final deepsynthbody package. Adding these

kinds of functionalities can help non-computer science people to publish their GAN mod-

ules without any coding burdens. Additionally, integrating interaction between GANEx

and the online platform can introduce real-time performance comparisons, such as qual-

itative comparisons for synthetic images, if there are two or more models for the same

purposes. Not only that, Federated learning techniques [208, 209] can be investigated for

GANEx to enable distributed GAN learning to input bigger training data distribution to

get better realistic synthetic data. However, some re-engineering, such as added web ser-

vices for distributed computing, can be researched for online interactions and distributed

computing.

We believe that DeepSynthBody will open new research directions and overcome the

data deficiency problem in medicine. For example, DeepSynthBody can produce a new

model for representing the human body and its intra-correlations of functionalities of

the organs. These functionalities can be achieved by collecting multi-model datasets

consisting of various types of medical data correlated with each other. Suppose we can

investigate GAN models, which can condition on one datatype and generate synthetic data

on another data type. In that case, those models can be used to find correlations among

different medical data types. Finally, GANs can be trained to generate synthetic data

conditioned on one organ’s data and generate data for another organ system. Successful

findings of these correlations can lead to finding correlations about organs’ functions
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because data coming from organ systems is inherited from their functions. Additionally,

this platform will act as a large medical data repository without any privacy concerns and

data storage shortages because successful GANs can act as a data compression method.

For example, the size of the training dataset used in the Pusle2Pulse [70] implementation

is around 3GB for around 15, 000 ECGs. However, if we use the deepfake-ecg PyPI

package, it takes around 50MB to store in cloud platforms. Still, it can generate an

unlimited number of realistic synthetic ECGs from a similar distribution of the real data.

In this thesis, proper evaluations were not done focusing on this data compression because

it was not our main goal. Thus, future studies can be focused on evaluating this privacy-

preserving data compression and storage.

4.4 Conclusion

In conclusion, ML-based CAD systems are a great value addition to medicine because

these systems have the capabilities to assist doctors by performing automated diagnosis

processes. However, we showed that a lack of medical data to train ML models causes

generalizability and performance issues. Collecting and processing medical domain data

is a basic solution to overcome this problem. However, collecting and processing data

is not easy in the medical domain because of privacy restrictions and the costly and

time-consuming data annotation process. Generating synthetic medical data to train ML

models is an alternative solution to overcome this data deficiency problem.

Well-performing GAN architectures can generate realistic synthetic data. These syn-

thetic data can represent real medical data when the real datasets are not permitted to

share. Moreover, conditional GAN architectures can generate synthetic datasets with the

corresponding ground truth data, which domain experts normally do. For example, we

showed that how to generate synthetic polyps and the corresponding ground truth masks.

Furthermore, GANs can generate synthetic medical data by converting true negative data

samples into true positive data samples. Data conversion, such as true negatives to true

positives, can solve the data imbalance problem in the medical domain.

DeepSynthBody framework, which was introduced as the main solution in this thesis

to overcome the data deficiency problem, provides a complete framework to generate syn-

thetic data and develop generative models. We published this concept and the framework
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as an open-source project to get contributions worldwide. Getting more contributions,

we hope to produce the largest synthetic data repository in the world. Ultimately, this

DeepSynthBody concept can be improved to use as a model to represent the human body.

Furthermore, the data compression ability of GANs is a solution for storing medical data

in a limited space avoiding privacy concerns.

4.5 Final Remarks

In this thesis, we researched and developed ML-based components for CAD systems in

three different branches, gastroenterology, andrology, and cardiology. All the data col-

lected under these three branches were collected from hospitals in Norway and Denmark.

In most of the cases, datasets were analyzed by experts in the domains. In the cases

where we generated synthetic data, domain experts helped us to perform a qualitative

analysis with their expertise. Furthermore, our solution proposed in the thesis, namely

DeepSynthBody, shows a high potential to be an important part of the future of devel-

oping well-performing ML models for developing CAD systems. However, the success of

the future directions of DeepSynthBody depends on the contributions from the research

community of ML and the medical data providers. Therefore, the framework is available

as an open-source project at deepsynthbody.org to get more contributions and to the

end-users who want to generate synthetic medical data. Moreover, we showed advanced

future directions of our DeepSynthBody, such as using the framework as a novel model

to the human body and a novel way to store medical data.
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Eduardo Romero. “An open access thyroid ultrasound image database”. In: 10th

International Symposium on Medical Information Processing and Analysis. Vol. 9287.

International Society for Optics and Photonics. 2015, 92870W.

[95] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. “The HAM10000 dataset,

a large collection of multi-source dermatoscopic images of common pigmented skin

lesions”. In: Scientific Data 5.1 (2018), p. 180161. doi: 10.1038/sdata.2018.161.

url: https://doi.org/10.1038/sdata.2018.161.

[96] Veronica Rotemberg, Nicholas Kurtansky, Brigid Betz-Stablein, Liam Caffery, Em-

manouil Chousakos, Noel Codella, Marc Combalia, Stephen Dusza, Pascale Guit-

era, David Gutman, et al. “A patient-centric dataset of images and metadata for

identifying melanomas using clinical context”. In: Scientific data 8.1 (2021), pp. 1–

8.

[97] Holger R Roth, Le Lu, Ari Seff, Kevin M Cherry, Joanne Hoffman, Shijun Wang,

Jiamin Liu, Evrim Turkbey, and Ronald M Summers. “A new 2.5 D represen-

tation for lymph node detection using random sets of deep convolutional neural

network observations”. In: International conference on medical image computing

and computer-assisted intervention. Springer. 2014, pp. 520–527.
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A.1 Paper I - HyperKvasir, a Comprehensive Multi-

class Image and Video Dataset for Gastrointesti-
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Abstract: Artificial intelligence is currently a hot topic in medicine. However, medical

data is often sparse and hard to obtain due to legal restrictions and lack of medical

personnel for the cumbersome and tedious process to manually label training data.

These constraints make it difficult to develop systems for automatic analysis, like

detecting disease or other lesions. In this respect, this article presents HyperKvasir,

the largest image and video dataset of the gastrointestinal tract available today. The

data is collected during real gastro- and colonoscopy examinations at Bærum Hospi-

tal in Norway and partly labeled by experienced gastrointestinal endoscopists. The

dataset contains 110,079 images and 374 videos, and represents anatomical land-

marks as well as pathological and normal findings. The total number of images and

video frames together is around 1 million. Initial experiments demonstrate the po-

tential benefits of artificial intelligence-based computer-assisted diagnosis systems.

The HyperKvasir dataset can play a valuable role in developing better algorithms

and computer-assisted examination systems not only for gastro- and colonoscopy,
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Candidate contributions: Vajira contributed (as one of the main authors) to the con-

ception and design of the paper and doing the deep learning baseline experiments in 
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161, averaged ResNet-152, DenseNet-161, and combined ResNet-152 and DenseNet-

161 through an MLP) using two folds cross-validation and Pytorch deep learning
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framework. These deep learning experiments show the best baseline performance of

this paper. He contributed to drafting the manuscript and revising it.
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Abstract: Games are often defined as engines of experience, and they are heavily rely-

ing on emotions, they arouse in players. In this paper, we present a dataset called

Toadstool as well as a reproducible methodology to extend on the dataset. The

dataset consists of video, sensor, and demographic data collected from ten partic-

ipants playing Super Mario Bros, an iconic and famous video game. The sensor

data is collected through an Empatica E4 wristband, which provides high-quality

measurements and is graded as a medical device. In addition to the dataset and

the methodology for data collection, we present a set of baseline experiments which

show that we can use video game frames together with the facial expressions to

predict the blood volume pulse of the person playing Super Mario Bros. With the

dataset and the collection methodology we aim to contribute to research on emo-

tionally aware machine learning algorithms, focusing on reinforcement learning and

multimodal data fusion. We believe that the presented dataset can be interesting
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Published: The ACM Multimedia Systems Conference (MMSys) - 2020. DOI:                         
https://doi.org/10.1145/3339825.3394939
Candidate contributions: Vajira contributed to the conception and designing of the

theoretical models. He contributed to collecting data as a participant also. Vajira

contributed to publishing data in osf.io and organizing it. He contributed to drafting

the paper and revising it.
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A.3 Paper III - PMData: A Sports Logging Dataset

Authors: Vajira Thambawita, Steven Alexander Hicks, Hanna Borgli, H̊akon Kvale

Stensland, Debesh Jha, Martin Kristoffer Svensen, Svein-Arne Pettersen, Dag Jo-

hansen, H̊avard Dagenborg Johansen, Susann Dahl Pettersen, Simon Nordvang,

Sigurd Pedersen, Anders Gjerdrum, Tor-Morten Grønli, Per Morten Fredriksen,

Ragnhild Eg, Kjeld Hansen, Siri Fagernes, Christine Claudi, Andreas Biørn-Hansen,

Duc Tien Dang Nguyen, Tomas Kupka, Hugo Lewi Hammer, Ramesh Jain, Michael

Alexander Riegler, P̊al Halvorsen

Abstract: In this paper, we present PMData: a dataset that combines traditional lifel-

ogging data with sports-activity data. Our dataset enables the development of

novel data analysis and machine-learning applications where, for instance, addi-

tional sports data is used to predict and analyze everyday developments, like a

person’s weight and sleep patterns; and applications where traditional lifelog data

is used in a sports context to predict athletes’ performance. PMData combines input

from Fitbit Versa 2 smartwatch wristbands, the PMSys sports logging smartphone

application, and Google forms. Logging data has been collected from 16 persons

for five months. Our initial experiments show that novel analyses are possible, but

there is still room for improvement.

Published: The ACM Multimedia Systems Conference (MMSys) -2020. DOI:                           
https://doi.org/10.1145/3339825.3394926
Candidate contributions: Vajira contributed to the analysis and interpretation of data.

He contributed to drafting the article, hosting the data in an open access data host-

ing location (osf.io), and revising the manuscript. He presented the paper at MMSys

2020.

Thesis objectives: Sub-objective I, Sub-objective II
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A.4 Paper IV - PSYKOSE: A Motor Activity Database

of Patients with Schizophrenia

Authors: Petter Jakobsen, Enrique Garcia-Ceja, Lena Antonsen Stabell, Ketil Joachim

Oedegaard, Jan Oystein Berle, Vajira Thambawita, Steven Alexander Hicks, P̊al

Halvorsen, Ole Bernt Fasmer, Michael Alexander Riegler

Abstract: Using sensor data from devices such as smart-watches or mobile phones is very

popular in both computer science and medical research. Such movement data can

predict certain health states or performance outcomes. However, in order to increase

reliability and replication of the research it is important to share data and results

openly. In medicine, this is often difficult due to legal restrictions or to the fact

that data collected from clinical trials is seen as very valuable and something that

should be kept ”in-house”. In this paper, we therefore present PSYKOSE, a publicly

shared dataset consisting of motor activity data collected from body sensors. The

dataset contains data collected from patients with schizophrenia. Schizophrenia is a

severe mental disorder characterized by psychotic symptoms like hallucinations and

delusions, as well as symptoms of cognitive dysfunction and diminished motivation.

In total, we have data from 22 patients with schizophrenia and 32 healthy control

persons. For each person in the dataset, we provide sensor data collected over several

days in a row. In addition to the sensor data, we also provide some demographic

data and medical assessments during the observation period. The patients were

assessed by medical experts from Haukeland University hospital. In addition to the

data, we provide a baseline analysis and possible use-cases of the dataset.

Published: 2020 IEEE 33rd International Symposium on Computer-Based Medical Sys-

tems (CBMS). DOI: https://doi.org/10.1109/CBMS49503.2020.00064

Candidate contributions: Vajira contributed to hosting the data on a public data

repository (osf.io) and preparing the corresponding wiki pages as a manual for users

who will use the dataset. He contributed to revising the manuscript based on the

reviews.
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A.5 Paper V - Kvasir-Capsule, a Video Capsule En-

doscopy Dataset

Authors: Pia H. Smedsrud, Vajira Thambawita, Steven A. Hicks, Henrik Gjestang,

Oda Olsen Nedrejord, Espen Næss, Hanna Borgli, Debesh Jha, Tor Jan Derek

Berstad, Sigrun L. Eskeland, Mathias Lux, H̊avard Espeland, Andreas Petlund, Duc

Tien Dang Nguyen, Enrique Garcia-Ceja, Dag Johansen, Peter T. Schmidt, Ervin

Toth, Hugo L. Hammer, Thomas de Lange, Michael A. Riegler, P̊al Halvorsen

Abstract: Artificial intelligence (AI) is predicted to have profound effects on the fu-

ture of video capsule endoscopy (VCE) technology. The potential lies in improving

anomaly detection while reducing manual labour. Existing work demonstrates the

promising benefits of AI-based computer-assisted diagnosis systems for VCE. They

also show great potential for improvements to achieve even better results. Also,

medical data is often sparse and unavailable to the research community, and quali-

fied medical personnel rarely have time for the tedious labelling work. We present

Kvasir-Capsule, a large VCE dataset collected from examinations at a Norwegian

Hospital. Kvasir-Capsule consists of 117 videos which can be used to extract a total

of 4,741,504 image frames. We have labelled and medically verified 47,238 frames

with a bounding box around findings from 14 different classes. In addition to these

labelled images, there are 4,694,266 unlabelled frames included in the dataset. The

Kvasir-Capsule dataset can play a valuable role in developing better algorithms in

order to reach true potential of VCE technology.

Published: Nature Scientific Data, 2021. DOI: https://doi.org/10.1038/s41597-021-00920-z

Candidate contributions: Vajira contributed to the main baseline experiments dis-

cussed in the paper. He performed the baseline experiments using two different 

deep learning methods (DenseNet-161 and ResNet-152) using Pytorch deep learn-

ing framework. In these baseline experiments, he performed deep analysis using 

two different loss functions such as Normal Cross-Entropy Loss, Weighted Cross-

Entropy Loss, and using a weighted sampling method, and his experiments showed 

the best results in this paper (Refer to Table 3 in the paper). Vajira contributed 

to drafting and revising the paper. He especially focused on revising the technical
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part of the paper.
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A.6 Paper VI - HTAD: A Home-Tasks Activities Dataset

with Wrist-Accelerometer and Audio Features

Authors: Enrique Garcia-Ceja, Vajira Thambawita, Steven A. Hicks, Debesh Jha,

Petter Jakobsen, Hugo L. Hammer, P̊al Halvorsen, Michael A. Riegler

Abstract: In this paper, we present HTAD: A Home Tasks Activities Dataset. The

dataset contains wrist-accelerometer and audio data from people performing at-

home tasks such as sweeping, brushing teeth, washing hands, or watching TV.

These activities represent a subset of activities that are needed to be able to live

independently. Being able to detect activities with wearable devices in real-time is

important for the realization of assistive technologies with applications in different

domains such as elderly care and mental health monitoring. Preliminary results

show that using machine learning with the presented dataset leads to promising

results, but also there is still improvement potential. By making this dataset public,

researchers can test different machine learning algorithms for activity recognition,

especially, sensor data fusion methods.

Published: MultiMedia Modeling (MMM), 2021. DOI: https://doi.org/10.1007/978-3-030-67835-7_17

Candidate contributions: Vajira contributed to organizing data and publishing the

dataset in the public data repository called osf.io. He created the wiki page of

this dataset and published it to users as a reference manual to the dataset. He

contributed to drafting and revising the paper.
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A.7 Paper VII - Kvasir-Instrument: Diagnostic and

Therapeutic tool Segmentation Dataset in Gas-

trointestinal Endoscopy

Authors: Debesh Jha, Sharib Ali, Krister Emanuelsen, Steven A. Hicks, Vajira Tham-

bawita, Enrique Garcia-Ceja, Michael A. Riegler, Thomas de Lange, Peter T.

Schmidt, H̊avard D. Johansen, Dag Johansen, P̊al Halvorsen

Abstract: Gastrointestinal (GI) pathologies are periodically screened, biopsied, and re-

sected using surgical tools. Usually, the procedures and the treated or resected areas

are not specifically tracked or analysed during or after colonoscopies. Information

regarding disease borders, development, amount, and size of the resected area get

lost. This can lead to poor follow-up and bothersome reassessment difficulties post-

treatment. To improve the current standard and also to foster more research on the

topic, we have released the “Kvasir-Instrument” dataset, which consists of 590 an-

notated frames containing GI procedure tools such as snares, balloons, and biopsy

forceps, etc. Besides the images, the dataset includes ground truth masks and

bounding boxes and has been verified by two expert GI endoscopists. Additionally,

we provide a baseline for the segmentation of the GI tools to promote research and

algorithm development. We obtained a dice coefficient score of 0.9158 and a Jaccard

index of 0.8578 using a classical U-Net architecture. A similar dice coefficient score

was observed for DoubleUNet. The qualitative results showed that the model did

not work for the images with specularity and the frames with multiple tools, while

the best result for both methods was observed on all other types of images. Both

qualitative and quantitative results show that the model performs reasonably good,

but there is potential for further improvements. Benchmarking using the dataset

provides an opportunity for researchers to contribute to the field of automatic en-

doscopic diagnostic and therapeutic tool segmentation for GI endoscopy.

Published: MultiMedia Modeling (MMM), 2021. DOI: https://doi.org/10.1007/978-3-030-67835-7_19

Candidate contributions: Vajira contributed to drafting and revising the paper.                     
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A.8 Paper VIII - The Medico-Task 2018: Disease De-

tection in the Gastrointestinal Tract using Global

Features and Deep Learning

Authors: Vajira Thambawita, Debesh Jha, Michael Riegler, P̊al Halvorsen, Hugo

Lewi Hammer, H̊avard D. Johansen, Dag Johansen

Abstract: In this paper, we present our approach for the 2018 Medico Task classify-

ing diseases in the gastrointestinal tract. We have proposed a system based on

global features and deep neural networks. The best approach combines two neu-

ral networks, and the reproducible experimental results signify the efficiency of the

proposed model with an accuracy rate of 95.80%, a precision of 95.87%, and an

F1-score of 95.80%.

Published: In the Proceedings of MediaEval 2018. URL: http://ceur-ws.org/Vol-2283/

Candidate contributions: In this working notepaper, Vajira is the first author and

the corresponding author. He contributed to the main conception and design of

three experiments (out of five) using deep learning approaches which use Resnet-

152, Densenet-161, and a combination of these. Vajira’s experiments achieved the

best performance of this paper. He developed and analyzed the results of the three

experiments. Vajira contributed to draft the article and revise it.
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A.9 Paper IX - An Extensive Study on Cross-Dataset

Bias and Evaluation Metrics Interpretation for

Machine Learning Applied to Gastrointestinal

Tract Abnormality Classification

Authors: Vajira Thambawita, Debesh Jha, Hugo Lewi Hammer, H̊avard D. Johansen,

Dag Johansen, P̊al Halvorsen, and Michael A. Riegler

Abstract: Precise and efficient automated identification of gastrointestinal (GI) tract

diseases can help doctors treat more patients and improve the rate of disease de-

tection and identification. Currently, automatic analysis of diseases in the GI tract

is a hot topic in both computer science and medical-related journals. Nevertheless,

the evaluation of such an automatic analysis is often incomplete or simply wrong.

Algorithms are often only tested on small and biased datasets, and cross-dataset

evaluations are rarely performed. A clear understanding of evaluation metrics and

machine learning models with cross datasets is crucial to bring research in the field

to a new quality level. Toward this goal, we present comprehensive evaluations of

five distinct machine learning models using global features and deep neural networks

that can classify 16 different key types of GI tract conditions, including pathological

findings, anatomical landmarks, polyp removal conditions, and normal findings from

images captured by common GI tract examination instruments. In our evaluation,

we introduce performance hexagons using six performance metrics, such as recall,

precision, specificity, accuracy, F1-score, and the Matthews correlation coefficient to

demonstrate how to determine the real capabilities of models rather than evaluating

them shallowly. Furthermore, we perform cross-dataset evaluations using different

datasets for training and testing. With these cross-dataset evaluations, we demon-

strate the challenge of actually building a generalizable model that could be used

across different hospitals. Our experiments clearly show that more sophisticated per-

formance metrics and evaluation methods need to be applied to get reliable models

rather than depending on evaluations of the splits of the same dataset—that is, the

performance metrics should always be interpreted together rather than relying on a

single metric.
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Published: ACM Transactions on Computing for Healthcare, 2020-2021. DOI:                              
https://doi.org/10.1145/3386295
Candidate contributions: Vajira is the first author and the corresponding author of

this journal paper. He contributed to the main conception and design of the exper-

iments in this manuscript. Vajira developed and analyzed the three different deep

neural networks critically in this study. Additionally, he analyzed several Gastroin-

testinal (GI) tract datasets to use in the experiments and evaluated his models using

those cross datasets to measure the generalizability of the deep learning solutions

in real-world applications. He contributed to drafting the manuscript and revising

it. This journal paper is the extended version of “The medico-task 2018: Disease

detection in the gastrointestinal tract using global features and deep learning”.
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A.10 Paper X - Machine Learning-Based Analysis of

Sperm Videos and Participant Data for Male

Fertility Prediction

Authors: Steven A. Hicks, Jorunn M. Andersen, Oliwia Witczak, Vajira Thambawita,

P̊al Halvorsen, Hugo L. Hammer, Trine B. Haugen, Michael A. Riegler

Abstract: Methods for automatic analysis of clinical data are usually targeted towards

a specific modality and do not make use of all relevant data available. In the

field of male human reproduction, clinical and biological data are not used to its

fullest potential. Manual evaluation of a semen sample using a microscope is time-

consuming and requires extensive training. Furthermore, the validity of manual

semen analysis has been questioned due to limited reproducibility, and often high

inter-personnel variation. The existing computer-aided sperm analyzer systems are

not recommended for routine clinical use due to methodological challenges caused by

the consistency of the semen sample. Thus, there is a need for an improved method-

ology. We use modern and classical machine learning techniques together with a

dataset consisting of 85 videos of human semen samples and related participant

data to automatically predict sperm motility. Used techniques include simple lin-

ear regression and more sophisticated methods using convolutional neural networks.

Our results indicate that sperm motility prediction based on deep learning using

sperm motility videos is rapid to perform and consistent. Adding participant data

did not improve the algorithms performance. In conclusion, machine learning-based

automatic analysis may become a valuable tool in male infertility investigation and

research.

Published: Nature scientific reports, 2019. DOI: https://doi.org/10.1038/s41598-019-53217-y

Candidate contributions: Vajira contributed to the conception and design of this ar-ticle. 

He experimented with two different deep learning methods (out of four) which are based on 

dense optical flow and a novel preprocessing technique called “vertical frame matrix” to 

predict motility values of sperm samples. He performed his experi-ments with different 

input types such as pre-processed video frames and participant
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data. He contributed to analyzing the results of his methods, drafting the article,

and revising it.

Thesis objectives: Sub-objective I, Sub-objective III

241



Appendix A. Published Articles

A.11 Paper XI - Stacked Dense Optical Flows and

Dropout Layers to Predict Sperm Motility and

Morphology

Authors: Vajira Thambawita, P̊al Halvorsen, Hugo Hammer, Michael Riegler, and

Trine B. Haugen

Abstract: In this paper, we analyse two deep learning methods to predict sperm motility

and sperm morphology from sperm videos. We use two different inputs: stacked pure

frames of videos and dense optical flows of video frames. To solve this regression task

of predicting motility and morphology, stacked dense optical flows and extracted

original frames from sperm videos were used with the modified state of the art

convolution neural networks. For modifications of the selected models, we have

introduced an additional multi-layer perceptron to overcome the problem of over-

fitting. The method which had an additional multi-layer perceptron with dropout

layers, shows the best results when the inputs consist of both dense optical flows

and an original frame of videos.

Published: In the Proceedings of MediaEval 2019. URL: http://ceur-ws.org/Vol-2670/

Candidate contributions: Vajira contributed to the conception and design of this

working-note paper. He conducted all the experiments of this paper using two

different deep learning approaches to predict motility and morphology of the given

videos of sperm samples by organizers of MediaEval 2019-MedicoTask. He ana-

lyzed the results collected from his methods using three-folds cross-validation and

presented the results at MedicaEval-2019 and they were the best results from all

the participants of Medicotask-2019. Vajira contributed to drafting the paper and

revising it.
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A.12 Paper XII - Extracting Temporal Features into

a Spatial Domain Using Autoencoders for Sperm

Video Analysis

Authors: Vajira Thambawita, P̊al Halvorsen, Hugo Hammer, Michael Riegler, Trine

B. Haugen

Abstract: In this paper, we present a two-step deep learning method that is used to

predict sperm motility and morphology-based on video recordings of human sper-

matozoa. First, we use an autoencoder to extract temporal features from a given

semen video and plot these into image-space, which we call feature-images. Second,

these feature-images are used to perform transfer learning to predict the motility

and morphology values of human sperm. The presented method shows it’s capabil-

ity to extract temporal information into spatial domain feature-images which can

be used with traditional convolutional neural networks. Furthermore, the accuracy

of the predicted motility of a given semen sample shows that a deep learning-based

model can capture the temporal information of microscopic recordings of human

semen.

Published: In the Proceedings of MediaEval 2019. URL: http://ceur-ws.org/Vol-2670/

Candidate contributions: Vajira contributed to the conception and design of this pa-

per. He introduced a novel architecture to extract temporal and spatial features of sperm 

video using auto-encoder-based architecture. Using the extracted features, Vajra predicted 

motility and morphology levels of a given sperm sample video. Ad-ditionally, he critically 

evaluated results using two different baseline experiments and two different input shapes. 

He contributed to drafting and revising the manuscript.
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A.13 Paper XIII - ACM Multimedia BioMedia 2020

Grand Challenge Overview

Authors: Steven A. Hicks, Vajira Thambawita, Hugo L. Hammer, Trine B. Haugen,

Jorunn M. Andersen, Oliwia Witczak, P̊al Halvorsen, and Michael A. Riegler.

Abstract: The BioMedia 2020 ACM Multimedia Grand Challenge is the second in a

series of competitions focusing on the use of multimedia for different medical use-

cases. In this year’s challenge, participants are asked to develop algorithms that

automatically predict the quality of a given human semen sample using a combi-

nation of visual, patient-related, and laboratory-analysis-related data. Compared

to last year’s challenge, participants are provided with a fully multimodal dataset

(videos, analysis data, study participant data) from the field of assisted human re-

production. The tasks encourage the use of the different modalities contained within

the dataset and finding smart ways of how they may be combined to further improve

prediction accuracy. For example, using only video data or combining video data

and patient-related data. The ground truth was developed through a preliminary

analysis done by medical experts following the World Health Organization’s stan-

dard for semen quality assessment. The task lays the basis for automatic, real-time

support systems for artificial reproduction. We hope that this challenge motivates

multimedia researchers to explore more medical-related applications and use their

vast knowledge to make a real impact on people’s lives.

Published: Proceedings of the 28th ACM International Conference on Multimedia.

Candidate contributions: Vajira contributed to revising and drafting the manuscript.
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A.14 Paper XIV - Explaining Deep Neural Networks

for Knowledge Discovery in Electrocardiogram

Analysis

Authors: Steven A. Hicks, Jonas L. Isaksen, Vajira Thambawita, Jonas Ghouse,

Gustav Ahlberg, Allan Linneberg, Niels Grarup, Inga Strümke, Christina Ellervik,

Morten Salling Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou,

P̊al Halvorsen, Mary M. Maleckar, Michael A. Riegler, Jørgen K. Kanters

Abstract: Deep learning-based tools may annotate and interpret medical data more

quickly, consistently, and accurately than medical doctors. However, as medical

doctors are ultimately responsible for clinical decision-making, any deep learning-

based prediction should be accompanied by an explanation that a human can under-

stand. We present an approach called electrocardiogram gradient class activation

map (ECGradCAM), which is used to generate attention maps and explain the

reasoning behind deep learning-based decision-making in ECG analysis. Attention

maps may be used in the clinic to aid diagnosis, discover new medical knowledge,

and identify novel features and characteristics of medical tests. In this paper, we

showcase how ECGradCAM attention maps can unmask how a novel deep learning

model measures both amplitudes and intervals in 12-lead electrocardiograms, and

we show an example of how attention maps may be used to develop novel ECG

features.

Published: Nature Scientific Reports, 2021. DOI: https://doi.org/10.1038/s41598-021-90285-5

Candidate contributions: Vajira contributed to the conception and design of this pa-

per. He contributed to analyzing the results collected from the deep learning ex-

periments discussed in this manuscript. He contributed to drafting and revising the

manuscript.
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A.15 Paper XV - Pyramid-Focus-Augmentation: Med-

ical Image Segmentation with Step-Wise Focus

Authors: Vajira Thambawita, Steven Hicks, P̊al Halvorsen, Michael A. Riegler

Abstract: Segmentation of findings in the gastrointestinal tract is a challenging but also

an important task which is an important building stone for sufficient automatic

decision support systems. In this work, we present our solution for the Medico

2020 task, which focused on the problem of colon polyp segmentation. We present

our simple but efficient idea of using an augmentation method that uses grids in a

pyramid-like manner (large to small) for segmentation. Our results show that the

proposed methods work as indented and can also lead to comparable results when

competing with other methods.

Published: In the Proceedings of MediaEval 2020. DOI: https://doi.org/10.48550/arXiv.2012.07430

Candidate contributions: Vajira contributed to the conception and design of the pyramid-

focus-augmentation study. He conducted all the experiments for this manuscript and

analyzed the results with baseline experiments. Vajira published the finding of this

study as a python package index (https://pypi.org/project/pyra-pytorch/)

and GitHub repository (https://vlbthambawita.github.io/PYRA/) which can be

used by other researchers. He contributed to drafting the manuscript and revising

it.
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A.16 Paper XVI - Impact of Image Resolution on

Convolutional Neural Networks Performance in

Gastrointestinal Endoscopy

Authors: Vajira Thambawita, Steven Hicks, Inga Strümke, Michael Riegler, P̊al

Halvorsen, Sravanthi Parasa

Abstract: Convolutional neural networks (CNNs) are increasingly used to improve and

automate processes in gastroenterology, like the detection of polyps during a colonoscopy.

An important input to these methods is images and videos. Up until now, no well-

defined, common understanding or standard regarding the resolution of the images

and video frames has been defined, and to reduce processing time and resource

requirements, images are today almost always down-sampled. However, how such

down-sampling and the image resolution influence the performance in context with

medical data is unknown. In this work, we investigate how the resolution relates

to the performance of convolutional neural networks. This can help set standards

for image or video characteristics for future CNN based models in gastrointestinal

endoscopy.

Published: AGA, DDW Abstract Issue, 2021. DOI: https://doi.org/10.1016/S0016-5085(21)01616-4. 

Candidate contributions: Vajira contributed to the conception and design of this ab-

stract. He conducted all the experiments presenting in this study and he tested the

effect of image resolution for deep neural networks using two different well-known

neural networks, namely ResNet-151 and DenseNet-161. Vajira contributed to ana-

lyzing the results collected from these experiments. He contributed to drafting and

revising the abstract.
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A.17 Paper XVII - On Evaluation Metrics for Med-

ical Applications of Artificial Intelligence

Authors: Steven A. Hicks, Inga Strümke, Vajira Thambawita, Malek Hammou, Michael

A. Riegler, P̊al Halvorsen, Sravanthi Parasa

Abstract: Clinicians and model developers need to understand how proposed machine 

learning (ML) models could improve patient care. In fact, no single metric captures 

all the desirable properties of a model and several metrics are typically reported 

to summarize a model’s performance. Unfortunately, these measures are not easily 

understandable by many clinicians. Moreover, comparison of models across studies 

in an objective manner is challenging, and no tool exists to compare models using 

the same performance metrics. This paper looks at previous ML studies done in 

gastroenterology, provides an explanation of what different metrics mean in the 

context of the presented studies, and gives a thorough explanation of how different 

metrics should be interpreted. We also release an open source web-based tool that 

may be used to aid in calculating the most relevant metrics presented in this paper so 

that other researchers and clinicians may easily incorporate them into their research.

Published: Submitted for publication, Preprint is available at medRxiv. DOI: https://
doi.org/10.1101/2021.04.07.21254975

Candidate contributions: Vajira contributed to designing and developing the concept

of this paper. He also contributed to the main analysis of the results collected

from the literature reviews. Also, Vajira contributed to drafting and revising the

manuscript.
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A.18 Paper XVIII - DivergentNets: Medical Image

Segmentation by Network Ensemble

Authors: Vajira Thambawita, Steven A. Hicks, P̊al Halvorsen, Michael A. Riegler

Abstract: Detection of colon polyps has become a trending topic in the intersecting fields

of machine learningand gastrointestinal endoscopy. The focus has mainly been on

per-frame classification. More recently,polyp segmentation has gained attention in

the medical community. Segmentation has the advantageof being more accurate

than per-frame classification or object detection as it can show the affected areain

greater detail. For our contribution to the EndoCV 2021 segmentation challenge,

we propose twoseparate approaches. First, a segmentation model namedTriUNet-

composed of three separate UNetmodels. Second, we combine TriUNet with an

ensemble of well-known segmentation models, namelyUNet++, FPN, DeepLabv3,

and DeepLabv3+, into a model calledDivergentNetsto produce more generalizable

medical image segmentation masks. In addition, we propose a modified Dice loss

that calculatesloss only for a single class when performing multi-class segmentation,

forcing the model to focus onwhat is most important. Overall, the proposed meth-

ods achieved the best average scores for each re-spective round in the challenge, with

TriUNet being the winning model in Round I and DivergentNetsbeing the winning

model in Round II of the segmentation generalization challenge at EndoCV 2021.

Theimplementation of our approach is made publicly available on GitHub.

Published: In proceedings of EndoCV 2021. DOI: https://doi.org/10.48550/arXiv.2107.00283

Candidate contributions: Vajira contributed to the conception and design of this

study. He introduced two new deep neural network architectures named as TriUNet

and DivergentNets to perform the segmentation task of EndoCV grand challenge

2021. Vajira contributed to developing these two architectures and performed the

experiments. He collected results from the two networks and submitted them to the

cloud platform of the challenge. According to his submissions, his team won first

place in the polyp segmentation task. Vajira contributed to drafting and revising

the manuscript.

Thesis objectives: Sub-objective I, Sub-objective III
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A.19 Paper XIX - A Self-learning Teacher-student

Framework for Gastrointestinal Image Classifi-

cation

Authors: Henrik L. Gjestang, Steven A. Hicks, Vajira Thambawita, P̊al Halvorsen,

Michael A. Riegler

Abstract: We present a semi-supervised teacher-student framework to improve classifi-

cation performance on gastrointestinal image data. As labeled data is scarce in med-

ical settings, this framework is built specifically to take advantage of vast amounts

of unlabeled data. It consists of three main steps: (1) train a teacher model with

labeled data, (2) use the teacher model to infer pseudo labels with unlabeled data,

and (3) train a new and larger student model with a combination of labeled images

and inferred pseudo labels. These three steps are repeated several times by treat-

ing the student as a teacher to relabel the unlabeled data and consequently train

a new student. We demonstrate that our framework can classify both video cap-

sule endoscopy (VCE) and standard endoscopy images. Our results indicate that

our teacher-student framework can significantly increase the performance compared

to traditional supervised-learning-based models, i.e., an overall increase in the F1-

score of 4.7% for the Kvasir-Capsule VCE dataset and 3.2% for the HyperKvasir

colonoscopy dataset. We believe that our framework can use more of the data col-

lected at hospitals without the need for expert labels, contributing to overall better

models for medical multimedia systems for automatic disease detection.

Published: In the Proceedings of International Symposium on Computer-Based Medical

Systems (CBMS). DOI: https://doi.org/10.1109/CBMS52027.2021.00087

Candidate contributions: Vajira contributed to the conception and designing of the

study presented in this paper. He contributed to drafting and revising the manuscript.

Thesis objectives: Sub-objective I, Sub-objective III

308

[Article not attached due to copyright]

https://doi.org/10.1109/CBMS52027.2021.00087


A.20. Paper XX - Using Preprocessing as a Tool in Medical Image Detection

A.20 Paper XX - Using Preprocessing as a Tool in

Medical Image Detection

Authors: Mathias Kirkerød, Vajira Thambawita, Michael Riegler, P̊al Halvorsen

Abstract: In this paper, we describe our approach to gastrointestinal disease classifica-

tion for the medico task at MediaEval 2018. We propose multiple ways to inpaint

problematic areas in the test and training set to help with classification. We discuss

the effect that preprocessing does to the input data with respect to removing regions

with sparse information. We also discuss how preprocessing affects the training and

evaluation of a dataset that is limited in size. We will also compare the different

inpainting methods with transfer learning using a convolutional neural network.

Published: In the Proceedings of MediaEval 2020. DOI: http://ceur-ws.org/Vol-2283/

Candidate contributions: Vajira contributed to the conception and design of the study

discussed in this manuscript. He guided the first author (master student ) of this

manuscript and contributed to analyzing the results of this study. Vajira contributed

to drafting and revising the manuscript.

Thesis objectives: Sub-objective III, Sub-objective IV
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A.21 Paper XXI - Unsupervised Preprocessing to

Improve Generalisation for Medical Image Clas-

sification

Authors: Mathias Kirkerød, Rune Johan Borgli, Vajira Thambawita, Steven Hicks,

Michael Alexander Riegler, P̊al Halvorsen

Abstract: Automated disease detection in videos and images from the gastrointestinal

(GI) tract has received much attention in the last years. However, the quality of

image data is often reduced due to overlays of text and positional data. In this pa-

per, we present different methods of preprocessing such images and we describe our

approach to GI disease classification for the Kvasir v2 dataset. We propose multiple

approaches to inpaint problematic areas in the images to improve the anomaly clas-

sification, and we discuss the effect that such preprocessing does to the input data.

In short, our experiments show that the proposed methods improve the Matthews

correlation coefficient by approximately 7% in terms of better classification of GI

anomalies.

Published: In proceedings of 13th International Symposium on Medical Information and

Communication Technology (ISMICT), 2019. DOI: https://doi.org/10.1109/ISMICT.2019.8743979

Candidate contributions: Vajira contributed to the conception, design of this study,

and analysis of the results of this manuscript. Vajira contributed to drafting and

revising this extended version of the working notepaper: “Using preprocessing as a

tool in medical image detection”.

Thesis objectives: Sub-objective III, Sub-objective IV
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A.22 Paper XXII - GANEx: A Complete Pipeline

of Training, Inference and Benchmarking GAN

Experiments

Authors: Vajira Thambawita, Hugo Lewi Hammer, Michael Riegler, P̊al Halvorsen

Abstract: Deep learning (DL) is one of the standard methods in the field of multime-

dia research to perform data classification, detection, segmentation and generation.

Within DL, generative adversarial networks (GANs) represents a new and highly

popular branch of methods. GANs have the capability to generate, from random

noise or conditional input, new data realizations within the dataset population.

While generation is popular and highly useful in itself, GANs can also be useful

to improve supervised DL. GAN-based approaches can, for example, perform seg-

mentation or create synthetic data for training other DL models. The latter one

is especially interesting in domains where not much training data exists such as

medical multimedia. In this respect, performing a series of experiments involving

GANs can be very time consuming due to the lack of tools that support the whole

pipeline such as structured training, testing and tracking of different architectures

and configurations. Moreover, the success of generative models is highly dependent

on hyper-parameter optimization and statistical analysis in the design and fine-

tuning stages. In this paper, we present a new tool called GANEx for making the

whole pipeline of training, inference and benchmarking GANs faster, more efficient

and more structured. The tool consists of a special library called FastGAN which

allows designing generative models very fast. Moreover, GANEx has a graphical

user interface to support structured experimenting, quick hyper-parameter config-

urations and output analysis. The presented tool is not limited to a specific DL

framework and can be therefore even used to compare the performance of cross

frameworks.

Published: In proceedings of International Conference on Content-Based Multimedia

Indexing (CBMI), 2019. DOI: https://doi.org/10.1109/CBMI.2019.8877387

Candidate contributions: Vajira contributed to the conception and the design of this

manuscript. He implemented a new GUI-based tool named GANEx to train, do
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inference, and evaluate Generative Adversarial Networks (GANs) using pre-defined

GAN implementations. Vajira has published this tool in a Github repository (https://github.com/vlbthambawita/GANExFlask)

to use in the research community who need to train GANs without coding. He con-

tributed to drafting and revising the manuscript.

Thesis objectives: Sub-objective IV
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A.23 Paper XXIII - Vid2Pix - A Framework for Gen-

erating High-Quality Synthetic Videos

Authors: Oda O. Nedrejord, Vajira Thambawita, Steven A. Hicks, P̊al Halvorsen,

Michael A. Riegler

Abstract: Data is arguably the most important resource today as it fuels the algorithms

powering services we use every day. However, in fields like medicine, publicly avail-

able datasets are few, and labeling medical datasets require tedious efforts from

trained specialists. Generated synthetic data can be to future successful healthcare

clinical intelligence. Here, we present a GAN-based video generator demonstrating

promising results.

Published: In proceedings of IEEE International Symposium on Multimedia (ISM),

2020. DOI: https://doi.org/10.1109/ISM.2020.00010

Candidate contributions: Vajira contributed to designing and implementing the the-

oretical models discussed in this paper. He contributed to evaluating the results

(generated synthetic data) critically using dense optical flow calculations which can

be used to identify temporal feature differences between frames in a video. Vajira

also contributed to drafting and revising this manuscript.
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A.24 Paper XXIV - DeepFake Electrocardiograms:

the Beginning of the End for Privacy Issues in

Medicine

Authors: Vajira Thambawita, Jonas L. Isaksen, Steven A. Hicks, Jonas Ghouse, Gus-

tav Ahlberg, Allan Linneberg, Niels Grarup, Christina Ellervik, Morten Salling

Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, Inga Strümke,

Hugo L. Hammer, Molly Maleckar, P̊al Halvorsen, Michael A. Riegler, Jørgen K.

Kanters

Abstract: Recent global developments underscore the prominent role big data have in

modern medical science. Privacy issues are a prevalent problem for collecting and

sharing data between researchers. Synthetic data generated to represent real data

carrying similar information and distribution may alleviate the privacy issue. In

this study, we present generative adversarial networks (GANs) capable of gener-

ating realistic synthetic DeepFake 12-lead 10-sec electrocardiograms (ECGs). We

have developed and compare two methods, WaveGAN* and Pulse2Pulse GAN. We

trained the GANs with 7,233 real normal ECG to produce 121,977 DeepFake nor-

mal ECGs. By verifying the ECGs using a commercial ECG interpretation program

(MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was su-

perior to the WaveGAN to produce realistic ECGs. ECG intervals and amplitudes

were similar between the DeepFake and real ECGs. These synthetic ECGs are fully

anonymous and cannot be referred to any individual, hence they may be used freely.

The synthetic dataset will be available as open access for researchers at OSF.io and

the DeepFake generator available at the Python Package Index (PyPI) for generating

synthetic ECGs. In conclusion, we were able to generate realistic synthetic ECGs

using adversarial neural networks on normal ECGs from two population studies,

i.e., there by addressing the relevant privacy issues in medical datasets.

Published: Submitted for publication, Preprint is available at medRxiv.

DOI: https://doi.org/10.1101/2021.04.27.21256189

Candidate contributions: Vajira contributed to the conception and design of the deep-

fake ECG generation study. He implemented a novel GAN architecture named 

Pulse2pulse that can generate realistic synthetic ECGs with the properties of real
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“Normal” ECGs. Vajira conducted all GAN experiments and evaluated using MUSE

reports (ECG evaluation reports generated from a real system using in hospitals).

Vajira published his work on GitHub to make it reproducible for other ECG datasets.

He generated and published the largest synthetic ECG dataset (around 120,000

ECGs) as a replacement to a restricted real ECG dataset. He contributed to draft-

ing the manuscript and revising it.

Thesis objectives: Sub-objective II, Sub-objective IV

336



Appendix A. Published Articles

A.25 Paper XXV - SinGAN-Seg: Synthetic Training

Data Generation for Medical Image Segmenta-

tion

Authors: Vajira Thambawita, Pegah Salehi, Sajad Amouei Sheshkal, Steven A. Hicks,

Hugo L. Hammer, Sravanthi Parasa, Thomas de Lange, P̊al Halvorsen,Michael A.

Riegler

Abstract: Processing medical data to find abnormalities is a time-consuming and costly

task, requiring tremendous efforts from medical experts. Therefore, artificial intelli-

gence (AI) has become a popular tool for the automatic processing of medical data,

acting as a supportive tool for doctors. AI tools highly depend on data for train-

ing the models. However, there are several constraints to access to large amounts

of medical data to train machine learning algorithms in the medical domain, e.g.,

due to privacy concerns and the costly, time-consuming medical data annotation

process.

To address this, in this paper we present a novel synthetic data generation pipeline

called SinGAN-Seg to produce synthetic medical data with the corresponding anno-

tated ground truth masks. We show that these synthetic data generation pipelines

can be used as an alternative to bypass privacy concerns and as an alternative way

to produce artificial segmentation datasets with corresponding ground truth masks

to avoid the tedious medical data annotation process. As a proof of concept, we used

an open polyp segmentation dataset. By training UNet++ using both real polyp

segmentation dataset and the corresponding synthetic dataset generated from the

SinGAN-Seg pipeline, we show that the synthetic data can achieve a very close per-

formance to the real data when the real segmentation datasets are large enough.

In addition, we show that synthetic data generated from the SinGAN-Seg pipeline

improving the performance of segmentation algorithms when the training dataset

is very small. Since our SinGAN-Seg pipeline is applicable for any medical dataset,

this pipeline can be used with any other segmentation datasets.

Published: Submitted for publication, Preprint is available at arxiv. 
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Candidate contributions: Vajira contributed to the conception and designing of this

study. He developed the whole source code and tested the initial experiments. More-

over, he evaluated the performance of the model introduced in this paper critically

by conducting several experiments. He has created and published the synthetic

dataset, the corresponding generative models as a PyPI package, and the GitHub

repository. Vajira also contributed to the drafting and revising of the article.

Thesis objectives: Sub-objectives I, Sub-objective II, Sub-objective III, Sub-objective

IV
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A.26 Paper XXVI - Generative Adversarial Networks

For Creating Realistic Artificial Colon Polyp

Images

Authors: Vajira Thambawita, Inga Strümke, Steven Hicks, Michael A. Riegler, P̊al

Halvorsen, Sravanthi Parasa

Abstract: Artificial intelligence is increasingly used to detect and classify colon polyps.

However, small datasets are a major obstacle, especially for supervised machine

learning. Data collection is challenging, and synthetic data generation, using models

such as generative adversarial networks (GANs), may help overcome this hurdle. To

determine the clinical utility of synthesized images, we generate images containing

colon polyps, and eight endoscopists assess their anatomical correctness.

Published: GIE, DDW Abstract Issue, 2021. DOI: https://doi.org/10.1016/j.gie.2021.03.431

Candidate contributions: Vajira contributed to the conception and design of this

study. He conducted all the experiments of this research and introduced a novel

method to generate synthetic polyp images using a real clean colon image. Vajira

evaluated the study critically with experts (doctors) of the domain using a ques-

tionnaire. He contributed to drafting the manuscript and revising it.

Thesis objectives: Sub-objective I, Sub-objective II, Sub-objective III, Sub-objective

IV
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A.27 Paper XXVII - Identification of Spermatozoa

by Unsupervised Learning from Video Data

Authors: Michael A. Riegler, Trine B. Haugen, Mette Haug Stensen, Oliwia Witczak,

Hugo L. Hammer, P̊al Halvorsen, Michael A. Riegler

Abstract: Identification of individual sperm is essential to assess a given sperm sample’s

motility behaviour. Existing computer-aided systems need training data based on

annotations by professionals, which is resource demanding. On the other hand,

data analysed by unsupervised machine learning algorithms can improve supervised

algorithms that are more stable for clinical applications. Therefore, unsupervised

sperm identification can improve computer-aided sperm analysis systems predict-

ing different aspects of sperm samples. Other possible applications are assessing

kinematics and counting of spermatozoa. Generative adversarial networks (GANs)

have become common AI methods to process data in an unsupervised way. Based

on single image frames extracted from videos, a GAN (SinGAN) can be trained to

determine and track locations of sperms by translating the real images into localiza-

tion paintings. The resulting model showed the potential of identifying the presence

of sperms without any prior knowledge about data. Visual comparisons of local-

ization paintings to real sperm images show that inverse training of SinGANs can

track sperms. Converting colour frames into grayscale frames and using grayscale

synthetic sperm-like frames showed the best visual quality of generated localization

paintings of sperm frames.

Published: Oxford Academic Press, European Society of Human Reproduction and Embryology 
(Eshre), 2021. DOI: https://doi.org/10.1093/humrep/deab130.028
Candidate contributions: Vajira contributed to the design of this concept and he de-

veloped all the models and the corresponding experiments for tracking sperms using

a modified SinGAN generative model. He evaluated results collected from the exper-

iments and published them for public use (https://vlbthambawita.github.io/singan-

sperm/). Vajira contributed to drafting and revising the manuscript.
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A.28 Paper XXVIII - DeepSynthBody: the Begin-

ning of the End for Data Deficiency in Medicine

Authors: Vajira Thambawita, Steven A. Hicks, Jonas Isaksen, Mette Haug Stensen,

Trine B. Haugen, Jørgen Kanters, Sravanthi Parasa, Thomas de Lange, H̊avard D.

Johansen, Dag Johansen, Hugo L. Hammer, P̊al Halvorsen, Michael A. Riegler

Abstract: Limited access to medical data is a barrier on developing new and efficient

machine learning solutions in medicine such as computer-aided diagnosis, risk assess-

ments, predicting optimal treatments and home-based personal healthcare systems.

This paper presents DeepSynthBody: a novel framework that overcomes some of the

inherent restrictions and limitations of medical data by using deep generative ad-

versarial networks to produce synthetic data with characteristics similar to the real

data, so-called DeepSynth (deep synthetic) data. We show that DeepSynthBody

can address two key issues commonly associated with medical data, namely privacy

concerns (as a result of data protection rules and regulations) and the high costs

of annotations. To demonstrate the full pipeline of applying DeepSynthBody con-

cepts and user-friendly functionalities, we also describe a synthetic medical dataset

generated and published using our framework. DeepSynthBody opens a new era

of machine learning applications in medicine with a synthetic model of the human

body.

Published: In proceedings of the International Conference on Applied Artificial Intelli-

gence(ICAPAI), 2021. DOI: https://doi.org/10.1109/ICAPAI49758.2021.9462062

Candidate contributions: Vajira came with this idea and he contributed to the con-

ception and design. He implemented the whole pipeline and did all the imple-

mentations. Vajira has developed this DeepSynthBody as a framework and this

is the core of his thesis storyline. He performed several experiments to generate

gastrointestinal tract images using GANs as a proof of concept of this framework.

Final outcome of this study is available online to end-users of this framework at

https://deepsynthbody.org/ which was developed by him. Vajira contributed to

drafting the manuscript and revising it.
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